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2.4 CONTINUOUS  FUNCTIONS 
 

In section 1.2 we saw a few "nice" functions whose limits as  x  a  simply involved substituting  a  into the 

function: lim 
x a

f(x) = f(a) .  Functions whose limits have this substitution property are called continuous functions, 

and they have a number of other useful properties and are very common in applications.  We will examine what it 

means graphically for a function to be continuous or not continuous.  Some properties of continuous functions will 

be given, and we will look at a few applications of these properties including a way to solve horrible equations such 

as   sin(x) =  
2x +1

x – 2
  . 

 

DEFINITION AND MEANING OF CONTINUOUS 
 

 

    Definition of Continuity at a Point  
  

 A function  f  is continuous at  x = a   if and only if   lim 
x a

f(x) = f(a) . 

    

 

The graph in  Fig. 1  illustrates some of the different ways a  

function can behave at and near a point, and  Table 1  contains  

some numerical information about the function and its behavior.  Based on 

the information in the table, we can conclude that  f   

 

is continuous at  1  since  
1

lim 
x

f(x) = 2 = f(1).   

We can also conclude from the information in the table that    

f  is not continuous at  2 or 3 or 4,  because   

 

2
lim 
x

f(x) ≠ f(2) , 
3

lim 
x

f(x) ≠ f(3) ,  and  
4

lim 
x

f(x) ≠ f(4). 

 

Graphic Meaning of Continuity 
 

When  x  is close to  1, the values of  f(x)  are close to the value  f(1),  and 

the graph of  f  in Fig. 1  does not have a hole or break at  x=1 .  The 

graph of  f  is connected at  x=1  and can be drawn without lifting your 

pencil.  At  x=2  and  x=4  the graph of  f  has holes,  and at  x=3  the 

 

lim  f(x)
xa

a f(a)

1 2 2

2 1 2

3 2 does not exist

undefined4 2

Table 1
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graph has a break.  The function  f  is also continuous at  1.7  (why?) , and at every point shown except at 2, 3, and 

4. 

 

Informally:  A function is continuous at a point if the graph of the function is connected there.    A 

function is not continuous at a point if its graph has a hole or break at that point.   

 

Sometimes the definition of continuous (the substitution condition for limits) is easier to use if we break it into 

several smaller pieces and then check whether or not our function satisfies each piece. 

 

{ f  is continuous at a }   if and only if   { lim 
x a

f(x) = f(a)  }   if and only if  

(i) f  is defined at  a, 

(ii) the limit of  f(x) , as  xa , exists  (so the left limit and right limits exist and are equal) 

 

and (iii) the value of  f  at  a  equals the value of the limit as  xa: lim 
x a

f(x) = f(a) . 

If  f  satisfies conditions  (i), (ii)  and  (iii) , then  f  is continuous at  a.  If  f  does not satisfy one or more of the three 

conditions at  a , then  f  is not continuous at  a. 

 

For the function in Fig. 1, at  a = 1,  all 3 conditions are satisfied,  and  f  is continuous at  1.  At  a = 2,  conditions 

(i) and (ii) are satisfied but not (iii), so  f  is not continuous at  2.  At  a = 3,  condition (i) is satisfied but (ii) is 

violated, so  f  is not continuous at  3.  At  a = 4,  condition (i) is violated, so  f  is not continuous at  4. 

 

 

A function is continuous on an interval if it is continuous at every point in the interval.  A function  

 

f  is continuous from the left at  a  if   lim 
x a

f(x) = f(a) ,  and is continuous from the right 

 if  lim 
x a

f(x) = f(a) . 

 

Example 1:  Is   f(x)  =  


 x + 1 if  x ≤ 1 

   2 if 1 < x ≤ 2

 1/(x–3) if  x > 2
   continuous at  1, 2, 3 ? 

Solution:   We could answer these questions by examining the graph of  f(x),  but lets try them without the graph.      

At  a = 1,  f(1) = 2   and the left and right limits are equal, 

 

  f(x) =  
1

lim ( 1) 
x

x


 = 2    and   
1

lim  
x 

 f(x) =  
1

lim  
x 

2  = 2,  so  f  is continuous at  1. 

