PATH AND TASK HANDLING OR "VIRTUALLY-" GUIDED VEHICLE: Follows pre-planned virtual routes instead of embedded infrastructure through a facility. | | AMR | VGV | AGV | |----------------------|---|--|--| | NAVIGATION
METHOD | Actively locate and
map position by
comparing sensor data
to facility understanding | Follow pre-recorded
individual routes, using
sensors to verify | Primarily use markers
installed throughout a
facility to navigate
point-to-point routes | | PATH
PLANNING | Path Planners:
Assess multiple routes
and priorities, adapting in
real-time to changes | Path Followers:
Follow only predetermined,
point-to-point routes | | | FLEET
MANAGEMENT | Intelligently optimizes
throughput based on
performance data and
current priorities | Schedules jobs and controls traffic based on predetermined work and routes | | ## ERROR HANDLING | | AMR | VGV AGV | | | | | |------------------------|--|--|--|--|--|--| | RETRIEVAL
SUCCESS | Dynamically adjust to fork
pockets when picking pallets.
Pallets do not need to be
precisely placed | Require payloads to be precisely aligned and positioned | | | | | | OBSTACLE
AVOIDANCE | Detect obstacles and
execute alternate routes
around them | Execute basic collision avoidance | | | | | | NAVIGATION
RECOVERY | Will verify its location
and search for an
alternate route | Come to a stop when localization is lost
and require a manual reset | | | | | | SAFETY | Vecna Robotics' AMRs
adhere to ANSI B56.5 safety
standards and have a
Performance Level D rated
safety system. Most AMRs
move lighter payloads
and don't have the same
safety standards | Follow ANSI B56.5 safety standards and have a
Performance Level D rated safety system | | | | | ## CAPABILITIES & REQUIREMENTS ... | | AMR | VGV | AGV | |--|--|---|--| | CAPACITY | While most AMRs shuttle
small totes and packages,
Vecna Robotics' AMRs are
uniquely designed for bulk
payloads, including pallets
and non-conveyables up to
10,000 lbs | VGVs, and AGVs tend to carry towards heavier
payloads like pallets and bulk material | | | SYSTEM
INFRASTRUCTURE
REQUIREMENTS | A server is needed to run
the robots and fleet-
management system | A server is necessary
for fleet management of
multiple vehicles | Markers are placed
along vehicle paths and
a server PC is set up | | | | | | With superior navigation, safety, and fleet management capabilities, Autonomous Mobile Robots increase operational efficiency for warehousing, distribution, and manufacturing facilities. Vecna Robotics combines industry standard warehouse vehicles with cutting edge robotics orchestration to offer an agile AMR solution for handling heavy payloads in your facility, unlocking higher throughput without changing your existing infrastructure.