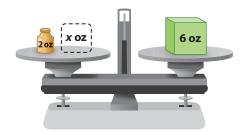
Lesson 18 Wintroduction

Understand Solutions to Equations

Think It Through

What does it mean to solve an equation?


Have you ever seen a pan balance? You put objects in both pans. If the objects' weights are the same, the pans hang evenly.

An equation is like a pan balance. A pan balance tells you two weights are equivalent. An equation tells you two expressions are equivalent.

Think Solving an equation is like making the pans of a balance hang evenly.

Imagine a pan balance like the one below.

Look at the picture. **Circle** the weights that must combine to equal 6 ounces.

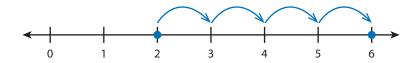
The pans are hanging evenly, so the total weight in each pan is the same. The pan on the right holds 6 ounces. The pan on the left must also hold 6 ounces.

How much weight do you have to add to 2 ounces to get a total of 6 ounces? 2 ounces and 4 ounces together are a total of 6 ounces. Therefore, the unknown weight, *x*, must be 4 ounces.

Think Solving an equation is finding out how to make two expressions equivalent.

Write an expression for the weight in the right-side pan: 6.

An **equation** is a statement that tells you two expressions are equivalent.


2 + x = 6 is an equation.

"Solve the equation" means you need to find the value of the variable that will make the expression 2 + x equivalent to 6.

What number can you add to 2 to get 6?

Write an expression for the weight in the left-side pan: 2 + x.

Adding 4 to 2 gives a total of 6. So, the solution of 2 + x = 6 is that x must be equal to 4.

Reflect

1 What would the balance look like if you replace the unknown weight with an 8-ounce weight?

Explain why the solution of 2 + x = 6 cannot be that x is equal to 8.

Think About Writing and Solving Equations

Let's Explore the Idea Explore writing and solving equations with the problem below.

0000000000000000

Andres buys 3 boxes of markers. Each box has the same number of markers. Andres now has 15 markers. Write and solve an equation to find how many markers are in one box.

- 2 Choose a variable to represent the number of markers in one box. 3 Write an expression to describe the total markers in 3 boxes. 4 How many markers does Andres have in all? 5 Write an equation that compares your answers from problems 3 and 4. ____ Use a bar model to help you solve the equation. 6 Draw a bar model to represent your equation from problem 5.
- What number could you multiply by 3 to get 15? _____
- 8 What is the solution to your equation? _____
- 9 How many markers are in each box? _____

Now try these two problems.

- 10 At noon the temperature on Jessica's porch was 75° F. Then the temperature dropped d degrees. By midnight, the temperature on the porch was 63° F. Write an equation with an expression equivalent to the temperature at midnight.
- 11 By how many degrees did the temperature drop between noon and midnight? What is the solution to your equation?

Let's Talk About It Solve the problem below as a group.

Marta earns \$12.50 from babysitting, and then spends some of her earnings on a new book. She has \$8.00 of her earnings left. Write and solve an equation to find the cost of the book.

2 What is the unknown amount?	Choose a variable to
represent it	
3 Could the value of the variable be greater than \$12	2.50? Explain.
4 Write an equation with an expression equivalent to	o \$8.00.
Draw a number line from 7.5 to 13.5.	
6 What number can you subtract from 12.5 to get 8?	?
7 What is the solution of your equation?	
8 What is the cost of the book?	
Try It Another Way Explore using math tile	es to solve an equation.
9 Write your equation from problem 14	
Use math tiles to represent the equation.	

22 What is the cost of the book?

21 What amount can you subtract from \$12.50 to get \$8.00? ____

Connect Writing and Solving Equations

Talk through these problems as a class, then write your answers below.

Analyze Explain why the solution to 3r = 2 must be less than 1.

24 Illustrate Use a bar model to illustrate the equation 20 - x = 6. Explain how you would solve the equation.

Create Write a real-world problem that you could represent with the equation 3 + x = 10. Solve the equation to find the answer to your problem.

Writing and Solving Equations

26	Put It Together Imagine you have a pan balance. The left pan holds a bag with an unknown number of identical blocks and 10 more blocks you can see. Assume the bag itself has no weight. The other pan is empty.
	Part A Draw a picture of what the balance would look like in this situation.
	Part B Suppose you put 13 identical blocks in the right-side pan and this makes the pans hang evenly. Draw a picture of the balance. What equation does this represent?
	Part C Suppose you take 10 blocks out of each pan. Draw a picture of the balance. What does the number of blocks in the right-side pan tell you? Explain how you know.