
FRC JAVA PROGRAMMING

Last Updated: 01-01-2019

Table of ContentsTable of Contents

Setting up the Development Environment ..6
Installing C++ and Java Development Tools for FRC..7

Installing the FRC Update Suite (All Languages).. 16

Creating and Running Robot Programs .. 37
Visual Studio Code Basics and the WPILib Extension... 38

WPILib Commands in VSCode... 41

Creating a robot program.. 43

Creating your Benchtop Test Program .. 51

Building and deploying to a roboRIO ... 57

Viewing Console Output .. 59

Debugging a robot program.. 63

Importing an Eclipse project into VS Code .. 68

FRC Java References .. 71
FRC Java WPILib API Documentation.. 72

C++\Java Plugin Changelog .. 73

FRC Java Basics ... 80
Java conventions for objects, methods and variables.. 81

Multithreading in Java .. 83

Basic WPILib Programming features ... 85
What is WPILib... 86

Choosing a Base Class.. 90

FRC Java Programming

Using actuators (motors, servos, and relays) 95
Actuator Overview .. 96

Driving motors with PWM speed controller objects... 97

WPILib Drive classes: Drivetrain types ... 100

WPILib Drive classes: Conventions and Defaults .. 103

Driving a robot using Differential Drive ... 105

Driving a robot using Mecanum drive.. 110

Repeatable Low Power Movement - Controlling Servos with WPILib 115

Using the motor safety feature... 117

On/Off control of motors and other mechanisms - Relays 120

Operating a compressor for pneumatics .. 122

Operating pneumatic cylinders - Solenoids .. 124

Using CAN Devices... 127
Using the CAN subsystem with the RoboRIO.. 128

Pneumatics Control Module.. 129

Power Distribution Panel ... 130

Talon SRX CAN... 132

WPILib sensors ... 133
WPILib Sensor Overview .. 134

Switches - Using limit switches to control behavior ... 135

How do I do _______? - Selecting the right sensor for the job 141

Accelerometers - measuring acceleration and tilt .. 147

Gyros - Measuring rotation and controlling robot driving direction 153

Ultrasonic Sensors - Measuring robot distance to a surface 158

FRC Java Programming

Counters - Measuring rotation, counting pulses and more 162

Encoders - Measuring rotation of a wheel or other shaft 168

Analog inputs ... 173

Potentiometers - Measuring joint angle or linear motion 179

Analog triggers .. 182

Operating the robot with feedback from sensors (PID control) 185

Driver Station Inputs and Feedback .. 189
Driver Station Input Overview... 190

Joysticks.. 195

Displaying Data on the DS - Dashboard Overview ... 201

Command based programming... 202
What is Command based programming? .. 203

Creating a robot project... 209

Adding Commands and Subsystems to the project ... 210

Simple subsystems ... 214

PIDSubsystems for built-in PID control.. 217

Creating Simple Commands.. 219

Creating groups of commands ... 225

Running commands on Joystick input.. 229

Running commands during the autonomous period .. 233

Converting a Simple Autonomous program to a Command based autonomous
program ... 237

Default Commands... 248

Synchronizing two commands .. 250

FRC Java Programming

Scheduling commands... 254

Using limit switches to control behavior.. 261

FRC Java Programming

Setting up the DevelopmentSetting up the Development
EnvironmentEnvironment

FRC Java Programming

Page 6Page 6FRC Java Programming Last Updated: 01-01-2019

Installing C++ and Java Development Tools forInstalling C++ and Java Development Tools for
FRCFRC

Windows

Offline InstallerOffline Installer

Note:

 Windows 7: You must install the NI Update or .NET Version 4.62 (or later) before
proceeding with the install of VSCode for FRC. The NI Update installer will automatically
install the proper version of .NET. The stand alone .NET installer is
here: https://support.microsoft.com/en-us/help/3151800/the-net-
framework-4-6-2-offline-installer-for-windows

Download the appropriate offline installer for your Windows installation (32 bit or 64 bit). If you're
not sure, open the Control Panel -> System to check.

For Beta, these installers are found in the File Releases section of the Teamforge Beta project.

Double click on the installer to run it. If you see any Security warnings, click Run (Windows 7) or
More Info->Run Anyway (Windows 8+).

FRC Java Programming

Page 7Page 7FRC Java Programming Last Updated: 01-01-2019

https://support.microsoft.com/en-us/help/3151800/the-net-framework-4-6-2-offline-installer-for-windows
https://support.microsoft.com/en-us/help/3151800/the-net-framework-4-6-2-offline-installer-for-windows

Installation TypeInstallation Type

Choose whether to install for All Users on the machine or the Current User. The All Users option
requires Admin privileges, but installs in a way that is accessible to all user accounts, the Current
User install is only accessible from the account it is installed from.

If you select All Users, you will need to accept the security prompt that appears.

Download VSCodeDownload VSCode

For licensing reasons, the installer cannot contain the VSCode installer bundled in. Click Select/
Download VSCode to either Download the VSCode installer or select a pre-downloaded copy. If you
intend to install on other machines without internet connections, after the download completes,
you can click Open Downloaded File to be taken to the zip file on the file system to copy along with
the Offline Installer.

FRC Java Programming

Page 8Page 8FRC Java Programming Last Updated: 01-01-2019

Execute InstallExecute Install

Make sure all checkboxes are checked (unless you have already installed 2019 WPILib software on
this machine and the software unchecked them automatically), then click Execute Install.

What's Installed?What's Installed?

The Offline Installer installs the following components:

• Visual Studio Code - The supported IDE for 2019 robot code development. The offline installer
sets up a separate copy of VSCode for WPILib development, even if you already have VSCode
on your machine. This is done because some of the settings that make the WPILib setup work
may break existing workflows if you use VSCode for other projects.

• C++ Compiler - The toolchains for building C++ code for the roboRIO
• Gradle - The specific version of Gradle used for building/deploying C++ or Java robot code

FRC Java Programming

Page 9Page 9FRC Java Programming Last Updated: 01-01-2019

• Java JDK/JRE - A specific version of the Java JDK/JRE that is used to build Java robot code and to
run any of the Java based Tools (Dashboards, etc.). This exists side by side with any existing JDK
installs and does not overwrite the JAVA_HOME variable

• WPILib Tools - SmartDashboard, Shuffleboard, Robot Builder, Outline Viewer, Pathweaver
• WPILib Dependencies - OpenCV, etc.
• VSCode Extensions - WPILib extensions for robot code development in VSCode

What's Installed - ContinuedWhat's Installed - Continued

The Offline Installer also installs a Desktop Shortcut to the WPILib copy of VSCode and sets up a
command shortcut so this copy of VSCode can be opened from the command line using the
command "frccode2019"

Both of these reference the specific year as the WPIlib C++\Java tools will now support side-by-side
installs of multiple environments from different seasons.

Finished!Finished!

When the installer completes, you will now be able to open and use the WPILib version of VSCode.
If you are using any 3rd party libraries, you will still need to install those separately before using
them in robot code.

FRC Java Programming

Page 10Page 10FRC Java Programming Last Updated: 01-01-2019

Mac OS

The beta tools (except the Driver Station and the roboRIO Imaging Tool) will run natively on a Mac.

Note: if you have the alpha release of VSCode for FRC installed, you should uninstall it beforeNote: if you have the alpha release of VSCode for FRC installed, you should uninstall it before
proceeding or create a new VSCode install. Failing to do this will have both versions installed at theproceeding or create a new VSCode install. Failing to do this will have both versions installed at the
same time causing things to not operate properly.same time causing things to not operate properly.

To install it follow these steps.

Download and move the directoryDownload and move the directory

Download the software release by opening the File Releases tab of the FRC2019 Project in your
browser. Then select the WPILib package as shown.

Then select the latest WPILib Beta and download the file WPILib_Full-Mac_2019.1.1-beta-1.tar.gz
(the version number of this file may be different as newer updates are released). Uncompress the
file by opening the downloads folder in Finder and double-clicking on the downloaded file .gz file

FRC Java Programming

Page 11Page 11FRC Java Programming Last Updated: 01-01-2019

(the gz file may have already been uncompressed depending on your settings). Then double-click
on the .tar file so that the uncompressed folder is showing in Finder.

Using Finder (or command line) copy the contents of the folder to a new folder in your home
directory, ~/frc2019 as shown below.

 Known Issue: The ToolsUpdater.sh script referenced in the next step does not currently
work correctly on Mac (as of Beta 2), Skip that step and proceed to "Setting up VSCode..."

FRC Java Programming

Page 12Page 12FRC Java Programming Last Updated: 01-01-2019

Run the ToolsUpdater.sh scriptRun the ToolsUpdater.sh script

Open a terminal window and change directory to ~/frc2019/tools and run the script,
ToolsUpdater.sh.

Setting up VSCode to use Java 11Setting up VSCode to use Java 11

Java 11 is required to be installed on systems that use VSCode or the 2019 tools. In VSCode it is
required to set the "java.home" preference for the user or workspace to be the directory of the
Java 11 home. To do that open the settings by selecting Settings from the Preference menu.

FRC Java Programming

Page 13Page 13FRC Java Programming Last Updated: 01-01-2019

Search for the java home settings by entering "java home" into the search window. Then select
"Edit in settings.json" to make changes to the java home setting.

In the settings file you must edit the java.home variable in the right hand pane as shown in the
screen capture below. On the default install of Java 11 on Mojave, the line is shown in the following
picture. The text is:

"java.home": "/Library/Java/JavaVirtualMachines/jdk-11.0.1.jdk/Contents/Home"

FRC Java Programming

Page 14Page 14FRC Java Programming Last Updated: 01-01-2019

FRC Java Programming

Page 15Page 15FRC Java Programming Last Updated: 01-01-2019

Installing the FRC Update Suite (All Languages)Installing the FRC Update Suite (All Languages)

The FRC Update Suite contains the following software components: LabVIEW Update, FRC
Driver Station, and FRC Utilities. If an FRC LabVIEW installation is found, the LabVIEW Update
will be installed or updated, otherwise this step will be skipped. The FRC Driver Station and FRC
Utilities will always be installed or updated. The LabVIEW runtime components required for the
driver station and utilities is included in this package. No components from the LabVIEWNo components from the LabVIEW
Merged Suite are required for running either the Driver Station or UtilitiesMerged Suite are required for running either the Driver Station or Utilities.

C++ and Java teams wishing to use NI Vision Assistant should run the full Suite installer as
described in the article - Installing LabVIEW for FRC (LabVIEW only)

 Note: The Driver Station will only work on Windows 7, Windows 8, Windows 8.1, and
Windows 10. It will not work on Windows XP.

FRC Java Programming

Page 16Page 16FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/currentCS/m/85058/l/599682-installing-labview-for-frc-2018-labview-only

Uninstall Old Versions (Recommended)Uninstall Old Versions (Recommended)

LabVIEW teams have already completed this step, do not repeat it.LabVIEW teams have already completed this step, do not repeat it. Before installing the new
version of the NI Update it is recommended to remove any old versions. The new version will likely
properly overwrite the old version, but all testing has been done with FRC 2019 only. Make sure to
back up any team code located in the "User\LabVIEW Data" directory before un-installing. Then
click StartStart >> Control PanelControl Panel >> Uninstall a Program.Uninstall a Program. Locate the entry labeled "National InstrumentsNational Instruments
Software",Software", right-click on it and select Uninstall/Change.Uninstall/Change.

FRC Java Programming

Page 17Page 17FRC Java Programming Last Updated: 01-01-2019

Select Components to UninstallSelect Components to Uninstall

Click Remove AllRemove All and follow any prompts to remove all previous NI products.

Downloading the UpdateDownloading the Update

Download the update from http://www.ni.com/download/first-robotics-software-2017/7183/en/

 Note: This download will require the decryption key from the Kickoff broadcast

.NET Framework 4.6.2.NET Framework 4.6.2

The Update installer may prompt that .NET Framework 4.6.2 needs to be updated or installed.
Follow prompts on-screen to complete the installation, including rebooting if requested. Then
resume the installation of the NI FRC Update, restarting the installer if necessary.

FRC Java Programming

Page 18Page 18FRC Java Programming Last Updated: 01-01-2019

http://www.ni.com/download/first-robotics-software-2017/7183/en/

.NET Framework 3.5

If installing on Windows 8 or 10, the Microsoft .NET Framework 3.5 may need to be installed. If you
see the dialog shown above, click "Cancel" and perform the steps shown below. An internet
connection is required to complete these steps.

FRC Java Programming

Page 19Page 19FRC Java Programming Last Updated: 01-01-2019

Programs and FeaturesPrograms and Features

Open the "Programs and Features" window from the control panel and click on "Turn Windows
features on or off"

FRC Java Programming

Page 20Page 20FRC Java Programming Last Updated: 01-01-2019

Windows Features (.NET Framework 3.5 not on)Windows Features (.NET Framework 3.5 not on)

Select ".NET Framework 3.5 (includes .NET 2.0 and 3.0)" to enable it (a black dot, not a check box
will appear) and then click "OK". When installation finishes restart installation of FRC 2019 Update
Suite.

FRC Java Programming

Page 21Page 21FRC Java Programming Last Updated: 01-01-2019

Windows Features (.NET Framework 3.5 already on)Windows Features (.NET Framework 3.5 already on)

If a black dot is shown next to ".NET Framework 3.5" the feature is already on. Click "Cancel" and
restart installation of FRC 2019 Update Suite.

FRC Java Programming

Page 22Page 22FRC Java Programming Last Updated: 01-01-2019

WelcomeWelcome

RIght click on the downloaded zip file and select Extract All. If you downloaded the encrypted zip
file, you will be prompted for the encryption key which will be released at Kickoff. Open the
extracted folder and any subfolders until you reach the folder containing "setup" (may say
"setup.exe" on some machines). Double click on the setup icon to launch the installer. Click "Yes" if
a Windows Security prompt appears. Click "Next" on the splash screen that appears.

FRC Java Programming

Page 23Page 23FRC Java Programming Last Updated: 01-01-2019

Product ListProduct List

Click "Next". There is no need to de-select "LabVIEW Update" for C++ or Java teams, if you do not
have the base LabVIEW installation (because you are not programming in LabVIEW) this installation
will be skipped automatically.

FRC Java Programming

Page 24Page 24FRC Java Programming Last Updated: 01-01-2019

Product InformationProduct Information

Un-check the box, then Click "Next".

FRC Java Programming

Page 25Page 25FRC Java Programming Last Updated: 01-01-2019

User InformationUser Information

Enter full name and organization and the serial number from your kit of parts then click NextNext

FRC Java Programming

Page 26Page 26FRC Java Programming Last Updated: 01-01-2019

License AgreementsLicense Agreements

Select "I accept..." then click "Next"

FRC Java Programming

Page 27Page 27FRC Java Programming Last Updated: 01-01-2019

License Agreements Page 2License Agreements Page 2

Select "I accept..." then click "Next"

If you see a screen asking to disable Windows Fast Startup, leave it at the recommended option
(disable Fast Startup) and click NextNext.

If you see a screen talking about Windows Firewall, click Next.Next.

FRC Java Programming

Page 28Page 28FRC Java Programming Last Updated: 01-01-2019

Summary ProgressSummary Progress

FRC Java Programming

Page 29Page 29FRC Java Programming Last Updated: 01-01-2019

Detail ProgressDetail Progress

FRC Java Programming

Page 30Page 30FRC Java Programming Last Updated: 01-01-2019

Installation SummaryInstallation Summary

Make sure the box is checked to Run License Manager...Run License Manager... then click NextNext or FinishFinish

FRC Java Programming

Page 31Page 31FRC Java Programming Last Updated: 01-01-2019

NI Activation WizardNI Activation Wizard

Log into your ni.com account. If you don't have an account, select 'Create account' to create a free
account.

FRC Java Programming

Page 32Page 32FRC Java Programming Last Updated: 01-01-2019

NI Activation Wizard (2)NI Activation Wizard (2)

The serial number you entered at the "User Information" screen should appear in all of the text
boxes, if it doesn't, enter it now. Click "Activate".

Note: If this is the first time activating the 2019 software on this account, you will see the message
shown above about a valid license not being found. You can ignore this.

FRC Java Programming

Page 33Page 33FRC Java Programming Last Updated: 01-01-2019

NI Activation Wizard (3)NI Activation Wizard (3)

If your products activate successfully, an “Activation Successful” message will appear. If the serial
number was incorrect, it will give you a text box and you can re-enter the number and select “Try
Again”. If everything activated successfully, click “Next”.

FRC Java Programming

Page 34Page 34FRC Java Programming Last Updated: 01-01-2019

NI Activation Wizard (4)NI Activation Wizard (4)

Click "Close".

FRC Java Programming

Page 35Page 35FRC Java Programming Last Updated: 01-01-2019

NI Update ServiceNI Update Service

On occasion you may see alerts from the NI Update Service about patches to LabVIEW. It is not
recommended to install these patches. FRC will communicate any recommended updates throughFRC will communicate any recommended updates through
our usual channelsour usual channels (Frank's Blog, Team Updates or E-mail Blasts).

FRC Java Programming

Page 36Page 36FRC Java Programming Last Updated: 01-01-2019

Creating and Running RobotCreating and Running Robot
ProgramsPrograms

FRC Java Programming

Page 37Page 37FRC Java Programming Last Updated: 01-01-2019

Visual Studio Code Basics and the WPILibVisual Studio Code Basics and the WPILib
ExtensionExtension
Microsoft's Visual Studio Code is the new supported IDE for C++ and Java development in FRC,
replacing the Eclipse IDE used from 2015-2018. This article introduces some of the basics of using
Visual Studio Code and the WPILib extension.

 Note: If you used the publicly available Visual Studio Code Alpha or the closed Beta, you
should create a new project or re-import your Eclipse project. There were breaking
changes made to some of the configuration files (such as build.gradle) between releases.

Welcome PageWelcome Page

FRC Java Programming

Page 38Page 38FRC Java Programming Last Updated: 01-01-2019

When Visual Studio Code first opens, you are presented with a Welcome page. On this page you
will find some quick links that allow you to customize Visual Studio Code as well as a number of
links to help documents and videos that may help you learn about the basics of the IDE as well as
some tips and tricks.

You may also notice a small WPILib logo way up in the top right corner. This is one way to access
the features provided by the WPILib extension (discussed further below).

User InterfaceUser Interface

The most important link to take a look at is probably the basic User Interface document. This
document describes a lot of the basics of using the UI and provides the majority of the information
you should need to get started using Visual Studio Code for FRC.

Command PaletteCommand Palette

The Command Palette can be used to access or run almost any function or feature in Visual Studio
Code (including those from the WPILib extension). The Command Palette can be accessed from the
View menu or by pressing Ctrl+Shift+P (Cmd+Shift+P on Mac). Typing text into the window will
dynamically narrow the search to relevant commands and show them in the dropdown.

In the following example "wpilib" is typed into the search box after activating the Command
Palette, and it narrows the list to functions containing WPILib.

FRC Java Programming

Page 39Page 39FRC Java Programming Last Updated: 01-01-2019

https://code.visualstudio.com/docs/getstarted/userinterface

WPILib ExtensionWPILib Extension

The WPILib extension provides the FRC specific functionality related to creating projects and
project components, building and downloading code to the roboRIO and more. You can access the
WPILib commands one of two ways:

• By typing "WPILib" into the Command Palette
• By clicking on the WPILib icon in the top right of most windows. This will open the Command

Palette with "WPILib" pre-entered

For more information about specific WPILib extension commands, see the other articles in this
chapter.

FRC Java Programming

Page 40Page 40FRC Java Programming Last Updated: 01-01-2019

WPILib Commands in VSCodeWPILib Commands in VSCode
This document contains a complete list of the commands provided by the WPILib VSCode
Extension and what they do.

To access these commands, press Ctrl+Shift+P to open the Command Palette, then begin typing
the command name as shown here to filter the list of commands. Click on the command name to
execute it.

• WPILib: Build Robot CodeWPILib: Build Robot Code - Builds open project using GradleRIO
• WPILib: Create ProjectWPILib: Create Project - Create a new robot project
• WPILib C++: Refresh C++ IntellisenseWPILib C++: Refresh C++ Intellisense - Force an update to the C++ Intellisense configuration.
• WPILib C++: Select current C++ toolchainWPILib C++: Select current C++ toolchain - Select the toolchain to use for Intellisense (i.e.

desktop vs. roboRIO vs...). This is the same as clicking the current mode in the bottom right
status bar.

• WPILib: Cancel currently running tasksWPILib: Cancel currently running tasks - Cancel any tasks the WPILib extension is currently
running

• WPILib: Change Auto Save On Deploy SettingWPILib: Change Auto Save On Deploy Setting - Change whether files are saved automatically
when doing a Deploy. This defaults to Enabled.

• WPILib: Change Auto Start RioLog on Deploy SettingWPILib: Change Auto Start RioLog on Deploy Setting -Change whether RioLog starts
automatically on deploy. This defaults to Enabled.

• WPILib: Change Desktop Support Enabled SettingWPILib: Change Desktop Support Enabled Setting - Change whether building robot code on
Desktop is enabled. Enable this for test and simulation purposes. This defaults to Desktop
Support off.

• WPILib: Change Language SettingWPILib: Change Language Setting - Change whether the currently open project is C++ or Java.
• WPILib: Change Run Commands in Online Mode SettingWPILib: Change Run Commands in Online Mode Setting - Change whether GradleRIO is running

in Online Mode (will attempt to automatically pull dependencies from online). Defaults to
disabled (offline mode).

• WPILib: Change Skip Tests On Deploy SettingWPILib: Change Skip Tests On Deploy Setting - Change whether to skip tests on deploy. Defaults
to disabled (tests are run on deploy)

• WPILib: Change Stop Simulation on Entry SettingWPILib: Change Stop Simulation on Entry Setting - Change whether to stop robot code on entry
when running simulation. Defaults to disabled (don't stop on entry).

• WPILib: Check for WPILib UpdatesWPILib: Check for WPILib Updates - Check for an update to the WPILib extensions
• WPILib: Create a new class/commandWPILib: Create a new class/command - Clicking this command in the palette will not do

anything. This command is triggered by right-clicking on the desired folder in the Navigation
Pane and selecting the appropriate option.

• WPILib: Debug Robot CodeWPILib: Debug Robot Code - Build and deploy robot code to RoboRIO in debug mode and start
debugging

• WPILib: Deploy Robot CodeWPILib: Deploy Robot Code - Build and deploy robot code to RoboRIO

FRC Java Programming

Page 41Page 41FRC Java Programming Last Updated: 01-01-2019

• WPILib: Import a WPILib Eclipse ProjectWPILib: Import a WPILib Eclipse Project - Open a wizard to help you create a new VS Code
project from an existing WPILib Eclipse project from a previous season.

• WPILib: Install tools from GradleRIOWPILib: Install tools from GradleRIO - Install the WPILib Java tools (e.g. SmartDashboard,
Shuffleboard, etc.). Note that this is done by default by the offline installer

• WPILib: Manage Vendor LibrariesWPILib: Manage Vendor Libraries - Install/update 3rd party libraries
• WPILib: Open WPILib Command PaletteWPILib: Open WPILib Command Palette - This command is used to open a WPILib Command

Palette (equivalent of hitting Ctrl+Shift+P and typing WPILib)
• WPILib: Open WPILib HelpWPILib: Open WPILib Help - This opens a simple page the links to the WPILib Screensteps

documentation
• WPILib: Reset Ask for WPILib Updates FlagWPILib: Reset Ask for WPILib Updates Flag - This will clear the flag on the current project,

allowing you to re-prompt to update a project to the latest WPILib version if you previously
chose to not update.

• WPILib: Run a command in GradleWPILib: Run a command in Gradle - This lets you run an arbitrary command in the GradleRIO
command environment

• WPILib: Set Team NumberWPILib: Set Team Number - Used to modify the team number associated with a project. This is
only needed if you need to change the team number from the one initially specified when
creating the project.

• WPILib: Set VS Code Java Home to FRC HomeWPILib: Set VS Code Java Home to FRC Home - Set the VS Code Java Home variable to point to
the Java Home discovered by the FRC extension. This is needed if not using the offline installer
to make sure the intellisense settings are in sync with the WPILib build settings.

• WPILib: Show Log FolderWPILib: Show Log Folder - Shows the folder where the WPILib extension stores internal logs.
This may be useful when debugging/reporting an extension issue to the WPILib developers

• WPILib: Simulate Robot Code on DesktopWPILib: Simulate Robot Code on Desktop - This builds the current robot code project on your
PC and starts it running in simulation. This requires Desktop Support to be set to Enabled.

• WPILib: Start RioLogWPILib: Start RioLog - This starts the RioLog display used to view console output from a robot
program

• WPILib: Start ToolWPILib: Start Tool - This allows you to launch WPILib tools (e.g. SmartDashboard, Shuffleboard,
etc.) from inside VSCode

• WPILib: Test Robot CodeWPILib: Test Robot Code - This builds the current robot code project and runs any created tests.
This requires Desktop Support to be set to Enabled.

FRC Java Programming

Page 42Page 42FRC Java Programming Last Updated: 01-01-2019

Creating a robot programCreating a robot program

The simplest way to create a robot program, is to start from one of the four supplied
templates (Sample, Iterative, Timed, or Command). Sample is best used for very small sample
programs or advanced programs that require total control over program flow. Iterative Robot
is a template which provides better structure for robot programs while maintaining a minimal
learning curve. Timed robot provides a similar structure to Iterative robot, but with more
consistent timing. Command-Based robot is a template that provides a modular, extensible
structure with a moderate learning curve.

The templates will get you the basis of a robot program, organizing a larger project can often
be a complex task. RobotBuilder is recommended for creating and organizing Command-
Based robot programs. You can learn more about RobotBuilder here. To create a command-
based robot program that takes advantage of all the newer tools look at Creating a Robot
Project in the Command Based Programming Chapter.

In this article we will create a new WPILib project in Visual Studio Code. In this example we will be
making a TimedRobot, however the same methods apply to creating a project from any of the
existing templates or examples.

Accessing The Command PaletteAccessing The Command Palette

Clicking Ctrl+Shift+P will open the command palette. The command palette contains the WPILib
commands for creating and interacting with projects.

FRC Java Programming

Page 43Page 43FRC Java Programming Last Updated: 01-01-2019

x-screensteps-link://screensteps.com
x-screensteps-link://screensteps.com
x-screensteps-link://screensteps.com

Accessing The WPILib CommandsAccessing The WPILib Commands

All WPILib commands start with "WPILib:", so in order to access the WPILib commands type
"WPILib:" into the command palette search bar.

FRC Java Programming

Page 44Page 44FRC Java Programming Last Updated: 01-01-2019

Creating A New WPILib ProjectCreating A New WPILib Project

In order to create a new project select the "Create a new project" command. This will show a a
form with a number of fields where you enter the information required to create your new project.

FRC Java Programming

Page 45Page 45FRC Java Programming Last Updated: 01-01-2019

New project creator windowNew project creator window

The steps to create the new project are outlined here:

1. Select the kind of project you want to create. It can be an example project or one of the
template projects provided by WPILib.

2. Select the language that you are using for your project.
3. In the case of a template - select the template type (Timed robot, Iterative robot, Command

robot, etc.)
4. Select the folder to place the project.
5. If the "Create new folder" checkbox is checked, a new folder named with the project name is

created in the supplied folder. If the checkbox is NOT checked, then the folder supplied is
assumed to be empty (will give an error if not) and the project files will be placed into that
directory.

6. The project name is used in the project and also to optionally create the folder to place it if the
checkbox from the previous step is checked.

7. The team number for the project. This will be used for package names and to locate your robot
when deploying code.

FRC Java Programming

Page 46Page 46FRC Java Programming Last Updated: 01-01-2019

And last, click "Generate Project" and VS Code will create the project in the location specified.

 Note: If there are any errors generating the project (such as trying to use a non-empty
folder with the checkbox unchecked), they will pop up in the bottom right corner of the
screen.

Opening The New ProjectOpening The New Project

After successfully creating your project, Visual Studio Code will give you the option of opening the
project as shown below. You can choose to do that now or later by typing Ctrl-O (Command+O on
mac) and select the folder where you saved your project.

Once opened you will see the project hierarchy on the left. Double clicking on the file will open that
file in the editor.

FRC Java Programming

Page 47Page 47FRC Java Programming Last Updated: 01-01-2019

C++ Configurations (C++ Only)C++ Configurations (C++ Only)

For C++ projects, there is one more step to set up IntelliSense. Whenever you open a project, you
should get a pop-up in the bottom right corner asking to refresh C++ configurations, click Yes to
setup IntelliSense.

Building and Deploying Robot CodeBuilding and Deploying Robot Code

To build the robot project, do one of:

1. Open the Command Palette and select "Build Robot Code"

FRC Java Programming

Page 48Page 48FRC Java Programming Last Updated: 01-01-2019

2. Open the shortcut menu indicated by the ellipses in the top right corner of the VS Code window
and select "Build Robot Code"

3. Right-click on the build.gradle file in the project hierarchy and select "Build Robot Code"

Deploy robot code by selecting "Deploy Robot Code" from any of the three locations from the
previous instructions. That will build (if necessary) and deploy the robot program to the roboRIO. If
successful, your see a "Build Successful" message (2) and the RioLog will open with the console
output from the robot program as it runs.

FRC Java Programming

Page 49Page 49FRC Java Programming Last Updated: 01-01-2019

FRC Java Programming

Page 50Page 50FRC Java Programming Last Updated: 01-01-2019

Creating your Benchtop Test ProgramCreating your Benchtop Test Program

This article describes the Benchtop test example program

Creating a projectCreating a project

Create a new Getting StartedGetting Started Example project. For more info about creating projects, see Creating
a robot program.

Imports/IncludesImports/Includes

C++C++

#include <frc/Joystick.h>
#include <frc/PWMVictorSPX.h>
#include <frc/TimedRobot.h>
#include <frc/Timer.h>
#include <frc/drive/DifferentialDrive.h>
#include <frc/livewindow/LiveWindow.h>

JavaJava

FRC Java Programming

Page 51Page 51FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/1027506-creating-a-robot-program
http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/1027506-creating-a-robot-program

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.PWMVictorSPX;
import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;

Our code needs to reference the components of WPILib that are used. In C++ this is accomplished
using "#include" statements, in Java it is done with "import" statements. The program references
classes for Joystick (for driving), PWMVictorSPX (for controlling motors), TimedRobot (the base class
used for the example), Timer (used for autonomous), DifferentialDrive (for connecting the joystick
control to the motors), and LiveWindow (C++ only).

Defining the variables for our sample robotDefining the variables for our sample robot

C++C++

class Robot : public frc::TimedRobot
{

public:
Robot() {

m_robotDrive.SetExpiration(0.1);
m_timer.Start();

}

private:
// Robot drive system
frc::PWMVictorSPX m_left{0};
frc::PWMVictorSPX m_right{1};
frc::DifferentialDrive m_robotDrive{m_left, m_right};
frc::Joystick m_stick{0};
frc::LiveWindow& m_lw = *frc::LiveWindow::GetInstance();
frc::Timer m_timer;

JavaJava

public class Robot extends TimedRobot {
private final DifferentialDrive m_robotDrive = new DifferentialDrive(new

PWMVictorSPX(0), new PWMVictorSPX(1));

FRC Java Programming

Page 52Page 52FRC Java Programming Last Updated: 01-01-2019

private final Joystick m_stick = new Joystick(0);
private final Timer m_timer = new Timer();

The sample robot in our examples will have a joystick on USB port 0 for arcade drive and two
motors on PWM ports 0 and 1. Here we create objects of type DifferentialDrive (m_robotDrive),
Joystick (m_stick) and time (m_timer). This section of the code does three things:

1. Defines the variables as members of our Robot class.
2. Initializes the variables.

Note: The variable initializations for C++ are in the "private" section at the bottom of the program.
This means they are private to the class (Robot). The C++ code also sets the Motor Safety
expiration to 0.1 seconds (the drive will shut off if we don't give it a command every .1 seconds and
starts the timer used for autonomous.

Robot InitializationRobot Initialization

C++C++

void RobotInit() {}

JavaJava

@Override public void robotInit() { }

The RobotInit method is run when the robot program is starting up, but after the constructor. The
RobotInit for our sample program gets a pointer to the LiveWindow instance (this is used in the
test method discussed below). This method is omitted from the code, meaning the default version
will be run (if we wanted to run something here we could provide the code above to override the
default).