 

 At  a = 2,  f(2) = 2,  but the left and right limits are not equal, 
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2

lim  
x 

f(x) =  
2

lim  
x 

2  = 2    and    
2

lim 
x 

 f(x) =  
2

lim 
x 

1/(x–3)  = –1, so  f  fails condition (ii)  and is not 

continuous at   2.    f  is continuous from the left at  2,  but not from the right. 

 

   At  a = 3,  f(3) = 1/0  which is undefined  so  f  is not continuous at  3  because it fails condition  (i). 

 

Example 2: Where is  f(x) = 3x2 – 2x  continuous? 

Solution: At every point.  By the Substitution Theorem for Polynomials, every polynomial  

  is continuous everywhere. 

  

 

Example 3: Where are   g(x) =   
x + 5

x – 3
     and  h(x) =   

x
2
 + 4x – 5

x
2
 – 4x + 3

     continuous? 

Solution:   g  is a rational function so by the Substitution Theorem for Polynomials and Rational 

Functions it is continuous everywhere except where its denominator is 0:  g  is continuous everywhere except  3.  

The 

 graph of  g  (Fig. 2)  is connected everywhere except at  3  where it has a vertical asymptote.   

 h(x) =   
 (x – 1)(x + 5) 

 (x – 1)(x – 3) 
    is also continuous everywhere except where its denominator is  0:  h  is continuous 

everywhere except  3  and  1 .  The graph of  h  (Fig. 3)  is connected everywhere except at  3  where it has a 

vertical asymptote and at  1  where it has a hole:  f(1) = 0/0  is undefined. 
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Example 4: Where is  f(x) = INT(x)  continuous? 

 

Solution:   The graph of  y = INT(x) seems to be connected except at each integer, and at each integer there is a 

"jump"  (Fig. 4).  

 If  a  is an integer,  then  

 

 lim 
x a

INT(x) = a–1,  and  lim 
x a

INT(x) = a , so  lim 
x a

INT(x) is 

undefined, and  INT(x) is not continuous.   

 

 If  a  is not an integer,  then the left and right limits of INT(x) ,  as xa,  

both equal INT(a)  so   

  

 lim 
x a

INT(x)  = INT(a)  = f(a)  and  INT(x)  is continuous.  f(x) = INT(x)  

is continuous except at the integers. 

In fact, f(x) = INT(x)  is continuous from the right everywhere and is continuous from the left everywhere except at 

the integers. 

 

Practice 1: Where is  f(x) =  |x|/x    continuous? 
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Importance of Continuity 
 

There are several reasons for us to examine continuous functions and their properties: 

 

• Most of the applications in engineering, the sciences and business are continuous and are modeled by 

continuous functions or by pieces of continuous functions.  

 

• Continuous functions have a number of useful properties which are not necessarily true if the function is not 

continuous.   If a result is true of all continuous functions and we have a continuous function, then the result is 

true for our function.  This can save us from having to show, one by one, that each result is true for each particular 

function we use.  Some of these properties are given in the rest of this section. 

 

• Differential calculus has been called the study of continuous change,  and many of the results of calculus are 

guaranteed to be true only for continuous functions.  If you look ahead into Chapters 2 and 3, you will see that 

many of the theorems have the form "If  f  is continuous and (some additional hypothesis),  then  (some 

conclusion)". 

 

Combinations of Continuous Functions 
 

 

   Theorem:   If   f(x)  and  g(x)  are continuous at  a, and  k  is any constant, 

 then   the elementary combinations of  f  and  g   

  ( k.f(x), f(x) + g(x), f(x) – g(x), f(x).g(x), and f(x)/g(x)  (g(a)≠0) )   

  are continuous at  a. 

 

 

The continuity of a function is defined in terms of limits, and all of these results about simple combinations of 

continuous functions follow from the results about simple combinations of limits in the Main Limit Theorem.  Our 

hypothesis is that  f  and  g  are both continuous at  a, so we can assume that    

 

 lim 
x a

f(x) = f(a)   and       lim 
x a

g(x) = g(a) and then use the appropriate part of the Main Limit Theorem. 

For example, lim 
x a

{ f(x) + g(x) } = { lim 
x a

f(x) }+{ lim 
x a

g(x) } = f(a) + g(a), so  f + g  is continuous at  a. 

