

Chapter 5 Review - GREEN STAR

Find the indicated real nth root(s) of a.

2.
$$n = 6$$
, $a = 64$

3. Rewrite as a radical $25^{3/2}$

Find the real solution(s) of the equation. Round your answer to two decimal places.

4.
$$x^4 + 11 = 65$$

5.
$$(x+7)^3 = 343$$

6. Circle all of the following that are equivalent to $\frac{x^3}{v^2}$.

A.	$\left(\frac{x^{18}}{y^{12}}\right)^{-1/6}$	B. $\left(\frac{y^{12}}{x^{18}}\right)^{-1/6}$	$C. \qquad \left(\frac{x^{-5}y^7}{x^{-2}y^5}\right)^{-1}$	D. $\left(\frac{x}{y^2/3}\right)^3$
E.	$\left(y^{-1/2} \cdot x^{1/3}\right)^{-1}$	$F. (xy \cdot x^2y)^{-1}$	$G. \qquad \left(\frac{1}{x^3 y^2}\right)^{-1}$	H. $\frac{x^{24}y^{14}}{y^{16}x^8}$

Simplify. Write the expression in simplest form.

7.
$$\frac{1}{4-\sqrt{5}}$$

8.
$$\sqrt[4]{192a^6b^4c^{11}}$$

9.
$$\sqrt[4]{25} \cdot \sqrt[4]{3125}$$

10.
$$34\sqrt[3]{5x} - 7\sqrt[3]{5x}$$
 11. $\sqrt[5]{486} + 10\sqrt[5]{2}$

11.
$$\sqrt[5]{486} + 10\sqrt[5]{2}$$

12.
$$\sqrt[3]{\frac{16}{49}}$$

Describe the transformation of f represented by g.

$$13. \ \ f(x) = \sqrt{x}$$

13.
$$f(x) = \sqrt{x}$$
 $g(x) = \sqrt{x-3} + 6$

14.
$$f(x) = \sqrt[3]{x}$$
 $g(x) = -\frac{1}{2}\sqrt[3]{x}$

- 15. Let g be a horizontal stretch by a factor of 5, followed by a translation 3 units up of the graph of $f(x) = \sqrt{2x}$. Write a rule for g described by the transformation of the graph of f.
- 16. Let g be a reflection in the x-axis, followed by a translation 4 units right of the graph of $f(x) = 2\sqrt{x} 3$. Write a rule for g described by the transformation of the graph of f.

- 17. Use a graphing calculator to graph the equation $-2y^2 + 5 = x$. Identify the vertex and the direction the parabola opens.
- 18. Use a graphing calculator to graph the equation $x^2 + y^2 = 144$. Identify the radius and the intercepts.

19.
$$\sqrt[3]{x+5} = 2\sqrt[3]{2x+6}$$

20.
$$\sqrt{44-2x} = x - 10$$

19.
$$\sqrt[3]{x+5} = 2\sqrt[3]{2x+6}$$
 20. $\sqrt{44-2x} = x-10$ 21. $\sqrt{x+6}+1 = \sqrt{7-x}$

22.
$$x^{1/4} + 3 = 0$$

23.
$$2(x+11)^{1/2} = x+3$$
 24. $-2\sqrt[3]{x+4} < 12$

24.
$$-2\sqrt[3]{x+4} < 12$$

25.
$$4\sqrt{x-2} > 20$$

26.
$$4\sqrt{x} + 3 \le 23$$

27. Let $a(x) = 2x^3 + 4x^2 - 5x + 2$ and $b(x) = -x^2 + 5x - 8$. Perform each of the indicated operations. Evaluate when x = 5.

a.
$$(a + b)(x)$$

b.
$$(a - b)(x)$$

28. Let $a(x) = x^2$ and $b(x) = \sqrt[3]{x}$. Perform each of the indicated operations. Evaluate when x = 5.

a.
$$(ab)(x)$$

b.
$$\left(\frac{a}{b}\right)(x)$$

Find the inverse of the function. Graph the inverse and determine whether the inverse of the function is a function. Explain your answer.

29.
$$f(x) = 4x - 1$$

30.
$$f(x) = 9x^2$$

31. Use composition of functions to determine whether $f(x) = \frac{5-x}{2}$ and g(x) = 5-2x are inverses.

Chapter 5 Review - BLUE STAR

Find the indicated real nth root(s) of a.