Simple autonomous sampleSimple autonomous sample

C++C++

void AutonomousInit() override {
m_timer.Reset();
m_timer.Start();

FRC Java Programming

Page 53Page 53FRC Java Programming Last Updated: 01-01-2019

}

void AutonomousPeriodic() override {
// Drive for 2 seconds
if (m_timer.Get() < 2.0) {

// Drive forwards half speed
m_robotDrive.ArcadeDrive(-0.5, 0.0);

} else {
// Stop robot
m_robotDrive.ArcadeDrive(0.0, 0.0);

}
}

JavaJava

@Override
public void autonomousInit() {

m_timer.reset();
m_timer.start();

}

@Override
public void autonomousPeriodic() {

// Drive for 2 seconds
if (m_timer.get() < 2.0) {

m_robotDrive.arcadeDrive(0.5, 0.0); // drive forwards half speed
} else {

m_robotDrive.stopMotor(); // stop robot
}

}

The AutonomousInit method is run once each time the robot transitions to autonomous from
another mode. In this program, we reset the timer and then start it in this method.

AutonomousPeriodic is run once every period while the robot is in autonomous mode. In the
TimedRobot class the period is a fixed time, which defaults to 20ms. In this example, the periodic
code checks if the timer is less than 2 seconds and if so, drives forward at half speed using the
ArcadeDrive method of the DifferentialDrive class. The value is negative for forward motion
because of the convention for joysticks where a negative Y-axis value corresponds to moving the
stick away from you (forward). If more than 2 seconds has elapsed, the code stops the robot drive.

FRC Java Programming

Page 54Page 54FRC Java Programming Last Updated: 01-01-2019

Joystick Control for teleoperationJoystick Control for teleoperation

C++C++

void TeleopInit() override {}
void TeleopPeriodic() override {

// Drive with arcade style (use right stick)
m_robotDrive.ArcadeDrive(m_stick.GetY(), m_stick.GetX());

}

JavaJava

@Override
public void teleopInit() {
}

@Override
public void teleopPeriodic() {

m_robotDrive.arcadeDrive(m_stick.getY(), m_stick.getX());
}

Like in Autonomous, the Teleop mode has a TeleopInit and TeleopPeriodic function. In this
example we don't have anything to do in TeleopInit, it is provided for illustration purposes only. In
Teleop Periodic, the code uses the ArcadeDrive method to map the Y-axis of the joystick to
forward/back motion of the drive motors and the X-axis to turning motion.

Test ModeTest Mode

C++C++

void TestPeriodic() override {}

JavaJava

@Override public void testPeriodic() { }

Test Mode is used for testing robot functionality. Similar to TeleopInit, the TestPeriodic is provided
here for example.

FRC Java Programming

Page 55Page 55FRC Java Programming Last Updated: 01-01-2019

Next StepsNext Steps

To learn about running this program on the roboRIO see the next article.

FRC Java Programming

Page 56Page 56FRC Java Programming Last Updated: 01-01-2019

Building and deploying to a roboRIOBuilding and deploying to a roboRIO

Building Robot CodeBuilding Robot Code

The first step to getting the program on the roboRIO is to build the code. This will compile and link
the project files.

To build the robot project, do one of:

1. Open the Command Palette and select "Build Robot Code"
2. Open the shortcut menu indicated by the ellipses in the top right corner of the VS Code window

and select "Build Robot Code"
3. Right-click on the build.gradle file in the project hierarchy and select "Build Robot Code"

Deploying Robot CodeDeploying Robot Code

Deploy robot code by selecting "Deploy Robot Code" from any of the three locations from the
previous instructions. That will build (if necessary) and deploy the robot program to the roboRIO.

FRC Java Programming

Page 57Page 57FRC Java Programming Last Updated: 01-01-2019

The deployment process will begin and start outputting status information to the console. If
successful, your see a "Build Successful" message and the RioLog will open with the console output
from the robot program as it runs.

FRC Java Programming

Page 58Page 58FRC Java Programming Last Updated: 01-01-2019

Viewing Console OutputViewing Console Output

For viewing the console output of text based programs the roboRIO implements a NetConsole
very similar to the cRIO. Note that on the roboRIO, the NetConsole is only for program output,
if you want to interact with the system console you will need to use SSH or the Serial console.

There are two main ways to view the NetConsole output from the roboRIO: The Console
Viewer in the FRC Driver Station and the Riolog plugin in VS Code.

Console ViewerConsole Viewer

Opening the Console ViewerOpening the Console Viewer

To open Console Viewer first open the FRC Driver Station. Then click on the gear at the top of the
message viewer window (1) and select "View Console".

FRC Java Programming

Page 59Page 59FRC Java Programming Last Updated: 01-01-2019

../../driver_station/l/144976-frc-driver-station-powered-by-ni-labview

Console Viewer WindowConsole Viewer Window

The Console Viewer window displays the output from our robot program in green. The gear in the
top right can clear the window and set the level of messages displayed.

Riolog VS Code PluginRiolog VS Code Plugin

The Riolog plugin is a VS Code view that can be used to view the NetConsole output in VS Code
(credit for the original Eclipse version: Manuel Stoeckl, FRC1511).

FRC Java Programming

Page 60Page 60FRC Java Programming Last Updated: 01-01-2019

Opening the RioLog ViewOpening the RioLog View

By default, the RioLog view will open automatically at the end of each roboRIO deploy. If you want
to launch the RioLog view manually, press Ctrl+Shift+P to open the command palette and start
typing "RioLog", then select the WPILib: Start RioLogWPILib: Start RioLog option.

Riolog WindowRiolog Window

FRC Java Programming

Page 61Page 61FRC Java Programming Last Updated: 01-01-2019

The RioLog view should appear in the top pane. Riolog contains a number of controls for
manipulating the console.

• Pause/Resume Display - This will pause/resume the display. In the background, the new
packets will still be received and will be displayed when the resume button is clicked.

• Discard/Accept Incoming - This will toggle whether to accept new packets. When packets are
being discarded the display will be paused and all packets received will be discarded. Clicking
the button again will resume receiving packets.

• Clear - This will clear the current contents of the display.
• Don't Show/Show Prints - This shows or hides messages categorized as print statements
• Switch to Viewer - This switches to viewer for saved log files
• Don't Show/Show Warnings - This shows or hides messages categorized as warnings
• Disconnect/Reconnect - This disconnects or reconnects to the console stream
• Show/Don't Show Timestamps - Shows or hides timestamps on messages in the window
• Save Log - Copies the log contents into a file you can save and view or open later with the

RioLog viewer (see Switch to Viewer above)
• Set Team Number - Sets the team number of the roboRIO to connect to the console stream on,

set automatically if RioLog is launched by the deploy process

FRC Java Programming

Page 62Page 62FRC Java Programming Last Updated: 01-01-2019

Debugging a robot programDebugging a robot program

A debugger is used to control program flow and monitor variables in order to assist in
debugging a program. This section will describe how to set up a debug session for an FRC
robot program.

Set a BreakpointSet a Breakpoint

Double-click in the left margin of the source code window to set a breakpoint in your user
program: A small red circle indicates the breakpoint has been set on the corresponding line.

Start DebuggingStart Debugging

Press Ctrl+Shift+PCtrl+Shift+P and type WPILib or click on the WPILib Menu item to open the Command palette
with WPILib pre-populated. Type DebugDebug and select the Debug Robot CodeDebug Robot Code menu item to start
debugging. The code will download to the roboRIO and begin debugging.

FRC Java Programming

Page 63Page 63FRC Java Programming Last Updated: 01-01-2019

The Debug tabThe Debug tab

The Debug tab is accessed by clicking on the debug icon on the far left pane.

FRC Java Programming

Page 64Page 64FRC Java Programming Last Updated: 01-01-2019

The Variables PaneThe Variables Pane

The Variables view shows the current values of variables. To see a variable that is not displayed,
select the “Watch” pane and enter the variable name. This will show the variable’s value if it’s in
scope. You may also want to click on the arrows next to a variable to expand the tree and show it's
members. For example, expanding our Robot Demo variable ("this") shows our "myRobot" and
"stick" variables.

FRC Java Programming

Page 65Page 65FRC Java Programming Last Updated: 01-01-2019

Watch PaneWatch Pane

The Watch Pane can be used to monitor specific variables or expressions while debugging. To add
an expression, right-click and select Add Expression.

Call StackCall Stack

The Call Stack pane is used to display the current Call Stack of the running program. This can be
used to monitor the current call hierarchy of your program while debugging.

FRC Java Programming

Page 66Page 66FRC Java Programming Last Updated: 01-01-2019

Breakpoint PaneBreakpoint Pane

The Breakpoint Pane displays all of the current breakpoints. To temporarily disable a breakpoint
without permanently removing it, click the checkbox.

Your BreakpointYour Breakpoint

The program will start running and then pause at the breakpoint. From here you can use the
panes on the left of the screen and the items in the Debug dropdown menu to monitor and
control the execution of your program.

Debugging with ConsoleDebugging with Console

Another way to debug your program is to use System.out.println statements in your code and
receive them using the RioLog in VSCode.

FRC Java Programming

Page 67Page 67FRC Java Programming Last Updated: 01-01-2019

Importing an Eclipse project into VS CodeImporting an Eclipse project into VS Code

To make it easy for teams to use existing projects with the new IDE, we have implemented a
wizard for importing Eclipse projects into VS Code. This will generate the necessary Gradle
components and load the project into VS Code.

Launch the Import WizardLaunch the Import Wizard

Press Ctrl+Shift+P and type "WPILib" or click the WPILib icon to locate the WPILib commands.
Select "Upgrade a WPILib Eclipse Project.

You'll be presented with the WPILib Eclipse Project Upgrade window. This is similar to the process
of creating a new project and the window and the steps are shown below.

FRC Java Programming

Page 68Page 68FRC Java Programming Last Updated: 01-01-2019

Perform the following steps to fill in the Eclipse Project Upgrade window:

1. Select the eclipse project to convert. Select the build.properties file in the root directory of the
eclipse project.

2. Fill in the new project folder by pressing the "Select a new project folder" button.
3. If the "Create new folder" checkbox is checked, then the project will be stored in a new folder

under the one selected in 2. If it is not checked, then the project will be placed in the folder
specified. It must be empty in that case.

4. Enter the name of the new project.
5. Enter the team number for the creation of the project and for the robot deployment.
6. And finally, click "Upgrade Project" to begin the upgrade.

The eclipse project will be upgraded and copied into the new project directory from step 3 above.
You can then either open the new project immediately or open it later using the Ctrl-O (or
Command-O for Mac) shortcut.

FRC Java Programming

Page 69Page 69FRC Java Programming Last Updated: 01-01-2019

C++ Configurations (C++ Only)C++ Configurations (C++ Only)

For C++ projects, there is one more step to set up IntelliSense. Whenever you open a project, you
should get a pop-up in the bottom right corner asking to refresh C++ configurations, click Yes to
setup IntelliSense.

FRC Java Programming

Page 70Page 70FRC Java Programming Last Updated: 01-01-2019

FRC Java ReferencesFRC Java References

FRC Java Programming

Page 71Page 71FRC Java Programming Last Updated: 01-01-2019

FRC Java WPILib API DocumentationFRC Java WPILib API Documentation

Online DocumentationOnline Documentation

http://first.wpi.edu/FRC/roborio/release/docs/java/

Local JavadocLocal Javadoc

Local Javadoc

The Eclipse plugins also install a local copy of the Javadocs for the library. You can view the Javadoc
comments for a particular class or method by hovering over the method in your code. You can
also view the complete Javadoc in Eclipse using the built-in web browser. To do this, click Window -
> Show View -> Other -> Internal Web Browser then enter the URL USERHOME/wpilib/java/current/
javadoc/index.html (USERHOME on Windows is typically C:\Users\USERNAME)

FRC Java Programming

Page 72Page 72FRC Java Programming Last Updated: 01-01-2019

http://first.wpi.edu/FRC/roborio/release/docs/java/

C++\Java Plugin ChangelogC++\Java Plugin Changelog

Changelog for the C++\Java Eclipse Plugins

2018.4.1 (Recommended)

Network Tables (ntcore)Network Tables (ntcore)

• Clients (e.g. dashboards) were incorrectly handling synchronization of keys that were modified
on both the client and server during reconnects, resulting in ignoring later value changes. It's
been made more attentive.

Camera Server (cscore)Camera Server (cscore)

• HTTP cameras were lovingly holding on to their existing connections even when the URL was
changed (so changing camera settings via URL wasn't forcing a reconnect). They now callously
dump the existing connection instead.

• The MJPEG server ignored the FPS setting. It's been made more attentive and bandwidth-
concious.

• Cameras now provide telemetry on the actual FPS and bandwidth. Coming soon to a
dashboard near you!

SmartDashboardSmartDashboard

• Save files could be corrupted due to a null pointer at random times. This was neither desired
nor user-friendly, so it's been fixed.

FRC Java Programming

Page 73Page 73FRC Java Programming Last Updated: 01-01-2019

WPILib (C++\Java)WPILib (C++\Java)

• The HAL Notifier could take a long time to delete the last notifier. This was unusual to run into
(as there's almost always at least one notifier), but it's been fixed.

• PWM did not have a default PWM configuration, so setSpeed() and getSpeed() throw exceptions
until it was set. We're reasonable people, so reasonable defaults have been added.

• Documentation for RobotDriveBase::SetDeadband() was confusing. It now mentions that the
deadband is applied to the drive inputs.

• CameraServer has been made more robust against cameras throwing errors when trying to
publish information.

• Calling setName() on SendableChooser made it stop working. Fixed.
• PWM was claiming it was a Speed Controller to LiveWindow. While true on some levels, it can

be used in other ways, so now the raw value is published instead of the speed (and it rightfully
calls itself a PWM).

• SerialPort: In some cases (e.g. chained USB hubs), the serial port constants might be insufficient
or just not work. A named port option is now available, so it's now possible to build the multi-
line BBS robot you always dreamed of. Please note this new API is already deprecated as we're
planning to change it for 2019 (it's a temporary solution for teams that need this feature).

• Java only:Java only: ADXRS450_Gyro was not checking for null in the reset() function (unlike all other
functions). Consistency is a good thing, as is not throwing a NullPointerException, so this has
been fixed.

Eclipse PluginsEclipse Plugins

• C++ Command-based examples/templates left out some required files. While we hope you've
written your robot program by now, if you're just starting, this should make things easier.

2018.3.3 (Optional)

C++C++

• C++: SendableChooser::GetSelected() was keeping a temporary to a pointer, which is not a wise
thing to do in C++ and could cause it to not return the selected value. It's now been made wiser
in the ways of C++ so you can trust what it tells you.

FRC Java Programming

Page 74Page 74FRC Java Programming Last Updated: 01-01-2019

2018.3.2 (Optional)

JavaJava

• Added tristate DIO support to HAL, for those times when you really don't want the output to be
0 *or* 1.

ShuffleboardShuffleboard

• If no internet access was available at startup, a dialog regarding not being able to get updates
would be displayed that was non-obvious to escape. This check is now significantly less
intrusive and no longer requires using a rock hammer to tunnel through the wall at Shawshank
(or the use of the Esc key).

2018.3.1 (Optional)

CameraServer (cscore)CameraServer (cscore)

The below items mainly affected Shuffleboard viewing of Limelight camera streams)

• HttpCamera was non-compliant to the HTTP spec because it did not accept lowercase content-
length and content-type. We asked Q&A about this but didn't get the answer we hoped for, so
we had to change our design.

• HttpCamera was dropping every other frame if the camera didn't send us a Content-Length
header with each frame. It's considered polite for them to send it, but it was rude for us to
reject frames without it.

C++\JavaC++\Java

• Java: Encoder.getDistancePerPulse() was truncating to an integer. This was due to a bad cast,
but we prefer to blame the director (or the script).

• Java: TimedRobot was hanging if an exception was thrown by your code. While we don't
recommend your robot code crash, we thought it was better to restart it if it does.

FRC Java Programming

Page 75Page 75FRC Java Programming Last Updated: 01-01-2019

• C++: Joystick GetTwist() and GetThrottle() did not obey SetChannel. They've been made more
obedient.

• TimedRobot now provides a getPeriod() function. We had been implementing this with write-
only memory, but decided to upgrade.

• DifferentialDrive.curvatureDrive() now normalizes the output to -1 to +1 to avoid clipping and
maintain the ratio between wheel speeds. While your mentors may exhort you to give 120%
effort, your motors can't do that.

• Low level CAN operations for the PCM and PDP have been made thread-safe.
• Similar to the DifferentialDrive changes in 2018.2.2, the right side motors of MecanumDrive are

now inverted appropriately on the dashboard, so you can finally upgrade the code on your
2008 robot even if you used mechanum (or mecanum) that year.

Eclipse PluginsEclipse Plugins

• Improved the C++ command templates; we felt this was preferred to disimproving them.

ShuffleboardShuffleboard

• Shuffleboard has gained a new superpower: it can now update itself independently of Eclipse
updates, just like Galactus.

• Previously didn't remember what plugins you had loaded the last time you ran it. It's been
made less forgetful.

• Graph widgets were throwing errors when their backing data was deleted; they've been made
more tolerant.

• Instead of silently failing to start up when Java 9 is installed, it now noisily fails to start up.
• Now that FMS info is published to NT, Shuffleboard uses that knowledge for good by providing

a widget to display it.
• Dark themed scroll panes weren't very pretty; they've been given a makeover.
• Save files had some issues. They've been given extensive counseling and now are much better

behaved and remember more things.
• The NetworkTable tree is now expanded by default instead of the CameraServer tree. While we

know you love cameras, we know you love fewer clicks too.
• Fixed various odd display bugs caused by threading issues.

FRC Java Programming

Page 76Page 76FRC Java Programming Last Updated: 01-01-2019

2018.2.2 (Optional)

C++\JavaC++\Java

- Fixed: Java FMS data could be null before the DS connected. An empty string felt more logical.
- Fixed: Java PIDController.setContinuous(false) could throw an error when it's not supposed to. It
now only does if there's a good reason.

ShuffleboardShuffleboard

Fixed: Gyro was not correctly displaying negative degrees (or negative radians). It's been fixed so
that robots are no longer limited to only making right hand turns (after all, it’s not 2008 anymore).

2018.2.1 (Optional)

C++\JavaC++\Java

• Fixed: Java getBatteryVoltage() was lacking static. Rubbed shoes on carpet to triboelectric
charge it.

• Fixed: PIDController continuous operation was confused if no input range was provided. We
applied a non-cursed unicorn horn, so now it just treats the input as non-continuous instead in
that case.

• Fixed: SpeedControllerGroup was not inverting individual motor directions appropriately when
get()ing or pidWrite()ing. Now they go the right way (or left way, if you've inverted them).

• Fixed: ConditionalCommands cancellation of inner commands did not always take place the
way it should have. Now it does.

• Fixed: Driver station inputs were being delayed by 1 packet. One packet may not sound like a
lot, but your robot is now ~40ms more responsive to your commands! (whether or not it obeys
your commands is still up to you)

• Added: FMS information (game specific data, alliance station location and color, match number,
and other info) is now automatically published to NetworkTables. We encourage you to use
this knowledge, but only for good.

FRC Java Programming

Page 77Page 77FRC Java Programming Last Updated: 01-01-2019

Eclipse PluginsEclipse Plugins

• Fixed: When linking C++ programs, 3rd party libraries were being linked in random order (which
sometimes caused spurious errors). They are now sorted and duplicated, but most
importantly, are no longer random.

•

Added: When building the Java .jar, we now include everything in src/, not just .java files. For this
reason, we now recommend you not store your music or movie collection in your robot code src/
folder.
•

Fixed: Deploy would fail if there were subdirectories in the user libraries folder. We now only copy
from the top-level folder, which is as it should be.
•

Added: Time-travelers in a DeLorean added support for the v17 image. No, the v17 image doesn't
exist yet; we're just thinking 4th dimensionally!

ShuffleboardShuffleboard

• Fixed: SingleKeyNetworkTableSource (buttons, sliders, etc.) updates were fragile and broke too
easily, they have been toughened up.

• Fixed: FXML Widgets from external plugins wouldn't load properly. Now they do.
• Fixed: Loading saves with a source missing made it forget about it altogether. It has now been

made less forgetful.
• Added: Widget for single axis accelerometer, in case you want to measure gravity, or maybe

something more useful.
• Fixed: Quadrature Encoder is a different type than Encoder so it didn't have a default widget.

Now it does.
• Fixed: Camera streams kept streaming even after they were closed, hogging bandwidth. They

are now more bit-conscious and only stream when open.
• Added: Allow themes to be defined in Shuffleboard directory. Now you can make that rainbow

dashboard you wanted without even writing any code!
• Added: Connection Indicators, so you know whether to blame the code or the network when

your new value doesn't appear.

FRC Java Programming

Page 78Page 78FRC Java Programming Last Updated: 01-01-2019

2018.1.1

Kickoff Release

FRC Java Programming

Page 79Page 79FRC Java Programming Last Updated: 01-01-2019

FRC Java BasicsFRC Java Basics

FRC Java Programming

Page 80Page 80FRC Java Programming Last Updated: 01-01-2019

Java conventions for objects, methods andJava conventions for objects, methods and
variablesvariables

Creating objects that are connected to the roboRIO in JavaCreating objects that are connected to the roboRIO in Java

Gyro headingGyro = new AnalogGyro(1);
double heading = headingGyro.getAngle();

Generally all the objects in WPILib that connect to one of the roboRIO breakout boards have one
argument in the constructor when created where you specify the channel or port number it is
connected to. The above example illustrate the conventions used in WPILib for Java.

1. Creates an AnalogGyro object connected to analog channel 1 and stores its address in
"headingGyro".

2. Gets the current heading from the AnalogGyro in degrees and stores it in the variable
"heading".

Creating operator interface objects in JavaCreating operator interface objects in Java

Creating operator interface objects in Java

Generally objects connected to the Driver station PC via USB take a single argument indicating the
USB port they are connected to. A single Joystick class is provided which should provide the
functionality needed to interface with any joystick or gamepad which works with the FRC Driver
Station.

1. Creates a Joystick object connected to USB port 1 on the DS (listed first in the Setup tab of the
DS).

2. Gets the current X axis value of the joystick and stores it in the variable "speed".

Class, method and variable namingClass, method and variable naming

Class, method and variable naming

FRC Java Programming

Page 81Page 81FRC Java Programming Last Updated: 01-01-2019

MXP IO NumberingMXP IO Numbering

MXP IO Numbering

In C++ and Java the numbering for the MXP IO is a continuation of the numbering from the
headers, meaning MXP DIO 0 is DIO 10, MXP DIO 1 is DIO 11 and so on. This applies to DIO, PWM
and Analog Input on the MXP. The I2C and SPI buses have enumerations used to indicate which
port you are using.

FRC Java Programming

Page 82Page 82FRC Java Programming Last Updated: 01-01-2019

Multithreading in JavaMultithreading in Java
Take a look at this article by Oracle for more infomation about concurrency and threads. Below
you will find information important for robot programs written in WPILib that will cause
unexplained errors.

ThreadsThreads

The code below will never be able to exit! It will only stop when the entire JVM stops. There is no
way in Java to stop a thread unless the thread exits by itself.

Bad ExampleBad Example

public class Robot extends IterativeRobot {
public void robotInit() {

Thread t = new Thread(() -> {
while (true) {

// We are stuck here
}

});
t.start();

}
}

We can solve this problem by setting a flag. In Java every thread has a flag designed for this. We
just need to modify our code to check that flag. Take a look at this example:

public class Robot extends IterativeRobot {
public void robotInit() {

Thread t = new Thread(() -> {
while (!Thread.interrupted()) {

// Not stuck anymore!
}

});
t.start();

}
}

FRC Java Programming

Page 83Page 83FRC Java Programming Last Updated: 01-01-2019

http://docs.oracle.com/javase/tutorial/essential/concurrency/

Everytime we run the loop, we check the interrupted flag to see if we should continue to execute.

FRC Java Programming

Page 84Page 84FRC Java Programming Last Updated: 01-01-2019

Basic WPILib ProgrammingBasic WPILib Programming
featuresfeatures

FRC Java Programming

Page 85Page 85FRC Java Programming Last Updated: 01-01-2019

What is WPILibWhat is WPILib

The WPI Robotics library (WPILib) is a set of software classes that interfaces with the hardware
and software in your FRC robot’s control system. There are classes to handle sensors, motor
speed controllers, the driver station, and a number of other utility functions such as timing
and field management. In addition, WPILib supports many commonly used sensors that are
not in the kit, such as ultrasonic rangefinders.

What's included in the libraryWhat's included in the library

There are three versions of the library, one for each supported language. This document
specifically deals with the text-based languages, C++ and Java. There is considerable effort to keep
the APIs for Java and C++ very similar with class names and method names being the same. There
are some differences that reflect language differences such as pointers vs. references, name case
conventions, and some minor differences in functionality. These languages were chosen because
they represent a good level of abstraction, are used heavily in industry, and are often taught in
High School and college courses. The WPI Robotics Library is designed for maximum extensibility
and software reuse with these languages.

WPILib has a generalized set of features, such as general-purpose counters, to provide support for
custom hardware and devices. The FPGA hardware also allows for interrupt processing to be

FRC Java Programming

Page 86Page 86FRC Java Programming Last Updated: 01-01-2019

dispatched at the task level, instead of as kernel interrupt handlers, reducing the complexity of
many common real-time issues.

Fundamentally, C++ offers the highest performance possible for your robot programs (this only
comes into effect with very tight timing or very CPU intensive processing). Java on the other hand
has acceptable performance and includes extensive run-time checking of your program to make it
much easier to debug and detect errors. Those with extensive programming experience can
probably make their own choices, and beginning might do better with Java to take advantage of
the ease of use.

There is a detailed list of the differences between C++ and Java on Wikipedia available here. Below
is a summary of the differences that will most likely effect robot programs created with WPILib.

WPILib DocumentationWPILib Documentation

WPILib Documentation

Documentation for WPILib APIs for C++ and Java can be found here:

C++: http://first.wpi.edu/FRC/roborio/release/docs/cpp

Java: http://first.wpi.edu/FRC/roborio/release/docs/java

with separate sections for C++ and Java documentation. Both languages are documented similarly
with a tree showing all the classes, methods, and public constants. This will automatically update
as new versions of the library are released.

WPILib Source CodeWPILib Source Code

Source code for WPILib is not currently bundled with the Eclipse Plugins. To browse the source
code for WPILib online or for information about checking out the repository using GIT, see the
"allwpilib" project on GitHub: https://github.com/wpilibsuite/allwpilib

FRC Java Programming

Page 87Page 87FRC Java Programming Last Updated: 01-01-2019

http://en.wikipedia.org/wiki/Comparison_of_Java_and_C++
http://first.wpi.edu/FRC/roborio/release/docs/cpp
http://first.wpi.edu/FRC/roborio/release/docs/java
https://github.com/wpilibsuite/allwpilib

Java programming with WPILibJava programming with WPILib

Java

public void autonomousInit() {
isAuto = true;
CommandBase.shooter.zeroRPMOffsets();

\ CommandBase.turret.zeroAngleOffsets();
// instantiate the command used for the autonomous period
autonomousCommand = (Command) (OI.getInstance().auton.getSelected());

\ // schedule the autonomous command (example)
autonomousCommand.start();

}

• Java objects must be allocated manually, but are freed automatically when no references
remain.

• References to objects instead of pointers are used. All objects must be allocated with the new
operator and are referenced using the dot (.) operator (e.g. gyro.getAngle()).

• Header files are not necessary and references are automatically resolved as the program is
built.

• Only single inheritance is supported, but interfaces are added to Java to get most of the
benefits that multiple inheritance provides.

• Checks for array subscripts out of bounds, uninitialized references to objects and other runtime
errors that might occur in program development.

• Compiles to byte code for a virtual machine, and must be interpreted.

C++ programming with WPILibC++ programming with WPILib

C++

void Claw::Open() {
victor->Set(1);

}

FRC Java Programming

Page 88Page 88FRC Java Programming Last Updated: 01-01-2019

void Claw::Close() {
victor->Set(-1);

}

void Claw::Stop() {
victor->Set(0);

}

• Memory allocated and freed manually.
• Pointers, references, and local instances of objects.
• Header files and preprocessor used for including declarations in necessary parts of the

program.
• Implements multiple inheritance where a class can be derived from several other classes,

combining the behavior of all the base classes.
• Does not natively check for many common runtime errors.
• Highest performance on the platform, because it compiles directly to machine code for the

ARM processor in the roboRIO

FRC Java Programming

Page 89Page 89FRC Java Programming Last Updated: 01-01-2019

Choosing a Base ClassChoosing a Base Class
There a number of base classes (starting points) for your robot program. Each base class sets the
style and structure of your program. Be sure to read through this section before starting a robot
project.

Base classBase class ApplicationApplication

SampleRobot The SampleRobot base class is exactly what it sounds like, good for writinggood for writing
small sample programssmall sample programs, particularly to try out ideas. While it can be used for
constructing a competition program it is not recommendedit is not recommended because it is very
hard to extend as additional capabilities are added. Instead choose any of the
other templates described below.

IterativeRobot The IterativeRobot base class has methods that are periodically called eachmethods that are periodically called each
time new data arrives from the Driver Stationtime new data arrives from the Driver Station. The idea is that for each mode
that the robot is operating in (autonomous, teleop, or test) the appropriate
periodic method is called where the program does a small amount of work. It isIt is
important not to have any long running code in the periodic methods such asimportant not to have any long running code in the periodic methods such as
loops or delays. Doing so could result in missing driver station updates that canloops or delays. Doing so could result in missing driver station updates that can
negatively impact robot performance.negatively impact robot performance. Each period is approximately 20
milliseconds by can vary depending on CPU load on the roboRIO, the driver
station laptop, or network traffic. If you require precise timing, for example to
implement robot control algorithms it is not recommended and you should
instead use TimedRobot (below) which has precise timing between periods.

TimedRobot TimedRobot is the same as IterativeRobot except that it uses a timer (Notifier)uses a timer (Notifier)
to guarantee that the periodic methods are called at a predictable time intervalto guarantee that the periodic methods are called at a predictable time interval.
When getting driver station data such as joystick values the most recent value
will be provided since the time interval may not line up with the 20 millisecond
delivery of data. This is the recommended base class for most robot programsThis is the recommended base class for most robot programs.
Just as with IterativeRobot, it is very important to not have long running code orit is very important to not have long running code or
loops in the periodic methods or the timing may sliploops in the periodic methods or the timing may slip.

Command
based robot

While based on the TimedRobot base class, the command based robotthe command based robot
programming style is recommended for most teamsprogramming style is recommended for most teams. It makes it easy to break
up the program into Commands which each implement some robot behavior
such as raising an arm to some position, driving for some distance, etc. It also
makes the program easily extensible and testable. The RobotBuilder utility
(included with the eclipse plugins) provides an easy way of organizing the

FRC Java Programming

Page 90Page 90FRC Java Programming Last Updated: 01-01-2019

Base classBase class ApplicationApplication

program. The dashboards (SmartDashboard and Shuffleboard) allow you to
easily debug and test command based programs.

IterativeRobotIterativeRobot

C++C++

RobotTemplate::RobotTemplate()
{
}

void RobotTemplate::RobotInit()
{
}

void RobotTemplate::AutonomousInit()
{
}

void RobotTemplate::AutonomousPeriodic()
{
}

JavaJava

public class RobotTemplate extends IterativeRobot {

public void robotInit() {

}

public void autonomousInit() {

}

FRC Java Programming

Page 91Page 91FRC Java Programming Last Updated: 01-01-2019

public void autonomousPeriodic() {

}
}

The Iterative Robot base class assists with the most common code structure by handling the state
transitions and looping in the base class instead of in the robot code. For each state (autonomous,
teleop, disabled, test) there are two methods that are called:

• Init methods - The init method for a given state is called each time the corresponding state is
entered (for example, a transition from disabled to teleop will call teleopInit()). Any initialization
code or resetting of variables between modes should be placed here.

• Periodic methods - The periodic method for a given state is called each time the robot receives
a Driver Station packet in the corresponding state, approximately every 20ms. This means that
all of the code placed in each periodic method should finish executing in 20ms or less. The idea
is to put code here that gets values from the driver station and updates the motors. You can
read the joysticks and other Driver Station inputs more often, but you’ll only get the previous
value until a new update is received. By synchronizing with the received updates your program
will put less of a load on the roboRIO CPU leaving more time for other tasks such as camera
processing.

