COMMAND BASED
PROGRAMMING

Command based programming

Table of Contents

Command based programming.......ccccccvueeeeriiveeeisiiineeessreeeessveeeeennns 4
What is Command based programming?.......ccccccevvvevveeniiieieeniiesneeseessieesneesseesens 5
Creating a command based robot project in C++.....ccccvveeeeennnennn. 10
Installing the C++ Workbench pluginccocvvvviiiiiiie e 11
Creating @ robot ProjeCt - CH ..ttt s saae s 14
Adding Commands and Subsystems to the project - C++coceevverienieneeniennnene 18
Creating a command based robot projectinjavacccceeeeunneenn. 23
Creating a robOt ProjeCt - JAVA ...uivciiiiiieiiecciccsec et sae e s ssiae e 24
Adding Commands and SUDSYSTEMS - JAVA ..cceevvieriiiniienieinienieeneeeveenee e 27
Defining robot SUDSYSTEMS...ccoiiiiiiiiiieec e, 29
SIMPIE SUDSYSTEIMS ..ot s 30
PIDSubsystems for built-in PID CONrol.......cccccveiiiiiienieceeceeeeeee e 32
Adding robot behaviors - commands........cccoecvveevrieeiniieeiniieeeiens 34
Creating Simple COmMMANAS......ooiiiiiiniiiiet e 35
Creating groups Of COMMANASooviiiiiiiiiiceee e 37
Running commands on JOYStICK INPUL......cooviiiiiieiiieeeececceccee e 39
Running commands during the autonomMOous Periodcccceveereervieenieniieennenn 41
Converting a Simple Autonomous program to a Command based autonomous
(107 =4 =] o 0 H TP U PRSPPI 43
Default CoOmMMANGS.....coiiieeieeeeee et s e 49

Connecting behaviors to the operator interfaceccccoeveeennennne. 50

Command based programming

Synchronizing tWo COMMIANGS ...ccviiviiiiierieeieerie et sre e

Command based programming

Command based programming

Comman d based programming Last Updated: 09-11-2016 Page 4

Command based programming

What is Command based programming?

WPILib supports a method of writing programs called "Command based programming". Command
based programming is a design pattern to help you organize your robot programs. Some of the
characteristics of robot programs that might be different from other desktop programs are:

« Activities happen over time, for example a sequence of steps to shoot a Frisbee or raise an
elevator and place a tube on a goal.

« These activities occur concurrently, that is it might be desirable for an elevator, wrist and
gripper to all be moving into a pickup position at the same time to increase robot
performance.

* Itis desirable to test the robot mechanisms and activities each individually to help debug
your robot.

+ Often the program needs to be augmented with additional autonomous programs at the
last minute, perhaps at competitions, so easily extendable code is important.

Command based programming supports all these goals easily to make the robot program much
simpler than using some less structured technique.

Commands and subsystems

Move ToScorngPoston

Dirvelne
Gripper o Stow\Wrist
. B i B S DeployhlirsBot
e T e - ,r"f- - h e ¥
W indBod E‘ Elawator C d
Lancher (. Subsysteme : LaunchMiniBot SR DrveFerwardindSeore
Badl Arm Driva ToGoal Elervator ToHighPosfon

Shooter

Programs based on the WPILIib library are organized around two fundamental concepts:
Subsystems and Commands.

Subsystems - define the capabilities of each part of the robot and are subclasses of Subsystem.
Commands - define the operation of the robot incorporating the capabilities defined in the

subsystems. Commands are subclasses of Command or CommandGroup. Commands run when
scheduled or in response to buttons being pressed or virtual buttons from the SmartDashboard.

Command based programming Last Updated: 09-11-2016 Page 5

Command based programming

How commands work

Commands let you break up the tasks of operating the robot into small chunks. Each command
has an execute() method that does some work and an isFinished() method that tells if it is done.
This happens on every update from the driver station or about every 20ms. Commands can be

grouped together and executed sequentially, starting the next one in the group as the previous
one finishes.

Concurrency

At this point the
elevator and the
_ wrist are both

moving at the
same time

Command based programming Last Updated: 09-11-2016 Page 6

Command based programming

Sometimes it is desirable to have several operations happening concurrently. In the previous
example you might want to set the wrist position while the elevator is moving up. In this case a
command group can start a parallel command (or command group) running.

How It Works - Scheduling Commands

Wait for data
from DS

New
command(s)?

Yes —Scheduled

Subsystem
Available?

No—Not Scheduled

Yes- Interrupt

Command
Interruptible?

There are three main ways commands are scheduled:

1. Manually, by calling the start() method on the command (used for autonomous)

2. Automatically by the scheduler based on button/trigger actions specified in the code
(typically defined in the Ol class but checked by the Scheduler).

3. Automatically when a previous command completes (default commands and command

groups).

Each time the driver station gets new data, the periodic method of your robot program is called. It
runs a Scheduler that checks the trigger conditions to see if any commands need to be scheduled
or canceled.

When a command is scheduled, the Scheduler checks to make sure that no other commands are
using the same subsystems that the new command requires. If one or more of the subsystems is

Command based programming Last Updated: 09-11-2016 Page 7

Command based programming

currently in use, and the current command is interruptible, it will be interrupted and the new

command will be scheduled. If the current command is not interruptible, the new command will
fail to be scheduled.

How It Works - Running Commands

anisai)
_W.I..-‘_I\ SatwristPosition
1 command
IsFinshed])

ol
—rf l RaizsElewalor

| command

After checking for new commands, the scheduler proceeds through the list of active commands
and calls the execute() and isFinished() methods on each command. Notice that the apparent
concurrent execution is done without the use of threads or tasks which would add complexity to
the program. Each command simply has some code to execute (execute method) to move it
further along towards its goal and a method (isFinished) that determines if the command has
reached the goal. The execute and isFinished methods are just called repeatedly.

Command based programming Last Updated: 09-11-2016 Page 8

Command based programming
Command groups

—
.lf |

/\\
S

—]

Currently executing
comimand

More complex commands can be built up from simpler commands. For example, shooting a disc
may be a long sequence of commands that are executed one after another. Maybe some of these
commands in the sequence can be executed concurrently. Command groups are commands, but
instead of having an isFinished and execute method, they have a list of other commands to
execute. This allows more complex operations to be built up out of simpler operations, a basic
principle in programming. Each of the individual smaller commands can be easily tested, the the
group can be tested. More information on command groups can be found in the Creating groups
of commands article.

Command based programming Last Updated: 09-11-2016 Page 9

Command based programming

Creating a command based
robot project in C++

Command based programming Last Updated: 09-11-2016 Page 10

Command based programming

Installing the C++ Workbench plugin

This article is about command based programming in C++. If using Java, click here.

There is a plugin for Workbench that will make the creation and editing of command-based robot
programs much simpler. The plugin had built-in templates for various types of commands,
subsystems, and an overall robot program template. To use the plugin it must first be installed

from the internet.

