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4.4  SECOND DERIVATIVE AND THE SHAPE OF  f 

   

The first derivative of a function gives information about the shape of the function, so the second derivative  

of a function gives information about the shape of the first derivative and about the shape of the function.  In this 

section we investigate how to use the second derivative and the shape of the first derivative to reach conclusions 

about the shape of the function.  The first derivative tells us whether the graph of  f  is increasing or decreasing.  The 

second derivative will tell us about the "concavity" of  f,  whether  f  is curving upward or downward. 

 

Concavity 
 

Graphically, a function is concave up if its graph is curved with the  

opening upward  (Fig. 1a).  Similarly,  a function is concave down if its 

graph opens downward  (Fig. 1b).  The concavity of a function can be 

important in applied problems and can even affect billion–dollar decisions.   

 

An Epidemic: Suppose an epidemic has started, and you, as a member of congress, must decide whether the current 

methods are effectively fighting the spread of the disease or whether more drastic measures and more money are 

needed.  In  Fig. 2,  f(x)  is the number of people who have the disease at time  x,  and two different situations are 

shown.  In both (a)  and  (b),  the number of people with the disease, f(now),  and the rate at which new people are 

getting sick, f '(now), are the same.  The difference in the two 

situations is the concavity of  f, and that difference in concavity 

might have a big effect  

 on your decision.  In  (a), f  is concave down at  "now", and 

 it appears that the current methods are starting to bring the 

epidemic under control.  In (b),  f  is concave up, and it  

 appears that the epidemic is still out of control. 

 

 

Usually it is easy to determine the concavity of a function by examining its graph, but we also need a definition 

which does not require that we have a graph of the function, a definition we can apply to a function described by a 

formula without having to graph the function.   
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 Definition: Let  f  be a differentiable function. 

  f  is concave up  at  a  if the graph of  f  is above the tangent line  L  to  f  for all x  close  

   to  a   (but not equal to  a) :  f(x) > L(x) = f(a) + f '(a)(x – a) . 

  f  is concave down  at  a  if the graph of  f  is below the tangent line  L  to  f  for all x  close  

   to  a   (but not equal to  a) :  f(x) < L(x) = f(a) + f '(a)(x – a) . 

 

 

Fig. 3 shows the concavity of a function at several points.  The 

next theorem gives an easily applied test for the concavity of a 

function given by a formula. 

 

 

 

 

 

 The Second Derivative Condition for Concavity 

  (a)  If  f ''(x) > 0 on an interval  I , then  f '(x) is increasing on  I  and  f  is concave up on  I.  

  (b)  If  f ''(x) < 0 on an interval  I , then  f '(x) is decreasing on  I  and  f  is concave down on  I. 

  (c)  If  f ''(a) = 0 , then  f (x)  may be concave up or concave down or neither  at  a. 

        

 

Proof:  (a)  Assume that f ''(x) > 0 for all x in I, and let  a  be any point in  I.  We want to show that  f  is  

concave up at  a  so we need to prove that the graph of  f  (Fig. 4)  is above the tangent 

line to  f  at  a:  f(x) > L(x) = f(a) + f '(a)(x–a)  for  x close to a. 

 

Assume that  x  is in  I ,  and apply the Mean Value Theorem to f  on the interval from  a  

to  x.  Then there is a number  c  between  a  and  x  so that   

 

  f '(c) =  
f(x) – f(a)

x – a
    and  f(x) = f(a) + f '(c)(x–a).   

Since  f '' > 0  between  a  and  x, we know from the Second Shape Theorem that   

    f '  is increasing between  a  and  x.  We will consider two cases:  x > a  and  x < a. 

 

 If  x > a, then  x–a > 0  and  c is in the interval  [a,x]  so  a < c.  Since  f ' is increasing,  a < c  implies that  f '(a) 

< f '(c).  Multiplying each side of the inequality  f '(a) < f '(c)  by the positive amount  x–a, we get that   f '(a)(x–

a) < f '(c)(x–a).  Adding  f(a)  to each side of this last inequality, we have   L(x) = f(a) + f '(a)(x–a) < f(a) + f 

'(c)(x–a) = f(x). 
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 If  x < a, then  x–a < 0  and  c is in the interval  [x,a]  so  c < a.  Since  f ' is increasing,  c < a  implies that  f '(c) < 

f '(a).  Multiplying each side of the inequality  f '(c) < f '(a)  by the negative amount  x–a, we get that   f '(c)(x–a) 

> f '(a)(x–a)  and  f(x) = f(a) + f '(c)(x–a) > f(a) + f '(a)(x–a) = L(x). 

 

 In each case we get that the function  f(x)  is above the tangent line  L(x).  The proof of  (b)  is similar. 