TimedRobotTimedRobot

TimedRobot base class is the same as as IterativeRobot (above) except that it calls the periodic
functions using the specified time interval. The default time interval is 0.02 seconds (20
milliseconds) for each call to the appropriate periodic function. The default time internal can be
overridden by calling the the setPeriod (java) or SetPeriod (C++) with the time in seconds as a
double value. Internally an Notifier is used to set the interval.

SampleRobotSampleRobot

C++C++

RobotTemplate::RobotTemplate()
{
}

FRC Java Programming

Page 92Page 92FRC Java Programming Last Updated: 01-01-2019

//This function is called once each time the robot enters autonomous mode.
void RobotTemplate::Autonomous()
{

while (IsAutonomous() && IsEnable())
{

// Put code here
Wait(0.05);

}
}

// This function is called once each time the robot enters teleop mode.
void RobotTemplate::OperatorControl() {

while (isOperatorControl() && isEnabled())
{

// Put code here
Wait(0.05);

}
}

JavaJava

public class RobotTemplate extends SampleRobot {

//This function is called once each time the robot enters autonomous mode.
public void autonomous() {

// Put code here
Timer.delay(0.05);

}

// This function is called once each time the robot enters teleop mode.
public void operatorControl() {

while(isOperatorControl() && isEnabled()) {
//Put code here
//Timer.delay(0.05);

}
}

FRC Java Programming

Page 93Page 93FRC Java Programming Last Updated: 01-01-2019

}

The SampleRobot class is the simplest template as most of the state flow is directly visible in your
program and not hidden in the WPILib code. The downside is that implementing this state flowThe downside is that implementing this state flow
incorrectly can lead to complexity in your programsincorrectly can lead to complexity in your programs. Your robot program overrides the
operatorControl() and autonomous() methods that are called by the base at the appropriate time.
Note that these methods are called only called once each time the robot enters the appropriate
mode and are not automatically terminated. Your code in the operatorControl method must
contain a loop that checks the robot mode in order to keep running and taking new input from the
Driver Station. The autonomous code shown uses a similar loop.

It is recommended for beginners to choose the Iterative Template or Command Based robot.It is recommended for beginners to choose the Iterative Template or Command Based robot.
SampleRobot can be used by advanced users wishing to have more control over the flow of theirSampleRobot can be used by advanced users wishing to have more control over the flow of their
program.program.

Command-Based RobotCommand-Based Robot

While not strictly a base class, the Command-based robot model is a method for creating larger
programs, more easily, that are easier to extend. There is built in support with a number of classes
to make it easy to design your robot, build subsystems, and control interactions between the robot
and the operator interface. In addition it provides a simple mechanism for writing autonomous
programs. The command-based model is described in detail in the Command-Based Programming
section of the C++ and Java manuals.

FRC Java Programming

Page 94Page 94FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/currentCS/m/cpp/c/88685

Using actuators (motors, servos,Using actuators (motors, servos,
and relays)and relays)

FRC Java Programming

Page 95Page 95FRC Java Programming Last Updated: 01-01-2019

Actuator OverviewActuator Overview

This section discusses the control of motors and pneumatics through speed controllers, relays,
and WPILib methods.

Types of actuatorsTypes of actuators

The chart shown above outlines the types of actuators which can be controlled through WPILib.
The articles in this section will cover each of these types of actuators and the WPILib methods and
classes that control them.

FRC Java Programming

Page 96Page 96FRC Java Programming Last Updated: 01-01-2019

Driving motors with PWM speed controllerDriving motors with PWM speed controller
objectsobjects

WPILib has extensive support for motor control. There are a number of classes that represent
different types of speed controllers and servos. There are currently two classes of speed
controllers, PWM based motor controllers and CAN based motor controllers. WPILib also
contains composite classes (like DifferentialDrive) which allow you to control multiple motors
with a single object. This article will cover the details of PWM motor controllers; CAN
controllers and composite classes will be covered in separate articles.

PWM Controllers, brief theory of operationPWM Controllers, brief theory of operation

The acronym PWM stands for PPulse WWidth MModulation. For motor controllers, PWM can refer to
both the input signal and the method the controller uses to control motor speed. To control the
speed of the motor the controller must vary the perceived input voltage of the motor. To do this
the controller switches the full input voltage on and off very quickly, varying the amount of time it
is on based on the control signal. Because of the mechanical and electrical time constants of the
types of motors used in FRC this rapid switching produces an effect equivalent to that of applying a
fixed lower voltage (50% switching produces the same effect as applying ~6V).

The PWM signal the controllers use for an input is a little bit different. Even at the bounds of the
signal range (max forward or max reverse) the signal never approaches a duty cycle of 0% or
100%. Instead the controllers use a signal with a period of either 5ms or 10ms and a midpoint
pulse width of 1.5ms. Many of the controllers use the typical hobby RC controller timing of 1ms to
2ms.

Raw vs Scaled output valuesRaw vs Scaled output values

In general, all of the motor controller classes in WPILib take a scaled -1.0 to 1.0 value as the output
to an actuator. The PWM module in the FPGA on the roboRIO is capable of generating PWM signals
with periods of 5, 10, or 20ms and can vary the pulse width in 2000 steps of ~.001ms each around
the midpoint (1000 steps in each direction around the midpoint). The raw values sent to this

FRC Java Programming

Page 97Page 97FRC Java Programming Last Updated: 01-01-2019

module are in this 0-2000 range with 0 being a special case which holds the signal low (disabled).
The class for each motor controller contains information about what the typical bound values
(min, max and each side of the deadband) are as well as the typical midpoint. WPILib can then use
these values to map the scaled value into the proper range for the motor controller. This allows for
the code to switch seamlessly between different types of controllers and abstracts out the details
of the specific signaling.

Calibrating Speed ControllersCalibrating Speed Controllers

So if WPILib handles all this scaling, why would you ever need to calibrate your speed controller?
The values WPILib uses for scaling are approximate based on measurement of a number of
samples of each controller type. Due to a variety of factors, the timing of an individual speed
controller may vary slightly. In order to definitively eliminate "humming" (midpoint signal
interpreted as slight movement in one direction) and drive the controller all the way to each
extreme, calibrating the controllers is still recommended. In general, the calibration procedure for
each controller involves putting the controller into calibration mode then driving the input signal to
each extreme, then back to the midpoint. Precise details for each controller can be found in the
User Guides: Talon, Jaguar, Victor, VictorSP, TalonSRX

Constructing a Speed Controller objectConstructing a Speed Controller object

C++C++

frc::Jaguar exampleJaguar{0};
frc::Talon exampleTalon{1};
frc::PWMTalonSRX examplePwmTalonSRX{2};
frc::Spark exampleSpark{3};
frc::Victor exampleVictor{11};
frc::VictorSP exampleVictorSP{12};

JavaJava

Jaguar exampleJaguar = new Jaguar(0);
Talon exampleTalon = new Talon(1);
PWMTalonSRX examplePwmTalonSRX = new PWMTalonSRX(2);
Spark exampleSpark = new Spark(3);
Victor exampleVictor = new Victor(11);
VictorSP exampleVictorSP = new VictorSP(12);

FRC Java Programming

Page 98Page 98FRC Java Programming Last Updated: 01-01-2019

http://www.crosstheroadelectronics.com/Talon_User_Manual_1_3.pdf
http://content.vexrobotics.com/docs/217-3367-VEXpro_Jaguar_GettingStartedGuide_20130215.pdf
http://content.vexrobotics.com/vexpro/pdf/217-2769-Victor888UserManual_20130118.pdf
http://www.vexrobotics.com/vexpro/motors-electronics/217-9090.html
http://www.vexrobotics.com/vexpro/motors-electronics/217-8080.html

Speed controller objects are constructed by passing in a channel. No other parameters are passed
into the constructor.

Setting parametersSetting parameters

C++C++

frc::Spark exampleSpeedController{0};
exampleSpeedController.EnableDeadbandElimination(true);

JavaJava

Spark exampleSpeedController = new Spark(0);
exampleSpeedController.enableDeadbandElimination(true);

All of the settable parameters of the motor controllers inherit from the underlying PWM class and
are thus identical across the controllers. The code above shows only a single controller type
(Spark) as an example. There are a number of settable parameters of a PWM object, but only one
is recommended for robot code to modify directly:

• Deadband Elimination - Set to true to have the scaling algorithms eliminate the controller
deadband. Set to false (default) to leave the controller deadband intact.

Setting SpeedSetting Speed

C++C++

exampleSpeedController.Set(0.7);

JavaJava

exampleSpeedController.set(0.7);

As noted previously, speed controller objects take a single speed parameter varying from -1.0 (full
reverse) to +1.0 (full forward).

FRC Java Programming

Page 99Page 99FRC Java Programming Last Updated: 01-01-2019

WPILib Drive classes: Drivetrain typesWPILib Drive classes: Drivetrain types

The WPILib Drive classes contain separate classes for each type of drivetrain. There are
currently three types of drivetrains supported by WPILib classes. This article describes the
three types.

Differential DriveDifferential Drive

These drive bases typically have two or more in-line traction or omni wheels per side (e.g., 6WD or
8WD) and may also be known as "skid-steer", "tank drive", or "West Coast Drive". The Kit of Parts
drivetrain is an example of a differential drive. These drivetrains are capable of driving forward/

backward and can turn by driving the two sides in opposite directions causing the wheels to skid
sideways. These drivetrains are not capable of sideways translational movement.

For information on using the DifferentialDrive class, see Driving a robot using Differential Drive.

FRC Java Programming

Page 100Page 100FRC Java Programming Last Updated: 01-01-2019

Mecanum DriveMecanum Drive

Mecanum drive is a method of driving using specially designed wheels that allow the robot to drive
in any direction without changing the orientation of the robot. A robot with a conventional
drivetrain (all wheels pointing in the same direction) must turn in the direction it needs to drive. A
mecanum robot can move in any direction without first turning and is called a holonomic drive.
The wheels (shown on this robot) have rollers that cause the forces from driving to be applied at a
45 degree angle rather than straight forward as in the case of a conventional drive.

When viewed from the top, the rollers on a mecanum drivetrain should form an 'X' pattern. This
results in the force vectors (when driving the wheel forward) on the front two wheels pointing
forward and inward and the rear two wheels pointing forward and outward. By spinning the
wheels in different directions, various components of the force vectors cancel out, resulting in the
desired robot movement. A quick chart of different movements has been provided below, drawing
out the force vectors for each of these motions may help in understanding how these drivetrains
work. By varying the speeds of the wheels in addition to the direction, movements can be
combined resulting in translation in any direction and rotation, simultaneously.

FRC Java Programming

Page 101Page 101FRC Java Programming Last Updated: 01-01-2019

For information on using the MecanumDrive class, see Driving a robot using Mecanum drive

Direction ofDirection of
MovementMovement

Front LeftFront Left Front RightFront Right Rear LeftRear Left Rear RightRear Right

Forward Forward Forward Forward Forward

Reverse Reverse Reverse Reverse Reverse

Right Strafe Forward Reverse Reverse Forward

Left Strafe Reverse Forward Forward Reverse

Clockwise Turn Forward Reverse Forward Reverse

Counter-
Clockwise Turn

Reverse Forward Reverse Forward

Killough DriveKillough Drive

A Killough Drive (also known as a Kiwi Drive) is a holonomic drivetrain utilizing three omniwheels
angled at 120 degrees from each other. Similar to the mecanum drive, wheels are run at different
speeds in order to accomplish the desired overall motion. The control methods provided are the
same as those for the Mecanum drive so for details on using the class, see the Javadoc/Doxygen
and the Driving a robot using Mecanum drive article.

FRC Java Programming

Page 102Page 102FRC Java Programming Last Updated: 01-01-2019

WPILib Drive classes: Conventions and DefaultsWPILib Drive classes: Conventions and Defaults

This article describes conventions and defaults used by the WPILib Drive classes
(DifferentialDrive, MecanumDrive, and KilloughDrive). For further details on using these
classes, see the subsequent articles.

Motor InversionMotor Inversion

By default, the class inverts the motor outputs for the right side of the drivetrain. Generally this will
mean that no inversion needs to be done on the individual SpeedController objects. To disable this
behavior, use the setRightSideInverted() method.

Squaring Inputs & Input DeadbandSquaring Inputs & Input Deadband

When driving robots, it is often desirable to manipulate the joystick inputs such that the robot has
finer control at low speeds while still using the full output range. One way to accomplish this is by
squaring the joystick input, then reapplying the sign. By default the Differential Drive class will
square the inputs. If this is not desired (e.g. if passing values in from a PIDController), use one of
the drive methods with the squaredInputs parameter and set it to false.

By default, the Differential Drive class applies an input deadband of .02. This means that input
values with a magnitude below .02 (after any squaring as described above) will be set to 0. In most
cases these small inputs result from imperfect joystick centering and are not sufficient to cause
drivetrain movement, the deadband helps reduce necessary motor heating that may result from
applying these small values to the drivetrain. To change the deadband, use the setDeadband()
method.

Motor SafetyMotor Safety

By default all RobotDrive objects enable Motor Safety. This is a watchdog that disables the output
if no update method is called within 100ms. To feed the watchdog without changing the input
values, call feedWatchdog(). To change the watchdog timeout, call setExpiration(). To disable the

FRC Java Programming

Page 103Page 103FRC Java Programming Last Updated: 01-01-2019

watchdog, call setSafetyEnabled(false). To learn more about Motor Safety, see the article: Using the
motor safety feature

Axis ConventionsAxis Conventions

This library uses the NED axes convention (North-East-Down as external reference in the world
frame). The positive X axis points ahead, the positive Y axis points right, and the positive Z axis
points down. Rotations follow the right-hand rule, so clockwise rotation around the Z axis is
positive.

 Note: This convention is different than the convention for joysticks which typically have -Y
as Up (commonly mapped to throttle) and +X as Right. Pay close attention to the
examples below if you want help with typical Joystick->Drive mapping.

FRC Java Programming

Page 104Page 104FRC Java Programming Last Updated: 01-01-2019

Driving a robot using Differential DriveDriving a robot using Differential Drive

WPILib provides seperate Robot Drive classes for the most common drive train configurations
(differential, mecanum, and Killough). The DifferentialDrive class handles the differential
drivetrain configuration. These drive bases typically have two or more in-line traction or omni
wheels per side (e.g., 6WD or 8WD) and may also be known as "skid-steer", "tank drive", or
"West Coast Drive". The Kit of Parts drivetrain is an example of a differential drive. There are
methods to control the drive with 3 different styles ("Tank", "Arcade", or "Curvature"),
explained in the article below.

Conventions and DefaultsConventions and Defaults

For more information about conventions and defaults of the DifferentialDrive class see WPILib
Drive classes: Conventions and Defaults

Creating a Differential Drive objectCreating a Differential Drive object

C++C++

class Robot
{

public:
frc::Spark m_left{1};
frc::Spark m_right{2};
frc::DifferentialDrive m_drive{m_left, m_right};

JavaJava

public class Robot
{

Spark m_left = new Spark(1);
Spark m_right = new Spark(2);
DifferentialDrive m_drive = new DifferentialDrive(m_left, m_right);

FRC Java Programming

Page 105Page 105FRC Java Programming Last Updated: 01-01-2019

Multi-Motor DrivesMulti-Motor Drives

Many FRC drivetrains have more than 1 motor on each side. In order to use these with
DifferentialDrive, the motors on each side have to be collected into a single SpeedController, using
the SpeedControllerGroup class. The examples below show a 4 motor (2 per side) drivetrain. To
extend to more motors, simply create the additional controllers and pass them all into the
SpeedController group contructor (it takes an arbitrary number of inputs).

C++C++

class Robot
{

public:
frc::Spark m_frontLeft{1};
frc::Spark m_rearLeft{2};
frc::SpeedControllerGroup m_left{m_frontLeft, m_rearLeft};

frc::Spark m_frontRight{3};
frc::Spark m_rearRight{4};
frc::SpeedControllerGroup m_right{m_frontRight, m_rearRight};

frc::DifferentialDrive m_drive{m_left, m_right};

JavaJava

public class Robot
{

Spark m_frontLeft = new Spark(1);
Spark m_rearLeft = new Spark(2);
SpeedControllerGroup m_left = new SpeedControllerGroup(m_frontLeft, m_rearLeft);

Spark m_frontRight = new Spark(3);
Spark m_rearRight = new Spark(4);
SpeedControllerGroup m_Right = new SpeedControllerGroup(m_frontRight, m_rearRight);
DifferentialDrive m_drive = new DifferentialDrive(m_left, m_right);

FRC Java Programming

Page 106Page 106FRC Java Programming Last Updated: 01-01-2019

Drive ModesDrive Modes

The DifferentialDrive class contains 3 drive modes:

• Tank Drive - This mode uses one value each to control the individual sides of the drivetrain.
• Arcade Drive - This mode uses one value to control the throttle (speed along the X-axis) of the

drivetrain and one for the rate of rotation.
• Curvature Drive - Also known as "Cheesy Drive" this is an alternate way of using one value to

control throttle and one value for rotation. The rotation argument controls the curvature of the
robot's path rather than its rate of heading change. This makes the robot more controllable at
high speeds. Also handles the robot's quick turn functionality - "quick turn" overrides constant-
curvature turning for turn-in-place maneuvers.

Tank DriveTank Drive

The Tank Drive mode is used to control each side of the drivetrain independently (usually with an
individual joystick axis controlling each). This example shows how to use the Y-axis of two separate
joysticks to run the drivetrain in Tank mode. Construction of the objects has been omitted, for
above for drivetrain construction and here for Joystick construction.

C++C++

class Robot: public frc::TimedRobot
{

//Object construction

void TeleopPeriodic() override {
myDrive.TankDrive(leftStick.GetY(), rightStick.GetY());

}
}

JavaJava

public class RobotTemplate extends TimedRobot
{

//Object construction

FRC Java Programming

Page 107Page 107FRC Java Programming Last Updated: 01-01-2019

public void teleopPeriodic() {
myDrive.tankDrive(leftStick.getY(), rightStick.getY());

}
}

Arcade DriveArcade Drive

The Arcade Drive mode is used to control the drivetrain using speed/throttle and rotation rate.
This is typically used either with two axes from a single joystick, or split across joysticks (often on a
single gamepad) with the throttle coming from one stick and the rotation from another. This
example shows how to use a single joystick with the Arcade mode. Construction of the objects has
been omitted, for above for drivetrain construction and here for Joystick construction.

C++C++

class Robot: public frc::TimedRobot
{

//Object construction

void TeleopPeriodic() override {
myDrive.ArcadeDrive(driveStick.GetY(), driveStick.GetX());

}
}

JavaJava

public class RobotTemplate extends TimedRobot
{

//Object construction

public void teleopPeriodic() {
myDrive.arcadeDrive(driveStick.getY(), driveStick.getX());

}
}

FRC Java Programming

Page 108Page 108FRC Java Programming Last Updated: 01-01-2019

Curvature DriveCurvature Drive

Like Arcade Drive, the Curvature Drive mode is used to control the drivetrain using speed/throttle
and rotation rate. The difference is that the rotation control is attempting to control radius of
curvature instead of rate of heading change. This mode also has a quick-turn parameter that is
used to engage a sub-mode that allows for turning in place. This example shows how to use a
single joystick with the Curvature mode. Construction of the objects has been omitted, for above
for drivetrain construction and here for Joystick construction.

C++C++

class Robot: public frc::TimedRobot
{

//Object construction

void TeleopPeriodic() override {
myDrive.CurvatureDrive(driveStick.GetY(), driveStick.GetX(), driveStick.

GetButton(1));
}

}

JavaJava

public class RobotTemplate extends TimedRobot
{

//Object construction

public void teleopPeriodic() {
myDrive.curvatureDrive(driveStick.getY(), driveStick.getX(), driveStick.

GetButton(1));
}

}

FRC Java Programming

Page 109Page 109FRC Java Programming Last Updated: 01-01-2019

Driving a robot using Mecanum driveDriving a robot using Mecanum drive

Mecanum drive is a method of driving using specially designed wheels that allow the robot to
drive in any direction without changing the orientation of the robot. A robot with a
conventional drivetrain (all wheels pointing in the same direction) must turn in the direction it
needs to drive. A mecanum robot can move in any direction without first turning and is called
a holonomic drive.

Conventions and DefaultsConventions and Defaults

For information on conventions and defaults of the MecanumDrive class, see the WPILib Drive
classes: Conventions and Defaults article.

FRC Java Programming

Page 110Page 110FRC Java Programming Last Updated: 01-01-2019

Mecanum wheelsMecanum wheels

The wheels shown in this robot have rollers that cause the forces from driving to be applied at a 45
degree angle rather than straight forward as in the case of a conventional drive. You might guess
that varying the speed of the wheels results in travel in any direction. You can look up how
mecanum wheels work on various web sites on the internet.

Controlling Mecanum: Cartesian vs PolarControlling Mecanum: Cartesian vs Polar

The MecanumDrive class contains two ways of controlling the drivetrain:

• Cartesian: This method takes X, Y, and Rotation parameters and is commonly used when
mapping joysticks to mecanum drive movement. The resulting robot translation is a
combination of the desired X and Y movement.

• Polar: This method takes Magnitude, Angle, and Rotation parameters and is commonly used
when controlling the robot autonomously. The angle should be specified in degrees around the
Z-axis (between -180 and 180).

FRC Java Programming

Page 111Page 111FRC Java Programming Last Updated: 01-01-2019

Code for teleop driving with mecanum wheelsCode for teleop driving with mecanum wheels

Here's a sample program that shows the minimum code to drive using a single joystick and
mecanum wheels. The joystick XY position represents a robot-relative direction vector that the
robot should follow. The twist (Z) axis on the joystick represents the rate of rotation for the robot
while it's driving.

C++C++

#include "WPILib.h"
/**
* Simplest program to drive a robot with mecanum drive using a single Logitech
* Extreme 3D Pro joystick and 4 drive motors connected as follows:
* - PWM 0 - Connected to front left drive motor
* - PWM 1 - Connected to rear left drive motor
* - PWM 2 - Connected to front right drive motor
* - PWM 3 - Connected to rear right drive motor
*/

class MecanumDefaultCode : public frc::TimedRobot
{

frc::Spark m_frontLeft{0};
frc::Spark m_rearLeft{1};
frc::Spark m_frontRight{2};
frc::Spark m_rearRight{3};
frc::MecanumDrive m_drive{m_frontLeft, m_rearLeft, m_frontRight, m_rearRight};
frc::Joystick m_driveStick{1};

/**
* Gets called once for each new packet from the DS.
*/

void TeleopPeriodic override (void)
{

m_robotDrive.MecanumDrive_Cartesian(m_driveStick.GetX(), m_driveStick.
GetY(), m_driveStick.GetZ());

}

};
START_ROBOT_CLASS(MecanumDefaultCode);

FRC Java Programming

Page 112Page 112FRC Java Programming Last Updated: 01-01-2019

JavaJava

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.TimedRobot;

/*
* Simplest program to drive a robot with mecanum drive using a single Logitech
* Extreme 3D Pro joystick and 4 drive motors connected as follows:
* - PWM 0 - Connected to front left drive motor
* - PWM 1 - Connected to rear left drive motor
* - PWM 2 - Connected to front right drive motor
* - PWM 3 - Connected to rear right drive motor
*/

public class MecanumDefaultCode extends TimedRobot {
//Create a robot drive object using PWMs 0, 1, 2 and 3
Spark m_frontLeft = new Spark(1);

Spark m_rearLeft = new Spark(2);
Spark m_frontRight = new Spark(3);
Spark m_rearRight = new Spark(4);

//Define joystick being used at USB port 1 on the Driver Station
Joystick m_driveStick = new Joystick(1);

public void teleopPeriodic()
{

m_robotDrive.mecanumDrive_Cartesian(m_driveStick.getX(), m_driveStick.getY(),
m_driveStick.getZ());

}
}

Updating the program for field-oriented drivingUpdating the program for field-oriented driving

There is also an optional 4th parameter to the MecanumDrive_Cartesian() method that is the angle
returned from a Gyro sensor. This will adjust the X/Y values supplied, in this case, from the joystick
to be relative to the field rather than relative to the robot. This is particularly useful with mecanum
drive since, for the purposes of steering, the robot really has no front, back or sides. It can go in

FRC Java Programming

Page 113Page 113FRC Java Programming Last Updated: 01-01-2019

any direction. Adding the angle in degrees from a gyro object will cause the robot to move away
from the drivers when the joystick is pushed forwards, and towards the drivers when it is pulled
towards them - regardless of what direction the robot is facing!

The use of field-oriented driving makes often makes the robot much easier to drive, especially
compared to a "robot-oriented" drive system where the controls are reversed when the robot is
facing the drivers.

Just remember to get the gyro angle each time MecanumDrive_Cartesian() is called.

C++C++

m_robotDrive.MecanumDrive_Cartesian(m_driveStick.GetX(), m_driveStick.GetY(), m_driveStick.
GetZ(), m_gyro.GetAngle());

JavaJava

m_robotDrive.mecanumDrive_Cartesian(m_driveStick.getX(), m_driveStick.getY(), m_driveStick.
getZ(), m_gyro.getAngle());

FRC Java Programming

Page 114Page 114FRC Java Programming Last Updated: 01-01-2019

Repeatable Low Power Movement - ControllingRepeatable Low Power Movement - Controlling
Servos with WPILibServos with WPILib

Servo motors are a type of motor which integrates positional feedback into the motor in order
to allow a single motor to perform repeatable, controllable movement, taking position as the
input signal. WPILib provides the capability to control servos which match the common hobby
input specification (PWM signal, 1.0ms-2.0ms pulse width)

Constructing a Servo objectConstructing a Servo object

C++

Servo *exampleServo = new Servo(1);

Java

Servo exampleServo = new Servo(1);

A servo object is constructed by passing a channel.

Setting Servo ValuesSetting Servo Values

C++

exampleServo->Set(.5);

FRC Java Programming

Page 115Page 115FRC Java Programming Last Updated: 01-01-2019

exampleServo->SetAngle(75);

Java

exampleServo.set(.5);
exampleServo.setAngle(75);

There are two methods of setting servo values in WPILib:

• Scaled Value - Sets the servo position using a scaled 0 to 1.0 value. 0 corresponds to one
extreme of the servo and 1.0 corresponds to the other

• Angle - Set the servo position by specifying the angle, in degrees. This method will work for
servos with the same range as the Hitec HS-322HD servo (0 to 170 degrees). Any values passed
to this method outside the specified range will be coerced to the boundary.

FRC Java Programming

Page 116Page 116FRC Java Programming Last Updated: 01-01-2019

Using the motor safety featureUsing the motor safety feature

Motor Safety is a mechanism in WPILib that takes the concept of a watchdog and breaks it out
into one watchdog (Motor Safety timer) for each individual actuator. Note that this protection
mechanism is in addition to the System Watchdog which is controlled by the Network
Communications code and the FPGA and will disable all actuator outputs if it does not receive
a valid data packet for 125ms.

Motor Safety PurposeMotor Safety Purpose

The purpose of the Motor Safety mechanism is the same as the purpose of a watchdog timer, to
disable mechanisms which may cause harm to themselves, people or property if the code locks up
and does not properly update the actuator output. Motor Safety breaks this concept out on a per
actuator basis so that you can appropriately determine where it is necessary and where it is not.
Examples of mechanisms that should have motor safety enabled are systems like drive trains and
arms. If these systems get latched on a particular value they could cause damage to their
environment or themselves. An example of a mechanism that may not need motor safety is a
spinning flywheel for a shooter. If this mechanism gets latched on a particular value it will simply
continue spinning until the robot is disabled. By default Motor Safety is enabled for RobotDrive
objects and disabled for all other speed controllers and servos.

Motor Safety OperationMotor Safety Operation

The Motor Safety feature operates by maintaining a timer that tracks how long it has been since
the feed() method has been called for that actuator. Code in the Driver Station class initiates a
comparison of these timers to the timeout values for any actuator with safety enabled every 5
received packets (100ms nominal). The set() methods of each speed controller class and the set()
and setAngle() methods of the servo class call feed() to indicate that the output of the actuator has
been updated.

FRC Java Programming

Page 117Page 117FRC Java Programming Last Updated: 01-01-2019

Enabling/Disabling Motor SafetyEnabling/Disabling Motor Safety

C++

exampleJaguar->SetSafetyEnabled(true);
exampleJaguar->SetSafetyEnabled(false);

Java

exampleJaguar.setSafetyEnabled(true);
exampleJaguar.setSafetyEnabled(false);

Motor safety can be enabled or disabled on a given actuator, potentially even dynamically within a
program. However, if you determine a mechanism should be protected by motor safety, it is likely
that it should be protected all the time.

Configuring the Safety timeoutConfiguring the Safety timeout

C++

exampleJaguar->SetExpiration(.1);

Java

exampleJaguar.setExpiration(.1);

FRC Java Programming

Page 118Page 118FRC Java Programming Last Updated: 01-01-2019

Depending on the mechanism and the structure of your program, you may wish to configure the
timeout length of the motor safety (in seconds). The timeout length is configured on a per actuator
basis and is not a global setting. The default (and minimum useful) value is 100ms.

FRC Java Programming

Page 119Page 119FRC Java Programming Last Updated: 01-01-2019

On/Off control of motors and other mechanismsOn/Off control of motors and other mechanisms
- Relays- Relays

For On/Off control of motors or other mechanisms such as solenoids, lights or other custom
circuits, WPILib has built in support for relay outputs designed to interface to the Spike H-
Bridge Relay from VEX Robotics. These devices utilize a 3-pin output (GND, forward, reverse) to
independently control the state of two relays connected in an H-Bridge configuration. This
allows the relay to provide power to the outputs in either polarity or turn both outputs on at
the same time.

Relay connection overviewRelay connection overview

The roboRIO provides the connections necessary to wire IFI spikes via the relay outputs. The
breakout board provides a total of eight outputs, four forward and four reverse. The forward
output signal is sent over the pin farthest from the edge of the board, labeled as FWD on the
silkscreen, while the reverse signal output is sent over the center pin, labeled REV. The final pin is a
ground connection.

Relay Directions in WPILibRelay Directions in WPILib

Within WPILib relays can be set to kBothDirections (reversible motor or two direction solenoid),
kForwardOnly (uses only the forward pin), or kReverseOnly (uses only the reverse pin). If a value is
not input for direction, it defaults to kBothDirections . This determines which methods in the Relay
class can be used with a particular instance.

Setting Relay DirectionsSetting Relay Directions

C++

Relay *exampleRelay = new Relay(1);

FRC Java Programming

Page 120Page 120FRC Java Programming Last Updated: 01-01-2019

Relay *exampleRelay = new Relay(1, Relay::Value::kForward)

exampleRelay->Set(Relay::Value::kOn);
exampleRelay->Set(Relay::Value::kForward);

Java

exampleRelay = new Relay(1);
exampleRelay = new Relay(1, Relay.Value.kForward);

exampleRelay.set(Relay.Value.kOn);
exampleRelay.set(Relay.Value.kForward);

Relay state is set using the set() method. The method takes as a parameter an enumeration with
the following values:

• kOff - Turns both relay outputs off
• kForward - Sets the relay to forward (M+ @ 12V, M- @ GND)
• kReverse - Sets the relay to reverse (M+ @ GND, M- @ 12V)
• KOn - Sets both relay outputs on (M+ @ 12V, M- @ 12V). Note that if the relay direction is set

such that only the forward or reverse pins are enabled this method will be equivalent to
kForward or kReverse, however it is not recommended to use kOn in this manner as it may lead
to confusion if the relay is later changed to use kBothDirections. Using kForward and kReverse
is unambiguous regardless of the direction setting.

FRC Java Programming

Page 121Page 121FRC Java Programming Last Updated: 01-01-2019

Operating a compressor for pneumaticsOperating a compressor for pneumatics

The Pneumatics Control Module from Cross the Road Electronics allows for integrated closed
loop control of a compressor. Creating any instance of a Solenoid or Double Solenoid object
will enable the Compressor control on the corresponding PCM. The Compressor object is onlyThe Compressor object is only
needed if you want to have greater control over the compressor or query compressor status.needed if you want to have greater control over the compressor or query compressor status.

Instantiating, Starting and Stopping a CompressorInstantiating, Starting and Stopping a Compressor

C++C++

Compressor *c = new Compressor(0);

c->SetClosedLoopControl(true);
c->SetClosedLoopControl(false);

JavaJava

Compressor c = new Compressor(0);

c.setClosedLoopControl(true);
c.setClosedLoopControl(false);

To use the Compressor class create an instance of the Compressor object by passing in the PCM
Node ID (default 0). For more information about PCM Node IDs see the Solenoid article and the
Updating and Configuring Pneumatics Control Module and Power Distribution Panel article.

