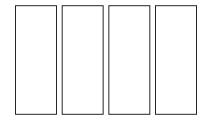
Lesson 7 & Introduction **Divide with Fractions**


Use What You Know

In the previous lesson, you learned what dividing by fractions means. In this lesson you will divide with fractions to solve problems. Take a look at this problem.

Charlie is growing vegetables in planters. He has 4 bags of soil and uses $\frac{2}{3}$ of a bag of soil to fill each planter. How many planters can he fill?

Use the math you already know to solve the problem.

- **a.** Think of the number of planters that Charlie can fill as how many $\frac{2}{3}$ s are in 4. Will that number be greater than or less than 4? Explain your reasoning.
- **b.** The model below represents the 4 bags of soil. Draw horizontal lines to divide each bag into thirds.

- **c.** Circle and count groups of $\frac{2}{3}$ in the model. How many did you circle?
- **d.** Why do you circle groups of $\frac{2}{3}$ to represent this problem?
- **f.** How many planters can Charlie fill? _
- g. Explain how the model helped you solve the problem. ___

>> Find Out More

When you found the number of $\frac{2}{3}$ s that are in 4, you were dividing. You are solving the problem $4 \div \frac{2}{3}$. You can solve this problem by multiplying.

You know that multiplication and division are related. 4 divided by 2 is the same as $\frac{1}{2}$ of 4, or multiplying 4 by $\frac{1}{2}$.

$$4 \div 2 = 2$$

$$4\times\frac{1}{2}=2$$

Think of 2 as $\frac{2}{1}$. Dividing by $\frac{2}{1}$ is the same as multiplying by $\frac{1}{2}$.

When dividing with unit fractions, you learned that dividing 4 by $\frac{1}{3}$ is the same as multiplying 4 by 3.

$$4 \div \frac{1}{3} = 12$$

$$4 \times 3 = 12$$

Dividing by $\frac{1}{3}$ is the same as multiplying by $\frac{3}{1}$ or 3.

Dividing with any fraction works the same way. Dividing 4 by $\frac{2}{3}$ is the same as multiplying 4 by $\frac{3}{2}$.

$$4 \div \frac{2}{3} = 6$$

$$4 \times \frac{3}{2} = \frac{12}{2}$$
$$= 6$$

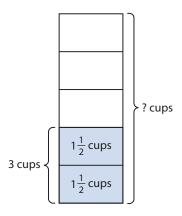
Dividing by $\frac{2}{3}$ is the same as multiplying by $\frac{3}{2}$.

You can solve any division problem using multiplication. To divide by any number, you can multiply by its **multiplicative inverse**, which is also known as the **reciprocal**.

Reflect

1 Explain how you can solve this division problem by using multiplication.

$$6 \div \frac{2}{3}$$

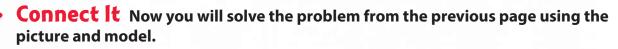

Learn About Dividing a Whole Number by a Fraction

Read the problem below. Then explore how to divide a whole number by a fraction.

Kelly drank $\frac{2}{5}$ of the water in her bottle. She drank 3 cups of water. How many total cups of water were in her bottle?

Picture It You can draw a picture to understand the problem.

The bar represents Kelly's water bottle. You can divide the bar into fifths and shade $\frac{2}{5}$ to represent the amount of water Kelly drank, 3 cups.


Model It You can use words and equations to understand the problem.

 $\frac{2}{5}$ of the total amount of water equals 3.

of the total amount of water equals
$$\frac{2}{5}$$
 \times ? $=$ 3

To solve a missing factor problem like $\frac{2}{5} \times ? = 3$, you can divide.

$$?=3\div\frac{2}{5}$$

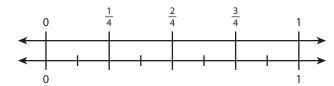
- 2 Look at *Picture It* on the previous page. Why do you divide the bar into fifths?
- 3 How can you use *Picture It* to find out how many cups of water were in the bottle?

- 4 How many total cups of water were in Kelly's bottle?
- **5** Look at *Model It* on the previous page. Find $3 \div \frac{2}{5}$. Show your work. ____
- 6 Explain how to use multiplication to divide a whole number by a fraction.

Try It Use what you just learned about dividing with fractions to solve these problems. Show your work on a separate sheet of paper.

- 7 How many $1\frac{1}{2}$ -cup servings are there in 12 cups of juice? _____
- 8 It takes Emily 9 minutes to bicycle $\frac{3}{10}$ of the way to school. How many minutes does it take Emily to bicycle all the way to school?