Show Advanced Device Development Perspective
(9 Advanced Deice Development - WRILB/PIOCarirler pp - Wid River Werkbench T]

File Edit Source Refactor Mavigate Search Project Target Analyze Run FIRST | Window | Help

il BE%EE RYW H-O-Q-| ¥~ B

[Project Explorer 1 . [=f File Navigatoq A& & "l @~~~ ~—0

MNew Window
Mew Editor

[- 5] ~ %0 & - v|=;

cop (l—tﬂ Timﬁ cop r el

H IUH 2013CHAOSRobot (Wind River ViWorks 6.3 Downloadable Kernel Module Project)

Open Perspective

Advanced Device Development [,

H IUH BuiltinDefaultCode (Wind River ViV
. 12 CommandBasedRobotTemplate (W
> 124 KinectGesturesSample (Wind River VxWorks 6.3 Downloadable Kernel Module Praject)

s 12 LiveWindowTest (Wind River Vi 6.3 Downloadable Kernel Module Project)

> 128 MyRobot (Wind River ViWark

H IUH MetworkCommunication (Wind River VidWorks 6.3 Downloadable Kernel Module Project)
H IUH OTAServer2 (Wind River ViWorks 6.3 Downloadable Kernel Module Project)

s 6.3 Downloadable Kernel Module Project)

6.3 Downloadable Kernel Module Project)
d River WiWorks 6.3 Downloadable Kernel Module R

.

3 Downloadable Kernel Module Project)

> T2 SimpleTemnplate (Wind River VxWorl
> 124 VisionSample2013 (Wind River ViWorks 6.3 Downloadable Kernel Module Project)
- 128 WPILIb (Wind River VeWor
> 124 Zcharia3.0 (Wind River VilWarks 6.3 Downloadable Kernel Module Project)

Downloadable Kernel Module Project)

Show View

Import Perspectives...
Export Perspectives...

Customize Perspective...

Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Mavigation

Preferences

=
—
% Basic Device Development
m Device Debug

EH Remote System Explorer

Other...

htput;

H sync(m_ semaphore);
ecError();

Select Window -> Open Perspective then click Advanced Device Development to open the

perspective.

Command based programming Last Updated: 09-11-2016

Page 11

Command based programming

Install new software

File Edit Source Refactor MNavigate Search Project Target Analyze Run FIRST Window | Help

Cillmi S| o
F) Project Bxplorer &2 % Debug Symbol Browser

=h: X304 M
[;_—5' CommandBasedRobotTemplate (Wind River VxWaorks 6.3 Downloadable K
12 SimpleTemplate (Wind River VWorks 6.3 Downloadable Kernel Module Py
i WPILib (Wind River VxWorks 6.3 Downloadable Kernel Module Project)

F-rO-Q- |-
= 8|] MyRobot.cpp &2

clas=s RobotDe

public:

=
Ep & Welcome

=

(%) Help Contents
* the driver| % Search
=/ Dynamic Help

{ Key Assist...
RobotDriwv
Joystick

Tips and Tricks...
Cheat Sheets...

Check for Updates

stick @) Getting Started
m Wind River Online Support...
m Wind River Developer Network...
@ Update Wind River Products...
& Installinto Eclipse...

. Collect Log Files...
void Anto
{

RobotDemo
myRob

myRob

About Wind River Workbench

Ctrl+5Shift+L

I

op

myBokbot.SetSafetyEnabled (false) ;
myRokbot.Drive(-0.5, 0.0);
Waiti2.0): f

Select "Install new software..." from the Help menu in Workbench.

Command based programming Last Updated: 09-11-2016

secaonds

{ driwve forwards half =g
for 2

Page 12

Command based programming

Select the plugin location

Available Software
Check the iters that you wish to install. \:)i
Work with: http://firstwpi.edu/FRC/c/eclipse/update/ ! -
ind more software by working with the "Available Software Sites” preferences.
type filter text
ame Version
[[¥]000 FRC Cpp Development Tools
4 | [+
SelectAll | | Deselect Al 1item selected
Details
Show only the latest versions of available software [] Hide items that are already installed
Group items by category What is already installed?
Contact all update sites during install to find required software
3 S
l:?) < Back Mext > Finish

Select "http://first.wpi.edu/FRC/c/eclipse/update/" in the "Work with" text field and check the box
to the left of "FRC Cpp Development Tools" in the list of plugins. Click "Next>" and continue

through the dialog boxes accepting the terms of the license and the certificate if prompted. When
finished, allow Wind River Workbench to restart when prompted to do so.

Command based programming Last Updated: 09-11-2016 Page 13

http://first.wpi.edu/FRC/c/eclipse/update/

Command based programming

Creating a robot project - C++

Create a command-based robot project by using one of the template projects that are provided
with the Wind River Workbench plugins.

Create the project

il i |

[Project Explorer &2

[Debug Symbel Browser

BG &~ -

3 Downloadable Kernel Module Project)

=4

. T2 SimpleTemplate (Wind River VsWorks 6.3 Downloadable Kernel Madule Pf
> B3 WPILib (Wind River VxWorks

class RobotDemo

File Edit Source Refactor Mavigate Search Project Target Analyze Run FIRST Window Help
B0

= O ¢ MyRobot.cpp 52

- A »1 -5~

: public SimpleRobot

&

he driver station or the field controls.

4| 1

8 Remote Systems 2

Ef Local

£ 5 5] 8|

b

[Bl&8- -0

155 VxWorks Shared Library Project
5 VxWorks Source Build (Kernel Library) Project

[User-Defined Project
e

&7 Native Application Project

=

I

JF% Other...

Y Example.

{
RobotDrive myRobot; // robot drive system
Joystick stick:; // only joystick
publio:
RobotDemo (void) :
myRobot (1, 2}, // these must be initiali=z
MNew » % Project...
Open il Wind River Workbench Project
23 Import... 18 VxWorks Boot Loader / BSP Project
3 Export... 1 V¥Works Downloadable Kernel Module Project
Open Development Shell... il fodioiislmanste=t
Build Options 5 185 VWorks ROMFS File System Project
&) Refresh Es 185 VxWorks Real Time Process Project

Ctrl+N

Right-click in the project explorer window in some empty space. Select "New" then "Example...".

Command based programming Last Updated: 09-11-2016

Page 14

Command based programming

Selecting the project type

-

'Lj MNew Example

Select a wizard

Creates a new ViWaorks downloadable kernel module sample project

Wizards:

hype filter text

- . -
1 VieWorks Downloadable Kernel Module Sample Project

fﬁ Editing and wvalidating XML files

® < Back Mext = Finish

Cancel

Select "VxWorks Downloadable Kernel Module Sample Project" from the "New Example" dialog

box and click "Next>".

Command based programming Last Updated: 09-11-2016

Page 15

Command based programming

Select the project example
@ Mew Project Sample u_lw |

Sample Project Template .

Select a sample project template, B

Available Examples: Information:

FRC Command Based Robot Template

I=F C++ Demonstration Program

= FRC 2010 Vision Demonstration Program This program is the basis for a command based robot

=+ FRC 2012 Vision Sample Program program. You should look at all the files in this template
- and make edits where indicated in the source code.

o [»

|=FRC Command Based Robot Templatei

T—L O™ Miafan b Memmrmmes (T oremmb ssibls ime smim e mm

Location:
CAWindRivervweworks-6.3\target\srchdemo\CommandBasedRobotTemplate

@ weas || Finsh |§ cancel |

Select the "FRC Command Based Robot Template" project example and click "Finish".