The compressor closed loop control can be enabled and disabled by using the
SetClosedLoopControl()SetClosedLoopControl() method. When closed loop control is enabled the PCM will automatically
turn the compressor on when the pressure switch is closed (below the pressure threshold) and
turn it off when the pressure switch is open (~120PSI). When closed loop control is disabled the
compressor will not be turned on.

FRC Java Programming

Page 122Page 122FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/currentCS/m/cs_hardware/l/216217-updating-and-configuring-pneumatics-control-module-and-power-distribution-panel

Compressor StatusCompressor Status

C++C++

bool enabled = c->Enabled();
bool pressureSwitch = c->GetPressureSwitchValue();
double current = c->GetCompressorCurrent();

JavaJava

boolean enabled = c.enabled();
boolean pressureSwitch = c.getPressureSwitchValue();
double current = c.getCompressorCurrent();

The other reason to create a compressor object would be to query the status of the compressor.
The state (currently on or not), pressure switch state, and compressor current can all be queried
from the CompressorCompressor object.

FRC Java Programming

Page 123Page 123FRC Java Programming Last Updated: 01-01-2019

Operating pneumatic cylinders - SolenoidsOperating pneumatic cylinders - Solenoids

There are two ways to connect and operate pneumatic solenoid valves to trigger pneumatic
cylinder movement using the current control system. One option is to hook the solenoids up
to a Spike relay; to learn how to utilize solenoids connected in this manner in code see the
article on Relays. The second option is to connect the solenoids to a Cross the Road Electronics
Pneumatics Control Module. To solenoids connected to a PCM in code, use the WPILib
"Solenoid" and/or "Double Solenoid" classes, detailed below.

Solenoid OverviewSolenoid Overview

The pneumatic solenoid valves used in FRC are internally piloted valves. For more details on the
operation of internally piloted solenoid valves, see this Wikipedia article. One consequence of this
type of valve is that there is a minimum input pressure required for the valve to actuate. For many
of the valves commonly used by FRC teams this is between 20 and 30 psi. Looking at the LEDs on
the PCM itself is the best way to verify that code is behaving the way you expect in order to
eliminate electrical or air pressure input issues.

Single acting solenoids apply or vent pressure from a single output port. They are typically used
either when an external force will provide the return action of the cylinder (spring, gravity,
separate mechanism) or in pairs to act as a double solenoid. A double solenoid switches air flow
between two output ports (many also have a center position where neither output is vented or
connected to the input). Double solenoid valves are commonly used when you wish to control
both the extend and retract actions of a cylinder using air pressure. Double solenoid valves have
two electrical inputs which connect back to two separate channels on the solenoid breakout.

PCM Module NumbersPCM Module Numbers

PCM Modules are identified by their Node ID. The default Node ID for PCMs is 0. If using a single
PCM on the bus it is recommended to leave it at the default Node ID. For more information about
setting PCM Node IDs see Updating and Configuring Pneumatics Control Module and Power
Distribution Panel.

FRC Java Programming

Page 124Page 124FRC Java Programming Last Updated: 01-01-2019

../../cpp/l/241864-on-off-control-of-motors-and-other-mechanisms-relays
http://en.wikipedia.org/wiki/Solenoid_valve
http://wpilib.screenstepslive.com/s/currentCS/m/cs_hardware/l/216217-updating-and-configuring-pneumatics-control-module-and-power-distribution-panel
http://wpilib.screenstepslive.com/s/currentCS/m/cs_hardware/l/216217-updating-and-configuring-pneumatics-control-module-and-power-distribution-panel
http://wpilib.screenstepslive.com/s/currentCS/m/cs_hardware/l/216217-updating-and-configuring-pneumatics-control-module-and-power-distribution-panel

Single Solenoids in WPILibSingle Solenoids in WPILib

C++C++

frc::Solenoid exampleSolenoid {1};

exampleSolenoid.Set(true);
exampleSolenoid.Set(false);

JavaJava

Solenoid exampleSolenoid = new Solenoid(1);

exampleSolenoid.set(true);
exampleSolenoid.set(false);

Single solenoids in WPILib are controlled using the Solenoid class. To construct a Solenoid object,
simply pass the desired port number (assumes Node ID 0) or Node ID and port number to the
constructor. To set the value of the solenoid call set(true) to enable or set(false) to disable the
solenoid output.

Double Solenoids in WPILibDouble Solenoids in WPILib

C++C++

frc::DoubleSolenoid exampleDouble {1, 2};

exampleDouble.Set(frc::DoubleSolenoid::Value::kOff);
exampleDouble.Set(frc::DoubleSolenoid::Value::kForward);
exampleDouble.Set(frc::DoubleSolenoid::Value::kReverse);

JavaJava

FRC Java Programming

Page 125Page 125FRC Java Programming Last Updated: 01-01-2019

DoubleSolenoid exampleDouble = new DoubleSolenoid(1, 2);

exampleDouble.set(DoubleSolenoid.Value.kOff);
exampleDouble.set(DoubleSolenoid.Value.kForward);
exampleDouble.set(DoubleSolenoid.Value.kReverse);

Double solenoids are controlled by the DoubleSolenoid class in WPILib. These are constructed
similarly to the single solenoid but there are now two port numbers to pass to the constructor, a
forward channel (first) and a reverse channel (second). The state of the valve can then be set to
kOff (neither output activated), kForward (forward channel enabled) or kReverse (reverse channel
enabled).

FRC Java Programming

Page 126Page 126FRC Java Programming Last Updated: 01-01-2019

Using CAN DevicesUsing CAN Devices

FRC Java Programming

Page 127Page 127FRC Java Programming Last Updated: 01-01-2019

Using the CAN subsystem with the RoboRIOUsing the CAN subsystem with the RoboRIO

Using CAN with the RoboRIO has many advantages over previous connection methods
between the robot controller and peripheral devices.

1. CAN connections are through a single wire that is daisy-chained between all the devices so
home run wiring isn't required.

2. Since this is protocol-based signaling the devices can be smart and accept higher level
commands besides start, stop and set speed.

3. Devices can report status back to the robot controller making it possible to have much
better control algorithms with devices that use CAN.

There are a number of CAN devices supported in the FRC control system:

1. CAN speed controllers
2. The Power Distribution Panel (PDP)
3. The Pneumatics Control Module (PCM)

The devices are typically connected to the RoboRIO CAN bus using twisted pair wiring.

CAN bus topology and terminationCAN bus topology and termination

The CAN bus must be terminated at each end of the bus, that is bridged with a termination
resistor of 120 ohms. Conveniently both the RoboRIO (start of bus) and the PDP board can supply
termination. So a CAN bus that starts at the RoboRIO, goes through several devices, and ends at
the PDP board (with the termination jumper installed) will provide the correct termination. Nothing
else has to be done.

If you wish to terminate your bus somewhere other than the PDP, the PDP terminator jumper
must be moved to disable the PDP terminator and a user provided 120 Ohm resistor must be
placed at the end of the bus.

FRC Java Programming

Page 128Page 128FRC Java Programming Last Updated: 01-01-2019

Pneumatics Control ModulePneumatics Control Module

The Pneumatics Control Module (PCM) is a CAN-based device that provides complete control
over the compressor and up to 8 solenoids per module. The PCM is integrated into WPILib
through a series of classes that make it simple to use.

Moving from the old Compressor and Solenoid classes should be fairly easy. The closed loop
control of the Compressor and Pressure switch is handled by the PCM hardware and the
Solenoids are handled by the upgraded Solenoid class that now controls the solenoid channels
on the PCM.

An additional PCM module can be used where the modules corresponding solenoids are
differentiated by the module number in the constructors of the Solenoid and Compressor
classes.

Controlling the CompressorControlling the Compressor

The PCM handles the closed loop control of the compressor internally when the pressure switch
and compressor are properly wired. To enable this control, all that is needed is an instantiated
Solenoid object and the robot to be Enabled. For more information, see Operating a compressor
for pneumatics.

Using SolenoidsUsing Solenoids

For the RoboRIO, the WPILib Solenoid class has been replaced by one that now implements
solenoids using the PCM. The same methods will now control pneumatics plugged into the
Solenoid ports on the PCM so your code should run mostly unchanged. For more information, see
Operating pneumatic cylinders - Solenoids

FRC Java Programming

Page 129Page 129FRC Java Programming Last Updated: 01-01-2019

Power Distribution PanelPower Distribution Panel

The Power Distribution Panel (PDP) for 2015 adds the capability to measure the current to
each device connected to any of the circuit breaker protected 12V outputs. Having this
capability offers the opportunity to use a number of algorithm requiring sensing of the torque
being developed by motors without requiring additional hardware. The PDP is connected to
the RoboRIO through the CAN bus and the libraries take care of managing the
communications.

Create an instance of the PowerDistributionPanel object to use it:

PowerDistributionPanel pdp = new PowerDistributionPanel();

Note: it is not necessary to create a PowerDistributionPanel object unless you need to read
values from it. The board will work and supply power on all the channels even if the object is
never created.

PDP CAN IDPDP CAN ID

To work with the current versions of C++ and Java WPILib, the CAN ID for the PDP must be 0.

Reading the PDP voltage and temperatureReading the PDP voltage and temperature

You can read the incoming voltage to the PDP and the temperature of the components on the
PDP. Measuring the voltage can be important if motors are operating at a high torque setting
causing the system battery voltage to drop.

Reading the per-channel current on the PDPReading the per-channel current on the PDP

You can read the current on individual channels of the PDP using the PowerDistributionPanel
object. To read the current on channel 1 use the method getCurrent:

double current = pdp.getCurrent(1);double current = pdp.getCurrent(1);

FRC Java Programming

Page 130Page 130FRC Java Programming Last Updated: 01-01-2019

This will return the current value in amps.

Note: the channel numbers are 0-based.

FRC Java Programming

Page 131Page 131FRC Java Programming Last Updated: 01-01-2019

Talon SRX CANTalon SRX CAN

The Talon SRX motor controller is a CAN-enabled "smart motor controller" from Cross The
Road Electronics/VEX Robotics. The Talon SRX can be controlled over the CAN bus or PWM
interface. When using the CAN bus control, this device can take inputs from limit switches and
potentiometers, encoders, or similar sensors in order to perform advanced control such as
limiting or PID(F) closed loop control on the device.

Extensive documentation about programming the Talon SRX in all three FRC languages can be
found in the Talon SRX Software Reference Manual on CTRE's Talon SRX product page.

Note: CAN Talon SRX has been removed from WPILib. SeeNote: CAN Talon SRX has been removed from WPILib. See this blogthis blog for more info and find thefor more info and find the
CTRE Toolsuite installer here:CTRE Toolsuite installer here: http://www.ctr-electronics.com/control-system/http://www.ctr-electronics.com/control-system/
hro.html#product_tabs_technical_resourceshro.html#product_tabs_technical_resources

FRC Java Programming

Page 132Page 132FRC Java Programming Last Updated: 01-01-2019

http://www.ctr-electronics.com/talon-srx.html#product_tabs_technical_resources
http://www.firstinspires.org/robotics/frc/blog/2017-control-system-update
http://www.ctr-electronics.com/control-system/hro.html#product_tabs_technical_resources
http://www.ctr-electronics.com/control-system/hro.html#product_tabs_technical_resources

WPILib sensorsWPILib sensors

FRC Java Programming

Page 133Page 133FRC Java Programming Last Updated: 01-01-2019

WPILib Sensor OverviewWPILib Sensor Overview

The WPI Robotics Library supports the sensors that are supplied in the FRC kit of parts, as well
as many commonly used sensors available to FIRST teams through industrial and hobby
robotics suppliers.

Types of supported sensorsTypes of supported sensors

On the roboRIO, the FPGA implements all the high speed measurements through dedicated
hardware ensuring accurate measurements no matter how many sensors and motors are
connected to the robot. This is an improvement over previous systems, which required complex
real time software routines. The library natively supports sensors in the categories shown below:

• Wheel/motor position measurement - Gear-tooth sensors, encoders, analog encoders, and
potentiometers

• Robot orientation - Compass, gyro, accelerometer, ultrasonic rangefinder
• Generic - Pulse output Counters, analog, I2C, SPI, Serial, Digital input

There are many features in the WPI Robotics Library that make it easy to implement sensors that
don’t have prewritten classes. For example, general purpose counters can measure period and
count from any device generating output pulses. Another example is a generalized interrupt
facility to catch high speed events without polling and potentially missing them.

FRC Java Programming

Page 134Page 134FRC Java Programming Last Updated: 01-01-2019

Switches - Using limit switches to controlSwitches - Using limit switches to control
behaviorbehavior

Limit switches are often used to control mechanisms on robots. While limit switches are
simple to use, they only can sense a single position of a moving part. This makes them ideal
for ensuring that movement doesn't exceed some limit but not so good at controlling the
speed of the movement as it approaches the limit. For example, a rotational shoulder joint on
a robot arm would best be controlled using a potentiometer or an absolute encoder, the limit
switch could make sure that if the potentiometer ever failed, the limit switch would stop the
robot from going to far and causing damage.

What values are provided by the limit switchWhat values are provided by the limit switch

What values are provided by the limit switch

Limit switches can have "normally opened" or "normally closed" outputs. The usual way of wiring
the switch is between a digital input signal connection and ground. The digital input has pull-up
resistors that will make the input be high (1 value) when the switch is open, but when the switch
closes the value goes to 0 since the input is now connected to ground. The switch shown here has
both normally open and normally closed outputs.

Polling waiting for a switch to closePolling waiting for a switch to close

C++

#include "WPILib.h"

class Robot: public SampleRobot
{

DigitalInput limitSwitch;

FRC Java Programming

Page 135Page 135FRC Java Programming Last Updated: 01-01-2019

public:
Robot() {

}

void RobotInit()
{

limitSwitch = new DigitalInput(1);
}

void OperatorControl() {
// more code here
while (limitSwitch.Get()) {

Wait(10);
}
// more code here

}

Java

package org.usfirst.frc.team1.robot;

import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj.SampleRobot;
import edu.wpi.first.wpilibj.Timer;

public class RobotTemplate extends SampleRobot {

DigitalInput limitSwitch;

\ public void robotInit() {
limitSwitch = new DigitalInput(1);

}

\ public void operatorControl() {

FRC Java Programming

Page 136Page 136FRC Java Programming Last Updated: 01-01-2019

// more code here
while (limitSwitch.get()) {

Timer.delay(10);
}

// more code here
}

You can write a very simple piece of code that just reads the limit switch over and over again
waiting until it detects that its value transitions from 1 (opened) to 0 (closed). While this works, it's
usually impractical for the program to be able to just wait for the switch to operate and not be
doing anything else, like responding to joystick input. This example shows the fundamental use of
the switch, but while the program is waiting, nothing else is happening.

Command-based program to operate until limit switch closedCommand-based program to operate until limit switch closed

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {
public ArmUp() {
}

protected void initialize() {
arm.armUp();

}

protected void execute() {
}

protected boolean isFinished() {
return arm.isSwitchSet();

}

protected void end() {
arm.armStop();

}

FRC Java Programming

Page 137Page 137FRC Java Programming Last Updated: 01-01-2019

protected void interrupted() {
end();

}
}

Commands call their execute() and isFinished() methods about 50 times per second, or at a rate of
every 20ms. A command that will operate a motor until the limit switch is closed can read the
digital input value in the isFinished() method and return true when the switch changes to the
correct state. Then the command can stop the motor.

Remember, the mechanism (an Arm in this case) has some inertia and won't stop immediately soRemember, the mechanism (an Arm in this case) has some inertia and won't stop immediately so
it's important to make sure things don't break while the arm is slowing.it's important to make sure things don't break while the arm is slowing.

Using a counter to detect the closing of the switchUsing a counter to detect the closing of the switch

package edu.wpi.first.wpilibj.templates.subsystems;
import edu.wpi.first.wpilibj.Counter;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj.SpeedController;
import edu.wpi.first.wpilibj.Victor;
import edu.wpi.first.wpilibj.command.Subsystem;
public class Arm extends Subsystem {

DigitalInput limitSwitch = new DigitalInput(1);
SpeedController armMotor = new Victor(1);
Counter counter = new Counter(limitSwitch);

public boolean isSwitchSet() {
return counter.get() > 0;

}

public void initializeCounter() {
counter.reset();

}

public void armUp() {
armMotor.set(0.5);

FRC Java Programming

Page 138Page 138FRC Java Programming Last Updated: 01-01-2019

}

public void armDown() {
armMotor.set(-0.5);

}

public void armStop() {
armMotor.set(0.0);

}
protected void initDefaultCommand() {
}

}

It's possible that a limit switch might close then open again as a mechanism moves past the switch.
If the closure is fast enough the program might not notice that the switch closed. An alternative
method of catching the switch closing is use a Counter object. Since counters are implemented in
hardware, it will be able to capture the closing of the fastest switches and increment it's count.
Then the program can simply notice that the count has increased and take whatever steps are
needed to do the operation.

Above is a subsystem that uses a counter to watch the limit switch and wait for the value to
change. When it does, the counter will increment and that can be watched in a command.

Create a command that uses the counter to detect switch closingCreate a command that uses the counter to detect switch closing

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {

public ArmUp() {
}

protected void initialize() {
arm.initializeCounter();
arm.armUp();

}

protected void execute() {

FRC Java Programming

Page 139Page 139FRC Java Programming Last Updated: 01-01-2019

}

protected boolean isFinished() {
return arm.isSwitchSet();

}

protected void end() {
arm.armStop();

}

protected void interrupted() {
end();

}
}

This command initializes the counter in the above subsystem then starts the motor moving. It then
tests the counter value in the isFinished() method waiting for it to count the limit switch changing.
When it does, the arm is stopped. By using a hardware counter, a switch that might close then
open very quickly can still be caught by the program.

FRC Java Programming

Page 140Page 140FRC Java Programming Last Updated: 01-01-2019

How do I do _______? - Selecting the right sensorHow do I do _______? - Selecting the right sensor
for the jobfor the job

The articles following this one provide details on the operation and use of a variety of sensors
with WPILib, but how do you know which sensor to use for a particular task? This article
attempts to explain possible sensor choices for a variety of common FRC tasks

Detecting one or two positions of a mechanismDetecting one or two positions of a mechanism

Detecting one or two positions for a motor driven mechanism is a very common FRC task. The
most common occurrence is detecting when a mechanism reaches a limit on either end, but
detecting a desired position or home position is also fundamentally the same task.

Limit SwitchesLimit Switches

Mechanical limit switches are one of the most common solutions to this scenario. If the switches
truly are defining the limits of the mechanism make sure that the switches are set up in a position
where they can't be missed by the mechanism and wont get damaged by the mechanism. Limit
switches are useful because they are very simple to implement, are fairly cheap, and can be used
in a large variety of situations.

Switches - Using limit switches to control behavior

Detecting the position of a mechanism at many different points,Detecting the position of a mechanism at many different points,
or points that are not limitsor points that are not limits

Sometimes you need to know how high up your elevator is, without having that height be the top
of your elevator, or how high up an arm is from its starting position, or what angle your shooter
head is pointed at. These problems could be solved by a clever team with some tricky placements
of limit switches and catches for them, but there are other sensors that are designed for that job.

FRC Java Programming

Page 141Page 141FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/4485/m/13809/l/241867-switches-using-limit-switches-to-control-behavior

Ultrasonic SensorsUltrasonic Sensors

Distance sensors like ultrasonic sensors can give you a fairly accurate measurement of how far
away the closest object in its field of vision is from the sensor, meaning that if you set it up
correctly, you will be able to stop your arm or elevator when it gets to the points you desire.
Usually these measurements will be accurate to 2-3 inches, meaning if you need much greater
accuracy, you might want to look into a different sensor in this section, but this should be good
enough for most cases.

Ultrasonic Sensors - Measuring robot distance to a surface

Infrared Distance SensorsInfrared Distance Sensors

Infrared distance sensors are very similar to ultrasonic sensors, they just use a different method of
measurement. These sensors are not explicitly covered in our tutorials, but most of these sensors
have an analog output, meaning you can use the analog input class to get a voltage from the
sensor, which converts to a specific distance in most cases. The advantage of infrared sensors
compared to ultrasonic sensors is that they are not affected by a noisy stadium, in some cases an
ultrasonic sensor can get a less accurate value because of how much noise exists at a competition.

Analog inputs

Counters and EncodersCounters and Encoders

If your arm or elevator is driven by a motor, you can measure the number of rotations the motor
has turned to get how high up the arm or elevator is. This method is more of a guess and check
method than a known height measurement check, but with a couple of tests and some print line
statements, you can easily find the number of rotations you need to get to certain heights, just
remember that your measurement is always based on something, and if your hard coded number
of rotations is based on it resting on the floor, and it starts in the air slightly one match, it will be at
the wrong set point when it gets up to the top, so it is important to know how to initially set it up.

Counters - Measuring rotation, counting pulses and more

Encoders - Measuring rotation of a wheel or other shaft

FRC Java Programming

Page 142Page 142FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241876-analog-inputs
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241874-counters-measuring-rotation-counting-pulses-and-more
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft

PotentiometersPotentiometers

If you need to know the angle of the arm, a potentiometer will be the job for you, it converts the
angle of motion to a readable analog value. This works really well for knowing where your shooter
is pointed, or how high up your arm is, and with some sensors you can measure distance traveled
linearly too, so it can work with an elevator.

Potentiometers - Measuring joint angle or linear motion

AccelerometersAccelerometers

Measuring the tilt of a surface is possible with an accelerometer, for an arm that would give you a
good idea of what the angle is, if that is how you wanted to measure it. These are really useful for
limits that you keep for reasons like the robot shouldn't go further than that or it will possibly
break itself, and sometimes isn't accurate enough for pinpoint aiming.

Accelerometers - measuring acceleration and tilt

Driving StraightDriving Straight

Sometimes your robot is not being controlled by a human that can easily correct any slight
deviations to the robots direction. When you need you robot to drive itself straight, you have a
couple sensors that will work to get the job done.

GyrosGyros

The gyroscope is a sensor that points in a direction, and will tell you when you deviate from that
direction, and how far. This can help us correct for one of the drive motors being slightly slower
than the other, or to give us an accurate measurement of how far we have turned when we are in
autonomous. They also measure off of an initial point, so if the robot is put in the wrong place, it
will not know that.

Gyros - Measuring rotation and controlling robot driving direction

FRC Java Programming

Page 143Page 143FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/4485/m/13809/l/241877-potentiometers-measuring-joint-angle-or-linear-motion
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241877-potentiometers-measuring-joint-angle-or-linear-motion
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241870
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241871-gyros-measuring-rotation-and-controlling-robot-driving-direction
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241871-gyros-measuring-rotation-and-controlling-robot-driving-direction

EncodersEncoders

If you have encoders on the drive motors, you can measure how far the wheels have turned, and if
one of them measures further than the other, you can correct for it. This is not as effective
especially when turning because wheels can slip, and encoders aren't quite as accurate as
gyroscopes for these measurements.

Encoders - Measuring rotation of a wheel or other shaft

How far have I gone?How far have I gone?

When you are programming an autonomous program, you will most likely need to drive, and
because your robot doesn't have the senses we have without us adding them, it wont know how
far its gone or how far it needs to go without sensors.

EncodersEncoders

This is where encoders really shine. Encoders measure the number of rotations a motor has gone
since you last reset them. This means you can calculate the rotations to distance calculation for
your robot by doing the math for the different gear and pulley ratios. This gets a little less accurate
the further away from your wheels you put your encoder, because you can loose distance in slack
from the pulleys, the belts jumping pegs on the pulleys, and the wheels slipping on the surface, all
giving you a longer distance than you have really gone. This is somewhat avoided when you have
multiple encoders by averaging the rotations they measure, so that any slippage is mitigated by
having better data.

Encoders - Measuring rotation of a wheel or other shaft

Distance SensorsDistance Sensors

Although it is not very common due to practical concerns of setting up the robot on the field,
distance sensors can be used to tell how far you have gone if you have a point to measure from.
Because you are measuring from a field element or wall, it is usually not possible to tell how far
you have gone after a turn, or how far you have gone if its too far away from a static object.

Ultrasonic Sensors - Measuring robot distance to a surface

FRC Java Programming

Page 144Page 144FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241873-ultrasonic-sensors-measuring-robot-distance-to-a-surface

Cameras and VisionCameras and Vision

Most of the time, when you are thinking about how to solve a problem, you are not trying to do it
blindfolded with huge padded gloves on with ear plugs in. This is pretty much how the robot is
experiencing the world without any sensors, it can't see the game piece, it can't feel how tightly it is
grabbing that tube, without sensors to detect these things, the robot can't know if its done its job
correctly. One of the major things humans do to get information from our world is look at it, judge
things like position and distance, and identify locations of important things around us.

Why use vision?Why use vision?

Vision is a very powerful tool, it can give you an idea of how far you are from something, how
many items you have in front of you, where you are pointing, and how fast you are moving, all
from one sensor. Things like how far away something is can be measured by knowing the viewing
angle of the camera, the resolution, and the size of a known object in the view. Counting the
number of items is a matter of object detection and recognition, and movement is measuring how
fast things move toward you. These can also be coupled with the ability to stream the cameras
view to the driverstation, so the driver and operator can see from the robots perspective instead
of all the way across the field behind the glass.

Why not use vision?Why not use vision?

To use vision, you need to have a few things: A good quality camera, a way to process the visual
information into meaningful data, and someone who knows or is willing to learn how very
advanced visual identification is done by outside libraries. With the roborio it is possible for us to
actually do some or all of the computations required to turn the camera video into meaningful
data, and cameras are available in the kit of parts, but for more advanced visual operations you
may need to have additional processing power and higher quality cameras. Because of this most
teams use vision for basic things, or just uses it as more information that the driver can use, which
can help immensely.

How fast is that wheel spinning?How fast is that wheel spinning?

Sometimes, especially with shooters, you want to know how fast a wheel is spinning.

FRC Java Programming

Page 145Page 145FRC Java Programming Last Updated: 01-01-2019

Counters and EncodersCounters and Encoders

You can use a counter or encoder to measure the number of rotations over a given period of time
to get the speed the wheel is spinning at, which can be really useful for shooter wheels so that you
don't shoot unless your wheel is up to speed.

Counters - Measuring rotation, counting pulses and more

Encoders - Measuring rotation of a wheel or other shaft

Other Sensors and ProblemsOther Sensors and Problems

Ultimately, it is up to the teams to find solutions to their individual problems when it comes to
sensors on their robot. Sometimes the sensors available to the teams are not good enough,
encoders not able to read at the speeds you need, ultrasonic sensors too inaccurate after a certain
distance, these are all challenges to solve, and is the reason you are really here. These challenges
are what teach students and mentors on teams how creative they can really be when the
challenge and deadlines are put in front of them. This is when some of the best and most creative
solutions to problems are created.

FRC Java Programming

Page 146Page 146FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/4485/m/13809/l/241874-counters-measuring-rotation-counting-pulses-and-more
http://wpilib.screenstepslive.com/s/4485/m/13809/l/241875-encoders-measuring-rotation-of-a-wheel-or-other-shaft

Accelerometers - measuring acceleration and tiltAccelerometers - measuring acceleration and tilt

Accelerometers measure acceleration in one or more axis. One typical usage is to measure
robot acceleration. Another common usage is to measure robot tilt, in this case it measures
the acceleration due to gravity.

Two-axis analog accelerometerTwo-axis analog accelerometer

A commonly used part (shown in the picture above) is a two-axis accelerometer. This device can
provide acceleration data in the X and Y-axes relative to the circuit board. The WPI Robotics Library
you treats it as two separate devices, one for the X- axis and the other for the Y-axis. The
accelerometer can be used as a tilt sensor – by measuring the acceleration of gravity. In this case,
turning the device on the side would indicate 1000 milliGs or one G. Shown is a 2-axis
accelerometer board connected to two analog inputs on the robot. Note that this is not theNote that this is not the
accelerometer provided in the 2014 KOP.accelerometer provided in the 2014 KOP.

FRC Java Programming

Page 147Page 147FRC Java Programming Last Updated: 01-01-2019

Analog Accelerometer code exampleAnalog Accelerometer code example

C++
class AccelerometerSample: public SampleRobot {

AnalogAccelerometer *accel;
double acceleration;

AccelerometerSample()
{

accel = new AnalogAccelerometer(0); //create accelerometer on analog input
0

accel->SetSensitivity(.018); // Set sensitivity to 18mV/g (ADXL193)
accel->SetZero(2.5); //Set zero to 2.5V (actual value should be determined

experimentally)
}

public void OperatorControl() {
while(IsOperatorControl() && IsEnabled())
{

acceleration = accel->GetAcceleration();
}

}
}
Java
public class AccelerometerSample extends SampleRobot {

AnalogAccelerometer accel;
double acceleration;

AccelerometerSample()
{

accel = new AnalogAccelerometer(0); //create accelerometer on analog input
0

accel.setSensitivity(.018); // Set sensitivity to 18mV/g (ADXL193)
accel.setZero(2.5); //Set zero to 2.5V (actual value should be determined

experimentally)
}

public void operatorControl() {

FRC Java Programming

Page 148Page 148FRC Java Programming Last Updated: 01-01-2019

while(isOperatorControl() && isEnabled())
{

acceleration = accel.getAcceleration();
}

}
}

A brief code example is shown above which illustrates how to set up an analog accelerometer
connected to analog channel 1. The sensitivity and zero voltages were set according to the
datasheet (assumed part is ADXL193, zero voltage set to ideal. Would need to determine actual
offset of specific part being used).

Accelerometer interfaceAccelerometer interface

C++
Accelerometer *accel;
accel = new BuiltInAccelerometer(Accelerometer:kRange_4G);
double xVal = accel->GetX();
double yVal = accel->GetY();
double zVal = accel->GetZ();
Java
Accelerometer accel;
accel = new BuiltInAccelerometer();
accel = new BuiltInAccelerometer(Accelerometer.Range.k4G);
double xVal = accel.getX();
double yVal = accel.getY();
double zVal = accel.getZ();

Both classes for the ADXL345 and the class for the Built-In accelerometer all inherit/implement a
common Accelerometer interface. The plan in the future is to try to get the AnalogAccelerometer
class to derive from this interface as well. If you are planning on using one of these sensors it is
recommended to write your code against the generic interface. That way you can change between
the underlying classes, if desired, with minimal changes to your code. It will also help make your
code more compatible with simulation as that capability continues to develop.

FRC Java Programming

Page 149Page 149FRC Java Programming Last Updated: 01-01-2019

https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL193.pdf

ADXL345 AccelerometerADXL345 Accelerometer

The ADXL345 is a three axis accelerometer provided as part of the sensor board in the 2012-2014
KOP. The ADXL345 is capable of measuring accelerations up to +/- 16g and communicates over I2C
or SPI. Wiring instructions for either protocol can be found in the FRC component datasheet.
Additional information can be found in the Analog Devices ADXL345 datasheet. WPILib provides a
separate class for each protocol which handles the details of setting up the bus and enabling the
sensor.

ADXL345 Code ExampleADXL345 Code Example

C++
class AccelerometerSample: public SampleRobot {

Accelerometer *accel;
double accelerationX;
double accelerationY;
double accelerationZ;

AccelerometerSample()
{

FRC Java Programming

Page 150Page 150FRC Java Programming Last Updated: 01-01-2019

http://www.usfirst.org/sites/default/files/uploadedFiles/Robotics_Programs/FRC/Game_and_Season__Info/2012_Assets/Accelerometer-Gyro.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

accel = new ADXL345_I2C(I2C::Port::kOnboard,
Accelerometer::Range::kRange_4G);

}

public void OperatorControl() {
while(IsOperatorControl() && IsEnabled())
{

accelerationX = accel->GetX();
accelerationY = accel->GetY();
accelerationZ = accel->GetZ();

}
}

}
Java
public class AccelerometerSample extends SampleRobot {

Accelerometer accel;
double accelerationX;
double accelerationY;
double accelerationZ;

AccelerometerSample()
{

accel = new ADXL345_I2C(I2C.Port.kOnboard, Accelerometer.Range.k4G);
}

public void operatorControl() {
while(isOperatorControl() && isEnabled())
{

accelerationX = accel.getX();
accelerationY = accel.getY();
accelerationZ = accel.getZ();

}
}

}

A brief code example is shown above illustrating the use of the ADXL345 connected to the on-
board I2C bus. The accelerometer has been set to operate in +/- 2g mode. The example illustrates
both only the single axis method of getting the sensor values, using the Accelerometer interface. If
you need synchronized readings of all 3 axes, you will have to forgo the interface and use the
ADXL345 class directly to have access to the GetAccelerations() method. SPI operation is similar,

FRC Java Programming

Page 151Page 151FRC Java Programming Last Updated: 01-01-2019

refer to the Javadoc/Doxygen for the ADXL345_SPI class for additional details on using the sensor
over SPI.