Learn About Dividing a Fraction by a Fraction


Read the problem below. Then explore how to divide a fraction by a fraction.

Eli ran $\frac{3}{4}$ of a mile. Every $\frac{1}{8}$ of a mile, he jumped over a hurdle. There was a final hurdle at the $\frac{3}{4}$ mile mark. How many hurdles did Eli jump over?

Picture It You can draw a picture to understand the problem.

The top number line shows the distance Eli ran, $\frac{3}{4}$ mile.

The bottom number line shows the number of $\frac{1}{8}$ s that are in $\frac{3}{4}$.

Model It You can use words and equations to understand the problem.

Think: How many $\frac{1}{8}$ s are in $\frac{3}{4}$?

Use division to find how many $\frac{1}{8}$ s are in $\frac{3}{4}$.

divided into $\frac{1}{8}$ s equals

the number of hurdles

$$\frac{3}{4} \div \frac{1}{8} = ?$$

Connect It Now you will solve the problem from the previous page using the picture and model.

2 Look at Picture It. Why is the top number line divided into fourths? Why is the bottom number line divided into eighths?

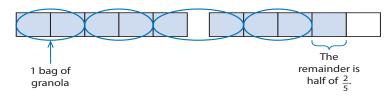
- 10 Explain how Picture It helps you figure out how many hurdles Eli jumped over.
- 11 How many hurdles did Eli jump over? _____
- Look at *Model It*. Explain how to use multiplication to find $\frac{3}{4} \div \frac{1}{8}$.
- 13 Evaluate $\frac{3}{4} \div \frac{1}{8}$. Show your work. _
- 14 Explain how to divide a fraction by a fraction.

Try It Use what you just learned to solve these problems. Show your work on a separate sheet of paper.

- Keisha cuts a $\frac{2}{3}$ -foot rope into $\frac{1}{12}$ -foot pieces. How many pieces of rope did she cut?
- Jade makes half a liter of lemonade. She pours $\frac{1}{10}$ liter of lemonade into each glass. How many glasses is Jade able to fill?

Learn About Dividing a Mixed Number by a Fraction

Read the problem below. Then explore how to divide a mixed number by a fraction.


Mari divides $1\frac{4}{5}$ pounds of granola into $\frac{2}{5}$ -pound bags for a bake sale. How many bags of granola can she sell?

Picture It You can draw a picture to understand the problem.

The shaded bars represent $1\frac{4}{5}$ pounds of granola.

Each circle shows a $\frac{2}{5}$ -pound bag of granola.

?

Model It You can use words and equations to understand the problem.

Think: How many $\frac{2}{5}$ s are in $1\frac{4}{5}$?

Use division to find how many $\frac{2}{5}$ s are in $1\frac{4}{5}$.

$$\frac{1\frac{4}{5}}{5}$$
 divided into
$$\frac{2}{5}s$$
 equals
$$\frac{1}{5}$$
 the number of bags of granola

$$1\frac{4}{5} \div \frac{2}{5} = ?$$

$$\frac{9}{5} \div \frac{2}{5} = ?$$

14/5

Connect It Now you will solve the problem from the previous page using the picture and model.

- Look at *Picture It*. Why do you circle groups of $\frac{2}{5}$ to solve this problem?
- Count the circles. How many $\frac{2}{5}$ -pound bags of granola can Mari sell?
- 19 What fraction of a bag would the remaining $\frac{1}{5}$ pound of granola be? Explain your answer.
- Look at the *Model It*. Explain how you know $1\frac{4}{5}$ is equal to $\frac{9}{5}$.
- Explain how to use multiplication to evaluate $\frac{9}{5} \div \frac{2}{5}$.
- Evaluate $\frac{9}{5} \div \frac{2}{5}$. Show your work. _
- 23 Explain how to divide with mixed numbers.

Try It Use what you just learned to solve these problems. Show your work on a separate sheet of paper.

- A recipe requires $\frac{3}{4}$ of a cup of water. Kyle has a $1\frac{1}{2}$ cup measuring cup. How much of the measuring cup is filled with water?
- How many $\frac{1}{3}$ -cup servings are in $\frac{5}{6}$ cup?

Practice Dividing with Fractions

Study the example below. Then solve problems 26-28.

Example

Lydia bought $2\frac{1}{2}$ gallons of paint and used $1\frac{1}{2}$ gallons of paint. What fraction of the paint did she use?

Look at how you can show your work using a model.

Think: What fraction of $2\frac{1}{2}$ is $1\frac{1}{2}$?