Command based programming Last Updated: 09-11-2016 Page 16

Command based programming

Observe sample project in the Project Explorer window

K Debug
File Edit Source Refactor MNavigate Search Project Target Analyze Run
Ziliwilg | o &5 F-O-Q-
i) Project Explorer i3 % Debug Symbol Browser = 0|[[4

cR=S3hd -~ LI
4[> CommandBasedRobotTemplate (Wind River VxWorks 6.3 Downloadablgk
H 'HHL Build Targets (PPC603gnu - debug)
& Wind River Launches
> i Includes
4 (7= Commands
[BxampleCommand.cpp
[1] ExampleCommand.h
4 = Subsystems
[g] ExampleSubsystem.cpp
[R] ExampleSubsystern.h
[€] CommandBase.cpp
[A] CommandBase.h
[€] CommandBasedRebot.cpp
[¢] OLepp
[h] OLh
[B] Robotrap.h
sample.bet

P
> Eg WPILik (Wind River ViWorks 6.3 Downloadable Kernel Module Project)

Notice that the CommandBasedRobotTemplate project has been added to the other projects that
might have been in the Project Explorer window. There is a folder for Commands and another

folder for Subsystems.

Command based programming Last Updated: 09-11-2016

Page 17

Command based programming

Adding Commands and Subsystems to the
project - C++

Commands and Subsystems each are created as classes in C++. The plugin has built-in templates
for both Commands and Subsystems to make it easier for you to add them to your program.

Adding subsystems to the project

File Edit Source Refactor Mavigate Search Project Target Analyze Run FIRST Window Help

il ‘n-Tn ﬁvgv%-‘Q"v 10 % i - - &S ~|r
[Project Explorer #3 . Debug Symbol Browser = B[[¢ MyRobot.cpp &
= <5==('> £ vl hadi Bhd = * the driver station or the field controls.

g CommandBay

g L e — [P
#5 Wind Rivel — Golnta § Build Tar
- - get
RIgh‘t-Clle > o) Includes - —— Ju:; i
en in New Window ile
on the 4 (= Command g
. 4+ |
pI'OJECT.... Examp = Copy ciec | File from Template
y Examp e culy | Folder
| 4 [= Subsysten
Examp K Delete Delete | f#] Wind River Workbench Project
Bramp Attibutes ' 18 VxWorks Boot Loader / BSP Project
Commang Move... .
i VxWorks Downloadable Kernel Module Project
Commang Rename I
Commang 1% VxWorks Image Project
OLcpp g2y Import.. 1B VxWorks ROMFS File System Project
OLh By Export. 8 VxWorks Real Time Process Project 1
Robotmag E
D sample.bd] Open Wind River ViWorks 6.3 Development Shell [VxWorks Shared Library Project
. 2 SimpleTempls ¥ Build Project Ctrl+B, Ctrl+P &8 VeWorks Source Build (Kernel Library) Project
& i (Wind
b5 WPLLb (Wind| &8 pepuild Project {0 User-Defined Project
i »
Build Options & MNative Application Project
& Refresh F5
Close Project Ao Command
N Close Unrelated Projects £ Command Group
Project References » LA PID Subsystem
48 Remote Systems 20 | Subsystem
E’ Local @ RunVxWorks Kemel Task
#@ wesiml (Wind| 35 Debug VxWaorks Kernel Task [Y Bample..
L
}Tﬁ vasimi_smp (@- Download ViWorks Kernel Task £¥ Other... Ctrl+N
) VWorksbx 10
Tndex 3 I

To add a subsystem, right-click on the project name and select "New" then "Subsystem" in the
drop down menu.

Command based programming Last Updated: 09-11-2016 Page 18

Command based programming

Naming the subsystem

F

@ (=]
FRC C++ New Subsystem Wizard

Enter new subsystem specifications

Desired Subsystem Mame | FrisbeeShooter

® | Finish | ’ Cancel

S

E

Fill in a name for the subsystem. This will become the resultant class name for the subsystem so
the name has to be a valid C++ class name.

Subsystem created in project

e
rﬁ_ﬁ Project Explorer &2 (el Debug Symbol Erowser\l

=ik

4 ID-H CommandBasedRobotTemnplate (Wind River Vx\Wo

s ﬂﬂﬂj Build Targets (PPCB03gnu - debug)
‘EF Wind River Launches
» [ail Includes
4 = Commands
[€] ExampleCommand.cpp
[h ExampleCommand.h
4 = Subsystems
[£] ExampleSubsystem.cpp

[£] FrisbeeShooter.cpp
[K| FrisbeeShooter.h

[n] CommandBaseh
[£] CommandBasedRobot.cpp
L€ OLepp

Command based programming Last Updated: 09-11-2016

Page 19

Command based programming

You can see the new subsystem created in the Subsystems folder in the project. To learn more
about creating subsystems, see the Simple Subsystems article.

Adding a command to the project

| Project Explorer 3 [l Debug Symbol Browser = 0| g MyRobot.cpp FrisbeeShooter.h

#include "FrisbeeShooter.h"

l.c] FrisbeeShooter.cpp &3

S Sv 2@ T

= CommandBasedRo —— #include "., a"R:ﬁl}:otrr.e_r:. h"
/' > [Build Targets (PH i [CpEoiEcts
Righi-click &5 Wind River Launs Go Into [Build Target
- - Includ
Ight=clic b I Sncluces Open in New Window Y File
on the 4 (= Commands
= || =
prOjec‘t name [£] ExampleCon [= T ChrleC | File from Template
ExampleCom Paste ey | I Folder
P 4 (= Subsystems) -~) _ .
[€ ExampleSubs ¥ Delete Delete | f] Wind River Workbench Project
i 3
BxampleSubs Aftributes 1B V¥Werks Boot Loader / BSP Project
| FrisheeShoot .
il rfs Ee2non Move [H{ VeWerks Downleadable Kernel Module Project
FrisbeeShoot Rename.. F2 .
[£ CommandBase.q I VeWerks Image Project
CommandBaseh g2g Import... [FY VeWorks ROMPFS File System Project
g CommandBased &y Export... 8% VxWorks Real Time Process Project
g OLcpp . . .
OLh Open Wind River VxWorks 6.3 Development Shell (] | s et ey ey !
Robotmap.h ¥ Build Project Ctrl+B, Ctrl+P €] VxWerks Source Build (Kernel Library) Project
" | sample.bd & Rebuild Project 10 User-Defined Project
> l=r SimpleTemplate (Wi . .
. G WPILib (Wind River | uid Options * | Native Application Praject
#| Refresh F5
Close Project ' A% Command '
] Close Unrelated Projects gmmand roup
Project References » | 49 PID Subsystem
8 Remote Systems 2 A Subsystem
Ef Local 2 RunVsWorks Kernel Task

A command can be created for the project using steps similar to creating a subsystem. First right-
click on the project name in the Project Explorer and select "New Command".

