

Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Reduced v/c Ratio	1.20	0.21	0.90			0.53

Intersection Summary

Area Type: Other

Cycle Length: 60.1

Actuated Cycle Length: 59.1

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.20 Intersection Signal Delay: 57.3 Intersection Capacity Utilization 80.9%

Intersection LOS: E
ICU Level of Service D

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

№ ø1	↓↑ _{ø2}	≯ ø4
10.1 s	31 s	19 s

	1	1	†	1	1	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	f)			स	
Volume (vph)	270	55	270	420	120	575	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.850	0.918				
Flt Protected	0.950					0.991	
Satd. Flow (prot)	1770	1538	1700	0	0	1843	
FIt Permitted	0.950					0.541	
Satd. Flow (perm)	1770	1538	1700	0	0	1006	
Right Turn on Red		Yes		Yes			
Satd. Flow (RTOR)		60	134				
Link Speed (mph)	25		30			30	
Link Distance (ft)	200		324			282	
Travel Time (s)	5.5		7.4			6.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	2%	5%	2%	3%	3%	2%	
Adj. Flow (vph)	293	60	293	457	130	625	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	293	60	750	0	0	755	
Turn Type		Prot			D.P+P		
Protected Phases	4	4	2		1	12	
Permitted Phases					2		
Detector Phase	4	4	2		1	12	
Switch Phase							
Minimum Initial (s)	7.0	7.0	15.0		7.0		
Minimum Split (s)	12.0	12.0	21.0		10.1		
Total Split (s)	26.0	26.0	53.0	0.0	11.0	64.0	
Total Split (%)	28.9%	28.9%	58.9%	0.0%	12.2%	71.1%	
Maximum Green (s)	21.0	21.0	48.0		7.9		
Yellow Time (s)	3.0	3.0	3.0		3.0		
All-Red Time (s)	2.0	2.0	2.0		0.1		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	4.0	3.1	3.1	
Lead/Lag			Lag		Lead		
Lead-Lag Optimize?							
Vehicle Extension (s)	2.0	2.0	2.5		3.0		
Recall Mode	None	None	C-Min		Min		
Act Effct Green (s)	18.1	18.1	50.9			60.7	
Actuated g/C Ratio	0.20	0.20	0.57			0.67	
v/c Ratio	0.82	0.17	0.74			1.00	
Control Delay	53.4	9.1	17.8			49.1	
Queue Delay	0.0	0.0	0.0			0.0	
Total Delay	53.4	9.1	17.8			49.1	
LOS	D	Α	В			D	
Approach Delay	45.9	2.50	17.8			49.1	
Approach LOS	D		В			D	
Stops (vph)	249	13	443			330	
Fuel Used(gal)	4	0	7			10	
CO Emissions (g/hr)	304	17	468			720	

	1	*	Ť	1	1	Ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
NOx Emissions (g/hr)	59	3	91			140	
VOC Emissions (g/hr)	70	4	108			167	
Dilemma Vehicles (#)	0	0	0			0	
Queue Length 50th (ft)	158	0	253			~206	
Queue Length 95th (ft)	#260	31	430			#526	
Internal Link Dist (ft)	120		244			202	
Turn Bay Length (ft)							
Base Capacity (vph)	413	405	1020			752	
Starvation Cap Reductn	0	0	0			0	
Spillback Cap Reductn	0	0	0			0	
Storage Cap Reductn	0	0	0			0	
Reduced v/c Ratio	0.71	0.15	0.74			1.00	
Internation Comment		STATE OF STREET	SECTION AND PROPERTY.	Section 1		AND INCOME	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 1 (1%), Referenced to phase 2:NBSB, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.00 Intersection Signal Delay: 35.9 Intersection Capacity Utilization 103.5%

Intersection LOS: D
ICU Level of Service G

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	-	*	1	4-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			લ	A.		
Volume (vph)	400	135	55	245	80	30	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.966				0.963		
Flt Protected				0.991	0.965		
Satd. Flow (prot)	1773	0	0	1700	1731	0	
FIt Permitted				0.991	0.965		
Satd. Flow (perm)	1773	0	0	1700	1731	0	
Link Speed (mph)	25			25	25		
Link Distance (ft)	200			135	97		
Travel Time (s)	5.5			3.7	2.6		
Peak Hour Factor	0.61	0.61	0.60	0.60	0.29	0.29	
Heavy Vehicles (%)	4%	2%	45%	3%	2%	2%	
Adj. Flow (vph)	656	221	92	408	276	103	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	877	0	0	500	379	0	
Sign Control	Free			Free	Stop		
-tti Cu					THE RESERVE OF	MISSAGRESSA	

Intersection Summary

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 61.5%

Analysis Period (min) 15

ICU Level of Service B

	1	1	†	-	1	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	7>			स
Volume (vph)	350	60	380	160	45	315
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850	0.960			
Flt Protected	0.950					0.994
Satd. Flow (prot)	1770	1538	1783	0	0	1849
Flt Permitted	0.950			,	,	0.900
Satd. Flow (perm)	1770	1538	1783	0	0	1674
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		65	32			
Link Speed (mph)	25	00	30			30
Link Distance (ft)	200		324			282
Travel Time (s)	5.5		7.4			6.4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
	2%	5%	2%	3%	3%	2%
Heavy Vehicles (%)	380	65	413	174	3% 49	342
Adj. Flow (vph)	300	00	413	174	49	342
Shared Lane Traffic (%)	200	CE	E07	0	^	204
Lane Group Flow (vph)	380	65	587	0	0	391
Turn Type		Prot	0		D.P+P	4.0
Protected Phases	4	4	2		1	12
Permitted Phases			•		2	4.0
Detector Phase	4	4	2		1	1 2
Switch Phase						
Minimum Initial (s)	7.0	7.0	15.0		7.0	
Minimum Split (s)	12.0	12.0	21.0	10.00	10.1	7127231023
Total Split (s)	31.0	31.0	48.0	0.0	11.0	59.0
Total Split (%)	34.4%	34.4%	53.3%	0.0%	12.2%	65.6%
Maximum Green (s)	26.0	26.0	43.0		7.9	
Yellow Time (s)	3.0	3.0	3.0		3.0	
All-Red Time (s)	2.0	2.0	2.0		0.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	4.0	3.1	3.1
Lead/Lag			Lag		Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	2.0	2.0	2.5		3.0	
Recall Mode	None	None	C-Min		Min	
Act Effct Green (s)	22.6	22.6	46.6		33,133,1	56.2
Actuated g/C Ratio	0.25	0.25	0.52			0.62
v/c Ratio	0.86	0.15	0.63			0.37
Control Delay	50.9	7.4	19.2			8.9
Queue Delay	0.0	0.0	0.0			0.0
	50.9	7.4	19.2			8.9
Total Delay						
LOS	D	Α	B			A
Approach Delay	44.6		19.2			8.9
Approach LOS	D		В			Α
Stops (vph)	320	12	367			169
Fuel Used(gal)	5	0	6			2
CO Emissions (g/hr)	381	17	385			166