Built-In AccelerometerBuilt-In Accelerometer

The roboRIO contains a built-in 3-axis accelerometer with a range of +/- 8g, 12 bit resolution, and a
800 Sample/s sample rate. To use this accelerometer, use the BuiltInAccelerometer class. See the
Accelerometer Interface section above for code illustrating the use of this accelerometer operating
in the +/-4g mode using the generic Accelerometer interface (note when using this interface that
the built-in accelerometer does not support the +/-16g mode).

FRC Java Programming

Page 152Page 152FRC Java Programming Last Updated: 01-01-2019

Gyros - Measuring rotation and controlling robotGyros - Measuring rotation and controlling robot
driving directiondriving direction

Gyros typically in the FIRST kit of parts are provided by Analog Devices, and are actually
angular rate sensors. The output voltage is proportional to the rate of rotation of the axis
perpendicular to the top package surface of the gyro chip. The value is expressed in
mV/°/second (degrees/second or rotation expressed as a voltage). By integrating (summing)
the rate output over time, the system can derive the relative heading of the robot.

Another important specification for the gyro is its full-scale range. Gyros with high full-scale
ranges can measure fast rotation without “pinning” the output. The scale is much larger so
faster rotation rates can be read, but there is less resolution due to a much larger range of
values spread over the same number of bits of digital to analog input. In selecting a gyro, you
would ideally pick the one that had a full-scale range that matched the fastest rate of rotation
your robot would experience. This would yield the highest accuracy possible, provided the
robot never exceeded that range.

Note: TheNote: The AnalogGyroAnalogGyro class in WPILib uses a hardware (implemented in the FPGA) accumulatorclass in WPILib uses a hardware (implemented in the FPGA) accumulator
to perform the integration. This means Gyros are supported on a specific, limited, set ofto perform the integration. This means Gyros are supported on a specific, limited, set of
channels. On the roboRIO this is currently Analog Inputs 0 and 1 on the on-board headers.channels. On the roboRIO this is currently Analog Inputs 0 and 1 on the on-board headers.

Note: The Gyro class has been renamed to AnalogGyro for FRC 2016 to better support newerNote: The Gyro class has been renamed to AnalogGyro for FRC 2016 to better support newer
gyros that are not necessarily connected through an analog input. There is now an interface,gyros that are not necessarily connected through an analog input. There is now an interface,
Gyro, used as the base for all gyros regardless of the connection type. Types should beGyro, used as the base for all gyros regardless of the connection type. Types should be
declared using the interface, but initialized using the more specific device type.declared using the interface, but initialized using the more specific device type.

FRC Java Programming

Page 153Page 153FRC Java Programming Last Updated: 01-01-2019

Using the AnalogGyro classUsing the AnalogGyro class

The Gyro object should be created in the constructor of the RobotBaseRobotBase derived object. When the
AnalogGyro object is used, it will go through a calibration period to measure the offset of the rate
output while the robot is at rest to minimize drift. This requires that the robot be stationary and
the gyro is unusable until the calibration is complete.

Once initialized, the GetAngle()GetAngle() (or getAngle() in Java) method of the Gyro object will return the
number of degrees of rotation (heading) as a positive or negative number relative to the robot’s
position during the calibration period. The zero heading can be reset at any time by calling the
Reset()Reset() (reset() in Java) method on the AnalogGyro object.

See the code samples below for an idea of how to use the AnalogGyro objects.

Setting Gyro sensitivitySetting Gyro sensitivity

The Gyro class defaults to the settings required for the 250°/sec gyro that was delivered by FIRST
in the 2012-2014 Kit of Parts (ADW22307). It is important to check the documentation included
with the gyro to ensure that you have the correct sensitivity setting.

To change gyro types call the SetSensitivity(float sensitivity)SetSensitivity(float sensitivity) method (or setSensitivity(doublesetSensitivity(double
sensitivity)sensitivity) in Java) and pass it the sensitivity in volts/°/sec. Take note that the units are typically
specified in mV (volts / 1000) in the spec sheets. For example, a sensitivity of 12.5 mV/°/sec would
require a SetSensitivity()SetSensitivity() (setSensitivity()setSensitivity() in Java) parameter value of 0.0125.

FRC Java Programming

Page 154Page 154FRC Java Programming Last Updated: 01-01-2019

Using a gyro to drive straightUsing a gyro to drive straight

The following example programs cause the robot to drive in a straight line using the gyro sensor in
combination with the RobotDriveRobotDrive class. The RobotDrive.DriveRobotDrive.Drive method takes the speed and the
turn rate as arguments; where both vary from -1.0 to 1.0. The gyro returns a value indicating the
number of degrees positive or negative the robot deviated from its initial heading. As long as the
robot continues to go straight, the heading will be zero. This example uses the gyro to keep the
robot on course by modifying the turn parameter of the Drive method.

The angle is multiplied by a proportional scaling constant (Kp) to scale it for the speed of the robot
drive. This factor is called the proportional constant or loop gain. Increasing Kp will cause the robot
to correct more quickly (but too high and it will oscillate). Decreasing the value will cause the robot
correct more slowly (possibly never reaching the desired heading). This is known as proportional
control, and is discussed further in the PID control section of the advanced programming section.

C++

class GyroSample : public SampleRobot
{

RobotDrive myRobot; // robot drive system
AnalogGyro gyro;
static const float kP = 0.03;

public:
GyroSample():

myRobot(1, 2), // initialize the sensors in initilization list
gyro(1)

{
myRobot.SetExpiration(0.1);

}

void Autonomous()
{

gyro.Reset();
while (IsAutonomous())
{

float angle = gyro.GetAngle(); // get heading
myRobot.Drive(-1.0, -angle * kP); // turn to correct heading

FRC Java Programming

Page 155Page 155FRC Java Programming Last Updated: 01-01-2019

Wait(0.004);
}
myRobot.Drive(0.0, 0.0); // stop robot

}
};

Sample Java program for driving straightSample Java program for driving straight

Java

package edu.wpi.first.wpilibj.templates;
import edu.wpi.first.wpilibj.AnalogGyro;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SampleRobot;
import edu.wpi.first.wpilibj.Timer;
public class GyroSample extends SampleRobot {

\ private RobotDrive myRobot; // robot drive system
private Gyro gyro;

\ double Kp = 0.03;

public GyroSample() {
gyro = new AnalogGyro(1); \ // Gyro on Analog Channel 1
myRobot = new RobotDrive(1,2); \ // Drive train jaguars on PWM 1 and 2
myRobot.setExpiration(0.1);

\ }

public void autonomous() {
gyro.reset();
while (isAutonomous()) {

double angle = gyro.getAngle(); // get current heading
myRobot.drive(-1.0, -angle*Kp); // drive towards heading 0
Timer.delay(0.004);

FRC Java Programming

Page 156Page 156FRC Java Programming Last Updated: 01-01-2019

}
myRobot.drive(0.0, 0.0);

\ }
}

This is a sample Java program that drives in a straight line. See the comments in the C++ example
(previous step) for an explanation of its operation.

Thanks to Joe Ross from FRC team 330 for help with this example.

FRC Java Programming

Page 157Page 157FRC Java Programming Last Updated: 01-01-2019

Ultrasonic Sensors - Measuring robot distance toUltrasonic Sensors - Measuring robot distance to
a surfacea surface

Ultrasonic sensors are a common way to find the distance from a robot to the nearest surface

Ultrasonic rangefindersUltrasonic rangefinders

Ultrasonic rangefinders use the travel time of an ultrasonic pulse to determine distance to the
nearest object within the sensing cone. There are a variety of different ways that various ultrasonic
sensors communicate the measurement result including:

• Ping-Response (ex. Devantech SRF04, VEX Ultrasonic Rangefinder)
• Analog (ex. Maxbotix LV-MaxSonar-EZ1)
• I2C (ex. Maxbotix I2CXL-MaxSonar-EZ2)

FRC Java Programming

Page 158Page 158FRC Java Programming Last Updated: 01-01-2019

http://www.acroname.com/robotics/parts/R93-SRF04.html
http://www.vexrobotics.com/276-2155.html
http://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm
http://www.maxbotix.com/Ultrasonic_Sensors/MB1222.htm

Ping-Response Ultrasonic sensorsPing-Response Ultrasonic sensors

To aid in the use of Ping-Response Ultrasonic sensors such as the Devantech SRF04 pictured
above, WPILib contains an Ultrasonic class. This type of sensor has two transducers, a speaker that
sends a burst of ultrasonic sound, and a microphone that listens for the sound to be reflected off
of a nearby object. It requires two connections to the roboRIO, one that initiates the ping and the
other that tells when the sound is received. The Ultrasonic object measures the time between the
transmission and the reception of the echo.

Creating an Ultrasonic object and reading the distanceCreating an Ultrasonic object and reading the distance

C++

class ultrasonicSample : public SampleRobot
{

Ultrasonic *ultra; // creates the ultra object

FRC Java Programming

Page 159Page 159FRC Java Programming Last Updated: 01-01-2019

public:
ultrasonicSample()
{

ultra = new Ultrasonic(1, 1); // assigns ultra to be an ultrasonic sensor
which uses DigitalOutput 1 for the echo pulse and DigitalInput 1 for the trigger pulse

ultra->SetAutomaticMode(true); // turns on automatic mode
}

void Teleop()
{

int range = ultra->GetRangeInches(); // reads the range on the ultrasonic
sensor

}
};

Java

import edu.wpi.first.wpilibj.SampleRobot;
import edu.wpi.first.wpilibj.Ultrasonic;

public class RobotTemplate extends SampleRobot {

Ultrasonic ultra = new Ultrasonic(1,1); // creates the ultra object andassigns
ultra to be an ultrasonic sensor which uses DigitalOutput 1 for

// the echo pulse and DigitalInput 1 for the trigger pulse
public void robotInit() {

ultra.setAutomaticMode(true); // turns on automatic mode
}

public void ultrasonicSample() {
double range = ultra.getRangeInches(); // reads the range on the ultrasonic

sensor
}

FRC Java Programming

Page 160Page 160FRC Java Programming Last Updated: 01-01-2019

Both the Echo Pulse Output and the Trigger Pulse Input have to be connected to digital I/O ports
on a Digital Sidecar. When creating the Ultrasonic object, specify which channels it is connected to
in the constructor, as shown in the examples above. In this case,
ULTRASONIC_ECHO_PULSE_OUTPUT and ULTRASONIC_TRIGGER_PULSE_INPUT are two constants
that are defined to be the digital I/O port numbers. Do not use the ultrasonic class for ultrasonic
rangefinders that do not have these connections. Instead, use the appropriate class for the sensor,
such as an AnalogChannel object for an ultrasonic sensor that returns the range as an analog
voltage.

Analog RangefindersAnalog Rangefinders

Many ultrasonic rangefinders return the range as an analog voltage. To get the distance you
multiply the analog voltage by the sensitivity or scale factor (typically in inches/V or inches/mV). To
use this type of sensor with WPILib you can either create it as an Analog Channel and perform the
scaling directly in your robot code, or you can write a class that will perform the scaling for you
each time you request a measurement.

I2C and other Digital RangefindersI2C and other Digital Rangefinders

Rangefinders that communicate digitally over I2C, SPI, or Serial may also be used with the roboRIO
though no specific classes for these devices are provided through WPILib. Use the appropriate
communication class based on the bus in use and refer to the datasheet for the part to determine
what data or requests to send the device and what format the received data will be in.

FRC Java Programming

Page 161Page 161FRC Java Programming Last Updated: 01-01-2019

Counters - Measuring rotation, counting pulsesCounters - Measuring rotation, counting pulses
and moreand more

Counter objects are extremely flexible elements that can count input from either a digital input
signal or an analog trigger.

Counter OverviewCounter Overview

Counter Overview

There are 8 Up/Down Counter units contained in the FPGA which can each operate in a number of
modes based on the type of input signal:

• Gear-tooth/Pulse Width mode - Enables up/down counting based on the width of an input
pulse. This is used to implement the GearTooth sensor class with direction sensing.

• Semi-period mode - Counts the period of a portion of the input signal. This mode is used by the
Ultrasonic class to measure the time of flight of the echo pulse.

• External Direction mode - Can count edges of a signal on one input with the direction (up/
down) determined by a second input

• "Normal mode"/Two Pulse mode - Can count edges from 2 independent sources (1 up, 1 down)

FRC Java Programming

Page 162Page 162FRC Java Programming Last Updated: 01-01-2019

Gear-Tooth Mode and GearTooth SensorsGear-Tooth Mode and GearTooth Sensors

Gear-tooth sensors are designed to be mounted adjacent to spinning ferrous gear or sprocket
teeth and detect whenever a tooth passes. The gear-tooth sensor is a Hall-effect device that uses a
magnet and solid-state device that can measure changes in the field caused by the passing teeth.
The picture above shows a gear-tooth sensor mounted to measure a metal gear rotation. Notice
that a metal gear is attached to the plastic gear. The gear tooth sensor needs a ferrous material
passing by it to detect rotation.

The Gear-Tooth mode of the FPGA counter is designed to work with gear-tooth sensors which
indicate the direction of rotation by changing the length of the pulse they emit as each tooth
passes such as the ATS651 provided in the 2006 FRC KOP.

Semi-Period modeSemi-Period mode

C++C++
Counter *exampleCounterHi = new Counter(0);
Counter *exampleCounterLow = new Counter(3);
exampleCounterHi->SetSemiPeriodMode(true);
exampleCounterLow->SetSemiPeriodMode(false);

FRC Java Programming

Page 163Page 163FRC Java Programming Last Updated: 01-01-2019

double highPulse = exampleCounterHi->GetPeriod();
double lowPulse = exampleCounterLow->GetPeriod();

JavaJava
Counter exampleCounterHi = new Counter(0);
Counter exampleCounterLow = new Counter(3);
exampleCounterHi.setSemiPeriodMode(true);
exampleCounterLow.setSemiPeriodMode(false);
double highPulse = exampleCounterHi.getPeriod();
double lowPulse = exampleCounterLow.getPeriod();
The semi-period mode of the counter will measure the pulse width of either a high pulse (rising
edge to falling edge) or a low pulse (falling edge to rising edge) on a single source (the Up Source).
Call setSemiPeriodMode(true) to measure high pulses and setSemiPeriodMode(false) to measure
low pulses. In either case, call getPeriod() to obtain the length of the last measured pulse (in
seconds).

External Direction modeExternal Direction mode

The external direction mode of the counter counts edges on one source (the Up Source) and uses
the other source (the Down Source) to determine direction. The most common usage of this mode
is quadrature decoding in 1x and 2x mode. This use case is handled by the Encoder class which
sets up an internal Counter object, and is covered in the next article Encoders - Measuring rotation
of a wheel or other shaft.

Normal modeNormal mode

C++C++
Counter *normalCounter = new Counter();
normalCounter->SetUpSource(1);
normalCounter->SetUpDownCounterMode();

JavaJava
Counter normalCounter = new Counter();
normalCounter.setUpSource(1);
normalCounter.setUpDownCounterMode();

FRC Java Programming

Page 164Page 164FRC Java Programming Last Updated: 01-01-2019

../../13810/l/241875?data-resolve-url=true&data-manual-id=13810
../../13810/l/241875?data-resolve-url=true&data-manual-id=13810

The "normal mode" of the counter, also known as Up/Down mode or Two Pulse mode, counts
pulses occurring on up to two separate sources, one source for Up and one source for Down. A
common use case of this mode is using a single source (the Up Source) with a reflective sensor or
hall effect sensor as a single direction encoder. The code example above shows an alternate
method of setting up the Counter sources, this method is valid for any of the modes. The method
shown in the Semi-Period mode example is also perfectly valid for all modes of the counter
including the Normal Mode.

Counter SettingsCounter Settings

C++C++
Counter *normalCounter = new Counter(1);
normalCounter->SetMaxPeriod(.1);
normalCounter->SetUpdateWhenEmpty(true);
normalCounter->SetReverseDirection(false);
normalCounter->SetSamplesToAverage(10);
normalCounter->SetDistancePerPulse(12);

JavaJava
Counter normalCounter = new Counter(1);
normalCounter.setMaxPeriod(.1);
normalCounter.setUpdateWhenEmpty(true);
normalCounter.setReverseDirection(false);
normalCounter.setSamplesToAverage(10);
normalCounter.setDistancePerPulse(12);

There are a few different parameters that can be set to control various aspects of the counter
behavior:

• Max Period - The maximum period (in seconds) where the device is still considered moving.
This value is used to determine the state of the getStopped() method and effect the output of
the getPeriod() and getRate() methods.

• Update When Empty - Setting this to false will keep the most recent period on the counter
when the counter is determined to be stalled (based on the Max Period described above).
Setting this parameter to True will return 0 as the period of a stalled counter.

• Reverse Direction - Valid in external direction mode only. Setting this parameter to true
reverses the counting direction of the external direction mode of the counter.

• Samples to Average - Sets the number of samples to average when determining the period.
Averaging may be desired to account for mechanical imperfections (such as unevenly spaced

FRC Java Programming

Page 165Page 165FRC Java Programming Last Updated: 01-01-2019

reflectors when using a reflective sensor as an encoder) or as oversampling to increase
resolution. Valid values are 1 to 127 samples.

• Distance Per Pulse - Sets the multiplier used to determine distance from count when using the
getDistance() method.

Resetting the counterResetting the counter

C++C++
Counter *normalCounter = new Counter(1);
normalCounter->Reset();

JavaJava
Counter normalCounter = new Counter(1);
normalCounter.reset();
Counters begin counting as soon as they are instantiated. To reset the counter value to 0 call
reset().

Getting Counter ValuesGetting Counter Values

C++C++
Counter *normalCounter = new Counter(1);
int count = normalCounter->Get();
double distance = normalCounter->GetDistance();
double period = normalCounter->GetPeriod();
double rate = normalCounter->GetRate();
bool direction = normalCounter->GetDirection();
bool stopped = normalCounter->GetStopped();

JavaJava
Counter normalCounter = new Counter(1);
int count = normalCounter.get();
double distance = normalCounter.getDistance();
double period = normalCounter.getPeriod();
double rate = normalCounter.getRate();
boolean direction = normalCounter.getDirection();
boolean stopped = normalCounter.getStopped();
The following values can be retrieved from the counter:

FRC Java Programming

Page 166Page 166FRC Java Programming Last Updated: 01-01-2019

• Count - The current count. May be reset by calling reset()
• Distance - The current distance reading from the counter. This is the count multiplied by the

Distance Per Count scale factor.
• Period - The current period of the counter in seconds. If the counter is stopped this value may

return 0, depending on the setting of the Update When Empty parameter.
• Rate - The current rate of the counter in units/sec. It is calculated using the DistancePerPulse

divided by the period. If the counter is stopped this value may return Inf or NaN, depending on
language.

• Direction - The direction of the last value change (true for Up, false for Down)
• Stopped - If the counter is currently stopped (period has exceeded Max Period)

FRC Java Programming

Page 167Page 167FRC Java Programming Last Updated: 01-01-2019

Encoders - Measuring rotation of a wheel orEncoders - Measuring rotation of a wheel or
other shaftother shaft

Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically
used to measure the distance a wheel has turned which can be translated into the distance
the robot has traveled. The distance traveled over a measured period of time represents the
speed of the robot, and is another common use for encoders. Encoders can also directly
measure the rate of rotation by determining the time between pulses. This article covers the
use of quadrature encoders (defined below) For non-quadrature incremental encoders, see
the article on counters. For absolute encoders the appropriate article will depend on the input
type (most commonly analog, I2C or SPI).

Quadrature Encoder OverviewQuadrature Encoder Overview

A quadrature encoder is a device for measuring shaft rotation that consists of two sensing
elements 90 degrees out of phase. The most common type of encoder typically used in FRC is an
optical encoder which uses one or more light sources (LEDs) pointed at a striped or slit code wheel
and two detectors 90 degrees apart (these may be located opposite the LED to detect transmission
or on the same side as the LED to measure reflection). The phase difference between the signals
can be used to detect the direction of rotation by determining which signal is "leading" the other.

Encoders vs. CountersEncoders vs. Counters

Encoders vs. Counters

FRC Java Programming

Page 168Page 168FRC Java Programming Last Updated: 01-01-2019

The FRC FPGA has 8 Quadrature decoder modules which can do 4x decoding of a 2 channel
quadrature encoder signal. This means that the module is counting both the rising and falling
edges of each pulse on each of the two channels to yield 4 ticks for every stripe on the codewheel.
The quadrature decoder module is also capable of handling an index channel which is a feature on
some encoders that outputs one pulse per revolution. The counter FPGA modules are used for 1x
or 2x decoding where the rising or rising and falling edges of one channel are counted and the
second channel is used to determine direction. In either case it is recommended to use the
Encoder class for all quadrature encoders, the class will assign the appropriate FPGA module
based on the encoding type you choose.

Sampling ModesSampling Modes

The encoder class has 3 sampling modes: 1x, 2x and 4x. The 1x and 2x mode count the rising or
the rising and falling edges respectively on a single channel and use the B channel to determine
direction only. The 4x mode counts all 4 edges on both channels. This means that the 4x mode will
have a higher positional accuracy (4 times as many ticks per rotation as 1x) but will also have more
jitter in the rate output due to mechanical deficiencies (imperfect phase difference, imperfect
striping) as well as running into the timing limits of the FPGA. For sensing rate, particularly at high
RPM, using 1x or 2x decoding and increasing the number of samples to average may substantially
help reduce jitter. Also keep in mind that the FPGA has 8 quadrature decoding modules (used for
4x decoding) and 8 counter modules (used for 1x and 2x decoding as well as Counter objects).

Constructing an Encoder objectConstructing an Encoder object

C++C++
Encoder *enc;
enc = new Encoder(0, 1, false, Encoder::EncodingType::k4X);

JavaJava
Encoder enc;
enc = new Encoder(0, 1, false, Encoder.EncodingType.k4X);

There are a number of constructors you may use to construct encoders, but the most common is
shown above. In the example, 0 and 1 are the port numbers for the two digital inputs and false
tells the encoder to not invert the counting direction. The sensed direction could depend on how
the encoder is mounted relative to the shaft being measured. The k4X makes sure that an encoder
module from the FPGA is used and 4X accuracy is obtained.

FRC Java Programming

Page 169Page 169FRC Java Programming Last Updated: 01-01-2019

Setting Encoder ParametersSetting Encoder Parameters

C++C++
Encoder *sampleEncoder = new Encoder(0, 1, false, Encoder::EncodingType::k4X);
sampleEncoder->SetMaxPeriod(.1);
sampleEncoder->SetMinRate(10);
sampleEncoder->SetDistancePerPulse(5);
sampleEncoder->SetReverseDirection(true);
sampleEncoder->SetSamplesToAverage(7);

JavaJava
Encoder sampleEncoder = new Encoder(0, 1, false, Encoder.EncodingType.k4X);
sampleEncoder.setMaxPeriod(.1);
sampleEncoder.setMinRate(10);
sampleEncoder.setDistancePerPulse(5);
sampleEncoder.setReverseDirection(true);
sampleEncoder.setSamplesToAverage(7);

The following parameters of the encoder class may be set through the code:

• Max Period - The maximum period (in seconds) where the device is still considered moving.
This value is used to determine the state of the getStopped() method and effect the output of
the getPeriod() and getRate() methods. This is the time between pulses on an individual channel
(scale factor is accounted for). It is recommended to use the Min Rate parameter instead as it
accounts for the distance per pulse, allowing you to set the rate in engineering units.

• Min Rate - Sets the minimum rate before the device is considered stopped. This compensates
for both scale factor and distance per pulse and therefore should be entered in engineering
units (RPM, RPS, Degrees/sec, In/s, etc)

• Distance Per Pulse - Sets the scale factor between pulses and distance. The library already
accounts for the decoding scale factor (1x, 2x, 4x) separately so this value should be set
exclusively based on the encoder's Pulses per Revolution and any gearing following the
encoder.

• Reverse Direction - Sets the direction the encoder counts, used to flip the direction if the
encoder mounting makes the default counting direction unintuitive.

• Samples to Average - Sets the number of samples to average when determining the period.
Averaging may be desired to account for mechanical imperfections (such as unevenly spaced
reflectors when using a reflective sensor as an encoder) or as oversampling to increase
resolution. Valid values are 1 to 127 samples.

FRC Java Programming

Page 170Page 170FRC Java Programming Last Updated: 01-01-2019

Starting, Stopping and Resetting EncodersStarting, Stopping and Resetting Encoders

C++C++
Encoder *sampleEncoder = new Encoder(0, 1, false, Encoder::EncodingType::k4X);
sampleEncoder->Reset();

JavaJava
Encoder sampleEncoder = new Encoder(0, 1, false, Encoder.EncodingType.k4X);
sampleEncoder.reset();

The encoder will begin counting as soon as it is created. To reset the encoder value to 0 call reset().

Getting Encoder ValuesGetting Encoder Values

C++C++
Encoder *sampleEncoder = new Encoder(0, 1, false, Encoder::EncodingType::k4X);
int count = sampleEncoder->Get();
double distance = sampleEncoder->GetRaw();
double distance = sampleEncoder->GetDistance();
double period = sampleEncoder->GetPeriod();
double rate = sampleEncoder->GetRate();
boolean direction = sampleEncoder->GetDirection();
boolean stopped = sampleEncoder->GetStopped();

JavaJava
Encoder sampleEncoder = new Encoder(0, 1, false, Encoder.EncodingType.k4X);
int count = sampleEncoder.get();
double distance = sampleEncoder.getRaw();
double distance = sampleEncoder.getDistance();
double period = sampleEncoder.getPeriod();
double rate = sampleEncoder.getRate();
boolean direction = sampleEncoder.getDirection();
boolean stopped = sampleEncoder.getStopped();

The following values can be retrieved from the encoder:

• Count - The current count. May be reset by calling reset().

FRC Java Programming

Page 171Page 171FRC Java Programming Last Updated: 01-01-2019

• Raw Count - The count without compensation for decoding scale factor.
• Distance - The current distance reading from the counter. This is the count multiplied by the

Distance Per Count scale factor.
• Period - The current period of the counter in seconds. If the counter is stopped this value may

return 0. This is deprecated, it is recommended to use rate instead.
• Rate - The current rate of the counter in units/sec. It is calculated using the DistancePerPulse

divided by the period. If the counter is stopped this value may return Inf or NaN, depending on
language.

• Direction - The direction of the last value change (true for Up, false for Down)
• Stopped - If the counter is currently stopped (period has exceeded Max Period)

FRC Java Programming

Page 172Page 172FRC Java Programming Last Updated: 01-01-2019

Analog inputsAnalog inputs

The roboRIO Analog to Digital module has a number of features not available on simpler
controllers. It will automatically sample the analog channels in a round robin fashion,
providing a combined sample rate of 500 ks/s (500,000 samples / second). These channels can
be optionally oversampled and averaged to provide the value that is used by the program.
There are raw integer and floating point voltage outputs available in addition to the averaged
values. The diagram below outlines this process.

Analog System DiagramAnalog System Diagram

Analog System Diagram

When the system averages a number of samples, the division results in a fractional part of the
answer that is lost in producing the integer valued result. Oversampling is a technique where extra
samples are summed, but not divided down to produce the average. Suppose the system were
oversampling by 16 times – that would mean that the values returned were actually 16 times the
average. Using the oversampled value gives additional precision in the returned value.

Constructing an Analog InputConstructing an Analog Input

C++C++
AnalogInput *ai;
ai = new AnalogInput(0);

JavaJava
AnalogInput ai;
ai = new AnalogInput(0);
To construct an AnalogInput object, simply pass in the channel number for the desired input.

FRC Java Programming

Page 173Page 173FRC Java Programming Last Updated: 01-01-2019

Oversampling and AveragingOversampling and Averaging

The number of averaged and oversampled values are always powers of two (number of bits of
oversampling/averaging). Therefore the number of oversampled or averaged values is two ^ bits,
where ‘bits’ is passed to the methods: SetOversampleBits(bits) and SetAverageBits(bits). The actual
rate that values are produced from the analog input channel is reduced by the number of
averaged and oversampled values. For example, setting the number of oversampled bits to 4 and
the average bits to 2 would reduce the number of delivered samples by 16x and 4x, or 64x total.

Code exampleCode example

C++C++
AnalogInput *exampleAnalog = new AnalogInput(0);
int bits;
exampleAnalog->SetOversampleBits(4);
bits = exampleAnalog->GetOversampleBits();
exampleAnalog->SetAverageBits(2);
bits = exampleAnalog->GetAverageBits();

JavaJava
AnalogInput exampleAnalog = new AnalogInput(0);
int bits;

FRC Java Programming

Page 174Page 174FRC Java Programming Last Updated: 01-01-2019

exampleAnalog.setOversampleBits(4);
bits = exampleAnalog.getOversampleBits();
exampleAnalog.setAverageBits(2);
bits = exampleAnalog.getAverageBits();
The above code shows an example of how to get and set the number of oversample bits and
average bits on an analog channel

Sample RateSample Rate

C++C++
AnalogInput::SetSampleRate(62500);

JavaJava
AnalogInput.setGlobalSampleRate(62500);
The sample rate is fixed per analog I/O module, so all the channels on a given module must
sample at the same rate. However, the averaging and oversampling rates can be changed for each
channel. The use of some sensors (currently just the Gyro) will set the sample rate to a specific
value for the module it is connected to. The example above shows setting the sample rate for a
module to the default value of 62,500 samples per channel per second (500kS/s total).

Reading Analog ValuesReading Analog Values

C++C++
AnalogInput *exampleAnalog = new AnalogInput(0);
int raw = exampleAnalog->GetValue();
double volts = exampleAnalog->GetVoltage();
int averageRaw = exampleAnalog->GetAverageValue();
double averageVolts = exampleAnalog->GetAverageVoltage();

JavaJava
AnalogInput exampleAnalog = new AnalogInput(0);
int raw = exampleAnalog.getValue();
double volts = exampleAnalog.getVoltage();
int averageRaw = exampleAnalog.getAverageValue();
double averageVolts = exampleAnalog.getAverageVoltage();
There are a number of options for reading Analog input values from an analog channel:

FRC Java Programming

Page 175Page 175FRC Java Programming Last Updated: 01-01-2019

1. Raw value - The instantaneous raw 12-bit (0-4096) value representing the 0-5V range of the
ADC. Note that this method does not take into account the calibration information stored in the
module.

2. Voltage - The instantaneous voltage value of the channel. This method takes into account the
calibration information stored in the module to convert the raw value to a voltage.

3. Average Raw value - The raw, unscaled value output from the oversampling and averaging
engine. See above for information on the effect of oversampling and averaging and how to set
the number of bits for each.

4. Average Voltage - The scaled voltage value output from the oversampling and averaging engine.
This method uses the stored calibration information to convert the raw average value into a
voltage.

AccumulatorAccumulator

The analog accumulator is a part of the FPGA that acts as an integrator for analog signals,
summing the value over time. A common example of where this behavior is desired is for a gyro. A
gyro outputs an analog signal corresponding to the rate of rotation, however the measurement
commonly desired is heading or total rotational displacement. To get heading from rate, you
perform an integration. By performing this operation at the hardware level it can occur much
quicker than if you were to attempt to implement it in the robot code. The accumulator can also
apply an offset to the analog value before adding it to the accumulator. Returning to the gyro
example, most gyros output a voltage of 1/2 of the full scale when not rotating and vary the
voltage above and below that reference to indicate direction of rotation.

Setting up an accumulatorSetting up an accumulator

C++C++
AnalogInput *exampleAnalog = new AnalogInput(0);
exampleAnalog->SetAccumulatorInitialValue(0);
exampleAnalog->SetAccumulatorCenter(2048);
exampleAnalog->SetAccumulatorDeadband(10);
exampleAnalog->ResetAccumulator();

JavaJava
AnalogInput exampleAnalog = new AnalogInput(0);
exampleAnalog.setAccumulatorInitialValue(0);
exampleAnalog.setAccumulatorCenter(2048);

FRC Java Programming

Page 176Page 176FRC Java Programming Last Updated: 01-01-2019

exampleAnalog.setAccumulatorDeadband(10);
exampleAnalog.resetAccumulator();
There are two accumulators implemented in the FPGA, connected to channels 0 and 1. Any device
which you wish to use with the analog accumulator must be attached to one of these two
channels. There are no mandatory parameters that must be set to use the accumulator, however
depending on the device you may wish to set some or all of the following:

1. Accumulator Initial Value - This is the raw value the accumulator returns to when reset. It is
added to the output of the hardware accumulator before the value is returned to the code.