Command based programming Last Updated: 09-11-2016

Page 20

Command based programming

Set the command name

-

9 =
FRC C++ New Command Yizard
Enter new command specifications
F
® Finish | ’ Cancel

e

-4

Enter the Command name into the "Desired Command Name" field in the dialog box. This will be
the class name for the Command so it must be a valid C++ name.

Command created in the project

Fan! Project Explorer &% 2 Debug Symbol Erowser}

=08

Esa-lzm@~”

s Wind River Launches
> it Includes
4 = Commands
[ExampleCommand.cpp

[ShootDisc.cpp
[h] ShootDisc.h

ot SUDSySTeErn
[ExampleSubsystem.cpp
[n ExarmpleSubsystern.h
[FrisbeeShooter.cpp
[n] FrisbeeShooter.h

[£ CommandBase.cpp

[A CommandBaseh

[£ CommandBasedRobot.cpp

[¢] OLepp

[A OLh

[A] Robotmap.h
sampletd

Command based programming Last Updated: 09-11-2016

4 [E-H CommandBasedRobotTemplate (Wind River VxWorks 6.3 Downloadable K
> ﬂj{h Build Targets (PPCB03gnu - debug)

» T2 SimoleTemplate (Wind River VxWorks 6.3 Downloadable Kernel Module Pi

Page 21

Command based programming

You can see that the Command has been created in the Commands folder in the project in the
Project Explorer window. To learn more about creating commands, see the Creating Simple
Commands article.

Command based programming Last Updated: 09-11-2016 Page 22

Command based programming

Creating a command based
robot project in Java

Command based programming Last Updated: 09-11-2016 Page 23

Command based programming

Creating a robot project - Java

This article is about command based programming in Java, if you are programming in C++ click
here to skip ahead to learning about subsytems.

Create a new project

8eoe 0l New Project... GEN
o O GF EiNewfile.. #N jconf. :| § & PCE-G
= 1 ¥ - =
> BB APl Open Recent Project >)
> @ borg PR (s | [
b &5 Duelist Open File... 1
n nt Fil >
» &pFakerobor Open Recent File 2 B inport stanford
> & KuniTust Project Group > 3
3 .fgﬂurllnew:m'er Broiect Pro . 4
L~ Sta.nﬁnrdKamI 5
: goTs“:Wl N 9 Import Project > &
i TableViEwer Prad > T
» 9 TaskManager Expast Project B
426 9
Eave Az B
Save A i o 1 .
o 12 . authar
Page Setup... =
Print e 14 public class Ka
15
16 alverride
& B public wvoid
18 mavel) ;
19 mavel};
n L e
1 }
22

Create the project in NetBeans by selecting File then New Project...

Command based programming Last Updated: 09-11-2016 Page 24

Command based programming

Choose project type

New Project

Sleps Choose Project

1. Choose Project Q
. R—

| O | /% CommandBasedRobatTemplatePraject

G JavaFK £ IrerativeRobotTemplateProject
3 Maven f SimpleRobotTemplateProject
] NetBeans Modubes

» [Samples

Description:

Sample robot program framework using the "CommandBased Robot® style
that can be used to write your own code,

Select the project type to create. In this case since we are creating a command based robot
project, select FRC Java for the category, then CommandBasedRobotTemplateProject from the list
of project types and select Next. All the base files will be automatically created for you.

Command based programming Last Updated: 09-11-2016 Page 25

Command based programming

Name the project and set parameters for create

Mew Project
Steps Name and Location
1. Choose Project
2. Mame and Location g i
Project Name: MyFRCRobot

Project Location Users /brad/NetBeansProjects Browse...
Project Folder: wrad/ MetBeansProjects /MyFRCRobot

Project Package:[il | edu.wpi first.wpilibj.templates

Robot Class: Team190Robot

HEIP = Mk —exL CEHEEI

Here you can specify a project name and location where it will be stored. In addition you can
supply a name for the base robot class. The Package should be something that uniquely identifies
your team or organization. The package declaration qualifies all the code in the project so that
code could be shared between organizations without conflicts.

After you hit Finish, the project will be created.

Command based programming Last Updated: 09-11-2016 Page 26

Command based programming

Adding Commands and Subsystems - Java

A newly created command based robot project will have a set of default files and packages that
were provided by the template. Using these files will make it easy to extend the default program
into a custom robot program for your application.

Adding subsystems
Fropecls - Swinglorg 0 | Filmn | Services | O |2 kaveiTeijna O
i AP
» 3 Borg urce Histary Feps Choose File Type
Oy Duelist : : Chooss Flle Type Project: | 2% MyFRCRabos
* Syfatesohor 2 B import s o
* S KarelTest 3
¥ &4 MyFRCRobot u 1 Cavegories Fikt Types
ol 5 [Command-gased Rober | | [Command
v [edu.wplfirst.wpiib).semplates i s =
"0l java 7 G Seviag G barrs = Ll
£ *Robmbap.java Ll \“-"{ S fieabukid Oy
#1*Team1 90Robex. java 1 - ::TT";':Ir“""
* [H eduwpliins wpdin) semplaes. commands LN & Hibeman
& CommardBate.java 11 i s
& “ExampleCommand java 1z u Fibas
T] eduwplilisnwplil . - 2 Descripiins
& PExamplesubs _ =] - Creanes & new Cammand for yeur Java Command-hased rabat project
* i buid.xm ind... H#F [Java Package.. |
= -
b Syoumineviewer Cut - — IFrame Farm... i
& smnfordiCansl Copy wr | Java Interface...
i
kg iwingiioeg Pacry I . |
» By Tableviws L c—
E‘JT k“' ; | Mears | Cancel
R LS Delete Delete 1 T —
Refactor [2

Compile Package F2

Taaols *

Add a new Subsystem class instance. Right-click on the subsystem package, and select New
Subsystem. If it is not there, then select New Other (as shown above), then select subsystem. In the
future, subsystem will be a choice on the New menu. Name the subsystem in the next dialog that
pops up and click Finish.

To learn more about defining subsystems, see the Simple Susbsystems article.

Command based programming Last Updated: 09-11-2016 Page 27

Command based programming

Adding commands

Pecjects - Swingicrs € | S]] a7
B AR
> & Borg “Gource | Hisn
* i Duelist e,
1
k& FakeRobot 2| B impart
b & KarelTest 3
v iy MyFRCRobot 4
* i@ s 5
¥ [eduwpifirsuwpilib.vemplates B
Ig'l'a'mm 7
m%n{ﬂay.jln]
|#]PTeam190RaboLjava 3
* [edu.wplfirstweilihi tamnlatac cammands 3 o A =
&1 Cemmand B Java Class...
[®Exampleca Find... ¥F [# Java Package... pau
v [edu.wpifirstw | JFrame Form...
[PExamplesy| CU1 #X [Java Interface... €
» Bl bukd.xmi Copy *C
» 5 gOutlineViewer Paste HV Other... - ﬁﬂ
: g f::;:;“ﬂ Delete Delete 18
o 19
> @WoTableViewsr Refactor > =5 3
») TaskManager Compile Package F9 ral ¥
22
Tools =

Steps

1.
2.