IMN

	1	•	Ť	1	-	†	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
NOx Emissions (g/hr)	74	3	75			32	
VOC Emissions (g/hr)	88	4	89			38	
Dilemma Vehicles (#)	0	0	0			0	
Queue Length 50th (ft)	202	0	222			90	
Queue Length 95th (ft)	#322	29	355			148	
Internal Link Dist (ft)	120		244			202	
Turn Bay Length (ft)							
Base Capacity (vph)	511	491	938			1064	
Starvation Cap Reductn	0	0	0			0	
Spillback Cap Reductn	0	0	0			0	
Storage Cap Reductn	0	0	0			0	
Reduced v/c Ratio	0.74	0.13	0.63			0.37	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 1 (1%), Referenced to phase 2:NBSB, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 24.3 Intersection Capacity Utilization 79.9%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

№ ø1	↓ ↑ ø2	→ ø4
11 s	48 \$	31 s

	1	4	†	1	-	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7"	↑	7		4
Volume (vph)	270	55	270	420	120	575
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	0	0	1300	150	0	1300
Storage Length (ft)						
Storage Lanes	1	1		1	0	
Taper Length (ft)	25	25		25	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850		0.850		
FIt Protected	0.950					0.991
Satd. Flow (prot)	1770	1538	1863	1568	0	1843
Flt Permitted	0.950					0.887
Satd. Flow (perm)	1770	1538	1863	1568	0	1649
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		60		457		
· · · · · · · · · · · · · · · · · · ·	25	00	30	401		30
Link Speed (mph)						
Link Distance (ft)	200		324			282
Travel Time (s)	5.5	_	7.4	_		6.4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	2%	5%	2%	3%	3%	2%
Adj. Flow (vph)	293	60	293	457	130	625
Shared Lane Traffic (%)						
Lane Group Flow (vph)	293	60	293	457	0	755
Turn Type	200	Prot	200	Perm	D.P+P	, 00
Protected Phases	4	, 4	2	1 01111	1	12
	4	. 4	2	2		12
Permitted Phases		. λ	0	2	2	4.0
Detector Phase	4	4	2	2	1	12
Switch Phase		Constitution (Constitution)		10.5 0 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	Acces 4000	
Minimum Initial (s)	7.0	7.0	15.0	15.0	7.0	
Minimum Split (s)	12.0	12.0	21.0	21.0	10.1	
Total Split (s)	26.0	26.0	53.0	53.0	11.0	64.0
Total Split (%)	28.9%	28.9%	58.9%	58.9%	12.2%	71.1%
Maximum Green (s)	21.0	21.0	48.0	48.0	7.9	
	3.0	3.0	3.0	3.0	3.0	
Yellow Time (s)						
All-Red Time (s)	2.0	2.0	2.0	2.0	0.1	2.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	3.1	3.1
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	2.0	2.0	2.5	2.5	3.0	
Recall Mode	None	None	C-Min	C-Min	Min	
	18.1	18.1	50.9	50.9	141111	60.7
Act Effct Green (s)						
Actuated g/C Ratio	0.20	0.20	0.57	0.57		0.67
v/c Ratio	0.82	0.17	0.28	0.42		0.67
Control Delay	53.4	9.1	11.6	2.4		12.1
Queue Delay	0.0	0.0	0.0	0.0		0.0
Total Delay	53.4	9.1	11.6	2.4		12.1
LOS	D	A	В	A		В
Approach Delay	45.9	А	6.0	Α		12.1
Approach LOS	D		A			В

И

Synchro 7 - Report

	1	*	†	1	1	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Stops (vph)	249	13	135	26		418	
Fuel Used(gal)	4	0	2	1		6	
CO Emissions (g/hr)	304	17	144	99		388	
NOx Emissions (g/hr)	59	3	28	19		76	
VOC Emissions (g/hr)	70	4	33	23		90	
Dilemma Vehicles (#)	0	0	0	0		0	
Queue Length 50th (ft)	158	0	83	0		191	
Queue Length 95th (ft)	#260	31	137	43		306	
Internal Link Dist (ft)	120		244			202	
Turn Bay Length (ft)				150			
Base Capacity (vph)	413	405	1054	1085	•	1129	
Starvation Cap Reductn	0	0	0	0		0	
Spillback Cap Reductn	0	0	0	0		0	
Storage Cap Reductn	0	0	0	0		0	
Reduced v/c Ratio	0.71	0.15	0.28	0.42		0.67	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 1 (1%), Referenced to phase 2:NBSB, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82 Intersection Signal Delay: 16.1 Intersection Capacity Utilization 77.7%

Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	1	4	†	-	1	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	†	7		4	
Volume (vph)	350	60	380	160	45	315	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0	1000	150	0	1000	
Storage Lanes	1	1		1	0		
Taper Length (ft)	25	25		25	25		
Satd. Flow (prot)	1770	1538	1863	1568	0	1849	
Flt Permitted	0.950	1556	1003	1300	U	0.923	
Satd. Flow (perm)	1770	1538	1863	1568	0	1717	
	1770	Yes	1003	Yes	0	17 17	
Right Turn on Red							
Satd. Flow (RTOR)	0.5	65	20	174		20	
Link Speed (mph)	25		30			30	
Link Distance (ft)	200		324			282	
Travel Time (s)	5.5	0.00	7.4	0.00		6.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	2%	5%	2%	3%	3%	2%	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	380	65	413	174	0	391	
Turn Type		Prot		Perm	D.P+P		
Protected Phases	4	4	2		1	12	
Permitted Phases				2	2		
Detector Phase	4	4	2	2	1	1 2	
Switch Phase							
Minimum Initial (s)	7.0	7.0	15.0	15.0	7.0		
Minimum Split (s)	12.0	12.0	21.0	21.0	10.1		
Total Split (s)	31.0	31.0	48.0	48.0	11.0	59.0	
Total Split (%)	34.4%	34.4%	53.3%	53.3%	12.2%	65.6%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	0.1		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	3.1	3.1	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?			3	3			
Recall Mode	None	None	C-Min	C-Min	Min		
Act Effct Green (s)	22.6	22.6	46.6	46.6		56.2	
Actuated g/C Ratio	0.25	0.25	0.52	0.52		0.62	
v/c Ratio	0.86	0.15	0.43	0.19		0.36	
Control Delay	50.9	7.4	16.1	2.8		8.8	
Queue Delay	0.0	0.0	0.0	0.0		0.0	
	50.9	7.4	16.1	2.8		8.8	
Total Delay		7.4 A					
LOS Approach Dolov	D	А	B 12.1	Α		A	
Approach Delay	44.6		12.1			8.8	
Approach LOS	D	40	В	40		A	
Stops (vph)	320	12	232	16		169	
Fuel Used(gal)	5	0	3	1		2	
CO Emissions (g/hr)	381	17	244	41		166	
NOx Emissions (g/hr)	74	3	47	8		32	
VOC Emissions (g/hr)	88	4	56	9		38	
Dilemma Vehicles (#)	0	0	0	0		0	

MMI Synchro 7 - Report

	1	*	†	1	1	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Queue Length 50th (ft)	202	0	143	0		90	
Queue Length 95th (ft)	#322	29	229	32		148	
Internal Link Dist (ft)	120		244			202	
Turn Bay Length (ft)				150			
Base Capacity (vph)	511	491	964	896		1087	
Starvation Cap Reductn	0	0	0	0		0	
Spillback Cap Reductn	0	0	0	0		0	
Storage Cap Reductn	0	0	0	0		0	
Reduced v/c Ratio	0.74	0.13	0.43	0.19		0.36	

Intersection Summary

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 1 (1%), Referenced to phase 2:NBSB, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 21.4 Intersection Capacity Utilization 70.1%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Queue shown is maximum after two cycles.

№ ø1	↓↑ ₀2	≯ ø4
11 s	48 s	31 s

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Lane Configurations T	SBT 575 1900 16 1.00 0.991 2089 0.887
Lane Configurations T	575 1900 16 1.00 1.991 2089
Volume (vph) 270 55 270 420 120 57 Ideal Flow (vphpl) 1900	575 1900 16 1.00 1.991 2089
Ideal Flow (vphpl) 1900 <td>1900 16 1.00 1.991 2089</td>	1900 16 1.00 1.991 2089
Lane Width (ft) 12 </td <td>1.00 0.991 2089</td>	1.00 0.991 2089
Storage Length (ft) 0 0 150 0 Storage Lanes 1 1 1 0 Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00	1.00 0.991 2089
Storage Lanes 1 1 1 0 Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00	.991 2089
Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00 </td <td>.991 2089</td>	.991 2089
Lane Util. Factor 1.00 <td>.991 2089</td>	.991 2089
Frt 0.850 0.850 Flt Protected 0.950 0.95 Satd. Flow (prot) 1770 1538 1863 1568 0 208 Flt Permitted 0.950 0.88 0 0.88 Satd. Flow (perm) 1770 1538 1863 1568 0 186 Right Turn on Red Yes Yes Yes Yes Yes	.991 2089
Fit Protected 0.950 0.98 Satd. Flow (prot) 1770 1538 1863 1568 0 208 Fit Permitted 0.950 0.88 Satd. Flow (perm) 1770 1538 1863 1568 0 186 Right Turn on Red Yes Yes Yes	2089
Satd. Flow (prot) 1770 1538 1863 1568 0 208 Flt Permitted 0.950 0.88 Satd. Flow (perm) 1770 1538 1863 1568 0 186 Right Turn on Red Yes Yes Yes	2089
Fit Permitted 0.950 0.88 Satd. Flow (perm) 1770 1538 1863 1568 0 186 Right Turn on Red Yes Yes Yes	
Satd. Flow (perm) 1770 1538 1863 1568 0 186 Right Turn on Red Yes Yes Yes	.887
Right Turn on Red Yes Yes	
	1869
Satd Flow (RTOR) 60 457	
TO THE PROPERTY OF THE PROPERT	
Annual State Control of the Control	30
	282
	6.4
	0.92
	2%
	625
Shared Lane Traffic (%)	020
	755
Turn Type Prot Perm D.P+P	100
The state of the s	12
	12
	10
	12
Switch Phase	
Minimum Initial (s) 7.0 7.0 15.0 15.0 7.0	
Minimum Split (s) 12.0 12.0 21.0 10.1	
	64.0
Total Split (%) 28.9% 28.9% 58.9% 58.9% 12.2% 71.1	1.1%
Maximum Green (s) 21.0 21.0 48.0 48.0 7.9	
Yellow Time (s) 3.0 3.0 3.0 3.0	
All-Red Time (s) 2.0 2.0 2.0 0.1	
	0.0
	3.1
Lead/Lag Lag Lag Lead	
Lead-Lag Optimize?	
Vehicle Extension (s) 2.0 2.0 2.5 3.0	
	00.7
- TO TO THE TO THE TOTAL CONTROL TO THE TOTAL CONT	60.7
	0.67
	0.59
	9.9
	0.0
Total Delay 53.4 9.1 11.6 2.4 9	9.9
	Α
Approach Delay 45.9 6.0 9	

	1		†	1	1	Ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Approach LOS	D		Α			Α	
Stops (vph)	249	13	135	26		371	
Fuel Used(gal)	4	0	2	1		5	
CO Emissions (g/hr)	304	17	144	99		348	
NOx Emissions (g/hr)	59	3	28	19		68	
VOC Emissions (g/hr)	70	4	33	23		81	
Dilemma Vehicles (#)	0	0	0	0		0	
Queue Length 50th (ft)	158	0	83	0		177	
Queue Length 95th (ft)	#260	31	137	43		273	
Internal Link Dist (ft)	120		244			202	
Turn Bay Length (ft)				150			
Base Capacity (vph)	413	405	1054	1085		1280	
Starvation Cap Reductn	0	0	0	0		0	
Spillback Cap Reductn	0	0	0	0		0	
Storage Cap Reductn	0	0	0	0		0	
Reduced v/c Ratio	0.71	0.15	0.28	0.42		0.59	

