

Assessment

- 1. What does each of the symbols mean in this equation: $E_p = mgh$?
- 2. Translate the equation $E_p = mgh$ into a sentence with the same meaning.
- 3. How much $E_{\rm P}$ does a 1 kg mass gain when raised by a height of 10 m?
- 4. How high would a 2.0 kg mass have to be raised to have a gravitational potential energy of 1,000 J?
- 5. Mountain climbers at the Everest base camp (5,634 m above sea level) want to know the energy needed reach the mountain's summit (altitude 8,848 m). What should they choose as zero height for their energy estimate: sea level, base camp, or the summit?

ET Escent

Gravitational potential energy

$$E_p = mgh$$
$$PE = mgh$$

The gravitational potential energy of an object is the mass *m* in kilograms multiplied by the local acceleration due to gravity *g* (which is 9.8 m/s² near Earth's surface), multiplied by the height *h* in meters.

Typical potential energies				
	mass (kg)	height (m)	g (N/kg)	<i>Е</i> _Р (J)
basebal	0.15	1	9.8	1.47
basebal	0.15	10	9.8	14.7
arrow	0.01	100	9.8	9.8
seagul	1.75	50	9.8	857
dive	- 50	10	9.8	4,900
helicopter	6,000	1,000	9.8	58,800,000
En Essential Bhyroleo				

Assessment

Ph

- 1. What does each of the symbols mean in this equation: $E_p = mgh$? m = mass in kg
 - g = the strength of gravity in N/kg h = the change in height in meters
- 2. Translate the equation $E_p = mgh$ into a sentence with the same meaning.

Assessment

- 1. What does each of the symbols mean in this equation: $E_p = mgh$? m = mass in kg
 - g = the strength of gravity in N/kg
 - h = the change in height in meters
- 2. Translate the equation $E_p = mgh$ into a sentence with the same meaning. The change in gravitational potential energy of an object is its
- mass multiplied by "g" and multiplied by the change in height.
- 3. How much E_p does a 1 kg mass gain when raised by a height of 10 meters?

Escenter

Assessment

- 1. What does each of the symbols mean in this equation: $E_p = mgh$? *m* = mass in kg
 - g = the strength of gravity in N/kg
 - h = the change in height in meters
- 2. Translate the equation $E_p = mgh$ into a sentence with the same meaning. The change in gravitational potential energy of an object is its
- mass multiplied by "g" and multiplied by the change in height.
- 3. How much E_p does a 1 kg mass gain when raised by a height of 10 meters? $E_p = mgh = 98$ joules
- $L_p = mgn = 30$ j

Assessment

4. How high would a 2 kg mass have to be raised to have a gravitational potential energy of 1,000 J?

Ωπ Essential Physic

Assessment

- 4. How high would a 2 kg mass have to be raised to have a gravitational potential energy of 1,000 J? $h = E_p/mg = 51 \text{ m}$
- 5. Mountain climbers at the Everest base camp (5,634 m above sea level) want to know the energy needed reach the mountain's summit (altitude 8,848 m). What should they choose as zero height for their energy estimate: sea level, base camp, or the summit?

T Escential

Assessment

- 4. How high would a 2 kg mass have to be raised to have a gravitational potential energy of 1,000 J? $h = E_{p}/mg = 51 \text{ m}$
- 5. Mountain climbers at the Everest base camp (5,634 m above sea level) want to know the energy needed reach the mountain's summit (altitude 8,848 m). What should they choose as zero height for their energy estimate: sea level, base camp, or the summit?
 - The climbers are located at the base camp, so their change in gravitational potential will be relative to the base camp. They should therefore set the base camp's altitude as zero height.

En Essential