2. Accumulator Center - This raw value is subtracted from each sample before the sample is
applied to the accumulator. Note that the accumulator is after the oversample and averaging
engine in the pipeline so oversampling will affect the appropriate value for this parameter.

3. Accumulator Deadband - The raw value deadband around the center point where the
accumulator will treat the sample as 0.

4. Accumulator Reset - Resets the value of the accumulator to the Initial Value (0 by default).

Reading from an AccumulatorReading from an Accumulator

C++C++
AnalogInput *exampleAnalog = new AnalogInput(0);
long count = exampleAnalog->GetAccumulatorCount();
long value = exampleAnalog->GetAccumulatorValue();
AccumulatorResult *result = new AccumulatorResult();
exampleAnalog->GetAccumulatorOutput(result);
count = result->count;
value = result->value;

JavaJava
AnalogInput exampleAnalog = new AnalogInput(0);
long count = exampleAnalog.getAccumulatorCount();
long value = exampleAnalog.getAccumulatorValue();
AccumulatorResult result = new AccumulatorResult();
exampleAnalog.getAccumulatorOutput(result);
count = result.count;
value = result.value;
Two separate pieces of information can be read from the accumulator in three total ways:

1. Count - The number of samples that have been added to the accumulator since the last reset.
2. Value - The value currently in the accumulator

FRC Java Programming

Page 177Page 177FRC Java Programming Last Updated: 01-01-2019

3. Combined - Retrieve the count and value together to assure synchronization. This should be
used if you are going to use the count and value in the same calculation such as averaging.

FRC Java Programming

Page 178Page 178FRC Java Programming Last Updated: 01-01-2019

Potentiometers - Measuring joint angle or linearPotentiometers - Measuring joint angle or linear
motionmotion

Potentiometers are a common analog sensor used to measure absolute angular rotation or
linear motion (string pots) of a mechanism. A potentiometer is a three terminal device that
uses a moving contact to from a variable resistor divider. When the outer contacts are
connected to 5V and ground and the variable contact is connected to an analog input, the
analog input will see an analog voltage that varies as the potentiometer is turned.

Potentiometer TaperPotentiometer Taper

The taper of a potentiometer describes the relationship between the position and the resistance.
The two common tapers are linear and logarithmic. A linear taper potentiometer will vary the
resistance proportionally to the rotation of the shaft; For example, the shaft will measure 50% of
the resistive value at the midpoint of the rotation. A logarithmic taper potentiometer will vary the
resistance logarithmically with the rotation of the shaft. Logarithmic potentiometers are commonly
used in audio controls due to human perception of audio volume also being logarithmic.

Most or all FRC uses for potentiometers should use linear potentiometers so that angle can be
deduced directly from the voltage.

Using Potentiometers with WPILibUsing Potentiometers with WPILib

Potentiometers can either be read with the AnalogInput class (then work with the voltage or
perform the scaling in your code) or the AnalogPotentiometer class which implements the
Potentiometer interface. The AnalogPotentiometer class will read the sensor ratiometrically
(compensate for the Analog supply voltage) and will scale and offset the voltage to return
meaningful units.

FRC Java Programming

Page 179Page 179FRC Java Programming Last Updated: 01-01-2019

Constructing a PotentiometerConstructing a Potentiometer

C++C++
Potentiometer *pot;
pot = new AnalogPotentiometer(0, 360, 30);
AnalogInput *ai = new AnalogInput(1);
pot = new AnalogPotentiometer(ai, 360, 30);

JavaJava
Potentiometer pot;
pot = new AnalogPotentiometer(0, 360, 30);
AnalogInput ai = new AnalogInput(1);
pot = new AnalogPotentiometer(ai, 360, 30);
The Potentiometer constructor takes 3 parameters: a channel number for the analog input, a scale
factor to multiply the 0-1 ratiometric value by to return useful units, and an offset to add after the
scaling. Generally, the most useful scale factor will be the angular or linear full scale of the
potentiometer. For example, let's say you have an ideal single turn linear potentiometer attached
to a robot arm. This pot will turn 360 degrees over the 0V-5V range so using that for the scale
factor will result in the output being in degrees. In order to prevent the potentiometer from
breaking due to minor shifting in alignment, it may be installed with the "zero-point" of the arm a
little ways into the potentiometers range, the example above represents the potentiometer being
installed with an initial value of 30 degrees, which is negated using the offset so that the output is
0 at the "zero-point" of the mechanism.

You can also pass an existing AnalogInput to the constructor in place of the channel if you wish to
share the input with other code.

The CalculationsThe Calculations

The potentiometer output is calculated using the following formula: (Analog Input Voltage/Analog
Supply Voltage)*FullScale + Offset. As you can see the result of the first part of the calculation is a
unitless quantity in the range 0 to 1. This means the units of the output are the same as the units
of the scale factor. The offset is added to the scaled quantity so it should have the same units as
the scale factor.

FRC Java Programming

Page 180Page 180FRC Java Programming Last Updated: 01-01-2019

Reading the outputReading the output

C++C++
Potentiometer *pot = new AnalogPotentiometer(0, 360, 30);
double degrees = pot->Get();

JavaJava
Potentiometer pot = new AnalogPotentiometer(0, 360, 30);
double degrees = pot.get()
To read the potentiometer output, call the Get() method.

FRC Java Programming

Page 181Page 181FRC Java Programming Last Updated: 01-01-2019

Analog triggersAnalog triggers

An analog trigger is a way to convert an analog signal into a digital signal using resources built
into the FPGA. The resulting digital signal can then be used directly or fed into other digital
components of the FPGA such as the counter or encoder modules. The analog trigger module
works by comparing analog signals to a voltage range set by the code. The specific return
types and meanings depend on the analog trigger mode in use.

Creating an Analog TriggerCreating an Analog Trigger

C++C++
AnalogTrigger *trigger0 = new AnalogTrigger(0);
AnalogInput *ai1 = new AnalogInput(1);
AnalogTrigger *trigger1 = new AnalogTrigger(ai1);

JavaJava
AnalogTrigger trigger0 = new AnalogTrigger(0);
AnalogInput ai1 = new AnalogInput(1);
AnalogTrigger trigger1 = new AnalogTrigger(ai1);
Constructing an analog trigger requires passing in a channel number or a created Analog Channel
object.

Setting Analog Trigger Voltage RangeSetting Analog Trigger Voltage Range

C++C++
AnalogTrigger *trigger = new AnalogTrigger(0);
trigger->SetLimitsRaw(2048, 3200);
trigger->SetLimitsVoltage(0, 3.4);

JavaJava
AnalogTrigger trigger0 = new AnalogTrigger(0);
trigger.setLimitsRaw(2048, 3200);
trigger.setLimitsVoltage(0, 3.4);

FRC Java Programming

Page 182Page 182FRC Java Programming Last Updated: 01-01-2019

The voltage range of the analog trigger can be set in either raw units (0 to 4096 representing 0V to
5V) or voltages. In both cases the value set does not account for oversampling, if oversampling is
used the user code must perform the appropriate compensation of the trigger window before
setting.

Filtering and AveragingFiltering and Averaging

C++C++
AnalogTrigger *trigger = new AnalogTrigger(0);
trigger->SetAveraged(true);
trigger->SetAveraged(false);
trigger->SetFiltered(true);

JavaJava
AnalogTrigger trigger0 = new AnalogTrigger(0);
trigger.setAveraged(true);
trigger.setAveraged(false);
trigger.setFiltered(true);
The analog trigger can optionally be set to use either the averaged value (output from the average
and oversample engine) or a filtered value instead of the raw analog channel value. A maximum of
one of these options may be selected at a time, the filter cannot be applied on top of the averaged
signal.

FilteringFiltering

The filtering option of the analog trigger uses a 3-point average reject filter. This filter uses a
circular buffer of the last three data points and selects the outlier point nearest the median as the
output. The primary use of this filter is to reject datapoints which errantly (due to averaging or
sampling) appear within the window when detecting transitions using the Rising Edge and Falling
Edge functionality of the analog trigger (see below).

Analog Trigger Direct OutputsAnalog Trigger Direct Outputs

C++C++
AnalogTrigger *trigger = new AnalogTrigger(0);
bool value;

FRC Java Programming

Page 183Page 183FRC Java Programming Last Updated: 01-01-2019

value = trigger->GetInWindow();
value = trigger->GetTriggerState();

JavaJava
AnalogTrigger trigger0 = new AnalogTrigger(0);
boolean value;
value = trigger.getInWindow();
value = trigger.getTriggerState();
The analog trigger class has two direct types of output:

• In Window - Returns true if the value is inside the range and false if it is outside (above or
below)

• Trigger State - Returns true if the value is above the upper limit, false if it is below the lower
limit and maintains the previous state if in between (hysteresis)

Analog Trigger Output ClassAnalog Trigger Output Class

The analog trigger output class is used to represent a specific output from an analog trigger. This
class is primarily used as the interface between classes such as Counter or Encoder and an Analog
Trigger. When used with these classes, the class will create the AnalogTriggerOutput object
automatically when passed the AnalogTrigger object.

This class contains the same two outputs as the AnalogTrigger class plus two additional options
(note these options cannot be read directly as they emit pulses, they can only be routed to other
FPGA modules):

• Rising Pulse - In rising pulse mode the trigger generates a pulse when the analog signal
transitions directly from below the lower limit to above the upper limit. This is typically used
with the rollover condition of an analog sensor such as an absolute magnetic encoder or
continuous rotation potentiometer.

• Falling Pulse - In falling pulse mode the trigger generates a pulse when the analog signal
transitions directly from above the upper limit to below the lower limit. This is typically used
with the rollover condition of an analog sensor such as an absolute magnetic encoder or
continuous rotation potentiometer.

FRC Java Programming

Page 184Page 184FRC Java Programming Last Updated: 01-01-2019

Operating the robot with feedback from sensorsOperating the robot with feedback from sensors
(PID control)(PID control)

Without feedback the robot is limited to using timing to determine if it's gone far enough,
turned enough, or is going fast enough. And for mechanisms, without feedback it's almost
impossible to get arms at the right angle, elevators at the right height, or shooters to the right
speed. There are a number of ways of getting these mechanisms to operate in a predictable
way. The most common is using PID (Proportional, Integral, and Differential) control. The basic
idea is that you have a sensor like a potentiometer or encoder that can measure the variable
you're trying to control with a motor. In the case of an arm you might want to control the angle
- so you use a potentiometer to measure the angle. The potentiometer is an analog device, it
returns a voltage that is proportional to the shaft angle of the arm.

To move the arm to a preset position, say for scoring, you predetermine what the
potentiometer voltage should be at that preset point, then read the arms current angle
(voltage). The different between the current value and the desired value represents how far
the arm needs to move and is called the error. The idea is to run the motor in a direction that
reduces the error, either clockwise or counterclockwise. And the amount of error (distance
from your setpoint) determines how fast the arm should move. As it gets closer to the
setpoint, it slows down and finally stops moving when the error is near zero.

The WPILib PIDController class is designed to accept the sensor values and output motor
values. Then given a setpoint, it generates a motor speed that is appropriate for its calculated
error value.

Creating a PIDController objectCreating a PIDController object

Creating a PIDController object

The PIDControllerPIDController class allows for a PID control loop to be created easily, and runs the control loop
in a separate thread at consistent intervals. The PIDControllerPIDController automatically checks a PIDSourcePIDSource

FRC Java Programming

Page 185Page 185FRC Java Programming Last Updated: 01-01-2019

for feedback and writes to a PIDOutputPIDOutput every loop. Sensors suitable for use with PIDControllerPIDController in
WPILib are already subclasses of PIDSourcePIDSource. Additional sensors and custom feedback methods are
supported through creating new subclasses of PIDSourcePIDSource. Jaguars and Victors are already
configured as subclasses of PIDOutputPIDOutput, and custom outputs may also be created by sub-classing
PIDOutputPIDOutput.

A potentiometer that turns with the turret will provide feedback of the turret angle. The
potentiometer is connected to an analog input and will return values ranging from 0-5V from full
clockwise to full counterclockwise motion of the turret. The joystick X-axis returns values from -1.0
to 1.0 for full left to full right. We need to scale the joystick values to match the 0-5V values from
the potentiometer. This is done with the expression (1). The scaled value can then be used to
change the setpoint of the control loop as the joystick is moved.

The 0.1, 0.001, and 0.0 values are the Proportional, Integral, and Differential coefficients
respectively. The AnalogChannelAnalogChannel object is already a subclass of PIDSourcePIDSource and returns the voltage
as the control value and the Jaguar object is a subclass of PIDOutputPIDOutput.

The PIDControllerPIDController object will automatically (in the background):

• Read the PIDSourcePIDSource object (in this case the turretPot analog input)
• Compute the new result value
• Set the PIDOutputPIDOutput object (in this case the turretMotor)

This will be repeated periodically in the background by the PIDControllerPIDController. The default repeat rate is
50ms although this can be changed by adding a parameter with the time to the end of the
PIDControllerPIDController argument list. See the reference document for details.

Setting the P, I, and D valuesSetting the P, I, and D values

The output value is computed by adding the weighted values of the error (proportional term), the
sum of the errors (integral term) and the rate of change of errors (differential term). Each of these
is multiplied by a scaling constant, the P, I and D values before adding the terms together. The
constants allow the PID controller to be tuned so that each term is contributing an appropriate
value to the final output.

The P, I, and D values are set in the constructor for the PIDController object as parameters.

The SmartDashboard in Test mode has support for helping you tune PID controllers by displaying
a form where you can enter new P, I, and D constants and test the mechanism.

FRC Java Programming

Page 186Page 186FRC Java Programming Last Updated: 01-01-2019

../../26401/l/255413?data-resolve-url=true&data-manual-id=26401

Continuous sensors like continuous rotation potentiometersContinuous sensors like continuous rotation potentiometers

The PIDController object can also handle continuous rotation potentiometers as input devices.
When the pot turns through the end of the range the values go from 5V to 0V instantly. The PID
controller method SetContinuous() will set the PID controller to a mode where it will computer the
shortest distance to the desired value which might be through the 5V to 0V transition. This is very
useful for drive trains that use have continuously rotating swerve wheels where moving from 359
degrees to 10 degrees should only be a 11 degree motion, not 349 degrees in the opposite
direction.

The Feed-forward TermThe Feed-forward Term

The Feed-forward term, F, is used to provide a baseline value to the controller based on the
setpoint instead of the error. One use of the feed-forward term is velocity control:

Controlling motor speed is a a little different then position control. Remember, with position
control you are setting the motor value to something related to the error. As the error goes to zero
the motor stops running. If the sensor (an optical encoder for example) is measuring motor speed
as the speed reaches the setpoint, the error goes to zero, and the motor slows down. This causes
the motor to oscillate as it constantly turns on and off. What is needed is a base value of motor
speed called the "Feed-forward" term. The feed-forward constant, F, is multiplied by the setpoint
to provide a baseline value. This 4th value, F, is added in to the output motor voltage
independently of the P, I, and D calculations and is a base speed the motor will run at. The P, I, and
D values adjust the feed forward term (base motor speed) rather than directly control it. The closer
the feed forward term is, the smoother the motor will operate.

Note: The feedforward term is multiplied by the setpoint for the PID controller so that it scales withNote: The feedforward term is multiplied by the setpoint for the PID controller so that it scales with
the desired output speed.the desired output speed.

FRC Java Programming

Page 187Page 187FRC Java Programming Last Updated: 01-01-2019

Using PID controllers in command based robot programsUsing PID controllers in command based robot programs

The easiest way to use PID controllers with command based robot programs is by implementing
PIDSubsystems for all your robot mechanisms. This is simply a subsystem with a PIDController
object built-in and provides a number of convenience methods to access the required PID
parameters. In a command based program, typically commands would provide the setpoint for
different operations, like moving an elevator to the low, medium or high position. In this case, the
isFinished() method of the command would check to see if the embedded PIDController had
reached the target. See the Command based programming section for more information and
examples.

FRC Java Programming

Page 188Page 188FRC Java Programming Last Updated: 01-01-2019

../../13810/c/88685?data-resolve-url=true&data-manual-id=13810

Driver Station Inputs andDriver Station Inputs and
FeedbackFeedback

FRC Java Programming

Page 189Page 189FRC Java Programming Last Updated: 01-01-2019

Driver Station Input OverviewDriver Station Input Overview

The FRC Driver Station software serves as the interface between the human operators and the
robot. The software takes input from a number of sources and forwards it to the robot where
the robot code can act on it to control mechanisms.

Input typesInput types

Input types

The chart above shows the different types of inputs that may be transmitted by the DS software.
The most common input is an HID compliant joystick or gamepad such as the Logitech Attack 3 or
Logitech Extreme 3D Pro joysticks which have been provided in the Kit of Parts since 2009. Note
that a number of devices are now available which allow custom IO to be exposed as a standard
USB HID device such as the The TI Launchpad and 16 Hertz Leonardo++ included in your Kit of
Parts.

Driver Station ClassDriver Station Class

C++C++
DriverStation& ds = DriverStation::GetInstance();
ds.SomeMethod();

DriverStation::GetInstance().SomeMethod();

JavaJava
DriverStation ds = DriverStation.getInstance();
ds.someMethod();

DriverStation.getInstance.someMethod();
The Driver Station class has methods to access information such as the robot mode, battery
voltage, alliance color and team number. Note that while the Driver Station class has methods for
accessing the joystick data, there is another class "Joystick" that provides a much more user

FRC Java Programming

Page 190Page 190FRC Java Programming Last Updated: 01-01-2019

http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Operator_Interface_for_FIRST_Robotics_Competition
http://www.16hertz.com/frc2015/

friendly interface to this data. The DriverStation class is constructed as a singleton by the base
class. To get access to the methods of the DriverStation object constructed by the base class, call
DriverStation.getInstance() and either store the result in a DriverStation object (if using a lot) or call
the method on the instance directly.

Robot ModeRobot Mode

C++C++
bool exampleBool;
exampleBool = IsDisabled();
exampleBool = IsEnabled();
exampleBool = IsAutonomous();
exampleBool = IsOperatorControl();
exampleBool = IsTest();

while(IsOperatorControl() && IsEnabled())
{
}

exampleBool = DriverStation::GetInstance()->IsDisabled();

JavaJava
boolean exampleBool;
exampleBool = isDisabled();
exampleBool = isEnabled();

exampleBool = isAutonomous();
exampleBool = isOperatorControl();
exampleBool = isTest();

while(isOperatorControl() && isEnabled())
{
}

exampleBool = DriverStation.getInstance().isDisabled();
The Driver Station class provides a number of methods for checking the current mode of the
robot, these methods are most commonly used to control program flow when using the
SampleRobot base class. There are two separate pieces of information that define the current

FRC Java Programming

Page 191Page 191FRC Java Programming Last Updated: 01-01-2019

../../13810/l/241853?data-resolve-url=true&data-manual-id=13810

mode, the enable state (enabled/disabled) and the control state(autonomous, operator control,
test). This means that exactly one method from the first group and one method from the second
group should always return true. For example, if the Driver Station is currently set to Test mode
and the robot is disabled the methods isDisabled() and isTest() would both return true. While the
implementation of these methods is in the DriverStation class, the RobotBase class (which the
templates extend from) provides proxies to these methods so they may be used without the class
specification (as shown in the first 3 example groups above). To call these methods from another
class, use the DriverStation instance as shown in the final example.

DS Attached, FMS Attached and System statusDS Attached, FMS Attached and System status

C++C++
bool exampleBool;
exampleBool = DriverStation::GetInstance().IsDSAttached();
exampleBool = DriverStation::GetInstance().IsFMSAttached();
exampleBool = DriverStation::GetInstance().IsSysActive();
exampleBool = DriverStation::GetInstance().IsSysBrownedOut();

JavaJava
boolean exampleBool;
exampleBool = DriverStation.getInstance().isDSAttached();
exampleBool = DriverStation.getInstance().isFMSAttached();
exampleBool = DriverStation.getInstance().isSysActive();
exampleBool = DriverStation.getInstance().isSysBrownedOut();
The DriverStation class also has methods for determining if the DS is connected to the robot, if the
DS is connected to FMSquerying if the FPGA outputs are enabled (IsSysActive), and querying if the
roboRIO is in brownout protection. The FPGA outputs may be disabled for a variety of reasons
including: DS is commanding Disabled or E-Stop, the system watchdog has timed out (generally
because the DS is not communicating with the roboRIO), or the roboRIO is in brownout protection.

Battery VoltageBattery Voltage

C++C++
double voltage = DriverStation::GetInstance().GetBatteryVoltage();

JavaJava
double voltage = DriverStation.getInstance().getBatteryVoltage();

FRC Java Programming

Page 192Page 192FRC Java Programming Last Updated: 01-01-2019

For compatibility purposes the battery voltage can be retrieved using the DriverStation class (it is
now also available from the ControllerPower class as the roboRIO input voltage). This information
can be queried from the DriverStation class in order to perform voltage compensation or actively
manage robot power draw by detecting battery voltage dips and shutting off or limiting non-critical
mechanisms,

AllianceAlliance

C++C++
DriverStation::Alliance color;
color = DriverStation::GetInstance().GetAlliance();
if(color == DriverStation::Alliance::kBlue){
}

JavaJava
DriverStation.Alliance color;
color = DriverStation.getInstance().getAlliance();
if(color == DriverStation.Alliance.kBlue){
}
The DriverStation class can provide information on what alliance color the robot is. When
connected to FMS this is the alliance color communicated to the DS by the field. When not
connected, the alliance color is determined by the Team Station dropdown box on the Operation
tab of the DS software.

LocationLocation

C++C++
int station;
station = DriverStation::GetInstance.GetLocation();

JavaJava
int station;
station = DriverStation.getInstance().getLocation();
The getLocation() method of the Driver Station returns an integer indicating which station number
the Driver Station is in (1-3). Note that the station that the DS and controls are located in is not
typically related to the starting position of the robot so this information may be of limited use.

FRC Java Programming

Page 193Page 193FRC Java Programming Last Updated: 01-01-2019

When not connected to the FMS software this state is determined by the Team Station dropdown
on the DS Operation tab.

Match TimeMatch Time

C++C++
double time;
time = DriverStation::GetInstance.GetMatchTime();

JavaJava
double time;
time = DriverStation.getInstance().getMatchTime();
This method returns the approximate time remaining in the current period (auto, teleop, etc.) in
seconds. Note that this time is derived from the FMS, however due to various latencies involved it
is not an official timernot an official timer. The Driver Station's Practice Match functionality will approximate the
behavior of this method when connected to FMS. Running the DS directly in Autonomous or
Teleop mode will behave differently with respect to this method.

FRC Java Programming

Page 194Page 194FRC Java Programming Last Updated: 01-01-2019

JoysticksJoysticks

The standard input device supported by the WPI Robotics Library is a USB joystick or gamepad.
The Logitech Attack 3 joystick provided in the KOP from 2009-2012 comes equipped with
eleven digital input buttons and three analog axes, and interfaces with the robot through the
Joystick class. The Joystick class itself supports joysticks with more capabilities as well such as
the Logitech Extreme 3D Pro included in the 2013 KOP which has 4 analog axes and 12
buttons. Note that the rest of this article exclusively uses the term joystick but can also be
referring to a HID compliant USB gamepad.

USB connectionUSB connection

The joystick must be connected to one of the available USB ports on the driver station. The startup
routine will read whatever position the joysticks are in as the center position, therefore, when the
station is turned on the joysticks must be at their center position. In general the Driver Station
software will try to preserve the ordering of devices between runs but it is a good idea to note
what order your devices should be in and check each time you start the Driver Station software
that they are correct. This can be done by selecting the USB Devices tab and viewing the order in
the USB Setup box on the left hand side. Pressing a button on a joystick will cause its entry in the
table to light up blue and have asterisks appear after the name. To reorder the joysticks simply
click and drag.

FRC Java Programming

Page 195Page 195FRC Java Programming Last Updated: 01-01-2019

Joystick RefreshJoystick Refresh

When the Driver Station is in disabled mode it is routinely looking for status changes on the
joystick devices, unplugged devices are removed from the list and new devices are opened and
added. When not connected to the FMS, unplugging a joystick will force the Driver Station into
disabled mode. To start using the joystick again plug the joystick back in, check that it shows up in
the right spot, then re-enable the robot. While the Driver Station is in enabled mode it will not scan
for new devices as this is a time consuming operation and timely update of signals from attached
devices takes priority.

When the robot is connected to the Field Management System at competition the Driver Station
mode is dictated by the FMS. This means that you cannot disable your robot and the DS cannot
disable itself in order to detect joystick changes. A manual complete refresh of the joysticks can be
initiated by pressing the F1 key on the keyboard. Note that this will close and re-open all devices so
all devices should be in their center position as noted above.

Constructing a Joystick ObjectConstructing a Joystick Object

C++

Joystick *exampleStick

public:
Robot(){
}
void RobotInit() {

exampleStick = new Joystick(1);
}

Java

exampleStick = new Joystick(1);

FRC Java Programming

Page 196Page 196FRC Java Programming Last Updated: 01-01-2019

The primary constructor for the Joystick class takes a single parameter representing the port
number of the Joystick, this is the number (1-6) next to the joystick in the Driver Station software's
Joystick Setup box (shown in the first image). There is also a constructor which takes additional
parameters of the number of axes and buttons and can be used with the get and set axis channel
methods to create subclasses of Joystick to use with specific devices.

Accessing Joystick Values - Option 1Accessing Joystick Values - Option 1

C++

double value;
value = exampleStick->GetX();
value = exampleStick->GetY();
value = exampleStick->GetZ();
value = exampleStick->GetThrottle();
value = exampleStick->GetTwist();

boolean buttonValue;
buttonValue = exampleStick->GetTop();
buttonValue = exampleStick->GetTrigger();

Java

double value;
value = exampleStick.getX();
value = exampleStick.getY();
value = exampleStick.getZ();
value = exampleStick.getThrottle();
value = exampleStick.getTwist();

FRC Java Programming

Page 197Page 197FRC Java Programming Last Updated: 01-01-2019

boolean buttonValue;
buttonValue = exampleStick.getTop();
buttonValue = exampleStick.getTrigger();

There are two ways to access the current values of a joystick object. The first way is by using the
set of named accessor methods or the getAxis method. The Joystick class contains the default
mapping of these methods to the proper axes of the joystick for the KOP joystick. If you are using a
another device you can subclass Joystick and use the setAxisChannel method to set the proper
mappings if you wish to use these methods. Note that there are only named accessor methods for
5 of the 6 possible axes and 2 of the possible twelve buttons, if you need access to other axes or
buttons, see Option 2 below.

Joystick axes return a scaled value in the range 1,-1 and buttons return a boolean value indicating
their triggered state. Note that the typical convention for joysticks and gamepads is for Y to be
negative as they joystick is pushed away from the user, "forward", and for X to be positive as the
joystick is pushed to the right. To check this for a given device, see the section below on
"Determining Joystick Mapping".

Accessing Joystick Values - Option 2Accessing Joystick Values - Option 2

C++

double value;
value = exampleStick->GetRawAxis(2);

boolean buttonValue;
buttonValue = exampleStick->GetRawButton(1);

Java

double value;
value = exampleStick.getRawAxis(1);

FRC Java Programming

Page 198Page 198FRC Java Programming Last Updated: 01-01-2019

boolean buttonValue;
buttonValue = exampleStick.getRawButton(2);

The second way to access joystick values is to use the methods getRawAxis() and getRawButton().
These methods take an integer representing the axis or button number as a parameter and return
the corresponding value. For a method to determine the mapping between the physical axes and
buttons of your device and the appropriate channel number see the section "Determining Joystick
Mapping" below.

Polar methodsPolar methods

C++

double value;
value = exampleStick->GetDirectionDegrees();
value = exampleStick->GetDirectionRadians();
value = exampleStick->GetMagnitude();

Java

double value;
value = exampleStick.getDirectionDegrees();
value = exampleStick.getDirectionRadians();
value = exampleStick.getMagnitude();

The Joystick class also contains helper methods for converting the joystick input to a polar
coordinate system. For these methods to work properly, getX and getY have to return the proper
axis (remap with setChannel() if necessary).

FRC Java Programming

Page 199Page 199FRC Java Programming Last Updated: 01-01-2019

Determining Joystick MappingDetermining Joystick Mapping

The 2015 FRC Driver Station contains indicators of the values of axes buttons and the POV that can
be used to determine the mapping between physical joystick features and axis or button numbers.
Simply click the joystick in the list to select it and the indicators will begin responding to the joystick
input.

FRC Java Programming

Page 200Page 200FRC Java Programming Last Updated: 01-01-2019

Displaying Data on the DS - Dashboard OverviewDisplaying Data on the DS - Dashboard Overview

Often it is desirable to get feedback from the robot back to the drivers. The communications
protocol between the robot and the driver station includes provisions for sending program
specific data. The program at the driver station that receives the data is called the dashboard.

Network Tables - What is it?Network Tables - What is it?

Network Tables is the name of the client-server protocol used to share variables across software in
FRC. The robot acts as the Network Tables server and software which wishes to communicate with
it connects as clients. The most common Network Tables client is the dashboard.

Smart DashboardSmart Dashboard

The term Smart Dashboard originally referred to the Java dashboard client first released in 2011.
This client used the Network Tables protocol to automatically populate indicators to match the
data entered into Network Tables on the robot side. Since then the term has been blurred a bit as
the LabVIEW dashboard has also converted over to using Network Tables. Additional information
on SmartDashboard can be found in the SmartDashboard Manual.

More information on the LabVIEW Dashboard, including an article about using the LabVIEW
Dashboard with C++ or Java code can be found in the FRC Driver Station manual.

FRC Java Programming

Page 201Page 201FRC Java Programming Last Updated: 01-01-2019

../../26401?data-resolve-url=true&data-manual-id=26401
../../24192?data-resolve-url=true&data-manual-id=24192

Command based programmingCommand based programming

FRC Java Programming

Page 202Page 202FRC Java Programming Last Updated: 01-01-2019

What is Command based programming?What is Command based programming?

WPILib supports a method of writing programs called "Command based programming".
Command based programming is a design pattern to help you organize your robot programs.
Some of the characteristics of robot programs that might be different from other desktop
programs are:

• Activities happen over time, for example a sequence of steps to shoot a Frisbee or raise an
elevator and place a tube on a goal.

• These activities occur concurrently, that is it might be desirable for an elevator, wrist and
gripper to all be moving into a pickup position at the same time to increase robot
performance.

• It is desirable to test the robot mechanisms and activities each individually to help debug
your robot.

• Often the program needs to be augmented with additional autonomous programs at the
last minute, perhaps at competitions, so easily extendable code is important.

Command based programming supports all these goals easily to make the robot program
much simpler than using some less structured technique.

Commands and subsystemsCommands and subsystems

Programs based on the WPILib library are organized around two fundamental concepts:
SubsystemsSubsystems and CommandsCommands.

FRC Java Programming

Page 203Page 203FRC Java Programming Last Updated: 01-01-2019

SubsystemsSubsystems - define the capabilities of each part of the robot and are subclasses of Subsystem.

CommandsCommands - define the operation of the robot incorporating the capabilities defined in the
subsystems. Commands are subclasses of Command or CommandGroup. Commands run when
scheduled or in response to buttons being pressed or virtual buttons from the SmartDashboard.

How commands workHow commands work

Commands let you break up the tasks of operating the robot into small chunks. Each command
has an execute() method that does some work and an isFinished() method that tells if it is done.
This happens on every update from the driver station or about every 20ms. Commands can be
grouped together and executed sequentially, starting the next one in the group as the previous
one finishes.

FRC Java Programming

Page 204Page 204FRC Java Programming Last Updated: 01-01-2019

ConcurrencyConcurrency

Sometimes it is desirable to have several operations happening concurrently. In the previous
example you might want to set the wrist position while the elevator is moving up. In this case a
command group can start a parallel command (or command group) running.