Intersection Summary

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 1 (1%), Referenced to phase 2:NBSB, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82 Intersection Signal Delay: 15.1 Intersection Capacity Utilization 77.7%

Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	1	4	†	1	-		
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	77	↑	7	001	4	
Volume (vph)	350	60	380	160	45	315	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	12	12	12	12	16	
Storage Length (ft)	0	0	12	150	0	10	
Storage Lanes	1	1		1	0		
Taper Length (ft)	25	25		25	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.850	1.00	0.850	1.00	1.00	
Flt Protected	0.950	0.000		0.000		0.994	
Satd. Flow (prot)	1770	1538	1863	1568	0	2096	
Flt Permitted	0.950	1330	1003	1300	U	0.923	
		1520	1062	1560	0		
Satd. Flow (perm)	1770	1538	1863	1568	0	1946	
Right Turn on Red		Yes		Yes			
Satd. Flow (RTOR)	0.5	65	00	174		0.0	
Link Speed (mph)	25		30			30	
Link Distance (ft)	200		324			282	
Travel Time (s)	5.5	0.00	7.4	0.00	0.00	6.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	2%	5%	2%	3%	3%	2%	
Adj. Flow (vph)	380	65	413	174	49	342	
Shared Lane Traffic (%)	000	0.5	4.40			004	
Lane Group Flow (vph)	380	65	413	174	0	391	
Turn Type		Prot		Perm	D.P+P		
Protected Phases	4	4	2	-	1	12	
Permitted Phases				2	2		
Detector Phase	4	4	2	2	1	12	
Switch Phase							
Minimum Initial (s)	7.0	7.0	15.0	15.0	7.0		
Minimum Split (s)	12.0	12.0	21.0	21.0	10.1		
Total Split (s)	31.0	31.0	48.0	48.0	11.0	59.0	
Total Split (%)	34.4%	34.4%	53.3%	53.3%	12.2%	65.6%	
Maximum Green (s)	26.0	26.0	43.0	43.0	7.9		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	0.1		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	3.1	3.1	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?							
Vehicle Extension (s)	2.0	2.0	2.5	2.5	3.0		
Recall Mode	None	None	C-Min	C-Min	Min		
Act Effct Green (s)	22.6	22.6	46.6	46.6		56.2	
Actuated g/C Ratio	0.25	0.25	0.52	0.52		0.62	
v/c Ratio	0.86	0.15	0.43	0.19		0.32	
Control Delay	50.9	7.4	16.1	2.8		8.1	
Queue Delay	0.0	0.0	0.0	0.0		0.0	
Total Delay	50.9	7.4	16.1	2.8		8.1	
LOS	D	Α	В	Α		Α	
Approach Delay	44.6		12.1			8.1	

	1		Ť	1	-	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Approach LOS	D		В			Α	
Stops (vph)	320	12	232	16		158	
Fuel Used(gal)	5	0	3	1		2	
CO Emissions (g/hr)	381	17	244	41		158	
NOx Emissions (g/hr)	74	3	47	8		31	
VOC Emissions (g/hr)	88	4	56	9		37	
Dilemma Vehicles (#)	0	0	0	0		0	
Queue Length 50th (ft)	202	0	143	0		87	
Queue Length 95th (ft)	#322	29	229	32		141	
Internal Link Dist (ft)	120		244			202	
Turn Bay Length (ft)				150			
Base Capacity (vph)	511	491	965	896		1233	
Starvation Cap Reductn	0	0	0	0		0	
Spillback Cap Reductn	0	0	0	0		0	
Storage Cap Reductn	0	0	0	0		0	
Reduced v/c Ratio	0.74	0.13	0.43	0.19		0.32	
latara attara Occasiona			and the				

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 1 (1%), Referenced to phase 2:NBSB, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 21.2 Intersection Capacity Utilization 70.1%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Cost Estimates

CONCEPTUAL LEVEL CONSTRUCTION COST OPINION NEAR TERM 1

ROUTE 57 AT SCHOOL ROAD WESTON, CONNECTICUT

ITEM/DESCRIPTION	UNIT	QTY	UNI	T COST	COST
Pavement	SY	520	\$	74.00	\$38,480.00
Earthwork	CY	350	\$	30.00	\$10,500.00
Pavement Removal, Turf, Topsoil	SY	600	\$	20.00	\$12,000.00
Curbing	LF	470	\$	50.00	\$23,500.00
					\$84,480.00
Drainage (20%)					\$ 16,896.00
					\$101,376.00
Minor Items (30%)					\$ 30,412.80
					\$131,788.80
Lump Sum Items (14.5%)					\$ 19,109.38
Traffic Person	EA	1	\$ 1	2,000.00	\$12,000.00
			Road	way Cost:	\$162,898.18
Traffic Signal Modifications/Upgrade	Ea.	1	\$ 10	0,000.00	\$100,000.00
Streetscape (Lighting and Landscaping)	Est.	1	\$ 12	0,000.00	\$120,000.00
		Con	struct	tion Cost:	\$382,898.18
		Con	tingen	cy ±10%:	\$38,289.82
	Incider	ntals to Cor	struct	ion ±30%	\$114,869.45
	-	2012	Proj	ect Total:	\$536,057.45
	2012	Project To	tal (R	lounded):	\$537,000.00

Note:

Exclusions: Right of Way Impacts, Permitting, Environmental Compliance, Handling of Harzadous materials

CONCEPTUAL LEVEL CONSTRUCTION COST OPINION LONG TERM 1-ROADWAY

ROUTE 57 AT SCHOOL ROAD WESTON, CONNECTICUT

ITEM/DESCRIPTION	UNIT	QTY	UNI	T COST	COST
Pavement	SY	1,360	\$	74.00	\$100,640.00
Earthwork	CY	904	\$	30.00	\$27,120.00
Mill	SY	5,010	\$	6.00	\$30,060.00
2" Overlay	TON	576	\$	110.00	\$63,376.50
Tack Coat	GAL	501	\$	9.00	\$4,509.00
Curbing	CF	2,400	\$	10.00	\$24,000.00
					\$249,705.50
Drainage (20%)					\$49,941.10
					\$299,646.60
Minor Items (30%)					\$ 89,893.98
					\$ 389,540.58
Lump Sum Items (14.5%)					\$ 56,483.38
Traffic Person	EA	1			\$72,000.00
			Road	vay Cost:	\$ 518,023.96
Traffic Signal Modifications/Upgrade	Ea.	1	\$ 10	0,000.00	\$100,000.00
		Con	struct	ion Cost:	\$ 618,023.96
		Con	tingen	cy ±10%:	\$61,802.40
	Incider	itals to Cor	ıstruct	ion ±30%	\$185,407.19
		2012	2 Proj	ect Total:	\$865,233.55
	2012	Project To	tal (R	ounded):	\$866,000.00