Choose File Type

Mew File

Choose File Type

Project: | &% MyFRCRobot H
=3
Categories; File Types:
| Comeund-Based Robot || Eommand

& s

&3 Swing GUI Forms
&l JavaBearns Ohjects
B AWT G Forms
&l Unit Tests

& Hibernate
R

£5_reher

Description:

i CommandGroup
| PIDSubsyitem
icr. Subsystom

Creates a new Command o your Java Command-based rabel project,

Cancel

The procedure to add commands is similar to adding subsystems (above), except select New

Command from the menu (or New Other...), then Command.

To learn more about creating commands, see the Creating Simple Commands article.

Command based programming Last Updated: 09-11-2016

Page 28

Command based programming

Defining robot subsystems

Comman d based programming Last Updated: 09-11-2016 Page 29

Command based programming

Simple subsystems

Subsystems are the parts of your robot that are independently controller like collectors, shooters,
drive bases, elevators, arms, wrists, grippers, etc. Each subsystem is coded as an instance of the
Subsystem class. Subsystems should have methods that define the operation of the actuators and
sensors but not more complex behavior that happens over time.

Creating a subsystem

1 package org.usfirst.frcl90.CearsBotME.subsystems;
2 import edu.wpl.first.wpilibj.#*;

3 import edu.wpi.first.wpilibij.command.Subsystem:
4 import org.usfirst.frel90.CearsBotME.RobotMap:
5

6 public class Claw extends Subsystem {

)

8 Victor motor = RobotMap.clawMotor;

9

@ public void initDefaultCommand() {

11 }

12

13 public void open() {

14 motor.set{1l);

15 }

16

17 public void close() {

18 motor.set(=-1);

15 }

20

21 public void stop() {

22 motor.set(0):

23 }

24 3}

25

This is an example of a fairly straightforward subsystem that operates a claw on a robot. The claw
mechanism has a single motor to open or close the claw and no sensors (not necessarily a good
idea in practice, but works for the example). The idea is that the open and close operations are
simply timed. There are three methods, open(), close(), and stop() that operate the claw motor.
Notice that there is not specific code that actually checks if the claw is opened or closed. The open
method gets the claw moving in the open direction and the close method gets the claw moving in
the close direction. Use a command to control the timing of this operation to make sure that the
claw opens and closes for a specific period of time.

Command based programming Last Updated: 09-11-2016 Page 30

Command based programming

Operating the claw with a command

1 package org.usfirst.frcl90.CearsBotHE.commands;
2 import edu.wpi.first.wpilibj.command.Command;
3 import org.usfirst.frcl90.CGearsBotME.Robot;
4

5

]

7 public class OpenClaw extends Command {
8 public OpenClaw() {

9 W

10 setTimeocut|.9);

11 'y

12

@ protected void imitialize() {

14 Robot.claw.open();

15 }

16

@ protected void execute() {

18 }

19

@ fﬂhﬂhﬂ-hﬂﬂﬁi—iﬁi-iiiedt] {

Z1 return isTimedOuk();

22 %

23

@ protected void end() {

25 Robot.claw.stop();

26 }

27

@ protected void interrupted() {

29 end();

30 }

31}

Commands provide the timing of the subsystems operations. Each command would do a different
operation with the subsystem, the Claw in this case. The commands provides the timing for
opening or closing. Here is an example of a simple Command that controls the opening of the
claw. Notice that a timeout is set for this command (0.9 seconds) to time th e opening of the claw
and a check for the time in the isFinished() method. You can find more details in the section on

using Commands.

Command based programming Last Updated: 09-11-2016 Page 31

Command based programming

PIDSubsystems for built-in PID control

If a mechanism uses a sensor for feedback then most often a PID controller will be used to control
the motor speed or position. Examples of subsystems that might use PID control are: elevators
with potentiometers to track the height, shooters with encoders to measure the speed, wrists with
potentiometers to measure the joint angle, etc.

There is a PIDController class built into WPILib, but to simplify its use for command based
programs there is a PIDSubsystem. A PIDSubsystem is a normal subsystem with the PIDController
built in and exposes the required methods for operation.

A PIDSubsystem to control the angle of a wrist joint

1 package org.usfirst.frel90.GearsBotME.subsystems;

Source View k

edu.wpl.first.wpilibj.#*;

mromport edu.wpl.first.wpilibj.command.PIDSubsystem;
4 import org.usfirst.freclf0.GearsBotME.RobotMap;

5

7 o —

] Victor motor = RobotMap.wristMotor;

9 AnalogChannel pot = RobotMap.wristPot;

10

11 public Wrist() {

12 super{ "Wrist", 2.0, 0.0, 0.0);

13 sethbsoluteTolerance(0.05);

14 getPIDController().setContinuous(false);
15

16

@ public void initDefaultCommand() {

18 }

19

@

21

22

23

@ protected void usePIDOutput (double output) {
25 motor.pidWrite{output); o
26 } o
27 3

28

In this example you can see the basic elements of a PIDSubsystem for the wrist joint:

1. The Wrist subsystem extends PIDSubsystem.
2. The constructor passes a name for the subsystem and the P, |, and D constants that are
used when computing the motor output values.

Command based programming Last Updated: 09-11-2016 Page 32

Command based programming

3. The returnPIDInput() method is where you return the sensor value that is providing the
feedback for this subsystem. In this case it's a potentiometer connected to an
AnalogChannel. This method is called about every 20ms and is used for the PID output
calculation.

4. The usePIDOutput method is where the computed output value from the PIDController
is applied to your motor. This method is called about every 20 ms to update the motor

speed based on the PID parameters from the constructor and the sensor value from the
returnPIDInput() method.

Command based programming Last Updated: 09-11-2016 Page 33

Command based programming

Adding robot behaviors -
commands

Command based programming Last Updated: 09-11-2016 Page 34

Command based programming

Creating Simple Commands

This article describes the basic format of a Command and walks through an example of creating a

command to drive your robot with Joysticks.

Basic Command Format

public class MyCommandMame extends CommandBase {

public MyCommandhame() {
super"MyCommandMame”);
requiresielevator);

¥

public void initialize() {

¥

public void execute() {
¥

public boolean isFinished() {

return true-if-command-is-finished:
¥
[t

To implement a command, a number of methods are overridden from the WPILib Command class.
Most of the methods are boiler plate and can often be ignored, but are there for maximum
flexibility when you need it. There a number of parts to this basic command class:

1.

Constructor - Might have parameters for this command such as target positions of
devices. Should also set the name of the command for debugging purposes. This will be
used if the status is viewed in the dashboard. And the command should require
(reserve) any devices is might use.

. initialize() - This method sets up the command and is called immediately before the

command is executed for the first time and every subsequent time it is started . Any
initialization code should be here.