Some fraction of $2\frac{1}{2}$ equals $1\frac{1}{2}$.

$$? \times 2\frac{1}{2} = 1\frac{1}{2}$$

To solve ? \times $2\frac{1}{2} = 1\frac{1}{2}$, divide.

? =
$$1\frac{1}{2} \div 2\frac{1}{2}$$

= $\frac{3}{2} \div \frac{5}{2}$
 $\frac{3}{2} \div \frac{5}{2} = \frac{3}{2} \times \frac{2}{5}$; $\frac{3}{2} \times \frac{2}{5} = \frac{6}{10}$ or $\frac{3}{5}$

Solution Lydia used $\frac{3}{5}$ of the paint she bought.

The student divided the number of gallons of paint used, $1\frac{1}{2}$, by the gallons of paint she bought, $2\frac{1}{2}$.

Pair/Share

How could you justify your answer with a picture?

Lexi has planted seeds in $\frac{3}{5}$ of the garden. She used $\frac{1}{2}$ pound of seeds. How many pounds will she use for the entire garden? Show your work.

Will the answer be less than 1 or greater than 1? Why?

Pair/Share

How did you and your partner decide which fraction is the dividend and which is the divisor? A marathon is $\frac{131}{5}$ miles long. If 4 people divide up the distance equally, how many miles does each person need to run? Show your work.

Dividing by 4 is the same as multiplying by what number?

Pair/Share

How is this problem different from the others you've seen in this lesson?

Solution

- Which of the following problems can be solved by finding $4 \div \frac{2}{3}$?
 - **A** 4 people equally share $\frac{2}{3}$ of a pizza. How much of the pizza does each person eat?
 - **B** How many $\frac{2}{3}$ -cup servings of soup are in 4 cups of soup?
 - **C** A pie recipe requires $\frac{2}{3}$ pounds of apples. How many apples are needed for 4 pies?
 - **D** A family ate $\frac{2}{3}$ of a 4-foot sandwich. How much did they eat?

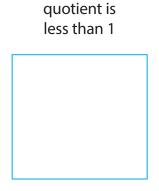
Arthur chose **A** as the correct answer. How did he get that answer?

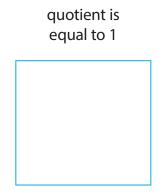
What kind of picture could represent the expression?

Does Arthur's answer make sense?

Dividing with Fractions

Solve the problems.


- 1 What is the value of the expression $\frac{3}{8} \div 1\frac{1}{2}$?
 - **A** $\frac{9}{16}$
 - **B** $\frac{6}{8}$
 - **C** 4
 - **D** $\frac{1}{4}$
- 2 Find the expression that does NOT answer the question: "What fraction of 8 is $2\frac{1}{2}$?"
 - **A** $2\frac{1}{2} \div 8$
 - $\mathbf{B} \quad \frac{5}{2} \times \frac{1}{8}$
 - **c** $8 \div 2\frac{1}{2}$
 - **D** ? × 8 = $2\frac{1}{2}$
- 3 The area and one dimension of a piece of land are given. From the choices on the left, write the fraction inside each box that represents the second dimension of the piece of land described.
 - $\frac{3}{7}$ $\frac{7}{8}$
- The area of a rectangular piece of land is $\frac{1}{2}$ square mile. One dimension of this piece of land is $\frac{7}{8}$ mile.
- $\frac{4}{7}$ $\frac{4}{9}$
- The area of a piece of land that is in the shape of a triangle is $\frac{1}{12}$ square mile. One dimension of this piece of land is $\frac{4}{21}$ mile.
- $\frac{3}{7}$ $\frac{3}{9}$
- The area of a rectangular piece of land is $\frac{2}{3}$ square mile. One dimension is $1\frac{1}{2}$ miles.


4 Write each expression in the correct column to show whether the quotient is less than, greater than, or equal to 1.

$$\frac{3}{4} \div \frac{1}{2} \qquad \frac{1}{2} \div \frac{3}{4}$$

$$\frac{2}{9} \div \frac{1}{27} \qquad \frac{5}{3} \div \frac{20}{6}$$

$$\frac{4}{3} \div \frac{3}{5} \qquad \frac{19}{8} \div 2\frac{3}{8}$$

quotient is greater than 1

5 Explain the difference between dividing in half and dividing by half using pictures, models, or numbers.

6 Write a story to represent the expression $6 \div \frac{3}{4}$. Draw a model and use multiplication to show the solution. Explain how the dividend, divisor, and quotient relate to the story.

	C-10	CL	1.
	Selt	Ch	eck
V			

Go back and see what you can check off on the Self Check on page 51.