 

  (c)  Let  f(x) = x
4
  , g(x) = – x

4
  , and  h(x) = x

3
  (Fig. 5).  The second derivative of each of these functions is zero at  

a = 0, and at  (0,0)  they all have the same tangent line:  L(x) = 0 , the x–axis.  However, at  (0,0) they all have 

different concavity:  f  is concave up, g is concave down, and h  is neither concave up nor down. 

  

 

 

 

 

 

 

 

Practice 1: Use the graph of  f  in Fig. 6  to finish filling in the table with  "+" for positive,  

 "–" for negative" ,  or  "0". 

 

 x f(x) f '(x) f ''(x) Concavity (up or down) 

      

 1 + + – down    

 2 +    

 3 –    

 4     

 

Feeling the Second Derivative 

 

Earlier we saw that if a function  f(t)  represents the position of a car at time  t,  then  f '(t)  is the velocity  and  f ''(t)  

is the acceleration of the car at the instant  t.   

 

If we are driving along a straight, smooth road, then what we feel is the acceleration of the car:   

a large positive acceleration feels like a "push"  toward the back of the car,  

a large negative acceleration  (a deceleration) feels like a "push" toward the front of the car, and 

an acceleration of  0  for a period of time means the velocity is constant and we do not feel pushed in either 

direction. 
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On a moving vehicle it is possible to measure these "pushes", the acceleration, and from that information to 

determine the velocity of the vehicle, and from the velocity information to determine the position.  Inertial guidance 

systems in airplanes use this tactic:  they measure front–back, left–right and up–down acceleration several times a 

second and then calculate the position of the plane.  They also use computers to keep track of time and the rotation 

of the earth under the plane.  After all, in 6 hours the earth has made a quarter of a revolution, and Dallas has rotated 

more than  5000  miles! 

 

 

Example 1:  The upward acceleration of a rocket was  a(t) = 30 m/s
2
  for the first 6 seconds of flight, 

  0 ≤ t ≤ 6.  The velocity of the rocket at t=0 was  0 m/s  and the height of the rocket above the ground at t=0 

was  25 m.  Find a formula for the height of the rocket at time  t  and determine the height at  t = 6 seconds. 

 

Solution:  v '(t) = a(t) = 30  so  v(t) = 30t + K for some constant K.  We also know  v(0) = 0  so   

 30(0) + K = 0  and  K = 0.  Therefore,  v(t) = 30t. 

 Similarly,  h '(t) = v(t) = 30t  so  h(t) = 15t
2
 + C for some constant  C.  We know that  h(0) = 25  so  15(0)

2
 + C 

= 25  and  C = 25.  Then  h(t)  = 15t
2

 + 25.   h(6) = 15(6)
2

 + 25 = 565 m. 

 

 

 

f ''  and Extreme Values of  f 

 

The concavity of a function can also help us determine whether a critical point is a 

maximum or minimum or neither.  For example, if a point is at the bottom of a  

concave up function (Fig. 7), then the point is a minimum. 

 

 

 The Second Derivative Test for Extremes: 

 (a)  If  f '(c) = 0  and  f ''(c) < 0  then  f is  concave down  and has a local maximum at  x = c. 

 (b)  If  f '(c) = 0  and  f ''(c) > 0  then  f is  concave up  and  has a local minimum at  x = c. 

 (c)  If  f '(c) = 0  and  f ''(c) = 0  then f may have a local maximum, a minimum or neither at  x = c. 

      

 

Proof:  (a)  Assume that  f '(c) = 0 .  If  f ''(c) < 0 then f is concave down at  x = c  so the graph of  f  will  

 be below the tangent line  L(x)  for values of  x  near  c.  The tangent line, however, is given by  

 L(x) = f(c) + f '(c) (x – c) = f(c) + 0 (x – c) = f(c) ,  so if x is close to  c  then  f(x) < L(x) = f(c)  and  f  has a 

local maximum at  x = c .  The proof of (b) for a local minimum of  f  is similar. 
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  (c)  If  f '(c) = 0 and  f ''(c) = 0, then we cannot immediately conclude anything about local maximums or minimums 

of  f  at  x = c.  The functions  f(x) = x
4
 ,  g(x) =  –x

4
 , and  h(x) = x

3
  all have their first and second derivatives 

equal to zero at  x = 0,  but  f  has a local minimum at 0,  g has a local maximum at  0, and  h has neither a local 

maximum nor a local minimum  at  x = 0. 

 

The Second Derivative Test for Extremes is very useful when  f ''  is easy to calculate and evaluate.  Sometimes, 

however, the First Derivative Test or simply a graph of the function is an easier way to determine if we have a local 

maximum or a local minimum ––  it depends on the function and on which tools you have available to help you. 

 

 

Practice 2: f(x) = 2x
3
 – 15x

2
 + 24x – 7  has critical numbers  x = 1 and 4.  Use the Second Derivative  

 Test for Extremes to determine whether  f(1)  and  f(4)  are maximums or minimums or neither. 