Note:

Exclusions: Right of Way Impacts, Permitting, Environmental Compliance, Handling of Harzadous materials

CONCEPTUAL LEVEL CONSTRUCTION COST OPINION LONG TERM 2- SIDEWALK

ROUTE 57 AT SCHOOL ROAD WESTON, CONNECTICUT

ITEM/DESCRIPTION	UNIT	QTY	UNI	T COST	COST
Sidewalk	SF	6,900	\$	15.00	\$103,500.00
Minor Items (20%)					\$ 20,700.00
Traffic Person	EA	1	\$ 12	2,000.00	\$ 12,000.00
	7				\$136,200.00
Lump Sum Items (14.5%)					\$ 19,749.00
			Roadw	vay Cost:	\$155,949.00
Streetscape (Lighting and Landscaping)	LF	1,000	\$	350.00	\$350,000.00
		Con	structi	on Cost:	\$505,949.00
		Con	tingeno	cy ±10%:	\$50,594.90
	Incide	ntals to Cor	structi	on ±30%	\$151,784.70
		2012	Proje	ct Total:	\$708,328.60
١	2012	Project To	tal (Ro	ounded):	\$709,000.00

Note:

Exclusions: Right of Way Impacts, Permitting, Environmental Compliance, Handling of Harzadous materials

Report of Meetings

Weston Route 57-School Road Intersection Study

Westport Route 136 - Bayberry Lane Extension Intersection Study

Held on December 7, 2011

In attendance:

- Weston First Selectman Gayle Weinstein - Weston Police Department Chief John Troxell Chief Dale Call Westport Police Department Peter Ratkiewich - Town of Westport Department of Public Works - Town of Westport Department of Public Works Barry Hammons Sue Prosi - South Western Regional Planning Agency (SWRPA) Alex Karman South Western Regional Planning Agency (SWRPA) Ron Malone Steve Halstead Dave Sullivan Milone & MacBroom (MMI) Kwesi Brown Milone & MacBroom (MMI)

1. Introductions and Study Overview

Sue Prosi from SWRPA welcomed everyone and led introductions around the room.

Dave Sullivan from MMI gave a brief overview of the study while Kwesi Brown from MMI discussed the study approach, tasks, deliverables and schedule for the two studies.

2. Discussion Items

Weston Route 57 - School Road Intersection

Data Collection

- Traffic data collection effort should not be limited to school peak hours but should include commuter hours as well.
- Collection of school information should be coordinated through Joann Keating,
 Weston Board of Education.
- Traffic issues at the Route 57-School Road intersection are also due to the geometric layout of intersection.

- SWRPA will provide available information including previous reports and GIS/survey information.
- o There are potential wetland issues north of school road to consider.
- SWRPA to look into obtaining wetland delineation resources.
- MMI to contact CTDOT for wetlands mapping, available information, past studies (including the Project Development Unit review of the intersection, and the current signal upgrade.
- Weston Police Department will provide accident records for study area. This data will cover CTDOT's most recent three year period and accidents that have occurred since then.

Analysis

- Anticipated land use changes
 - Possible relocation of school bus depot to town highway department not likely to materialize.
 - Potential long term conversion of school bus depot area to a senior center or some other use. This will not impact current intersection study.

Alternatives

- Improvement recommendations from previous Purcell Study required ROW acquisition for turn lanes. The property owner directly opposite School Road was opposed to it.
- Recommended alternatives for the Route 57-School Road intersection should not be limited to signal improvements. Geometric improvements such as turn lanes should be considered as well.
- There are currently limited-to-no pedestrian accommodations at the study intersection.
- The provision of sidewalks along the western side of Route 57 to Northfield Road should be considered at a minimum and as one of the full build alternatives.
- The "Safe Routes to School" program would be a good source of funding for some of the pedestrian and bicyclist improvements within the study area.
- MMI to coordinate with Fred Kulakowski and Joe Ouellette of the CTDOT on the
 - CTDOT improvements at Route 57 School Road intersection.
 - Upgrade of existing signal at Northfield Road.

Schedule

- Data collection effort would likely begin after the holidays.
- Both studies will run concurrent to each other.

Westport Route 136 - Bayberry Lane Extension Intersection

Data Collection

- MMI will contact CTDOT Traffic for available information and previous reports, studies, and design concepts.
- Barry Hammons and Peter Ratkiewich of Westport DPW will provide GIS mapping /shapefiles and CADD based survey files for study area.
- Westport Police Department will provide accident records for study area. This
 data will cover CTDOT's most recent three year period and accidents that have
 occurred since then.

Analysis

- The study should consider that there is an elementary school south of Berkley Road.
- The northwestern corner of the intersection of Route 136 at Bayberry Lane is sometimes used as a pull over area by trucks.

Alternatives

- Attendees agreed that bicycle and pedestrian usage was not significant, though will be considered in the analysis as part of the complete streets approach.
- o MMI to develop a roundabout alternative for intersection.
- MMI to develop alternatives that look into sight line improvement and maintenance issues on Route 136.
- Vehicular speeds are an issue on Route 136. MMI to look at posted speeds and advance signage improvements.
- o Property, utility and environmental impacts
 - There is currently a Tenneco gas pipeline going through the parcel north of the intersection.
 - There is a seasonal pond on the parcel north of the intersection.
 - There are some other wetlands in the study area.

Schedule

Both studies will run concurrent.

Meetings

Possible consolidation of second meeting for the two studies into one meeting.