3. Rewrite as a radical $49^{2/3}$

Find the real solution(s) of the equation. Round your answer to two decimal places.

4.
$$x^6 - 84 = 645$$

5.
$$(x-12)^3 = 216$$

6. Circle all of the following that are equivalent to $\frac{a^2}{h^3}$.

A.	$\left(\frac{a^{12}}{b^{18}}\right)^{1/6}$	B. $\left(\frac{a^{18}}{b^{12}}\right)^{-1/6}$	C. $\left(\frac{a^{-5}b^7}{a^{-3}b^4}\right)^{-1}$	D. $\left(\frac{a}{b^{2/3}}\right)^3$
E.	$\left(a^{-1/_3} \cdot b^{1/_2}\right)^{-1}$	F. $(ab \cdot a^2b)^{-1}$	$G. \qquad \left(\frac{1}{b^3 a^2}\right)^{-1}$	$H. \qquad \frac{a^{24}b^{11}}{b^{14}a^{22}}$

Simplify. Write the expression in simplest form.

7.
$$\frac{1}{3-\sqrt{2}}$$

8.
$$\sqrt[3]{96a^6b^4c^{11}}$$

9.
$$\sqrt[4]{125} \cdot \sqrt[4]{25}$$

10.
$$33\sqrt[4]{3x} - 16\sqrt[4]{3x}$$

11.
$$\sqrt[4]{162} + 10\sqrt[4]{2}$$

12.
$$\sqrt[3]{\frac{4}{49}}$$

$\label{lem:decomposition} \textit{Describe the transformation of } \textit{f represented by } \textit{g}.$

13.
$$f(x) = \sqrt{x}$$
 $g(x) = \sqrt{x-6} + 3$

14.
$$f(x) = \sqrt[3]{x}$$
 $g(x) = \frac{1}{4}\sqrt[3]{-x}$

- 15. Let g be a vertical stretch by a factor of 5, followed by a translation 4 units up of the graph of $f(x) = \sqrt{6x}$. Write a rule for g described by the transformation of the graph of f.
- 16. Let g be a reflection in the y-axis, followed by a translation 5 units left of the graph of $f(x) = 3\sqrt{x} 2$. Write a rule for g described by the transformation of the graph of f.

- 17. Use a graphing calculator to graph the equation $-3y^2 + 2 = x$. Identify the vertex and the direction the parabola opens.
- 18. Use a graphing calculator to graph the equation $x^2 + y^2 = 121$. Identify the radius and the intercepts.

19.
$$\sqrt[3]{4x-1} = \sqrt[3]{6x+5}$$

20.
$$\sqrt{10x + 24} = x + 12$$
 21. $\sqrt{x - 7} = 7 - \sqrt{x}$

21.
$$\sqrt{x-7} = 7 - \sqrt{x}$$

22.
$$3x^{2/3} - 30 = 18$$

22.
$$3x^{2/3} - 30 = 18$$
 23. $(6x + 8)^{1/2} = 3x$

24.
$$-3\sqrt[3]{x-4} > -15$$

25.
$$2\sqrt{x-3} \le 14$$

26.
$$3\sqrt{x} - 4 \ge 5$$

27. Let $a(x) = 5x^3 - 3x^2 + x - 12$ and $b(x) = -x^3 - 2x + 8$. Perform each of the indicated operations. Evaluate when x = 4.

a.
$$(a + b)(x)$$

b.
$$(a-b)(x)$$

28. Let $a(x) = x^3$ and $b(x) = \sqrt[4]{x}$. Perform each of the indicated operations. Evaluate when x = 3.

a.
$$(ab)(x)$$

b.
$$\left(\frac{a}{b}\right)(x)$$

Find the inverse of the function. Graph the inverse and determine whether the inverse of the function is a function. Explain your answer.

29.
$$f(x) = 5x - 3$$

30.
$$f(x) = (x-3)^2$$

31. Use composition of functions to determine whether $f(x) = \frac{9+x}{-2}$ and g(x) = -9 - 2x are inverses.

Chapter 5 Review - YELLOW STAR

Find the indicated real nth root(s) of a.