 

Inflection Points 

 

 
   Definition:  An inflection point is a point on the graph of a function where the concavity of the  

  function changes, from concave up to down or from concave down to up. 

     

 

Practice 3: Which of the labelled points in Fig. 8  are inflection points? 

 

To find the inflection points of a function we can use the second derivative 

of the function.  If f ''(x) > 0 , then the graph of  f  is concave up at the point  

(x, f(x))  so (x,  f(x)) is not an inflection point.  Similarly,  if  f ''(x) < 0 , then 

the graph of  f  is concave down at the point (x,f(x)) and the point is not an 

inflection point.  The only points left which can possibly be inflection points are the places where  f ''(x)  is 0 or 

undefined  (f ' is not differentiable).  To find the inflection points of a function we only need to check the points where  

f ''(x)  is  0  or undefined.  If  f ''(c) = 0 or is undefined, then the point  (c,f(c))  may or may not be an inflection point –

– we would need to check the concavity of  f  on each side of x = c.  The functions in the next example illustrate what 

can happen. 

 

Example 2: Let f(x) = x
3
 , g(x) = x

4
  and  h(x) = x

1/3
  (Fig. 

9).  For which of these functions is the point  

(0,0)  an inflection point? 
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Solution:  Graphically, it is clear that the concavity of  f(x) = x
3
  and  h(x) = x

1/3
  changes at  (0,0),  so (0,0) is an 

inflection point for  f  and  h.  The function  g(x) = x
4
  is concave up everywhere so  (0,0)  is not an inflection 

point of  g. 

 

 If  f(x) = x
3
  , then  f '(x) = 3x

2
  and  f ''(x) =  6x .  The only point at which  f ''(x) = 0 or is undefined  

 (f ' is not differentiable) is at x = 0.  If  x < 0, then  f ''(x) < 0  so  f  is concave down.  If  x > 0 , then  

 f ''(x) > 0 so  f  is concave up.  At  x = 0 the concavity changes  so the point  (0,f(0)) = (0,0) is an inflection 

point of  x
3
 . 

 

 If  g(x) = x
4
  , then  g '(x) = 4x

3
  and  g ''(x) =  12x

2
 .  The only point at which  g ''(x) = 0 or is undefined is at 

x = 0.    If  x < 0, then  g ''(x) > 0  so  g  is concave up.  If  x > 0 , then g ''(x) > 0 so  g  is also concave up.  At  x 

= 0 the concavity  does not change  so the point  (0, g(0)) = (0,0) is not an inflection point of  x
4
  . 

 If  h(x) = x
1/3

 , then  h '(x) =  
1

3
  x

–2/3
  and  h ''(x) = – 

2

9
  x

–5/3
 .  h'' is not defined if  x = 0, but  

h ''(negative number) > 0  and  h ''(positive number) < 0  so  h  changes concavity at  (0,0)  and  (0,0)  is an 

inflection point of  h. 

 

Practice 4:   Find the inflection points of   f(x) = x
4
 – 12x

3
 + 30x

2
 + 5x – 7 . 

 

Example 3:   Sketch graph of a function with  f(2) = 3, f '(2) = 1,  and an 

inflection point at  (2,3) .Solution:   Two solutions are given in Fig. 10. 

 

PROBLEMS 

 

In problems 1 and 2,  each quotation is a statement about a quantitity of something changing over time.   

Let  f(t)  represent the quantity at time  t.  For each quotation, tell what  f  represents and whether the first and 

second derivatives of  f  are positive or negative. 

 

1. (a) "Unemployment rose again, but the rate of increase is smaller than last month." 

(b) "Our profits declined again, but at a slower rate than last month." 

(c) "The population is still rising and at a faster rate than last year." 

 

2. (a) "The child's temperature is still rising, but slower than it was a few hours ago." 

(b) "The number of whales is decreasing, but at a slower rate than last year." 

(c) "The number of people with the flu is rising and at a faster rate than last month." 
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3. Sketch the graphs of functions which are defined and concave up everywhere and which have 

 (a)  no roots. (b)  exactly 1 root. (c)  exactly 2 roots. (d)  exactly 3 roots. 

 

4. On which intervals is the function in Fig. 11   

 (a)  concave up?   (b)  concave down? 

 

5. On which intervals is the function in Fig. 12   

 (a)  concave up?   (b)  concave down? 

 

In problems  6 – 10, a function and values of  x  so that  f '(x) = 0   

are given.  Use the Second Derivative Test to determine whether each 

point  (x, f(x))  is a local maximum, a local minimum or neither  

 

6. f(x) =  2x
3
 – 15x

2
 + 6  ,   x = 0 , 5 . 

 

7. g(x) =  x
3
 – 3x

2
 – 9x + 7 ,  x = –1 , 3 . 