. execute() - This method is called periodically (about every 20ms) and does the work of

the command. Sometimes, if there is a position a subsystem is moving to, the command
might set the target position for the subsystem in initialize() and have an empty
execute() method.

isFinished() - This method returns true if the command is finished. This would be the
case if the command has reached its target position, run for the set time, etc. There are
other methods that might be useful to override and these will be discussed in later
sections

Command based programming Last Updated: 09-11-2016 Page 35

Command based programming

Simple Command Example

pukblic class DriveWithJoysticks extends CommandBase {

public DriveWithJoysticks () {

requires (drivetrain) ;
e’
protected woid initialize() {
protected woid execmte () {
drivetrain.tankDrive (ol.getLeftSpeed(), oi.getRightSpeed()):
g
protected boolean isFinished() {

return false: °

e

protected woid end() {

protected wold interropted() {

1. This example illustrates a simple command that will drive the robot using tank drive
with values provided by the joysticks. The elements we've used in this command:

2. requires(drivetrain) - "drivetrain” is an instance of our Drivetrain subsystem. The
instance is instantiated as static in Command Base so it can be referenced here. We
need to require the drivetrain system as this command uses it when it executes.

3. execute() - In our execute method we call a tankDrive method we have created in our
subsystem. This method takes two speeds as a parameter which we get from methods
in the Ol class. These methods abstract the joystick objects so that if we want to change
how we get the speed later we can do so without modifying our commands (for
example, if we want the joysticks to be less sensitive, we can multiply them by .5 in the
getLeftSpeed method and leave our command the same).

4. isFinished - Our isFinished method always returns false meaning this command never
completes on it's own. The reason we do this is that this command will be set as the
default command for the subsystem. This means that whenever the subsystem is not
running another command, it will run this command. If any other command is
scheduled it will interrupt this command, then return to this command when the other
command completes. For more on default commands see Default Commands.

Command based programming Last Updated: 09-11-2016 Page 36

Command based programming

Creating groups of commands

Once you have created commands to operate the mechanisms in your robot, they can be grouped
together to get more complex operations. These groupings of commands are called
CommandGroups and are easily defined as shown in this article.

Creating a command to do a complex operation

18 public class PlaceSoda extends CommandGroup {

19 ﬂ ic PlaceSoda() {

20 addsequential(new SetElevatorSetpoint(Elevator.TABLE HEIGHT));
21 ﬂ addSequential{new SetWristSetpoint(Wrist.PICKUP));

22 OEddSEquential{new OpenClaw());

23 o

24 H

This is an example of a command group that places a soda can on a table. To accomplish this, (1)
the robot elevator must move to the "TABLE_HEIGHT", then (2) set the wrist angle, then (3) open
the claw. All of these tasks must run sequentially to make sure that the soda can isn't dropped.
The addSequential() method takes a command (or a command group) as a parameter and will
execute them one after another when this command is scheduled.

Running commands in parallel

21 public class PrepareToGrab extends CommandGroup {
22 nlic PrepareToGrab() {

23 addParallel{new SetWristSetpoint{Wrist.PICKUP));

24 a addParallel{new SetElevatorSetpoint({Elevator.B0TTOM));
25 o addParallel{new OpenClaw()});

26 g

27 ¥

To make the program more efficient, often it is desirable to run multiple commands at the same
time. In this example, the robot is getting ready to grab a soda can. Since the robot isn't holding
anything, all the joints can move at the same time without worrying about dropping anything. Here
all the commands are run in parallel so all the motors are running at the same time and each
completes whenever the isFinished() method is called. The commands may complete out of order.
The steps are: (1) move the wrist to the pickup setpoint, then (2) move the elevator to the floor
pickup position, and (3) open the claw.

Command based programming Last Updated: 09-11-2016 Page 37

Command based programming

Mixing parallel and sequential commands

18 public class Grab extends CommandGroup {

19 ‘lic Grab() {

] addSeguential{new CloseClaw());

21 ﬁ addParallel{new SetElevatorSetpoint(Elevator.5TOW));
22 o addSequentialinew SetWristSetpoint({Wrist.STOW));

23 —

24 T

Often there are some parts of a command group that must complete before other parts run. In
this example, a soda can is grabbed, then the elevator and wrist can move to their stowed
positions. In this case, the wrist and elevator have to wait until the can is grabbed, then they can
operate independently. The first command (1) CloseClaw grabs the soda and nothing else runs
until it is finished since it is sequential, then the (2) elevator and (3) wrist move at the same time.

Command based programming Last Updated: 09-11-2016 Page 38

Command based programming

Running commands on Joystick input

You can cause commands to run when joystick buttons are pressed, released, or continuously
while the button is held down. This is extremely easy to do only requiring a few lines of code.

The Ol Class

El-A% GearsBot

EI {5 src

EIEE| edu.wpi. first, wpilibj, templates

..... @@Gearsﬁot.ja'«'a

; -@@Dl.java

----- &1 ProbotMan. java

pubklic class 0L {

Joystick leftdoy = new Joysticki(l):
Button buttonl = new JoystickButton(leftJovy, 1),
button? = new JoystickButton (leftdoy, 2),

The command based template contains a class called Ol, located in Ol.java, where Operator
Interface behaviors are typically defined. If you are using RobotBuilder this file can be found in the
org.usfirst.frc####.NAME package

Create the Joystick object and JoystickButton objects

22
23
24
25
26
27
28
29
30
31
32

Joystick leftloy

buttonz
button3
buttond
buttons
buttoné
button?
buttong

= new Joystick(1);
Button buttonl = new JoystickButton(leftloy, 1},

new
new
new
new
new
new
new

JoystickButton(
JoystickButton(
JoystickButton(
JoystickButton(
JoystickButton(
JoystickButton(
JoystickButton(

Llettloy,
Llettloy,
Llettloy,
Llettloy,
Llettloy,
Llettloy,
Llettloy,

2),
3),
4),
5),
6],
71,
8);

In this example there is a Joystick object connected as Joystick 1. Then 8 buttons are defined on
that joystick to control various aspects of the robot. This is especially useful for testing although
generating buttons on SmartDashboard is another alternative for testing commands.

Command based programming Last Updated: 09-11-2016

Page 39

Command based programming

Associate the buttons with commands

33 =

34

35 -

36 |E public 0I() {

37 buttonl.whenPressed(new PrepareToGrab());

38 buttonZ.whenPressed{new Grab());

39 button3.whenPressed(new DriveToDistance(@.11));
40 buttond.whenPressed{new PlaceSodal()});

41 buttonG.whenPressed({new DriveToDistance(@.2));
42 buttond.whenPressed({new Stow());

43

44 button7.whenPressed{new SodaDelivery());

45 - ¥

Ac

In this example most of the joystick buttons from the previous code fragment are associated with
commands. When the associated button is pressed the command is run. This is an excellent way
to create a teleop program that has buttons to do particular actions.

Other options

In addition to the "whenPressed()" condition showcased above, there are a few other conditions
you can use to link buttons to commands:

+ Commands can run when a button is released by using whenReleased() instead of
whenPressed().

+ Commands can run continuously while the button is depressed by calling whileHeld().

+ Commands can be toggled when a button is pressed using toggleWhenPressed().

+ A command can be canceled when a button is pressed using cancelWhenPressed().

Additionally commands can be triggered by arbitrary conditions of your choosing by using the

Trigger class instead of Button. Triggers (and Buttons) are usually polled every 20ms or whenever
the scheduler is called.

