Lesson 6 W Introduction

Understand Division with Fractions

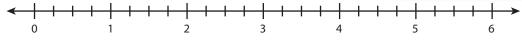
Think It Through

What does it mean to divide a fraction by a fraction?

You know how to divide a whole number by a unit fraction. For example, you can think of 6 divided by $\frac{1}{4}$ as "how many one-fourths are there in 6?" Using a number line, you can divide 6 into fourths and count to see there are 24 fourths in 6.

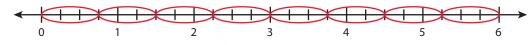
$$\mathbf{6}\div\frac{1}{4}=\mathbf{24}$$

You also learned that dividing a number by a fraction is the same as multiplying the number by the reciprocal of the fraction.


 $6 \div \frac{1}{4}$ is the same as 6×4 , or 24.

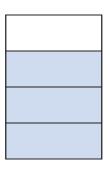
Think What does dividing a whole number by a fraction mean?

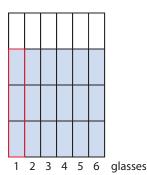
Madison cuts a 6-yard length of ribbon into $\frac{3}{4}$ -yard pieces.


To figure out how many pieces Madison cut, think, "How many three-fourths are in 6?"

You can draw the same number line to represent the 6 yards of ribbon and divide it into fourths. Circle the multiplication expression that is the same as the division expression.

You can circle three $\frac{1}{4}$ sections to represent $\frac{3}{4}$ -yard pieces. You can see there are eight $\frac{3}{4}$ -yard pieces in 6 yards.


$$6 \div \frac{3}{4} = 8$$

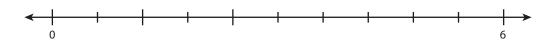


$$6 \times \frac{4}{3} = 8$$

Think What does dividing a fraction by a whole number mean?

Cory wants to pour $\frac{3}{4}$ of a quart of juice equally into 6 glasses. This means he needs to divide $\frac{3}{4}$ into 6 equal parts. You can represent the problem with an area model. First, you can show the $\frac{3}{4}$ quart of juice. Then, you can draw vertical lines to divide the model into 6 equal parts.

$$\frac{3}{4} \div 6 = \frac{3}{24} = \frac{1}{8}$$


 $\frac{3}{4}$ quart of juice divided equally into 6 glasses means Cory will pour $\frac{3}{24}$ or $\frac{1}{8}$ quart of juice into each glass.

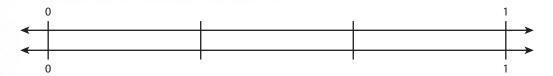
 $\frac{3}{4} \div 6$ is the same as $\frac{3}{4} \times \frac{1}{6}$.

Cory pours $\frac{1}{6}$ of $\frac{3}{4}$ quart of juice into each glass.

Reflect

1 Use the number line to show and explain why $\frac{4}{10} \div 2$ and $\frac{4}{10} \times \frac{1}{2}$ both equal $\frac{2}{10}$.

Think About Dividing by a Fraction


Let's Explore the Idea Explore dividing a fraction by a fraction with the problem below.

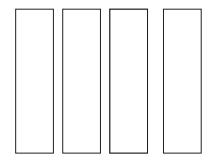
00000000000000000

Kate has $\frac{2}{3}$ yards of fabric to make small flags. Each flag requires $\frac{1}{6}$ yard of fabric. How many flags can Kate make?

- 2 You need to find out how many _____ are in ____
- 3 The number lines below are divided into thirds. Label $\frac{2}{3}$ on the top number line to represent $\frac{2}{3}$ yards of fabric.

- 4 Each flag requires $\frac{1}{6}$ yard of fabric. Divide the bottom number line into sixths to show how many sixths are in $\frac{2}{3}$.
- 5 Look at the bottom number line. How many sixths are there in $\frac{2}{3}$?
- 6 How many flags can Kate make? _
- $\frac{2}{3} \div \frac{1}{6} =$
- $\frac{2}{3} \times \underline{\hspace{1cm}} = 4$

Let's Talk About It


Solve the problem below as a group.

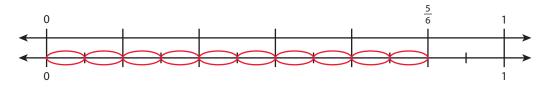
0000000000000

Kevin has 6 cups of flour. It takes $\frac{3}{8}$ cup of flour to make one cake. How many cakes can Kevin make?

- 9 You need to find out how many _____ are in ____.
- 10 Do you think the number of cakes Kevin can make is greater than or less than 6? Why?
- 11 Represent 6 cups with 6 rectangles. 4 rectangles are shown below. Draw 2 more rectangles.

- 12 Circle and count groups of $\frac{3}{8}$ in the model. How many did you circle? _____
- 13 How many $\frac{3}{8}$ -cups of flour are in 6 cups of flour?
- 14 $6 \div \frac{3}{8} =$

Try It Another Way Explore dividing by a unit fraction using a common denominator.


To solve $5 \div \frac{1}{2}$, write 5 as a fraction with a denominator of 2 and think, "How many halves are in ten halves?" $\frac{10}{2} \div \frac{1}{2} = 10$. Use the same reasoning to find $\frac{8}{6} \div \frac{2}{3}$.

- Write $\frac{8}{6}$ as a fraction with a denominator of 3. _____ To solve $\frac{4}{3} \div \frac{2}{3}$, think, "How many two-thirds are in four-thirds"? _____
- Write $\frac{2}{3}$ as a fraction with a denominator of 6. _____ To solve $\frac{8}{6} \div \frac{4}{6}$, think, "How many four-sixths are in eight-sixths"? _____

Connect Dividing by a Fraction

Talk through these problems as a class, then write your answers below.

17 Explain Look at the model below. Write the division equation that the model represents. Explain how to find the quotient using the model.

18 Analyze Sam said that $\frac{3}{2} \div \frac{1}{4}$ equals $\frac{3}{8}$. Draw a model and use words to explain why Sam's statement is not reasonable.

19 Justify Show that $2 \div \frac{4}{6} = 3$ by using a model. Explain why the answer is greater than the number you started with.

Apply

Dividing by a Fraction

	Together Use what you have learned to complete this task. one of the following problems to solve. Circle the problem you choose.
How Keish	made $\frac{2}{3}$ gallon of lemonade and plans to share it equally among 4 friends much lemonade will each friend get? na plans to run 4 miles this week. If she runs $\frac{2}{3}$ of a mile each day, how many will it take her to run 4 miles? Will she be able to run 4 miles in a week?
Part A	Write a division expression and draw a model to represent the problem.
	Estimate what you think the quotient will be. Will the quotient be greater less than the dividend? How do you know?
	Use your model to explain how to find the quotient and what the t means.