MEETING NOTES ON PRELIMINARY IMPROVEMENT ALTERNATIVES

Weston Route 57-School Road Intersection Study

Westport Route 136 – Bayberry Lane Extension Intersection Study

Held on April 10, 2012

In attendance:

Gayle Weinstein

- Weston First Selectman

Chief John Troxell

- Weston Police Department

John Conte Dan Clarke - Town of Weston

Jo-Ann Keating

Weston SchoolsWeston Schools

Peter Ratkiewich

Town of Westport Department of Public Works

Sue Prosi

South Western Regional Planning Agency (SWRPA)

Alex Karman

SWRPA

Dave Sullivan

Milone & MacBroom (MMI)

Kwesi Brown

- MMI

1. Introductions and Study Update

Dave Sullivan from MMI welcomed everyone and led introductions around the room. Kwesi Brown gave an update on the existing and future conditions assessment for the two study sites and presented the preliminary near term and long term improvement alternatives that were being considered for the intersection of Route 57 at School Road in Weston and the intersection of Route 136 at Bayberry Lane in Westport.

2. Weston Route 57- School Road Intersection Preliminary Alternatives

The following improvements were presented as potential improvement alternatives for the intersection of Route 57 at School Road:

Weston Near Term 1

Close the existing parent-pickup drop off driveway and relocate it further to the
east on School Road along the lower western boundary of the baseball field. This
will create more separation from the Route 57/School Road intersection and
reduce the number of conflict points at that location.

- Implement signal timing improvements and potential coordination with the redesigned traffic signal at the intersection of Route 57 at Norfield Road to the south.
- Remove the existing stop sign on School Road westbound so that School Road becomes free flow.

Weston Near Term 2

- Construct a new parent pickup/drop off driveway further to the east on School along the eastern boundary of the baseball field. While leaving the existing driveway open only for bus access to the school bus depot. This will create more separation from the Route 57/School Road intersection and reduce the number of conflict points within that area.
- Implement signal timing improvements and potential coordination with the redesigned traffic signal at the intersection of Route 57 at Norfield Road to the south.
- Remove the existing stop sign on School Road westbound so that School Road becomes free flow.

Weston Long Term 1

- Widen the Route 57 northbound approach along the eastern side to provide an exclusive right turn lane and a through lane. This would reduce queuing on the northbound approach.
- Install a new sidewalk along the eastern edge of Route 57 from School Road to Norfield Road with a mid-block crosswalk. Provide appropriate signage in advance of the mid-block crosswalk.

Weston Long Term 2

- Widen the Route 57 northbound approach along the eastern side to provide an exclusive right turn lane and a through lane.
- Widen the Route 57 southbound approach along the eastern side to provide a 20 foot bypass to reduce queuing on this approach.
- Install a new sidewalk along the eastern edge of Route 57 from School Road to Norfield Road with a mid-block crosswalk. Provide appropriate signage in advance of the mid-block crosswalk.

Comments on Weston Improvements

- Near Term 1 Realign the proposed driveway to minimize impacts to the ball field and utilities in that area. Also, provide an All Way Stop at the School Road/new driveway intersection. This alternative with the proposed revisions was acceptable to all as a near term improvement.
- Near Term 2 According to the town, this alternative would not work as students would have to cross the proposed driveway to get from the playground to the ball field. Also there is currently a sewage system located where the new roadway is proposed. Of the two near term alternatives, Near Term 2 was the least preferred option by the town.
- Long Term Alternatives It was decided that the sidewalk improvements would serve as one standalone long term alternative while the Route 57 roadway widening improvements would serve as the second long term alternative. The proposed location of the sidewalks along the eastern edge of Route 57 was acceptable to all.

3. Westport Route 136- Bayberry Lane Extension Intersection Preliminary Alternatives

The following improvements were recommended for the intersection of Route 136 at Bayberry Lane:

Westport Near Term 1

- Realign the intersection of Route 136 at Bayberry Lane to slow vehicles down;
 the Bayberry Lane Extension westbound approach will remain unchanged.
- Provide an All Way Stop control at the intersection of Route 136 at Bayberry Lane to reduce vehicular speeds and improve sightlines.

Westport Near Term 2

 Construct a three point single lane roundabout at the intersection of Route 136 at Bayberry Lane to calm traffic and also to improve sightlines.

Westport Long Term 1

- Reconfigure the intersection into a four-legged intersection with Two-Way stop sign control on the Bayberry Lane approaches.
- The proposed intersection reconfiguration will involve impacts to the property on northwestern quadrant of the intersection.

Westport Long Term 2

Reconfigure the intersection and construct a four point single lane roundabout.
 The intersection reconfiguration will involve impacts to the property on northwestern quadrant of the intersection.

Comments on Westport Improvements

- Near Term 1 It was agreed that the proposed All Way Stop at the intersection may get some push back from the Connecticut Department of Transportation (CTDOT).
- Near Term 2 It is likely that CTDOT would be open to a roundabout at the intersection.
- Long Term Alternatives The long term may be a viable option if the town is able to acquire the property on the northwestern quadrant of the intersection. The town of Westport was in favor of all four improvement alternatives

4. Other Items

- There was a discussion on potential funding sources for the two studies. SWRPA identified the STP Urban Grant, the Safe Routes to School Program and the Small Town Economic Assistance Program (STEAP) as potential funding sources. SWRPA also talked about helping the towns of Weston and Westport sign up for the Safe Routes to School Program. It was agreed that MMI should have a section on funding sources in the final report.
- It was decided that MMI will forward the alternatives to CTDOT for their review and input.
- It was confirmed that MMI would quantify ROW impacts by calculating area of impacts as well as conduct cost estimates of the proposed improvements.

General Project Info Report

LEA	Project Number	roject Type	Facility Name	Project Status	Grades	Architect Name	GA Auth. Date	Site Accquisition Costs	Total Costs	Total Area(in Sqft)	Reimb. %
157	157-0011	cv	Weston High School	Cancelled Project					\$25,000	0	40.95
157	157-0012	cv	Weston Middle School	Cancelled Project				•	\$25,000	0	40.95
157	157-0018	P/CV	Weston Middle School	Cancelled Project					\$45,000	0	40.95
157	157-0019	RR	Weston High School	Audited			6/1/1988		\$181,147	0	41.19
157	157-0020	CV/AA	Weston High School	Audited					\$84,914	0	41.19
157	157-0021	CV/AA	Weston Middle School	Audited					\$110,919	0	41.19
157	157-0022	CV/AA	Hurlbutt Elementary School	Audited					\$12,060	0	41.19
157	157-0023	CV/AA	Hurlbutt Elementary School	Audited				*	\$70,686	0	41.19
157	157-0024	CV/AA	Hurlbutt Elementary School	Audited					\$125,620	0	41.19
157	157-0026	CV	Weston High School	Audit Issues		DeCarlo & Doll	3/15/1989		\$2,552,216	0	41.19
157	157-0027	CV	Weston Middle School	Audit Issues		DeCarlo & Doll	3/15/1989		\$2,764,903	0	41.19
157	157-0028	CV	Hurlbutt Elementary School	Audit Issues			3/15/1989		\$446,744	0	41.19
157	157-0029	cv	Hurlbutt Elementary School	Audit Issues			3/15/1989		\$302,208	0	41.19
157	157-0030	CV	Hurlbutt Elementary School	Audit Issues			3/15/1989		\$564,999	0	41.19
157	157-0031	CV/OT	Weston High School	Audited					\$41,030	0	41.19
157	157-0032	CV/OT	Weston Middle School	Audited				÷	\$75,792	0	41.19
157	157-0033		Weston Middle School	LEA Funded No Grant					\$0	0	0