Command based programming Last Updated: 09-11-2016 Page 40

Command based programming

Running commands during the autonomous
period

Once commands are defined they can run in either the teleop or autonomous part of the program.
In fact, the power of the command based programming approach is that you can reuse the same
commands in either place. If the robot has a command that can shoot Frisbees during
autonomous with camera aiming and accurate shooting, there is no reason not to use it to help
the drivers during the teleop period of the game.

Creating a command to use for Autonomous

22 public class SodaDelivery extends CommandGroup {

23 0 public SodaDelivery() {

24 addSequential{new PrepareToGrab(]]);

25 addSequentiali{new Grab(}]};

26 addSequential{new DriveToDistance(.11}]};
27 addSeguential{new PlaceSodal());

28 addSequential{new DriveToDistance(.2));
29 addSequential(new Stow());

3 - ¥

31 ¥

an

Our robot must do the following tasks during the autonomous period: pick up a soda can off the
floor then drive a set distance from a table and deliver the can there. The process consists of:

Prepare to grab (move elevator, wrist, and gripper into position)

Grab the soda can

Drive to a distance from the table indicated by an ultrasonic rangefinder
Place the soda

Back off to a distance from the rangefinder

Re-stow the gripper

ouhkwnN =

To do these tasks there are 6 command groups that are executed sequentially as shown in this
example.

Command based programming Last Updated: 09-11-2016 Page 41

Command based programming

Setting that command to run as the autonomous behavior

49| -

50 public class GearsBot extends IterativeRobot {
51

52 Command autonomousCommand;

53

54 =

55
56
57 -
@E‘o public void robotInit() {
59

60 | CommandBase.init();
61
62
63
64
65 autonomousCommand = new SodaDelivery();
66 - H

67
@= public void autonomousInit() {
'@

70 | = autonomousCommand.start();
i - K

72

73
74
75

@ public void autonomousPeriodic() {
77 Scheduler.getInstance().run();
?S "

T0

¥

To get the SodaDelivery command to run as the Autonomous program, (1) simply instantiate it in
the robotlnit() method, (2) start it during the autonomousPeriodic() method, and (3) be sure the
scheduler is called repeatedly during the teleopPeriodic() method. Robotlinit() is called only once
when the robot starts so it is a good time to create the command instance. AutonomousPeriodic()
is called once at the start of the autonomous period so we schedule the command there.
AutonomousPeriodic() is called every 20ms so that is a good time to run the scheduler which
makes a pass through all the currently scheduled commands.

Command based programming Last Updated: 09-11-2016 Page 42

Command based programming

Converting a Simple Autonomous program to a
Command based autonomous program

This document describes how to rewrite a simple autonomous into a command based
autonomous. Hopefully, going through this process will help those more familiar with the older
simple autonomous method understand the command based method better. By re-writing it as a
command based program, there are several benefits in terms of testing and reuse. For this
example, all of the logic is abstracted out into functions primarily so that the focus of this example
can be on the structure.

The initial autonomous code with loops

1: // Aim shooter

2: SetTargetAngle();

3: while (!AtRightAngle()) {

4: CorrectAngle();

5: delay(); // Delay to prevent maxing CPU
6: }

7T: HoldAngle();

8:

9: // Spin up to Speed

10: SetTargetSpeed();

11: while (!FastEnough()) {

12: SpeedUp();

13: delay(); // Delay to prevent maxing CPU
14: }

15: HoldSpeed();

16:

17: // Shoot Frisbee

18: Shoot();

The code above aims a shooter, then it spins up a wheel and, finally, once the wheel is running at
the desired speed, it shoots the frisbee. The code consists of three distinct actions: aim, spin up to
speed and shoot the Frisbee. The first two actions follow a command pattern that consists of four
parts:

1. Initialization: Seen in lines 2 & 10, prepares for the action to be per- formed.

Command based programming Last Updated: 09-11-2016 Page 43

Command based programming

2. Condition: Seenin lines 3 & 11, keeps the loop going while it is satisfied.
3. Execution: Seen in lines 4 & 12, repeatedly updates the code to try to make the condition false.

4. End: Seen in lines 7 & 15, performs any cleanup and final task before moving on to the next
action.

The last action seen in line 18 only has an explicit initialize, though depending on how you read it,
it can implicitly end under a number of conditions. The most obvious one two in this case are
when it's done shooting or when autonomous has ended.

Rewriting it as Commands

1 public class AutonomousCommand extends CommandGroup {
2 public AutonomousCommand() {

3: addSequential (new Aim());

4: addSequential (new SpinUpShooter());

5: addSequential (new Shoot());

5]

7

The same code can be rewritten as a CommandGroup that groups the three actions, where each
action is written as it's own command. First, the command group will be written, then the
commands will be written to accomplish the three actions. This code is pretty straightforward. It
does the three actions sequentially, that is one after the other. Line 3 aims the robot, then line 4
spins the shooter

2up and, finally, line 5 actually shoots the frisbee. The addSequential() method sets it so that these
commands run one after the other.

Command based programming Last Updated: 09-11-2016 Page 44

Command based programming

The Aim command

1: public class Aim extends Command {
2 public Aim() {

3: requires (Robot.turret);

a: ¥

5.

6 protected void initialize() {
7 SetTargetingle();

8: }

9:

10: protected void execute() {

11: CorrectAngle();

12: }

13:

14: protected boolean isFinished() {
15: return AtRightAngle();

16: I3

i7:

18: protected void end() {

19: HoldAngle();
20: b
21:
22: protected void interrupted() {
23: end();
24 }
25: }

As you can see, the command reflects the four parts of the action we discussed earlier. It also has
the interrupted() method which will be discussed below. The other significant difference is that the
condition in the isFinished() is the opposite of what you would put as the condition of the while
loop, it returns true when you want to stop running the execute method as opposed to false.
Initializing, executing and ending are exactly the same, they just go within their respective method
to indicate what they do.

Command based programming Last Updated: 09-11-2016 Page 45

Command based programming

SpinUpShooter command

1: public class SpinUpShooter extends Command {
2: public SpinUpShooter() {

3: requires (Robot.shooter) ;
4: }

5:

6: protected void initialize() {
7: SetTargetSpeed();

8: }

9:

10: protected void execute() {

11: SpeedUp();

12: ¥

13:

14: protected boolean isFinished() {
15: return FastEnough();

16: }

17:

18: protected void end() {

19: HoldSpeed() ;

20: }

21:

22: protected void interrupted() {
23: end() ;

24: }

25: }

The spin up shooter command is very similar to the Aim command, it's the same basic idea.

Command based programming Last Updated: 09-11-2016 Page 46

Command based programming

Shoot command

1: public class Shoot extends Command {
2: public Shoot() {
3: requires(shooter) ;
4: }
S
R protected void initialize() {
T: Shoot();
8: T
9:
10: protected void execute() {} // Do Nothing
11:
12: protected boolean isFinished() {
13: return true;
14: }
15:
16: protected void end() {} // Do Nothing
17: protected void interrupted() {
18: end() ;
19: }
20: }

The shoot command is the same basic transformation yet again, however it is set to end
immediately. In CommandBased programming, it is better to have it's isFinished method return
true when the act of shooting is finished, but this is a more direct translation of the original code.

