A NOTICE TO PARENTS, GUARDIANS, and STAFF

Richard Allen Preparatory Charter School Lead Testing of School Drinking Water

December 6, 2019

Safe and healthy school environments can foster healthy and successful children. To protect public health, the Richard Allen Preparatory Charter School tests lead levels in water from every outlet that is being used for drinking or cooking. If lead is found at any water outlet at levels above 15 parts per billion (ppb), which is equal to 15 micrograms per liter (μ g/L), the Environmental Protection Agency (EPA) requires that the school take action to reduce the exposure to lead. Our water test yielded results that were between 0 and 5 parts per billion (ppb), which requires no action. Please note that RAPCS replaced all interior pipes in 2007, ensuring that all pipes were new and up to code.

What is first draw testing of school drinking water for lead?

The "on-again, off-again" nature of water use at most schools can raise lead levels in school drinking water. Water that remains in pipes overnight, over a weekend, or over vacation periods stays in contact with lead pipes or lead solder and, as a result, could contain higher levels of lead. This is why schools are required to collect a sample after the water has been sitting in the plumbing system for a certain period of time. This "first draw" sample is likely to show higher levels of lead for that outlet than what you would see if you sampled after using the water continuously. However, even if the first draw sample does not reflect what you would see with continuous usage, it is still important because it can identify outlets that have elevated lead levels.

What are the results of the first draw testing?

- o Most recent testing was conducted on November 25, 2019
- o Results indicated less than 5 parts per billion (ppb)

What is being done in response to the results?

Based upon EPA levels, no action is required for our drinking/cooking water outlets.

What are the health effects of lead?

Lead is a metal that can harm children and adults when it gets into their bodies. Lead is a known neurotoxin, particularly harmful to the developing brain and nervous system of children under 6 years old. Lead can harm a young child's growth, behavior, and ability to learn. Lead exposure during pregnancy may contribute to low birth weight and developmental delays in infants. There are many sources of lead exposure in the environment, and it is important to reduce all lead exposures as much as possible. Water testing helps identify and correct possible sources of lead that contribute to exposure from drinking water.

What are the other sources of lead exposure?

Lead is a metal that has been used for centuries for many purposes, resulting in widespread distribution in the environment. Major sources of lead exposure include lead-based paint in older housing, and lead that built up over decades in soil and dust due to historical use of lead in gasoline, paint, and manufacturing. Lead can also be found in a number of consumer products, including certain types of pottery, pewter, brass fixtures, foods, plumbing materials, and cosmetics. Lead seldom occurs naturally in water supplies but drinking water could become a possible source of lead exposure if the building's plumbing contains lead. The primary source of lead exposure for most children with elevated blood-lead levels is lead-based paint.

Should your child be tested for lead?

The risk to an individual child from past exposure to elevated lead in drinking water depends on many factors; for example, a child's age, weight, amount of water consumed, and the amount of lead in the water. Children may also be exposed to other significant sources of lead including paint, soil and dust. Since blood lead testing is the only way to determine a child's blood lead level, parents should discuss their child's health history with their child's physician to determine if blood lead testing is appropriate. Pregnant women or women of childbearing age should also consider discussing this matter with their physician.

Sincerely,

Lawrence F. Jones, Jr., M.Ed.

Chief Executive Officer

Richard Allen Preparatory Charter School, Inc.

BRANDYWINE SCIENCE CENTER INC. 204 LINE ROAD KENNETT SQUARE, PA 19348 DEP #15-301 (610) 444-9850 (610) 444-4080 FAX

Lab# 915760 1st floor lobby/nurse 11/26/19 7:05	Lab# 915759 1st floor hall fountain 11/26/19 7:05	Lab# 915758 2nd floor fountain 11/26/19 7:00	Lab #915757 kitchen dish sink 11/26/19 6:56	Lab# 915756 kitchen prep sink 11/26/19 6:50				
LEAD COPPER	LEAD COPPER	LEAD COPPER	LEAD COPPER	LEAD	CHEMICAL ANALYSIS	SAMPLE COLLECTED BY TRANSPORT INFORMATION	SOURCE OF SUPPLY	ORIGIN OF SAMPLE
<0.005 0.423	<0.005 0.718	<0.005 0.620	<0.005 0.533	<0.005 0.405	RESULT	WELL DRILLER OTHER ICE /REFRIG	СІТҮ	NAME ADDRESS CITY/STATE
0.0150 1.3	0.0150 1.3	0.0150 1.3	0.0150 1.3	0.0150 1.3	DEP LIMIT	××	×	Richard Allen Prep Charter School
mg/L mg/L	mg/L	mg/L	mg/L	mg/L	UNITS	SAMPLE	MANNER OF COLLECTION	arter School
12/9/19 19:35 HC 12/10/19 13:30 HC	12/9/19 19:35 HC 12/10/19 13:30 HC	12/9/19 19:35 HC 12/10/19 13:30 HC	12/9/19 19:35 HC 12/10/19 13:30 HC	12/9/19 19:35 HC 12/10/19 13:30 HC	DATE/TIME ANALYZED Analyst	SAMPLE DATE SAMPLE TIME DATE RECEIVED TIME RECEIVED DATE OF REPORT	INSIDE TAP OUTSIDE TAP OTHER	COUNTY
SM 3113 B SM 3111 B	SM 3113 B SM 3111 B	SM 3113 B SM 3111 B	SM 3113 B SM 3111 B	SM 3113 B SM 3111 B	Method	11/26/19 see below 11/26/19 16:25 12/10/19	see below	

Chemical analyses performed in accordance with "STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER", 18th EDITION APHA-AWWA-WPCF.

Flenny D. Comon III

Henry D. Clemens III Laboratory Director