157	157-0034	E	Hurlbutt Elementary School	Audited	1,2,3,4,G	DeCarlo & Doll	9/24/1991		\$945,845	82,860	21.43
157	157-0035	RR	Weston Middle School	Audit Issues	5,6,7,8		6/29/1993		\$807,647	0	21.43
157	157-0036	E/A/EC/O/CV /AA/FC/HC	Hurlbutt Elementary School	Audit Issues	1,2,3,G	Friar Assoc.	6/12/1996		\$4,896,583	104,911	21.43
157	157-0037	E/A/RR/EC/C V/AA/FC/HC	Central Administration	Cancelled Project			6/12/1996		\$337,000	4,300	10.715
157	157-0038	A/SI/EC/O/C V/AA/FC/HC	Weston Middle School	Audit Issues	4,5,6,7,8	Friar Assoc.	6/12/1996	ů.	\$1,195,188	169,777	21.43
157	157-0039	N	Central Administration	Audited		Friar Assoc.	6/26/1997		\$1,048,114	4,000	10.72
157	157-0040	RR	Hurlbutt Elementary School	Audited			6/8/1998		\$129,120	0	21.43
157	157-0041	EA/RR/EC/O /CV/AA/FC/H C	Weston Middle School	Unresolved Issues	6,7,8	Unknown	6/30/2001		\$6,357,337	166,900	21.43
157	157-0042	N/PS	Weston Intermediate School	Audited	3,4,5	Unknown	6/30/2001	\$608,754	\$28,138,288	118,935	21.43
157	157-0043	EA/RR/EC/O /CV/AA/FC/H C	Weston High School	Audit Issues	9,10,11,12	Unknown	6/30/2001		\$42,123,566	232,561	21.43
157	157-0044	EA/RR/EC/O /CV/AA/FC/H C	Hurlbutt Elementary School	Cancelled Project	1,2,G	Unknown	6/30/2001	-	\$474,583	106,893	21.43
157	157-0045	RR	Hurlbutt Elementary School	LEA Funded No Grant			1/10/2001		\$194,400	0	21.43
157	157-0046	EC/AA	Hurlbutt Elementary School	LEA Funded No Grant	1,2,3,G		6/30/2002	ä	\$157,188	6,868	21.43
157	157-0047	EC	Hurlbutt Elementary School	Unresolved Issues	1,2,3,4,G	Fletcher- Thompson, Inc.	6/30/2003		\$600,000	106,497	21.43
157	157-0048	cv	Hurlbutt Elementary School	In Process			8/16/2004	ē	\$365,000		21.43
157	157-0049	CV	Weston Middle School	In Process			8/16/2004		\$365,000		21.43
157	157-0050	CV	Hurlbutt Elementary School	In Process			8/12/2005		\$60,000		21.43
157	157-0051	cv	Weston Middle School	Cancelled Project			8/12/2005	1	\$68,000	155,141	21.43
157	157-0052	EC	Weston High School	Estimated Grant Calc	9,10,11,12	Kaestle/Boos	6/30/2011		\$1,410,105	227,561	21.43

DEPARTMENT OF ADMINISTRATIVE SERVICES (DAS)

OFFICE OF SCHOOL CONSTRUCTION GRANTS & REVIEW (OSCG&R)

BULLETIN - BUILDING AREAS

FORM SCG-3043

The Office of School Construction Grants & Review (SCG) frequently responds to questions regarding building area as it applies to school construction projects. The requirements and application of building areas for grant applications may differ from other agencies or other applicable requirements. This bulletin serves to address the application of the building code relative to the project building in determining the maximum allowable building area, the minimum allowed construction type, and the application of building area in OSCG&R grant calculations.

The OSCG&R is not a codes enforcement agency and does not offer interpretations or clarifications of the State Codes. However, we do offer our understanding of the applicability of the codes pertinent to the plan review process and clarification of the agency's position regarding various matters relating to the School Construction Grant process (Connecticut General Statute (C.G.S.) Chapter 173).

A meeting and discussion between staff of the OSCG&R and the office of the State Building Inspector was conducted to help clarify a number of related issues. The following questions and answers attempt to summarize and outline the issues discussed, clarify the concepts and application of the codes, and identify what is expected on the Code Information Sheets (for proper grant calculations), when submitting to the OSCG&R for plan review and approval.

1. How do we determine what is the proper building area to use?

For Code Information purposes:

The Building Code defines Building Area (in Chapter 5) as (all) area included **within** surrounding exterior walls and firewalls, exclusive of vent shafts (not mechanical vent shafts) and courts (open courtyards). Areas of the building not provided with surrounding walls shall be included in the building area if such areas are included within the horizontal projection of the roof or floor above. The (ICC) commentary explains further and includes the open projected floor areas at vertical openings (such as atriums). Building Area is applied when determining the largest floor area to determine the maximum allowable floor area and building area. The entire area of each floor must be calculated (including the horizontal projected floor areas of multi-story vertical openings) in order to determine the largest floor.

The Building Code also similarly defines Gross Floor Area (in Chapter 10) as the area included **within** surrounding exterior walls. Depending on the use of a space, either *Net Floor Area* or *Gross Floor Area* is used to determine the maximum occupant load for each floor level. Gross floor area is secondary to the issues that this bulletin attempts to address.