FRC Java Programming

Page 205Page 205FRC Java Programming Last Updated: 01-01-2019

How It Works - Scheduling CommandsHow It Works - Scheduling Commands

There are three main ways commands are scheduled:

1. Manually, by calling the start() method on the command (used for autonomous)
2. Automatically by the scheduler based on button/trigger actions specified in the code (typically

defined in the OI class but checked by the Scheduler).
3. Automatically when a previous command completes (default commands and command

groups).

Each time the driver station gets new data, the periodic method of your robot program is called. It
runs a Scheduler that checks the trigger conditions to see if any commands need to be scheduled
or canceled.

When a command is scheduled, the Scheduler checks to make sure that no other commands are
using the same subsystems that the new command requires. If one or more of the subsystems is
currently in use, and the current command is interruptible, it will be interrupted and the new
command will be scheduled. If the current command is not interruptible, the new command will
fail to be scheduled.

FRC Java Programming

Page 206Page 206FRC Java Programming Last Updated: 01-01-2019

../../13810/l/241905?data-resolve-url=true&data-manual-id=13810
../../13810/l/241904?data-resolve-url=true&data-manual-id=13810
../../13810/l/241907?data-resolve-url=true&data-manual-id=13810
../../13810/l/241903?data-resolve-url=true&data-manual-id=13810
../../13810/l/241903?data-resolve-url=true&data-manual-id=13810

How It Works - Running CommandsHow It Works - Running Commands

After checking for new commands, the scheduler proceeds through the list of active commands
and calls the execute() and isFinished() methods on each command. Notice that the apparent
concurrent execution is done without the use of threads or tasks which would add complexity to
the program. Each command simply has some code to execute (execute method) to move it
further along towards its goal and a method (isFinished) that determines if the command has
reached the goal. The execute and isFinished methods are just called repeatedly.

FRC Java Programming

Page 207Page 207FRC Java Programming Last Updated: 01-01-2019

Command groupsCommand groups

More complex commands can be built up from simpler commands. For example, shooting a disc
may be a long sequence of commands that are executed one after another. Maybe some of these
commands in the sequence can be executed concurrently. Command groups are commands, but
instead of having an isFinished and execute method, they have a list of other commands to
execute. This allows more complex operations to be built up out of simpler operations, a basic
principle in programming. Each of the individual smaller commands can be easily tested first, then
the group can be tested. More information on command groups can be found in the Creating
groups of commands article.

FRC Java Programming

Page 208Page 208FRC Java Programming Last Updated: 01-01-2019

../../13810/l/241903?data-resolve-url=true&data-manual-id=13810
../../13810/l/241903?data-resolve-url=true&data-manual-id=13810

Creating a robot projectCreating a robot project

Create a command-based robot project by using one of the template projects that are
provided with the VSCode plugins.

Creating a project is detailed in Creating a robot program. Select "Template" then "Command
Robot" to create a basic Command Based Robot program. Alternately you can use RobotBuilder to
create the framework of your Command Based Robot project as detailed in RobotBuilder.

FRC Java Programming

Page 209Page 209FRC Java Programming Last Updated: 01-01-2019

http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/1027506-creating-a-robot-program
http://wpilib.screenstepslive.com/s/currentCS/m/robotbuilder

Adding Commands and Subsystems to theAdding Commands and Subsystems to the
projectproject

Commands and Subsystems each are created as classes. The plugin has built-in templates for
both Commands and Subsystems to make it easier for you to add them to your program.

Adding subsystems to the projectAdding subsystems to the project

To add a subsystem, right-click on the desired folder and select Create a new class/commandCreate a new class/command in
the drop down menu. Then select SubsystemSubsystem or PID Subsystem.PID Subsystem.

FRC Java Programming

Page 210Page 210FRC Java Programming Last Updated: 01-01-2019

Naming the subsystemNaming the subsystem

Fill in a name for the subsystem. This will become the resultant class name for the subsystem so
the name has to be a valid class name for your language.

Subsystem created in projectSubsystem created in project

You can see the new subsystem created in the Subsystems folder in the project. To learn more
about creating subsystems, see the Simple Subsystems article.

FRC Java Programming

Page 211Page 211FRC Java Programming Last Updated: 01-01-2019

Adding a command to the projectAdding a command to the project

A command can be created for the project using steps similar to creating a subsystem. First right-
click on the folder name in the project, then select Create a new class/commandCreate a new class/command in the drop down
menu. Then select Command, Instant Command, TimedCommand or Trigger:Command, Instant Command, TimedCommand or Trigger:

• Command -Command - A basic command that operates on a subsystem
• Instant Command -Instant Command - A command that runs and completes instantly
• Timed Command -Timed Command - A command that runs for a specified time duration
• Trigger -Trigger - A command that is easily tied to a button input on a joystick.

Set the command nameSet the command name

FRC Java Programming

Page 212Page 212FRC Java Programming Last Updated: 01-01-2019

Enter the Command name into the dialog box. This will be the class name for the Command so it
must be a valid class name for your language.

Command created in the projectCommand created in the project

You can see that the Command has been created in the Commands folder in the project in the
Project Explorer window. To learn more about creating commands, see the Creating Simple
Commands article.

FRC Java Programming

Page 213Page 213FRC Java Programming Last Updated: 01-01-2019

Simple subsystemsSimple subsystems

Subsystems are the parts of your robot that are independently controlled like collectors,
shooters, drive bases, elevators, arms, wrists, grippers, etc. Each subsystem is coded as an
instance of the Subsystem class. Subsystems should have methods that define the operation
of the actuators and sensors but not more complex behavior that happens over time.

Creating a subsystemCreating a subsystem

Java

import edu.wpi.first.wpilibj.*;
import edu.wpi.first.wpilibj.command.Subsystem;
import org.usfirst.frc.team1.robot.RobotMap;

public class Claw extends Subsystem {

Victor motor = RobotMap.clawMotor;

public void initDefaultCommand() {
}

public void open() {
motor.set(1);

}

public void close() {
motor.set(-1);

}

public void stop() {
motor.set(0);

}
}

FRC Java Programming

Page 214Page 214FRC Java Programming Last Updated: 01-01-2019

This is an example of a fairly straightforward subsystem that operates a claw on a robot. The claw
mechanism has a single motor to open or close the claw and no sensors (not necessarily a good
idea in practice, but works for the example). The idea is that the open and close operations are
simply timed. There are three methods, open(), close(), and stop() that operate the claw motor.
Notice that there is not specific code that actually checks if the claw is opened or closed. The open
method gets the claw moving in the open direction and the close method gets the claw moving in
the close direction. Use a command to control the timing of this operation to make sure that the
claw opens and closes for a specific period of time.

Operating the claw with a commandOperating the claw with a command

Java

package org.usfirst.frc.team1.robot.commands;

import edu.wpi.first.wpilibj.command.Command;
import org.usfirst.frc.team1.robot.Robot;
/**
*
*/

public class OpenClaw extends Command {

public OpenClaw() {
requires(Robot.claw);
setTimeout(.9);

}

protected void initialize() {
Robot.claw.open()

}

protected void execute() {
}

FRC Java Programming

Page 215Page 215FRC Java Programming Last Updated: 01-01-2019

protected boolean isFinished() {
return isTimedOut();

}

protected void end() {
Robot.claw.stop();

}

protected void interrupted() {
end();

}
}

Commands provide the timing of the subsystems operations. Each command would do a different
operation with the subsystem, the Claw in this case. The commands provides the timing for
opening or closing. Here is an example of a simple Command that controls the opening of the
claw. Notice that a timeout is set for this command (0.9 seconds) to time the opening of the claw
and a check for the time in the isFinished() method. You can find more details in the article about
using commands.

FRC Java Programming

Page 216Page 216FRC Java Programming Last Updated: 01-01-2019

PIDSubsystems for built-in PID controlPIDSubsystems for built-in PID control

If a mechanism uses a sensor for feedback then most often a PID controller will be used to
control the motor speed or position. Examples of subsystems that might use PID control are:
elevators with potentiometers to track the height, shooters with encoders to measure the
speed, wrists with potentiometers to measure the joint angle, etc.

There is a PIDController class built into WPILib, but to simplify its use for command based
programs there is a PIDSubsystem. A PIDSubsystem is a normal subsystem with the
PIDController built in and exposes the required methods for operation.

A PIDSubsystem to control the angle of a wrist jointA PIDSubsystem to control the angle of a wrist joint

In this example you can see the basic elements of a PIDSubsystem for the wrist joint:

Java

package org.usfirst.frc.team1.robot.subsystems;
import edu.wpi.first.wpilibj.*;
import edu.wpi.first.wpilibj.command.PIDSubsystem;
import org.usfirst.frc.team1.robot.RobotMap;

public class Wrist extends PIDSubsystem { // This system extends PIDSubsystem

Victor motor = RobotMap.wristMotor;
AnalogInput pot = RobotMap.wristPot();

public Wrist() {
super("Wrist", 2.0, 0.0, 0.0);// The constructor passes a name for the

subsystem and the P, I and D constants that are used when computing the motor output
setAbsoluteTolerance(0.05);
getPIDController().setContinuous(false);

}

FRC Java Programming

Page 217Page 217FRC Java Programming Last Updated: 01-01-2019

public void initDefaultCommand() {
}

protected double returnPIDInput() {
return pot.getAverageVoltage(); // returns the sensor value that is providing

the feedback for the system
}

protected void usePIDOutput(double output) {
motor.pidWrite(output); // this is where the computed output value fromthe

PIDController is applied to the motor
}

}

FRC Java Programming

Page 218Page 218FRC Java Programming Last Updated: 01-01-2019

Creating Simple CommandsCreating Simple Commands

This article describes the basic format of a Command and walks through an example of
creating a command to drive your robot with Joysticks.

Basic Command FormatBasic Command Format

To implement a command, a number of methods are overridden from the WPILib Command class.
Most of the methods are boiler plate and can often be ignored, but are there for maximum
flexibility when you need it. There a number of parts to this basic command class:

C++

#include "MyCommandName.h"

/*
* 1. Constructor - Might have parameters for this command such as target

positions of devices. Should also set the name of the command for debugging purposes.
* This will be used if the status is viewed in the dashboard. And the command

should require (reserve) any devices is might use.
*/

MyCommandName::MyCommandName() : CommandBase("MyCommandName")
{

Requires(Elevator);
}

// initialize() - This method sets up the command and is called immediately before the
command is executed for the first time and
// every subsequent time it is started . Any initialization code should be here.
void MyCommandName::Initialize()
{

}

/*

FRC Java Programming

Page 219Page 219FRC Java Programming Last Updated: 01-01-2019

* execute() - This method is called periodically (about every 20ms) and does the
work of the command. Sometimes, if there is a position a
* subsystem is moving to, the command might set the target position for the subsystem in

initialize() and have an empty execute() method.
*/

void MyCommandName::Execute()
{

}

bool MyCommandName::IsFinished()
{

return false;
}

void MyCommandName::End()
{

}

// Make this return true when this Command no longer needs to run execute()
void MyCommandName::Interrupted()
{

}

Java

public class MyCommandName extends Command {

/*
* 1. Constructor - Might have parameters for this command such as target

positions of devices. Should also set the name of the command for debugging purposes.
* This will be used if the status is viewed in the dashboard. And the command

should require (reserve) any devices is might use.
*/

FRC Java Programming

Page 220Page 220FRC Java Programming Last Updated: 01-01-2019

public MyCommandName() {
super("MyCommandName");

requires(elevator);
}

// initialize() - This method sets up the command and is called immediately
before the command is executed for the first time and every subsequent time it is started .

// Any initialization code should be here.
protected void initialize() {
}

/*
* execute() - This method is called periodically (about every 20ms) and does

the work of the command. Sometimes, if there is a position a
* subsystem is moving to, the command might set the target position for the

subsystem in initialize() and have an empty execute() method.
*/

protected void execute() {
}

// Make this return true when this Command no longer needs to run execute()
protected boolean isFinished() {

return false;
}

}

Simple Command ExampleSimple Command Example

This example illustrates a simple command that will drive the robot using tank drive with values
provided by the joysticks.

C++

#include "DriveWithJoysticks.h"
#include "RobotMap.h"

FRC Java Programming

Page 221Page 221FRC Java Programming Last Updated: 01-01-2019

DriveWithJoysticks::DriveWithJoysticks() : CommandBase("DriveWithJoysticks")
{

Requires(Robot::drivetrain); // Drivetrain is our instance of the drive system
}

// Called just before this Command runs the first time
void DriveWithJoysticks::Initialize()
{

}

/*
* execute() - In our execute method we call a tankDrive method we have created in our

subsystem. This method takes two speeds as a parameter which we get from methods in the OI
class.

* These methods abstract the joystick objects so that if we want to change how we get
the speed later we can do so without modifying our commands

* (for example, if we want the joysticks to be less sensitive, we can multiply them
by .5 in the getLeftSpeed method and leave our command the same).

*/
void DriveWithJoysticks::Execute()
{

Robot::drivetrain->Drive(Robot::oi->GetJoystick());
}

/*
* isFinished - Our isFinished method always returns false meaning this command never

completes on it's own. The reason we do this is that this command will be set as the
default command for the subsystem. This means that whenever the subsystem is not running
another command, it will run this command. If any other command is scheduled it will
interrupt this command, then return to this command when the other command completes.

*/
bool DriveWithJoysticks::IsFinished()
{

return false;
}

void DriveWithJoysticks::End()
{

FRC Java Programming

Page 222Page 222FRC Java Programming Last Updated: 01-01-2019

Robot::drivetrain->Drive(0, 0);
}

// Called when another command which requires one or more of the same
// subsystems is scheduled to run
void DriveWithJoysticks::Interrupted()
{

End();
}

Java

public class DriveWithJoysticks extends Command {

public DriveWithJoysticks() {
requires(drivetrain);// drivetrain is an instance of our Drivetrain subsystem

}

protected void initialize() {
}

/*
* execute() - In our execute method we call a tankDrive method we have created in our

subsystem. This method takes two speeds as a parameter which we get from methods in the OI
class.

* These methods abstract the joystick objects so that if we want to change how we get
the speed later we can do so without modifying our commands

* (for example, if we want the joysticks to be less sensitive, we can multiply them
by .5 in the getLeftSpeed method and leave our command the same).

*/
protected void execute() {

drivetrain.tankDrive(oi.getLeftSpeed(), oi.getRightSpeed());
}

/*
* isFinished - Our isFinished method always returns false meaning this command never

FRC Java Programming

Page 223Page 223FRC Java Programming Last Updated: 01-01-2019

completes on it's own. The reason we do this is that this command will be set as the
default command for the subsystem. This means that whenever the subsystem is not running
another command, it will run this command. If any other command is scheduled it will
interrupt this command, then return to this command when the other command completes.

*/
protected boolean isFinished() {

return false;
}

protected void end() {
}

protected void interrupted() {
}

}

FRC Java Programming

Page 224Page 224FRC Java Programming Last Updated: 01-01-2019

Creating groups of commandsCreating groups of commands

Once you have created commands to operate the mechanisms in your robot, they can be
grouped together to get more complex operations. These groupings of commands are called
CommandGroups and are easily defined as shown in this article.

Creating a command to do a complex operationCreating a command to do a complex operation

C++

#include "PlaceSoda.h"

PlaceSoda::PlaceSoda()
{

AddSequential(new SetElevatorSetpoint(TABLE_HEIGHT));
AddSequential(new SetWristSetpoint(PICKUP));
AddSequential(new OpenClaw());

}

Java

public class PlaceSoda extends CommandGroup {

public PlaceSoda() {
addSequential(new SetElevatorSetpoint(Elevator.TABLE_HEIGHT));
addSequential(new SetWristSetpoint(Wrist.PICKUP));
addSequential(new OpenClaw());

}
}

FRC Java Programming

Page 225Page 225FRC Java Programming Last Updated: 01-01-2019

This is an example of a command group that places a soda can on a table. To accomplish this, (1)
the robot elevator must move to the "TABLE_HEIGHT", then (2) set the wrist angle, then (3) open
the claw. All of these tasks must run sequentially to make sure that the soda can isn't dropped.
The addSequential() method takes a command (or a command group) as a parameter and will
execute them one after another when this command is scheduled.

Running commands in parallelRunning commands in parallel

C++

#include "PrepareToGrab.h"

PrepareToGrab::PrepareToGrab()
{

AddParallel(new SetWristSetpoint(PICKUP));
AddParallel(new SetElevatorSetpoint(BOTTOM));
AddParallel(new OpenClaw());

}

Java

public class PrepareToGrab extends CommandGroup {

public PrepareToGrab() {
addParallel(new SetWristSetpoint(Wrist.PICKUP));
addParallel(new SetElevatorSetpoint(Elevator.BOTTOM));
addParallel(new OpenClaw());

}
}

FRC Java Programming

Page 226Page 226FRC Java Programming Last Updated: 01-01-2019

To make the program more efficient, often it is desirable to run multiple commands at the same
time. In this example, the robot is getting ready to grab a soda can. Since the robot isn't holding
anything, all the joints can move at the same time without worrying about dropping anything. Here
all the commands are run in parallel so all the motors are running at the same time and each
completes whenever the isFinished() method is called. The commands may complete out of order.
The steps are: (1) move the wrist to the pickup setpoint, then (2) move the elevator to the floor
pickup position, and (3) open the claw.

Mixing parallel and sequential commandsMixing parallel and sequential commands

C++

#include "Grab.h"

Grab::Grab()
{

AddSequential(new CloseClaw());
AddParallel(new SetElevatorSetpoint(STOW));
AddSequential(new SetWristSetpoint(STOW));

}

Java

public class Grab extends CommandGroup {

public Grab() {
addSequential(new CloseClaw());
addParallel(new SetElevatorSetpoint(Elevator.STOW));
addSequential(new SetWristSetpoint(Wrist.STOW));

}

FRC Java Programming

Page 227Page 227FRC Java Programming Last Updated: 01-01-2019

}

Often there are some parts of a command group that must complete before other parts run. In
this example, a soda can is grabbed, then the elevator and wrist can move to their stowed
positions. In this case, the wrist and elevator have to wait until the can is grabbed, then they can
operate independently. The first command (1) CloseClaw grabs the soda and nothing else runs
until it is finished since it is sequential, then the (2) elevator and (3) wrist move at the same time.

FRC Java Programming

Page 228Page 228FRC Java Programming Last Updated: 01-01-2019

Running commands on Joystick inputRunning commands on Joystick input

You can cause commands to run when joystick buttons are pressed, released, or continuously
while the button is held down. This is extremely easy to do only requiring a few lines of code.

The OI ClassThe OI Class

The command based template contains a class called OI, located in OI.java, where Operator
Interface behaviors are typically defined. If you are using RobotBuilder this file can be found in the
org.usfirst.frc####.NAME package

Create the Joystick object and JoystickButton objectsCreate the Joystick object and JoystickButton objects

C++

OI::OI()
{

joy = new Joystick(1);

JoystickButton* button1 = new JoystickButton(joy, 1),
button2 = new JoystickButton(joy, 2),
button3 = new JoystickButton(joy, 3),
button4 = new JoystickButton(joy, 4),
button5 = new JoystickButton(joy, 5),
button6 = new JoystickButton(joy, 6),
button7 = new JoystickButton(joy, 7),
button8 = new JoystickButton(joy, 8);

FRC Java Programming

Page 229Page 229FRC Java Programming Last Updated: 01-01-2019

}

Java

public class OI {
// Create the joystick and the 8 buttons on it

Joystick leftJoy = new Joystick(1);
Button button1 = new JoystickButton(leftJoy, 1),

button2 = new JoystickButton(leftJoy, 2),
button3 = new JoystickButton(leftJoy, 3),
button4 = new JoystickButton(leftJoy, 4),
button5 = new JoystickButton(leftJoy, 5),
button6 = new JoystickButton(leftJoy, 6),
button7 = new JoystickButton(leftJoy, 7),
button8 = new JoystickButton(leftJoy, 8);

}

In this example there is a Joystick object connected as Joystick 1. Then 8 buttons are defined on
that joystick to control various aspects of the robot. This is especially useful for testing although
generating buttons on SmartDashboard is another alternative for testing commands.

Associate the buttons with commandsAssociate the buttons with commands

C++

button1->WhenPressed(new PrepareToGrab());
button2->WhenPressed(new Grab());
button3->WhenPressed(new DriveToDistance(0.11));
button4->WhenPressed(new PlaceSoda());
button6->WhenPressed(new DriveToDistance(0.2));

FRC Java Programming

Page 230Page 230FRC Java Programming Last Updated: 01-01-2019

button8->WhenPressed(new Stow());

button7->WhenPressed(new SodaDelivery());

Java

public OI() {
button1.whenPressed(new PrepareToGrab());
button2.whenPressed(new Grab());
button3.whenPressed(new DriveToDistance(0.11));
button4.whenPressed(new PlaceSoda());
button6.whenPressed(new DriveToDistance(0.2));
button8.whenPressed(new Stow());

button7.whenPressed(new SodaDelivery());
}

In this example most of the joystick buttons from the previous code fragment are associated with
commands. When the associated button is pressed the command is run. This is an excellent way
to create a teleop program that has buttons to do particular actions.

Other optionsOther options

In addition to the "whenPressed()" condition showcased above, there are a few other conditions
you can use to link buttons to commands:

• Commands can run when a button is released by using whenReleased() instead of
whenPressed().

• Commands can run continuously while the button is depressed by calling whileHeld().
• Commands can be toggled when a button is pressed using toggleWhenPressed().
• A command can be canceled when a button is pressed using cancelWhenPressed().

FRC Java Programming

Page 231Page 231FRC Java Programming Last Updated: 01-01-2019

Additionally commands can be triggered by arbitrary conditions of your choosing by using the
Trigger class instead of Button. Triggers (and Buttons) are usually polled every 20ms or whenever
the scheduler is called.

FRC Java Programming

Page 232Page 232FRC Java Programming Last Updated: 01-01-2019

Running commands during the autonomousRunning commands during the autonomous
periodperiod

Once commands are defined they can run in either the teleop or autonomous part of the
program. In fact, the power of the command based programming approach is that you can
reuse the same commands in either place. If the robot has a command that can shoot Frisbees
during autonomous with camera aiming and accurate shooting, there is no reason not to use it
to help the drivers during the teleop period of the game.

Creating a command to use for AutonomousCreating a command to use for Autonomous

C++

button1->WhenPressed(new PrepareToGrab());
button2->WhenPressed(new Grab());
button3->WhenPressed(new DriveToDistance(0.11));
button4->WhenPressed(new PlaceSoda());
button6->WhenPressed(new DriveToDistance(0.2));
button8->WhenPressed(new Stow());

button7->WhenPressed(new SodaDelivery());

Java

public OI() {
button1.whenPressed(new PrepareToGrab());
button2.whenPressed(new Grab());
button3.whenPressed(new DriveToDistance(0.11));
button4.whenPressed(new PlaceSoda());

FRC Java Programming

Page 233Page 233FRC Java Programming Last Updated: 01-01-2019

button6.whenPressed(new DriveToDistance(0.2));
button8.whenPressed(new Stow());

button7.whenPressed(new SodaDelivery());
}

Our robot must do the following tasks during the autonomous period: pick up a soda can off the
floor then drive a set distance from a table and deliver the can there. The process consists of:

1. Prepare to grab (move elevator, wrist, and gripper into position)
2. Grab the soda can
3. Drive to a distance from the table indicated by an ultrasonic rangefinder
4. Place the soda
5. Back off to a distance from the rangefinder
6. Re-stow the gripper

To do these tasks there are 6 command groups that are executed sequentially as shown in this
example.

Setting that command to run as the autonomous behaviorSetting that command to run as the autonomous behavior

C++

Command* autonomousCommand;

class Robot: public IterativeRobot {

/**
* This function is run when the robot is first started up and should be
* used for any initialization code.
*/

void RobotInit()
{
// instantiate the command used for the autonomous period

autonomousCommand = new SodaDelivery();
oi = new OI();

FRC Java Programming

Page 234Page 234FRC Java Programming Last Updated: 01-01-2019

}

void AutonomousInit()
{
// schedule the autonomous command (example)

if(autonomousCommand != NULL) autonomousCommand->Start();
}
/*
* This function is called periodically during autonomous
*/

void AutonomousPeriodic()
{

Scheduler::GetInstance()->Run();
}

Java

public class Robot extends IterativeRobot {

Command autonomousCommand;

/**
* This function is run when the robot is first started up and should be
* used for any initialization code.
*/

public void robotInit() {
oi = new OI();

// instantiate the command used for the autonomous period
autonomousCommand = new SodaDelivery();

}

public void autonomousInit() {

FRC Java Programming

Page 235Page 235FRC Java Programming Last Updated: 01-01-2019

// schedule the autonomous command (example)
if (autonomousCommand != null) autonomousCommand.start();

}

/**
* This function is called periodically during autonomous
*/

public void autonomousPeriodic() {
Scheduler.getInstance().run();

}

To get the SodaDelivery command to run as the Autonomous program,

1. Instantiate it in the RobotInit() method. RobotInit() is called only once when the robot starts so it
is a good time to create the command instance.

2. Start it during the AutonomousInit() method. AutonomousInit() is called once at the start of the
autonomous period so we schedule the command there.

3. Be sure the scheduler is called repeatedly during the AutonomousPeriodic() method.
AutonomousPeriodic() is called (nominally) every 20ms so that is a good time to run the

scheduler which makes a pass through all the currently scheduled commands.

FRC Java Programming

Page 236Page 236FRC Java Programming Last Updated: 01-01-2019

Converting a Simple Autonomous program to aConverting a Simple Autonomous program to a
Command based autonomous programCommand based autonomous program

The initial autonomous code with loopsThe initial autonomous code with loops

C++

// Aim shooter
SetTargetAngle(); // Initialization: prepares for the action to be performed
while (!AtRightAngle()) { // Condition: keeps the loop going while it is satisfied

CorrectAngle(); // Execution: repeatedly updates the code to try to make the
condition false

delay(); // Delay to prevent maxing CPU
}
HoldAngle(); // End: performs any cleanup and final task before moving on to the next
action

// Spin up to Speed
SetTargetSpeed(); // Initialization: prepares for the action to be performed
while (!FastEnough()) { // Condition: keeps the loop going while it is satisfied

SpeedUp(); // Execution: repeatedly updates the code to try to make the condition
false

delay(); // Delay to prevent maxing CPU
}
HoldSpeed();

// Shoot Frisbee
Shoot(); // End: performs any cleanup and final task before moving on to the next action
}

Java

// Aim shooter

FRC Java Programming

Page 237Page 237FRC Java Programming Last Updated: 01-01-2019

SetTargetAngle(); // Initialization: prepares for the action to be performed
while (!AtRightAngle()) { // Condition: keeps the loop going while it is satisfied

CorrectAngle(); // Execution: repeatedly updates the code to try to make the
condition false

delay(); // Delay to prevent maxing CPU
}
HoldAngle(); // End: performs any cleanup and final task before moving on to the next
action

// Spin up to Speed
SetTargetSpeed(); // Initialization: prepares for the action to be performed
while (!FastEnough()) { // Condition: keeps the loop going while it is satisfied

SpeedUp(); // Execution: repeatedly updates the code to try to make the condition
false

delay(); // Delay to prevent maxing CPU
}
HoldSpeed();

// Shoot Frisbee
Shoot(); // End: performs any cleanup and final task before moving on to the next action
}

The code above aims a shooter, then it spins up a wheel and, finally, once the wheel is running at
the desired speed, it shoots the frisbee. The code consists of three distinct actions: aim, spin up to
speed and shoot the Frisbee. The first two actions follow a command pattern that consists of four
parts:

1. Initialization: prepares for the action to be per- formed.

2. Condition: keeps the loop going while it is satisfied.

3. Execution: repeatedly updates the code to try to make the condition false.

4. End: performs any cleanup and final task before moving on to the next action.

The last action only has an explicit initialize, though depending on how you read it, it can implicitly
end under a number of conditions. The most obvious one two in this case are when it's done
shooting or when autonomous has ended.

FRC Java Programming

Page 238Page 238FRC Java Programming Last Updated: 01-01-2019

Rewriting it as CommandsRewriting it as Commands

C++

#include "AutonomousCommand.h"

AutonomousCommand::AutonomousCommand()
{

AddSequential(new Aim());
AddSequential(new SpinUpShooter());
AddSequential(new Shoot());

}

Java

public class AutonomousCommand extends CommandGroup {

public AutonomousCommand() {
addSequential(new Aim());
addSequential(new SpinUpShooter());
addSequential(new Shoot());

}
}

The same code can be rewritten as a CommandGroup that groups the three actions, where each
action is written as it's own command. First, the command group will be written, then the
commands will be written to accomplish the three actions. This code is pretty straightforward. It
does the three actions sequentially, that is one after the other. Line 3 aims the robot, then line 4
spins the shooterup and, finally, line 5 actually shoots the frisbee. The addSequential() method
sets it so that these commands run one after the other.

FRC Java Programming

Page 239Page 239FRC Java Programming Last Updated: 01-01-2019

The Aim commandThe Aim command

C++

#include "Aim.h"

Aim::Aim()
{

Requires(Robot::turret);
}

// Called just before this Command runs the first time
void Aim::Initialize()
{

SetTargetAngle();
}

// Called repeatedly when this Command is scheduled to run
void Aim:Execute()
{
\ CorrectAngle();

}

// Make this return true when this Command no longer needs to run execute()
bool Aim:IsFinished()
{

return AtRightAngle();
}

// Called once after isFinished returns true
void Aim::End()
{

HoldAngle();
}
// Called when another command which requires one or more of the same
// subsystems is scheduled to run
void Aim:Interrupted()
{

FRC Java Programming

Page 240Page 240FRC Java Programming Last Updated: 01-01-2019

End();
}

Java

public class Aim extends Command {

public Aim() {
requires(Robot.turret);

}

// Called just before this Command runs the first time
protected void initialize() {

SetTargetAngle();
}

// Called repeatedly when this Command is scheduled to run
protected void execute() {

CorrectAngle();
\ }

// Make this return true when this Command no longer needs to run execute()
protected boolean isFinished() {

return AtRightAngle();
\ }

// Called once after isFinished returns true
protected void end() {

HoldAngle();
}

// Called when another command which requires one or more of the same
// subsystems is scheduled to run
protected void interrupted() {

end();
}

FRC Java Programming

Page 241Page 241FRC Java Programming Last Updated: 01-01-2019

}

As you can see, the command reflects the four parts of the action we discussed earlier. It also has
the interrupted() method which will be discussed below. The other significant difference is that the
condition in the isFinished() is the opposite of what you would put as the condition of the while
loop, it returns true when you want to stop running the execute method as opposed to false.
Initializing, executing and ending are exactly the same, they just go within their respective method
to indicate what they do.

SpinUpShooter commandSpinUpShooter command

C++

#include "SpinUpShooter.h"

SpinUpShooter::SpinUpShooter()
{

Requires(Robot::shooter)
}

// Called just before this Command runs the first time
void SpinUpShooter::Initialize()
{
\ SetTargetSpeed();

}

// Called repeatedly when this Command is scheduled to run
void SpinUpShooter::Execute()
{

SpeedUp();
}

// Make this return true when this Command no longer needs to run execute()
bool SpinUpShooter::IsFinished()
{

FRC Java Programming

Page 242Page 242FRC Java Programming Last Updated: 01-01-2019

\ return FastEnough();
}

// Called once after isFinished returns true
void SpinUpShooter::End()
{

HoldSpeed();
}

// Called when another command which requires one or more of the same
// subsystems is scheduled to run
void SpinUpShooter::Interrupted()
{

End();
}

Java

public class SpinUpShooter extends Command {

public SpinUpShooter() {
requires(Robot.shooter);

\ }

// Called just before this Command runs the first time
protected void initialize() {

SetTargetSpeed();
}

// Called repeatedly when this Command is scheduled to run
protected void execute() {

SpeedUp();
\ }

// Make this return true when this Command no longer needs to run execute()
protected boolean isFinished() {

FRC Java Programming

Page 243Page 243FRC Java Programming Last Updated: 01-01-2019

return FastEnough();
\ }

// Called once after isFinished returns true
protected void end() {

HoldSpeed();
}

// Called when another command which requires one or more of the same
// subsystems is scheduled to run
protected void interrupted() {

end();
}

}

The spin up shooter command is very similar to the Aim command, it's the same basic idea.