 

8. h(x) =  x
4
 – 8x

2
 – 2 ,   x = –2, 0, 2 . 

 

9. f(x) = sin
5
(x) ,   x = π/2, π, 3π/2 

 

10. f(x) =  x.ln(x) ,   x = 1/e . 

 

11. At which labeled values of  x  in Fig. 13  is the point   

 ( x, f(x) )  an inflection point? 

 

12. At which labeled values of  x  in Fig. 14  is the point   

 ( x, g(x) )  an inflection point? 

 

13. How many inflection points can a 

 (a)  quadratic polynomial have? (b)  cubic polynomial have? 

 (c) polynomial of degree n  have? 

 

14. Fill in the table with  "+", "–", or "0"  for the function in Fig. 15. 

 

x f(x) f '(x) f ''(x)    

0 

1 

2 

3 

 

  

http://creativecommons.org/licenses/by/3.0/
http://scidiv.bellevuecollege.edu/dh/Calculus_all/Calculus_all.html
http://www.saylor.org/courses/ma005/


Contemporary Calculus 
Dale Hoffman (2012) 

 

 
Source URL: http://scidiv.bellevuecollege.edu/dh/Calculus_all/Calculus_all.html  

Saylor URL: http://www.saylor.org/courses/ma005/  

 
Attributed to: Dale Hoffman Saylor.org 

 Page 8 of 9 

15. Fill in the table with  "+", "–", or "0"  for the function in Fig. 16 

 

x g(x) g '(x) g ''(x)    

0 

1 

2 

3 

 

16. Sketch functions  f  for  x–values near  1  so  f(1) = 2  and 

 (a)  f '(1) = + ,  f ''(1) = + (b)  f '(1) = + ,  f ''(1) = – 

 (c)  f '(1) = – ,  f ''(1) = +  

 (d)  f '(1) = + , f ''(1) = 0 , f ''(1
–

 ) = – , f ''(1
+

 ) = + (e)  f '(1) = + , f ''(1) = 0 , f ''(1
–

 ) = + , f ''(1
+

 ) = – 

  

17. Some people like to think of a concave up graph as one which will "hold water" and of a concave down  

 graph as one which will "spill water."  That description is accurate for a concave down graph, but it can fail for 

a concave up graph.  Sketch the graph of a function which is concave up on an interval, but which will not "hold 

water". 

 

18. The function  f(x) =  
1

2π
  e 

–(x–c)
2
/(2b

2
)
  is called the Gaussian distribution,  and its graph is a bell–shaped curve (Fig. 

17) that occurs commonly in statistics. 

(i) Show that  f  has a maximum at  x = c .  ( The  

 value  c  is called the mean of this distribution.) 

(ii)  Show that  f  has inflection points where 

       x = c + b  and  x = c – b .  (The value  b  is called 

       the standard deviation of this distribution. ) 

 

 

Section 4.4 PRACTICE  Answers 

 

Practice 1: See Fig. 6. 

 

 x f(x) f '(x) f ''(x) Concavity (up or down) 

                         

 1 + + – down  

 2 + – – down 

 3 – – + up 

 4 – 0 – down 
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Practice 2: f(x) = 2x
3
 – 15x

2
 + 24x – 7.    

 f '(x) = 6x
2
 – 30x + 24  which is defined for all x.     

 f '(x) = 0 if  x = 1, 4  (critical values). 

  

 f ''(x) = 12x – 30. 

 f ''(1) = –18  so  f  is concave down at the critical  

  value x = 1 so  (1, f(1)) = (1,4)  is a rel. max. 

 f ''(4) = +18  so  f  is concave up at the critical  

  value x = 4 so  (4, f(4)) = (4, –23)  is a rel. min. 

 Fig. 18 shows the graph of  f. 

 

Practice 3: The points labeled  (b)  and  (g)  in Fig. 8  are inflection points. 

 

Practice 4: f(x) = x
4
 – 12x

3
 + 30x

2
 + 5x – 7.  f '(x) = 4x

3
 – 36x

2
 + 60x + 5 . 

  f ''(x) = 12x
2
 – 72x + 60 = 12(x

2
 – 6x + 5) = 12(x – 1)(x – 5). 

   The only candidates to be Inflection Points are x = 1  and x = 5. 

 

 If x < 1, then  f ''(x) = 12(x – 1)(x – 5) = 12( neg )( neg ) is positive. 

 If 1 < x < 5, then  f ''(x) = 12(x – 1)(x – 5) = 12( pos )( neg ) is negative. 

 If 5 < x, then  f ''(x) = 12(x – 1)(x – 5) = 12( pos )( pos ) is positive. 

  

 f  changes concavity at  x = 1  and  x = 5  so   

 x = 1  and  x = 5  are Inflection Points. 

 

 Fig. 19 shows the graph of  f. 
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