Benefits of the command based approach

Why bother re-writing the code as CommandBased? Writing the code in the CommandBased style
offers a number of benefits:

+ Re-Usability You can reuse the same command in teleop and multiple autonomous modes.
They all reference the same code, so if you need to tweak it to tune it or fix it, you can do it
in one place without having to make the same edits in multiple places.

+ Testability You can test each part using tools such as the SmartDashboard to test parts of
the autonomous. Once you put them together, you'll have more confidence that each piece
works as desired.

+ Parallelization If you wanted this code to aim and spin up the shooter at the same time, it's
trivial with CommandBased programming. Just use AddParallel() instead of AddSequential()
when adding the Aim command and now aiming and spinning up will happen
simultaneously.

Command based programming Last Updated: 09-11-2016 Page 47

Command based programming

+ Interruptibility Commands are interruptible, this provides the ability to exit a command
early, a task that is much harder in the equivalent while loop based code.

Command based programming Last Updated: 09-11-2016 Page 48

Command based programming

Default Commands

In some cases you may have a subsystem which you want to always be running a command no
matter what. So what do you do when the command you are currently running ends? That's where
default commands come in.

What is the default command?

Each subsystem may, but is not required to, have a default command which is scheduled
whenever the subsystem is idle (the command currently requiring the system completes). The
most common example of a default command is a command for the drivetrain that implements
the normal joystick control. This command may be interrupted by other commands for specific
maneuvers ("precision mode", automatic alignment/targeting, etc.) but after any command
requiring the drivetrain completes the joystick command would be scheduled again.

Setting the default command

pukblic class ExampleSubsystem extends Subsystem {

] public vold initDefanltCommand () {

setDefanltCommand (new MyDefaul tCommand ()) :

All subsystems should contain a method called initDefaultCommand() which is where you will set
the default command if desired. If you do not wish to have a default command, simply leave this
method blank. If you do wish to set a default command, call setDefaultCommand from within this
method, passing in the command to be set as the default.

Command based programming Last Updated: 09-11-2016 Page 49

Command based programming

Connecting behaviors to the
operator interface

Command based programming Last Updated: 09-11-2016 Page 50

Command based programming

Synchronizing two commands

Commands can be nested inside of command groups to create more complex commands. The
simpler commands can be added to the command groups to either run sequentially (each
command finishing before the next starts) or in parallel (the command is scheduled, and the next
command is immediately scheduled also). Occasionally there are times where you want to make
sure that two parallel command complete before moving onto the next command. This article
describes how to do that.

Creating a command group with sequential and parallel
commands

public class CoopBridgeAutonomous extends CommandGroup {

5

6

7 I_'-_lo public CoopBridgeAutonomous() {

s o
9

4]

L
addSequential {new SetTipperState(BridgeTipper.READY STATE)); *‘—" —
addParallel {new SetVirtualSetpoint({SetVirtualSetpoint.HYERID LOCATION));

1 /’addSequentialtncw DriveToBridge());
o addParallel {new ContinuousCollect()):
s’ addSeguential {new SetTipperState{BridgeTipper.DOWN STATE));

addSeguential ({new TurnToTargetLowPassFilterBybrid(4.0));
addSeguential {new FireSegquence());
addSeqguential {new MoveBallToShooter|{true));

In this example some commands are added in parallel and others are added sequentially to the
CommandGroup CoopBridgeAutonomous (1). The first command "SetTipperState" is added and
completes before the SetVirtualSetpoint command starts (2). Before SetVirtualSetpoint command
completes, the DriveToBridge command is immediately scheduled because of the
SetVirtualSetpoint is added in parallel (3). This example might give you an idea of how commands
are scheduled.

Command based programming Last Updated: 09-11-2016 Page 51

Command based programming

Example Flowchart

Set Tipper State

T

TurnToTargetLowP
assFilterHybrid

FireSeguence

MoveBallToShooter

Here is the code shown above represented as a flowchart. Note that there is no dependency
coming from the commands scheduled using "Add Parallel" either or both of these commands
could still be running when the MoveBallToShooter command is reached. Any command in the
main sequence (the sequence on the right here) that requires a subsystem in use by a parallel
command will cause the parallel command to be canceled. For example, if the FireSequence
required a subsystem in use by SetVirtualSetpoint, the SetVirtualSetpoint command will be
canceled when FireSequence is scheduled.

Command based programming Last Updated: 09-11-2016 Page 52

Command based programming

Getting a command to wait for another command to complete

Set Tipper State

Move to Bridge
SetVirtual Setpoint Dirive To Bridge

Continuous Collect Set Tipper State

TurnToTargetLowP
assFilterHybrid

FireSeguence

MoveBallToShooter

If there are two commands that need to complete before the following commands are scheduled,
they can be put into a command group by themselves, adding both in parallel. Then that
command group can be scheduled sequentially from an enclosing command group. When a
command group is scheduled sequentially, the commands inside it will all finish before the next
outer command is scheduled. In this way you can be sure that an action consisting of multiple
parallel commands has completed before going on to the next command.

In this example you can see that the addition of a command group "Move to Bridge" containing

the Set Virtual Setpoint and Drive to Bridge commands forces both to complete before the next
commands are scheduled.

Command based programming Last Updated: 09-11-2016 Page 53

	Command based programming
	What is Command based programming?
	Commands and subsystems
	How commands work
	Concurrency
	How It Works - Scheduling Commands
	How It Works - Running Commands
	Command groups

	Creating a command based robot project in C++
	Installing the C++ Workbench plugin
	Show Advanced Device Development Perspective
	Install new software
	Select the plugin location

	Creating a robot project - C++
	Create the project
	Selecting the project type
	Select the project example
	Observe sample project in the Project Explorer window

	Adding Commands and Subsystems to the project - C++
	Adding subsystems to the project
	Naming the subsystem
	Subsystem created in project
	Adding a command to the project
	Set the command name
	Command created in the project

	Creating a command based robot project in Java
	Creating a robot project - Java
	Create a new project
	Choose project type
	Name the project and set parameters for create

	Adding Commands and Subsystems - Java
	Adding subsystems
	Adding commands

	Defining robot subsystems
	Simple subsystems
	Creating a subsystem
	Operating the claw with a command

	PIDSubsystems for built-in PID control
	A PIDSubsystem to control the angle of a wrist joint

	Adding robot behaviors - commands
	Creating Simple Commands
	Basic Command Format
	Simple Command Example

	Creating groups of commands
	Creating a command to do a complex operation
	Running commands in parallel
	Mixing parallel and sequential commands

	Running commands on Joystick input
	The OI Class
	Create the Joystick object and JoystickButton objects
	Associate the buttons with commands
	Other options

	Running commands during the autonomous period
	Creating a command to use for Autonomous
	Setting that command to run as the autonomous behavior

	Converting a Simple Autonomous program to a Command based autonomous program
	The initial autonomous code with loops
	Rewriting it as Commands
	The Aim command
	SpinUpShooter command
	Shoot command
	Benefits of the command based approach

	Default Commands
	What is the default command?
	Setting the default command

	Connecting behaviors to the operator interface
	Synchronizing two commands
	Creating a command group with sequential and parallel commands
	Example Flowchart
	Getting a command to wait for another command to complete