Shoot commandShoot command

C++

#include "Shoot.h"

Shoot::Shoot()
{

Requires(Robot.shooter);
}

// Called just before this Command runs the first time
void Shoot::Initialize()
{
\ Shoot();

}

// Called repeatedly when this Command is scheduled to run

FRC Java Programming

Page 244Page 244FRC Java Programming Last Updated: 01-01-2019

void Shoot::Execute()
{
}

// Make this return true when this Command no longer needs to run execute()
bool Shoot::IsFinished()
{

return true;
}

// Called once after isFinished returns true
void Shoot::End()
{
}

// Called when another command which requires one or more of the same
// subsystems is scheduled to run
void Shoot::Interrupted()
{

End();
}

Java

public class Shoot extends Command {

public Shoot() {
requires(shooter);

}

// Called just before this Command runs the first time
protected void initialize() {

Shoot();
}

// Called repeatedly when this Command is scheduled to run

FRC Java Programming

Page 245Page 245FRC Java Programming Last Updated: 01-01-2019

protected void execute() {
}

// Make this return true when this Command no longer needs to run execute()
protected boolean isFinished() {

return true;
}

// Called once after isFinished returns true
protected void end() {
}

// Called when another command which requires one or more of the same
// subsystems is scheduled to run

\ protected void interrupted() {
end();

}
}

The shoot command is the same basic transformation yet again, however it is set to end
immediately. In CommandBased programming, it is better to have it's isFinished method return
true when the act of shooting is finished, but this is a more direct translation of the original code.

Benefits of the command based approachBenefits of the command based approach

Why bother re-writing the code as CommandBased? Writing the code in the CommandBased style
offers a number of benefits:

• Re-UsabilityRe-Usability You can reuse the same command in teleop and multiple autonomous modes.
They all reference the same code, so if you need to tweak it to tune it or fix it, you can do it in
one place without having to make the same edits in multiple places.

• TestabilityTestability You can test each part using tools such as the SmartDashboard to test parts of the
autonomous. Once you put them together, you'll have more confidence that each piece works
as desired.

FRC Java Programming

Page 246Page 246FRC Java Programming Last Updated: 01-01-2019

• ParallelizationParallelization If you wanted this code to aim and spin up the shooter at the same time, it's
trivial with CommandBased programming. Just use AddParallel() instead of AddSequential()
when adding the Aim command and now aiming and spinning up will happen simultaneously.

• InterruptibilityInterruptibility Commands are interruptible, this provides the ability to exit a command early, a
task that is much harder in the equivalent while loop based code.

FRC Java Programming

Page 247Page 247FRC Java Programming Last Updated: 01-01-2019

Default CommandsDefault Commands

In some cases you may have a subsystem which you want to always be running a command no
matter what. So what do you do when the command you are currently running ends? That's
where default commands come in.

What is the default command?What is the default command?

Each subsystem may, but is not required to, have a default command which is scheduled
whenever the subsystem is idle (the command currently requiring the system completes). The
most common example of a default command is a command for the drivetrain that implements
the normal joystick control. This command may be interrupted by other commands for specific
maneuvers ("precision mode", automatic alignment/targeting, etc.) but after any command
requiring the drivetrain completes the joystick command would be scheduled again.

Setting the default commandSetting the default command

C++

#include "ExampleSubsystem.h"

ExampleSubsystem::ExampleSubsystem()
{

// Put methods for controlling this subsystem
// here. Call these from Commands.

}

ExampleSubsystem::InitDefaultCommand()
{

// Set the default command for a subsystem here.
SetDefaultCommand(new MyDefaultCommand());

}

FRC Java Programming

Page 248Page 248FRC Java Programming Last Updated: 01-01-2019

Java

public class ExampleSubsystem extends Subsystem {

// Put methods for controlling this subsystem
// here. Call these from Commands.

public void initDefaultCommand() {
// Set the default command for a subsystem here.
setDefaultCommand(new MyDefaultCommand());

}
}

All subsystems should contain a method called initDefaultCommand() which is where you will set
the default command if desired. If you do not wish to have a default command, simply leave this
method blank. If you do wish to set a default command, call setDefaultCommand from within this
method, passing in the command to be set as the default.

FRC Java Programming

Page 249Page 249FRC Java Programming Last Updated: 01-01-2019

Synchronizing two commandsSynchronizing two commands

Commands can be nested inside of command groups to create more complex commands. The
simpler commands can be added to the command groups to either run sequentially (each
command finishing before the next starts) or in parallel (the command is scheduled, and the
next command is immediately scheduled also). Occasionally there are times where you want
to make sure that two parallel command complete before moving onto the next command.
This article describes how to do that.

Creating a command group with sequential and parallelCreating a command group with sequential and parallel
commandscommands

C++

#include "CoopBridgeAutonomous.h"

CoopBridgeAutonomous::CoopBridgeAutonomous()
{

// SmartDashboard->PutDouble("Camera Time", 5.0);
AddSequential(new SetTipperState(READY_STATE);
AddParallel(new SetVirtualSetpoint(HYBRID_LOCATION);
AddSequential(new DriveToBridge());
AddParallel(new ContinuousCollect());
AddSequential(new SetTipperState(DOWN_STATE));

// addParallel(new WaitThenShoot());

AddSequential(new TurnToTargetLowPassFilterHybrid(4.0));
AddSequential(new FireSequence());
AddSequential(new MoveBallToShooter(true));

}

FRC Java Programming

Page 250Page 250FRC Java Programming Last Updated: 01-01-2019

Java

public class CoopBridgeAutonomous extends CommandGroup {

public CoopBridgeAutonomous() {
//SmartDashboard.putDouble("Camera Time", 5.0);
addSequential(new SetTipperState(BridgeTipper.READY_STATE)); // 1
addParallel(new SetVirtualSetpoint(SetVirtualSetpoint.HYBRID_LOCATION)); // 2
addSequential(new DriveToBridge()); // 3
addParallel(new ContinuousCollect());
addSequential(new SetTipperState(BridgeTipper.DOWN_STATE));

// addParallel(new WaitThenShoot());

addSequential(new TurnToTargetLowPassFilterHybrid(4.0));
addSequential(new FireSequence());
addSequential(new MoveBallToShooter(true));

}
}

In this example some commands are added in parallel and others are added sequentially to the
CommandGroup CoopBridgeAutonomous (1). The first command "SetTipperState" is added and
completes before the SetVirtualSetpoint command starts (2). Before SetVirtualSetpoint command
completes, the DriveToBridge command is immediately scheduled because of the
SetVirtualSetpoint is added in parallel (3). This example might give you an idea of how commands
are scheduled.

FRC Java Programming

Page 251Page 251FRC Java Programming Last Updated: 01-01-2019

Example FlowchartExample Flowchart

Here is the code shown above represented as a flowchart. Note that there is no dependency
coming from the commands scheduled using "Add Parallel" either or both of these commands
could still be running when the MoveBallToShooter command is reached. Any command in the
main sequence (the sequence on the right here) that requires a subsystem in use by a parallel
command will cause the parallel command to be canceled. For example, if the FireSequence
required a subsystem in use by SetVirtualSetpoint, the SetVirtualSetpoint command will be
canceled when FireSequence is scheduled.

FRC Java Programming

Page 252Page 252FRC Java Programming Last Updated: 01-01-2019

Getting a command to wait for another command to completeGetting a command to wait for another command to complete

If there are two commands that need to complete before the following commands are scheduled,
they can be put into a command group by themselves, adding both in parallel. Then that
command group can be scheduled sequentially from an enclosing command group. When a
command group is scheduled sequentially, the commands inside it will all finish before the next
outer command is scheduled. In this way you can be sure that an action consisting of multiple
parallel commands has completed before going on to the next command.

In this example you can see that the addition of a command group "Move to Bridge" containing
the Set Virtual Setpoint and Drive to Bridge commands forces both to complete before the next
commands are scheduled.

FRC Java Programming

Page 253Page 253FRC Java Programming Last Updated: 01-01-2019

Scheduling commandsScheduling commands

Commands are scheduled to run based on a number of factors such as triggers, default
commands when no other running commands require a subsystem, a prior command in a
group finishes, button presses, autonomous period starting, etc. Although many commands
may be running virtually at the same time, there is only a single thread (the main robot
thread). This is to reduce the complexity of synchronization between threads. There are
threads that run in the system for systems like PID loops, communications, etc. but those are
all self contained with very little interaction requiring complex synchronization. This makes the
system much more robust and predictable.

This is accomplished by a class called Scheduler. It has a run() method that is called
periodically (typically every 20ms in response to a driver station update) that tries to make
progress on every command that is currently running. This is done by calling the execute()
method on the command followed by the isFinished() method. If isFinished() returns true, the
command is marked to be removed from execution on the next pass through the scheduler.
So if there are a number of commands all scheduled to run at the same time, then every time
the Scheduler.run() method is called, each of the active commands execute() and isFinished()
methods are called. This has the same effect as using multiple threads.

FRC Java Programming

Page 254Page 254FRC Java Programming Last Updated: 01-01-2019

Anatomy of a command-based robot programAnatomy of a command-based robot program

This shows a typical command-based Robot program and all the code needed to ensure that
commands are scheduled correctly. The Scheduler.run method causes one pass through the
scheduler which will let each currently active command run through its execute() and isFinished()
methods. Ignore the log() methods in the Java example.

FRC Java Programming

Page 255Page 255FRC Java Programming Last Updated: 01-01-2019

The Scheduler.run method: the command life cycleThe Scheduler.run method: the command life cycle

The work in command-based programs occurs whenever the Scheduler.Run (C++) or
Scheduler.run (Java) method is called. This is typically called on each driver station update which
occurs every 20 ms or 50 times per second. The pseudo code illustrates what happens on each call
to the run method.

1. Buttons and triggers are polled to see if the associated commands should be scheduled. If the
trigger is true, the command is added to a list of commands that should be scheduled.

2. Loop through the list of all the commands that are currently runnable and call their execute
and isFinished methods. Commands where the isFinished method returns true are removed
from the list of currently running commands.

3. Loop through all the commands that have been scheduled to run in the previous steps. Those
commands are added to the list of running commands.

4. Default commands are added for each subsystem that currently has no commands running
that require that subsystem.

FRC Java Programming

Page 256Page 256FRC Java Programming Last Updated: 01-01-2019

Optimizing command groupsOptimizing command groups

C++C++

Pickup::Pickup() : CommandGroup("Pickup") {
AddSequential(new CloseClaw());
AddParallel(new SetWristSetpoint(-45));
AddSequential(new SetElevatorSetpoint(0.25));

}

JavaJava

public class Pickup extends CommandGroup {
public Pickup() {

addSequential(new CloseClaw());
addParallel(new SetWristSetpoint(-45));
addSequential(new SetElevatorSetpoint(0.25));

}
}

Once you have working commands that operate the mechanisms on your robot you can combine
those commands into groups to make more complex actions. Commands can be added to
command groups to execute sequentially or in parallel. Sequential commands wait until they are
finished (isFinished method returns true) before running the next command in the group. Parallel
commands start running, then immediately schedule the next command in the group.

It is important to notice that the commands are added to the group in the constructor. The
command group is simply a list of command instances that run when scheduled and any
parameters that are passed to the commands are evaluated during the constructor for the group.

Imagine that in a robot design, there is a claw, attached to a wrist joint and all of those on an
elevator. When picking up something, the claw needs to close first before either the elevator or
wrist can move otherwise the object may slip out of the claw. In the example shown above the
CloseClaw command will be scheduled first. After it is finished (the claw is closed), the wrist will
move to it's setpoint and in parallel, the elevator will move. This gets both the elevator and wrist
moving simultaneously optimizing the time required to complete the task.

FRC Java Programming

Page 257Page 257FRC Java Programming Last Updated: 01-01-2019

When do command groups finish?When do command groups finish?

A command group finishes when all the commands started in that group finish. This is true
regardless of the type of commands that are added to the group. For example, if a number of
commands are added in parallel and sequentially, the group is finished when all the commands
added to the group are finished. As each command is added to a command group, it is put on a
list. As those child commands finish, they are taken off the list. The command group is finished
when the list of child commands is empty.

In the Pickup command shown in the example above, the command is finished when CloseClaw,
SetWristSetpoint, and SetElevatorSetpoint all finish. It doesn't matter that some of the commands
are sequential and some parallel.

How to schedule a command from within a running commandHow to schedule a command from within a running command

Commands can be scheduled by calling the start() method (Java) or Start() method (C++) on a
command instance. This will cause the command to be added to the currently running set of
commands in the scheduler. This is often useful when a program needs to conditionally schedule
one command or another. The newly scheduled command will be added to a list of new
commands on this pass through the run method of the scheduler and actually will run the first
time on the next pass through the run method. Newly created commands are never executed in
the same call to the scheduler run method, always queued for the next call which usually occurs
20ms later.

FRC Java Programming

Page 258Page 258FRC Java Programming Last Updated: 01-01-2019

Removing all running commands from the schedulerRemoving all running commands from the scheduler

C++C++

Scheduler::RemoveAll();

JavaJava

Scheduler.getInstance().removeAll();

It is occasionally useful to make sure that there are no running commands in the scheduler. To
remove all running commands use the Scheduler.removeAll() method (Java) or
Scheduler::RemoveAll() method (C++). This will cause all currently running to have their
interrupted() method (Java) or Interrupted() method (C++) called. Commands that have not yet
started will have their end() method (Java) or End() method (C++) called.

What does the "requires" method do?What does the "requires" method do?

FRC Java Programming

Page 259Page 259FRC Java Programming Last Updated: 01-01-2019

If you have multiple commands that use the same subsystem it makes sense that they don't run at
the same time. For example, if there is a Claw subsystem with OpenClaw and CloseClaw
commands, they can't both run at the same time. Each command that uses the Claw subsystem
declares that by 11 calling the requires() method (Java) or Requires() method (C++). When one of the
commands is running, say from a joystick button press, and you try to run another command that
also requires the Claw, the second one preempts the first one. Suppose that OpenClaw was
running, and you press the button to run the CloseClaw command. The OpenClaw command is
interrupted - 22 it's interrupted method is called on the next run cycle and the CloseClaw command
is scheduled. If you think about it, this is almost always the desired behavior. If you pressed a
button to start opening the claw and you change your mind and want to close it, it makes sense for
the OpenClaw command to be stopped and the CloseClaw to be started.

A command may require many subsystems, for example a complex autonomous sequence might
use a number of subsystems to complete its task.

Command groups automatically require all the subsystems for each of the commands in the
group. There is no need to call the requires method for a group.

How are the requirements of a group evaluated?How are the requirements of a group evaluated?

The subsystems that a command group requires is the union of the set of subsystems that are
required for all of the child commands. If a 4 commands are added to a group, then the group will
require all of the subsystems required by each of the 4 commands in the group. For example, if
are three commands scheduled in a group - the first requires subsystem A, the second requires
subsystem B, and the third requires subsystems C and D. The group will require subsystems A, B,
C, and D. If another command is started, say from a joystick button, that requires either A, B, C, or
D it will interrupt the entire group including any parallel or sequential commands that might be
running from that group.

FRC Java Programming

Page 260Page 260FRC Java Programming Last Updated: 01-01-2019

Using limit switches to control behaviorUsing limit switches to control behavior

Limit switches are often used to control mechanisms on robots. While limit switches are
simple to use, they only can sense a single position of a moving part. This makes them ideal
for ensuring that movement doesn't exceed some limit but not so good at controlling the
speed of the movement as it approaches the limit. For example, a rotational shoulder joint on
a robot arm would best be controlled using a potentiometer or an absolute encoder, the limit
switch could make sure that if the potentiometer ever failed, the limit switch would stop the
robot from going to far and causing damage.

What values are provided by the limit switchWhat values are provided by the limit switch

What values are provided by the limit switch

Limit switches can have "normally opened" or "normally closed" outputs. The usual way of wiring
the switch is between a digital input signal connection and ground. The digital input has pull-up
resistors that will make the input be high (1 value) when the switch is open, but when the switch
closes the value goes to 0 since the input is now connected to ground. The switch shown here has
both normally open and normally closed outputs.

Polling waiting for a switch to closePolling waiting for a switch to close

C++

#include "RobotTemplate.h"
#include "WPILib.h"

RobotTemplate::RobotTemplate()
{

DigitalInput* limitSwitch;
}

FRC Java Programming

Page 261Page 261FRC Java Programming Last Updated: 01-01-2019

void RobotTemplate::RobotInit()
{

limitSwitch = new DigitalInput(1);
}

void RobotTemplate::operatorControl()
{

while(limitSwitch->Get())
{

Wait(10);
}

}

Java

import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj.SampleRobot;
import edu.wpi.first.wpilibj.Timer;

public class RobotTemplate extends SampleRobot {

DigitalInput limitSwitch;

public void robotInit() {
limitSwitch = new DigitalInput(1);

}

public void operatorControl() {
// more code here
while (limitSwitch.get()) {

Timer.delay(10);
}

}
}

FRC Java Programming

Page 262Page 262FRC Java Programming Last Updated: 01-01-2019

You can write a very simple piece of code that just reads the limit switch over and over again
waiting until it detects that its value transitions from 1 (opened) to 0 (closed). While this works, it's
usually impractical for the program to be able to just wait for the switch to operate and not be
doing anything else, like responding to joystick input. This example shows the fundamental use of
the switch, but while the program is waiting, nothing else is happening.

Command-based program to operate until limit switch closedCommand-based program to operate until limit switch closed

C++

#include "ArmUp.h"

ArmUp::ArmUp()
{

}

void ArmUp::Initialize()
{

arm.ArmUp();
}

void ArmUp::Execute()
{
}

void ArmUp::IsFinished()
{

return arm.isSwitchSet();
}

void ArmUp::End()
{

arm.ArmStop();
}

void ArmUp::Interrupted()
{

FRC Java Programming

Page 263Page 263FRC Java Programming Last Updated: 01-01-2019

End();
}

Java

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {
public ArmUp() {
}

protected void initialize() {
arm.armUp();

}

protected void execute() {
}

protected boolean isFinished() {
return arm.isSwitchSet();

}

protected void end() {
arm.armStop();

}

protected void interrupted() {
end();

}
}

Commands call their execute() and isFinished() methods about 50 times per second, or at a rate of
every 20ms. A command that will operate a motor until the limit switch is closed can read the

FRC Java Programming

Page 264Page 264FRC Java Programming Last Updated: 01-01-2019

digital input value in the isFinished() method and return true when the switch changes to the
correct state. Then the command can stop the motor.

Remember, the mechanism (an Arm in this case) has some inertia and won't stop immediately soRemember, the mechanism (an Arm in this case) has some inertia and won't stop immediately so
it's important to make sure things don't break while the arm is slowing.it's important to make sure things don't break while the arm is slowing.

Using a counter to detect the closing of the switchUsing a counter to detect the closing of the switch

C++

#include "WPILIB.h"
#include "Arm.h"

DigitalInput* limitSwitch;
SpeedController* armMotor;
Counter* counter;

Arm::Arm()
{

limitSwitch = new DigitalInput(1);
armMotor = new Victor(1);
counter = new Counter(limitSwitch);

}

bool Arm::IsSwitchSet()
{

return counter->Get() >0;
}

void Arm::InitializeCounter()
{

counter->Reset();
}

void Arm::ArmUp()
{

armMotor->Set(.5);
}

FRC Java Programming

Page 265Page 265FRC Java Programming Last Updated: 01-01-2019

void Arm::ArmDown()
{

armMotor->Set(-0.5);
}

void Arm::ArmStop()
{

armMotor->Set(0);
}

void InitDefaultCommand()
{
}

Java

package edu.wpi.first.wpilibj.templates.subsystems;
import edu.wpi.first.wpilibj.Counter;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj.SpeedController;
import edu.wpi.first.wpilibj.Victor;
import edu.wpi.first.wpilibj.command.Subsystem;
public class Arm extends Subsystem {

DigitalInput limitSwitch = new DigitalInput(1);
SpeedController armMotor = new Victor(1);
Counter counter = new Counter(limitSwitch);

public boolean isSwitchSet() {
return counter.get() > 0;

}

public void initializeCounter() {
counter.reset();

}

FRC Java Programming

Page 266Page 266FRC Java Programming Last Updated: 01-01-2019

public void armUp() {
armMotor.set(0.5);

}

public void armDown() {
armMotor.set(-0.5);

}

public void armStop() {
armMotor.set(0.0);

}
protected void initDefaultCommand() {
}

}

It's possible that a limit switch might close then open again as a mechanism moves past the switch.
If the closure is fast enough the program might not notice that the switch closed. An alternative
method of catching the switch closing is use a Counter object. Since counters are implemented in
hardware, it will be able to capture the closing of the fastest switches and increment it's count.
Then the program can simply notice that the count has increased and take whatever steps are
needed to do the operation.

Above is a subsystem that uses a counter to watch the limit switch and wait for the value to
change. When it does, the counter will increment and that can be watched in a command.

Create a command that uses the counter to detect switch closingCreate a command that uses the counter to detect switch closing

C++

#include "ArmUp.h"

ArmUp::ArmUp()
{
}

FRC Java Programming

Page 267Page 267FRC Java Programming Last Updated: 01-01-2019

void ArmUp::Initialize()
{

arm.InitializeCounter();
arm.ArmUp();

}

void ArmUp::Execute()
{
}

bool ArmUp::IsFinished()
{

return arm->IsSwitchSet();
}

void ArmUp::End()
{

arm->ArmStop();
}

void ArmUp::Interrupted()
{

End();
}

Java

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {

public ArmUp() {
}

protected void initialize() {
arm.initializeCounter();

FRC Java Programming

Page 268Page 268FRC Java Programming Last Updated: 01-01-2019

arm.armUp();
}

protected void execute() {
}

protected boolean isFinished() {
return arm.isSwitchSet();

}

protected void end() {
arm.armStop();

}

protected void interrupted() {
end();

}
}

This command initializes the counter in the above subsystem then starts the motor moving. It then
tests the counter value in the isFinished() method waiting for it to count the limit switch changing.
When it does, the arm is stopped. By using a hardware counter, a switch that might close then
open very quickly can still be caught by the program.

FRC Java Programming

Page 269Page 269FRC Java Programming Last Updated: 01-01-2019

	Setting up the Development Environment
	Installing C++ and Java Development Tools for FRC
	Offline Installer
	Installation Type
	Download VSCode
	Execute Install
	What's Installed?
	What's Installed - Continued
	Finished!
	Download and move the directory
	Run the ToolsUpdater.sh script
	Setting up VSCode to use Java 11

	Installing the FRC Update Suite (All Languages)
	Uninstall Old Versions (Recommended)
	Select Components to Uninstall

	Downloading the Update
	.NET Framework 4.6.2
	Programs and Features
	Windows Features (.NET Framework 3.5 not on)
	Windows Features (.NET Framework 3.5 already on)

	Welcome
	Product List
	Product Information
	User Information
	License Agreements
	License Agreements Page 2
	Summary Progress
	Detail Progress
	Installation Summary
	NI Activation Wizard
	NI Activation Wizard (2)
	NI Activation Wizard (3)
	NI Activation Wizard (4)
	NI Update Service

	Creating and Running Robot Programs
	Visual Studio Code Basics and the WPILib Extension
	Welcome Page
	User Interface
	Command Palette
	WPILib Extension

	WPILib Commands in VSCode
	Creating a robot program
	Accessing The Command Palette
	Accessing The WPILib Commands
	Creating A New WPILib Project
	New project creator window
	Opening The New Project
	C++ Configurations (C++ Only)
	Building and Deploying Robot Code

	Creating your Benchtop Test Program
	Creating a project
	Imports/Includes
	Defining the variables for our sample robot
	Robot Initialization
	Simple autonomous sample
	Joystick Control for teleoperation
	Test Mode
	Next Steps

	Building and deploying to a roboRIO
	Building Robot Code
	Deploying Robot Code

	Viewing Console Output
	Console Viewer
	Opening the Console Viewer
	Console Viewer Window

	Riolog VS Code Plugin
	Opening the RioLog View
	Riolog Window

	Debugging a robot program
	Set a Breakpoint
	Start Debugging
	The Debug tab
	The Variables Pane
	Watch Pane
	Call Stack
	Breakpoint Pane
	Your Breakpoint
	Debugging with Console

	Importing an Eclipse project into VS Code
	Launch the Import Wizard
	C++ Configurations (C++ Only)

	FRC Java References
	FRC Java WPILib API Documentation
	Online Documentation
	Local Javadoc

	C++\Java Plugin Changelog
	Network Tables (ntcore)
	Camera Server (cscore)
	SmartDashboard
	WPILib (C++\Java)
	Eclipse Plugins
	C++
	Java
	Shuffleboard
	CameraServer (cscore)
	C++\Java
	Eclipse Plugins
	Shuffleboard
	C++\Java
	Shuffleboard
	C++\Java
	Eclipse Plugins
	Shuffleboard

	FRC Java Basics
	Java conventions for objects, methods and variables
	Creating objects that are connected to the roboRIO in Java
	Creating operator interface objects in Java
	Class, method and variable naming
	MXP IO Numbering

	Multithreading in Java
	Threads

	Basic WPILib Programming features
	What is WPILib
	What's included in the library
	WPILib Documentation
	WPILib Source Code
	Java programming with WPILib
	C++ programming with WPILib

	Choosing a Base Class
	IterativeRobot
	TimedRobot
	SampleRobot
	Command-Based Robot

	Using actuators (motors, servos, and relays)
	Actuator Overview
	Types of actuators

	Driving motors with PWM speed controller objects
	PWM Controllers, brief theory of operation
	Raw vs Scaled output values
	Calibrating Speed Controllers
	Constructing a Speed Controller object
	Setting parameters
	Setting Speed

	WPILib Drive classes: Drivetrain types
	Differential Drive
	Mecanum Drive
	Killough Drive

	WPILib Drive classes: Conventions and Defaults
	Motor Inversion
	Squaring Inputs & Input Deadband
	Motor Safety
	Axis Conventions

	Driving a robot using Differential Drive
	Conventions and Defaults
	Creating a Differential Drive object
	Multi-Motor Drives
	Drive Modes
	Tank Drive
	Arcade Drive
	Curvature Drive

	Driving a robot using Mecanum drive
	Conventions and Defaults
	Mecanum wheels
	Controlling Mecanum: Cartesian vs Polar
	Code for teleop driving with mecanum wheels
	Updating the program for field-oriented driving

	Repeatable Low Power Movement - Controlling Servos with WPILib
	Constructing a Servo object
	Setting Servo Values

	Using the motor safety feature
	Motor Safety Purpose
	Motor Safety Operation
	Enabling/Disabling Motor Safety
	Configuring the Safety timeout

	On/Off control of motors and other mechanisms - Relays
	Relay connection overview
	Relay Directions in WPILib
	Setting Relay Directions

	Operating a compressor for pneumatics
	Instantiating, Starting and Stopping a Compressor
	Compressor Status

	Operating pneumatic cylinders - Solenoids
	Solenoid Overview
	PCM Module Numbers
	Single Solenoids in WPILib
	Double Solenoids in WPILib

	Using CAN Devices
	Using the CAN subsystem with the RoboRIO
	CAN bus topology and termination

	Pneumatics Control Module
	Controlling the Compressor
	Using Solenoids

	Power Distribution Panel
	PDP CAN ID
	Reading the PDP voltage and temperature
	Reading the per-channel current on the PDP

	Talon SRX CAN

	WPILib sensors
	WPILib Sensor Overview
	Types of supported sensors

	Switches - Using limit switches to control behavior
	What values are provided by the limit switch
	Polling waiting for a switch to close
	Command-based program to operate until limit switch closed
	Using a counter to detect the closing of the switch
	Create a command that uses the counter to detect switch closing

	How do I do _______? - Selecting the right sensor for the job
	Detecting one or two positions of a mechanism
	Limit Switches

	Detecting the position of a mechanism at many different points, or points that are not limits
	Ultrasonic Sensors
	Infrared Distance Sensors
	Counters and Encoders
	Potentiometers
	Accelerometers

	Driving Straight
	Gyros
	Encoders

	How far have I gone?
	Encoders
	Distance Sensors

	Cameras and Vision
	Why use vision?
	Why not use vision?

	How fast is that wheel spinning?
	Counters and Encoders

	Other Sensors and Problems

	Accelerometers - measuring acceleration and tilt
	Two-axis analog accelerometer
	Analog Accelerometer code example

	Accelerometer interface
	ADXL345 Accelerometer
	ADXL345 Code Example

	Built-In Accelerometer

	Gyros - Measuring rotation and controlling robot driving direction
	Using the AnalogGyro class
	Setting Gyro sensitivity
	Using a gyro to drive straight
	Sample Java program for driving straight

	Ultrasonic Sensors - Measuring robot distance to a surface
	Ultrasonic rangefinders
	Ping-Response Ultrasonic sensors
	Creating an Ultrasonic object and reading the distance

	Analog Rangefinders
	I2C and other Digital Rangefinders

	Counters - Measuring rotation, counting pulses and more
	Counter Overview
	Gear-Tooth Mode and GearTooth Sensors
	Semi-Period mode
	External Direction mode
	Normal mode
	Counter Settings
	Resetting the counter
	Getting Counter Values

	Encoders - Measuring rotation of a wheel or other shaft
	Quadrature Encoder Overview
	Encoders vs. Counters
	Sampling Modes
	Constructing an Encoder object
	Setting Encoder Parameters
	Starting, Stopping and Resetting Encoders
	Getting Encoder Values

	Analog inputs
	Analog System Diagram
	Constructing an Analog Input
	Oversampling and Averaging
	Code example

	Sample Rate
	Reading Analog Values
	Accumulator
	Setting up an accumulator
	Reading from an Accumulator

	Potentiometers - Measuring joint angle or linear motion
	Potentiometer Taper
	Using Potentiometers with WPILib
	Constructing a Potentiometer
	The Calculations
	Reading the output

	Analog triggers
	Creating an Analog Trigger
	Setting Analog Trigger Voltage Range
	Filtering and Averaging
	Filtering

	Analog Trigger Direct Outputs
	Analog Trigger Output Class

	Operating the robot with feedback from sensors (PID control)
	Creating a PIDController object
	Setting the P, I, and D values
	Continuous sensors like continuous rotation potentiometers
	The Feed-forward Term
	Using PID controllers in command based robot programs

	Driver Station Inputs and Feedback
	Driver Station Input Overview
	Input types
	Driver Station Class
	Robot Mode
	DS Attached, FMS Attached and System status
	Battery Voltage
	Alliance
	Location
	Match Time

	Joysticks
	USB connection
	Joystick Refresh

	Constructing a Joystick Object
	Accessing Joystick Values - Option 1
	Accessing Joystick Values - Option 2
	Polar methods
	Determining Joystick Mapping

	Displaying Data on the DS - Dashboard Overview
	Network Tables - What is it?
	Smart Dashboard

	Command based programming
	What is Command based programming?
	Commands and subsystems
	How commands work
	Concurrency
	How It Works - Scheduling Commands
	How It Works - Running Commands
	Command groups

	Creating a robot project
	Adding Commands and Subsystems to the project
	Adding subsystems to the project
	Naming the subsystem
	Subsystem created in project
	Adding a command to the project
	Set the command name
	Command created in the project

	Simple subsystems
	Creating a subsystem
	Operating the claw with a command

	PIDSubsystems for built-in PID control
	A PIDSubsystem to control the angle of a wrist joint

	Creating Simple Commands
	Basic Command Format
	Simple Command Example

	Creating groups of commands
	Creating a command to do a complex operation
	Running commands in parallel
	Mixing parallel and sequential commands

	Running commands on Joystick input
	The OI Class
	Create the Joystick object and JoystickButton objects
	Associate the buttons with commands
	Other options

	Running commands during the autonomous period
	Creating a command to use for Autonomous
	Setting that command to run as the autonomous behavior

	Converting a Simple Autonomous program to a Command based autonomous program
	The initial autonomous code with loops
	Rewriting it as Commands
	The Aim command
	SpinUpShooter command
	Shoot command
	Benefits of the command based approach

	Default Commands
	What is the default command?
	Setting the default command

	Synchronizing two commands
	Creating a command group with sequential and parallel commands
	Example Flowchart
	Getting a command to wait for another command to complete

	Scheduling commands
	Anatomy of a command-based robot program
	The Scheduler.run method: the command life cycle
	Optimizing command groups
	When do command groups finish?
	How to schedule a command from within a running command
	Removing all running commands from the scheduler
	What does the "requires" method do?
	How are the requirements of a group evaluated?

	Using limit switches to control behavior
	What values are provided by the limit switch
	Polling waiting for a switch to close
	Command-based program to operate until limit switch closed
	Using a counter to detect the closing of the switch
	Create a command that uses the counter to detect switch closing