For Grant Calculation purposes:

The DAS has relied on the Building Code's definition of Building Area as the basis for what building area is and how it is measured relative to the DAS Space Standards calculations. This has provided a consistent approach when determining the grant calculations. Building Area is one of three primary factors in determining the Space Standards for the grant calculations (for the applicable State Standard Space Specifications refer to C.G.S. 10-287c-15). Therefore, "gross square feet of such building" as used in C.G.S. 10-286 is considered by the DAS to be the same value as the Building Area defined in the Connecticut State Building Code.

2. What is considered a multi-story space requiring calculating additional floor area for the open area? It is easier to address what is not considered a multi-story space. Gymnasiums, cafeterias, auditoriums, and similar multi-purpose rooms are generally considered tall one-story spaces instead of multi-story spaces. However, there may be exceptions. As such, each project is viewed separately on a case-by-case basis.

- 3. <u>Does the upper (open) floor area of atriums or vertical openings count in the building area calculations?</u> Yes, when determining the maximum allowable floor area for height and area. However, some vestibules or vertical openings (or portions of the space) may be very high one story spaces. The open floor area of such spaces is not considered occupied area when determining the maximum occupant load for spaces and floors, in further determining the required exiting capacities.
- 4. Are mezzanine (and balcony) areas included in the calculated building area? Per a review of Section 505.2 of the Building Code, the area of a mezzanine is not considered when applying the provisions for height and area. However, the area of a mezzanine is included in fire areas, and used to determine occupant loads of spaces.
- 5. Are areas under roof overhangs and canopies included in the building area? Areas of the building not provided with surrounding walls shall be included in the building area if such areas are included within the horizontal projection of the roof or floor above. However, it's not the intent to include the simple architectural overhangs. If there are large projections, then those areas beneath should be included as building area. This will be viewed on a case-by-case basis. Detached canopies or unenclosed covered walkways, etc., that are not a continuation of the building's roof(s) should not get counted towards building area.
- 6. <u>How is building area presented for grant calculations?</u> Building areas are first presented when an application for a school construction project is submitted to the DCS/SCG. However, it may change by the completion of the project. Therefore, the DAS/SCG relies on the accuracy of the areas identified by the design professionals on the Code Information Sheet (refer to

"Construction Document Guidelines for School Districts and Design Professionals"). The areas shown in item #4 Building Area, of the Code Information, shall be the same areas that SCG uses in item #16 Building Areas for Grant Calculation.

Payment requests submitted by the Local Education Agency (LEA) may be impacted by the **space standards**. The OSCG&R Grant Data Unit may make grant calculation adjustments if necessary, based upon the area information on the Code Information Sheets, believing this information to be more current and accurate than what was originally filed (or is on file).

Exceptions in the codes allow various building areas elements to be exempted from the Height & Area calculations. However, all actual building areas shall be accounted for in the grant calculation.

It should be noted that although the Building Code definition is utilized in reporting the building area for code and for grant purposes, the actual footprint area is usually larger (by the exterior wall thicknesses). Other building area elements may be identified on the construction documents, either for construction purposes or for grant-calculation purposes. The following common terminology must be used for continuity and clarity. Refer to the "Construction Document Guidelines for School Districts and Design Professionals" for the formatting of this information.

Open Space Area shall refer to those building areas under excessive roof overhangs (and canopies) and open floor areas of vertical openings. These areas must be identified and itemized whenever a LEA requests a space standard waiver, and the areas shown on the code information must reconcile with the waiver request letter. The areas or portions of those areas may be considered when calculating the grant.

Total Constructed Building Area shall refer to the area of the building **(all floors)** when measured to **exterior face** of the exterior walls. This is usually the same area that the contractors are using.

7. What if the building area changes during the project? If the building areas change between the time of application and the Plan Review/Approval process, SCG relies on the accuracy of the areas identified by the design professionals, on the Code Information Sheet, and may make grant calculation adjustments if necessary, based upon the area information on the Code Information Sheets (believing this information to be more current and accurate).

However, if changes are required after the review and approval of a project, then follow the procedures outlined below in the **BUILDING AREA ADJUSTMENTS AFTER A PRE-BID CONFORMANCE REVIEW** (PCR) SUBMISSION section of this bulletin.

BUILDING AREA ADJUSTMENTS AFTER A PRE-BID CONFORMANCE REVIEW (PCR) SUBMISSION

When SCG receives an application, the building area indicated by the LEA is presumed to be an estimate. At the time of the PCR meeting, the LEA and design professionals submit project documentation for review. The areas indicated on the drawings are presumed to be more current and more accurate and may supersede the previously submitted application data. SCG may make adjustments to the data necessary for the proper calculations for grant payments.

For any number of reasons, the building area (square feet) may change by the completion of the project. For example, the LEA discovers that the building areas for a particular structure/project (as indicated on the SCG-049 School Construction Project application) were reported incorrectly in the past. If after the PCR and review the LEA discovers the need to change those previously submitted building areas, the procedures listed on this bulletin, must be followed.

- 1. The LEA will provide a written explanation (to SCG Manager) for what precipitates the need for the change in the previously recorded building area, detailing the specifics of what is to be adjusted, and why, along with supporting documentation
- 2. To ensure the accuracy of information, the building shall be surveyed. Previously submitted Code Information Plan(s) can be revised to record the survey information, and shall be signed and sealed by the licensed architect or engineer. The design professional shall:
 - a. Survey the buildings' exterior perimeter at each floor level.
 - b. Transpose the exterior dimensions onto the Code Information Plans (previously submitted as a part of the PCR process). Each floor level must be presented with dimensions.
 - c. Identify exterior wall thickness (used to recalculate building areas) for each floor. The wall thicknesses must be indicated on the Code Information Plans.
 - d. Revise the Code Information Sheet using the Building Code definition of Building Area, include areas under canopies, roof /floor overhangs or projections, and/or extract open (to air) courts/courtyards or shafts. Include the open areas of the vertical openings at each floor level.
 - e. Add a new line to Code Information Sheet (below #16): "17 Total Constructed Building Area" and provide the new calculated area (measured to the exterior face of the building).
- 3. Provide a copy of the revised Plans (signed and sealed) to SCG, along with the letter from the Superintendent of Schools (described in #1 above) requesting an adjustment. The design professional shall include a certification statement on the revised drawing. The certification shall attest to the revisions based upon a survey of the actual conditions.

N: Website migration\Bulletins\Building Area FORM SCG-3043 Rev 5/29/2017 KD