1.
$$n = 5$$
, $a = 16,807$

3. Rewrite as a radical $121^{7/3}$

Find the real solution(s) of the equation. Round your answer to two decimal places.

4.
$$3x^2 - 75 = 300$$
 5. $(x - 6)^3 = 40$

5.
$$(x-6)^3 = 40$$

6. Circle all of the following that are equivalent to $\frac{1}{x^3y^2}$.

A.	$\left(\frac{x^{18}}{y^{12}}\right)^{-1/6}$	В.	$\left(\frac{y^{12}}{x^{18}}\right)^{-1/6}$	C.	$\left(\frac{x^{-5}y^7}{x^{-2}y^5}\right)^{-1}$	D.	$\left(\frac{x^{-1}}{y^{2}/_{3}}\right)^{3}$
E.	$\left(y^{-1/2} \cdot x^{1/3}\right)^{-1}$	F.	$(xy\cdot x^2y)^{-1}$	G.	$\left(\frac{1}{x^{-3}y^{-2}}\right)^{-1}$	Н.	$\frac{x^4y^4}{y^{12}x^8}$

Simplify. Write the expression in simplest form.

7.
$$\frac{1}{7+\sqrt{3}}$$

8.
$$\sqrt[4]{162a^7b^{13}c^4}$$

9.
$$\sqrt[3]{50} \cdot \sqrt[3]{625}$$

10.
$$74\sqrt[7]{2x} - 36\sqrt[7]{2x}$$
 11. $\sqrt[6]{192} + 13\sqrt[6]{3}$

11.
$$\sqrt[6]{192} + 13\sqrt[6]{3}$$

12.
$$\sqrt[4]{\frac{8}{9}}$$

Describe the transformation of f represented by g.

13.
$$f(x) = \sqrt{x}$$
 $g(x) = \sqrt{x-7} - 9$

14.
$$f(x) = \sqrt[3]{x}$$
 $g(x) = \frac{1}{4}\sqrt[3]{-x}$

- 15. Let g be a horizontal stretch by a factor of 3, followed by a translation 5 units up of the graph of f(x) = $\sqrt{x+1}$). Write a rule for g described by the transformation of the graph of f.
- 16. Let g be a reflection in the y-axis, followed by a translation 6 units left of the graph of $f(x) = 2\sqrt{x} 1$. Write a rule for g described by the transformation of the graph of f.

- 17. Use a graphing calculator to graph the equation $-4y^2 3 = x$. Identify the vertex and the direction the parabola opens.
- 18. Use a graphing calculator to graph the equation $-y^2 = x^2 256$. Identify the radius and the intercepts.

19.
$$\sqrt[3]{\frac{1}{2}(x+10)} = \sqrt[3]{16x+48}$$

$$20. \ \sqrt{2x - 14} = x - 7$$

20.
$$\sqrt{2x - 14} = x - 7$$
 21. $\sqrt{x + 7} + 2 = \sqrt{3 - x}$

22.
$$x^{5/2} - 3 = 29$$

23.
$$(5-x)^{1/2} = 2x$$
 24. $\sqrt[3]{\frac{2}{3}x+1} < 6$

$$24. \ \sqrt[3]{\frac{2}{3}x+1} < 6$$

25.
$$5\sqrt{x-1} > 10$$

26.
$$-4\sqrt{x-1} + 3 \ge -1$$

27. Let $a(x) = 5x^3 - 2x^2 - 4$ and $b(x) = -x^3 + 2x^2 + 5x - 1$. Perform each of the indicated operations. Evaluate when x = -1.

a.
$$(a + b)(x)$$

b.
$$(a - b)(x)$$

28. Let $a(x) = x^2$ and $b(x) = \sqrt[5]{x}$. Perform each of the indicated operations. Evaluate when x = 6.

a.
$$(ab)(x)$$

b.
$$\left(\frac{a}{b}\right)(x)$$

Find the inverse of the function. Graph the inverse and determine whether the inverse of the function is a function. Explain your answer.

29.
$$f(x) = 12x - 7$$

30.
$$f(x) = (x - 8)^2$$

31. Use composition of functions to determine whether $f(x) = \frac{4-x}{15}$ and g(x) = 4-15x are inverses.