 

Practice 2:   Prove: If  f and  g  are continuous at  a,  then  kf  and  f – g  are continuous at  a.   (k  a constant.) 
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    Composition of Continuous Functions 

 If g  is continuous at   a   and  f  is continuous at   g(a), 

     

 then lim 
x a

{ f( g(x) ) } =  f( lim 
x a

g(x) )  =  f( g(a) )  so   fg(x) = f( g(x) )  is continuous at  a. 

 

  

This result will not be proved here, but the proof just formalizes the following line of reasoning: 

The hypothesis that  "g  is continuous at  a"  means that if  x  is close to  a  then  g(x)  will be close to  g(a).  Similarly,  

"f  is continuous at  g(a)"  means that if  g(x)  is close to  g(a)  then  f( g(x) ) = fg(x) will be close to  f( g(a) ) =fg(a) .  

Finally, we can conclude that if  x  is close to  a, then  g(x)  is close to  g(a)  so  fg(x)   is close to  fg(a),  and 

therefore fg  is continuous at  x = a. 

 

The next theorem presents an alternate version of the limit condition for continuity, and we will use this 

alternate version occasionally in the future. 

 

Theorem:   lim 
x a

f(x) = f(a)   if and only if      
0

lim 
h

f(a+h) = f(a) . 

 

Proof:  Let's define a new variable  h  by  h = x – a  so  x = a + h   

 

 (Fig. 5).  Then  x a   if and only if  h = x – a 0 ,  so   

 

 lim 
x a

f(x)  =  
0

lim 
h

f(a+h) ,  and  lim 
x a

f(x)  =  f(a)   if and only if 

  

 
0

lim 
h

f(a+h) = f(a) .    

 

             A function  f  is continuous at  a  if and only if   
0

lim 
h

f(a+h) = f(a) . 

 

Which Functions Are Continuous? 
 

Fortunately, the situations which we encounter most often in applications and the functions which model those 

situations are either continuous everywhere or continuous everywhere except at a few places, so any result which is 

true of all continuous functions will be true of most of the functions we commonly use.  

 

Theorem:  The following functions are continuous everywhere, at every value of  x:  

 (a)  polynomials, (b)  sin(x)  and  cos(x), and    (c)   | x | . 
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Proof: (a)  This follows from the Substitution 

Theorem for Polynomials and the 

definition of continuity. 

 (b)   The graph of  y = sin(x)  (Fig. 6) 

clearly indicates that  sin(x) does not 

have any holes or breaks so  sin(x) is 

continuous everywhere.  Or we could 

justify that result analytically: 

 

 for every real number  a, 

 

0
lim 
h

sin(a+h) =   
0

lim 
h

sin(a)cos(h) + cos(a)sin(h)  

 

  =   
0

lim 
h

sin(a) . 
0

lim 
h

cos(h)  + 
0

lim 
h

 cos(a) . 
0

lim 
h

sin(h) 

 

  (recall from section 1.2 that    
0

lim 
h

cos(h) = 1  and  
0

lim 
h

 sin(h)  = 0  ) 

 

  =   
0

lim 
h

sin(a) .1  +  
0

lim 
h

cos(a) .0  =  sin(a),   

 

so  f(x) = sin(x) is continuous at every point.  The justification of  f(x) = cos(x)  is similar. 

 

 (c) f(x) = |x| .   When  x > 0, then  |x| =x  and its graph  (Fig. 7)  is a straight line and is continuous since  x  is a 

polynomial function.  When  x <0, then |x| = –x  and it is also continuous.  The only questionable point is 

the "corner" on the graph  when  x = 0, but the graph there is only 

bent, not broken: 

 

    
0

lim 
h 

 |x|  = 
0

lim 
h 

x  = 0    

 

and   
0

lim 
h 

|x|  =
0

lim 
h 

–x  = 0   so  
0

lim 
h

|x|  = 0 = |0| ,  

 

and  f(x) = |x|   is also continuous at   0. 

 

A continuous function can have corners  but not holes or breaks (jumps).   

 

Several results about limits of functions can be written in terms of continuity of those functions.  Even functions which 

fail to be continuous at some points are often continuous most places. 
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Theorem: (a) A rational function is continuous  except where the denominator is 0. 

 (b) Tangent, cotangent, secant and cosecant are continuous except where they are undefined. 

 (c) The greatest integer function  [ x ] = INT(x)  is continuous except at each integer. 

 

(d) But the "holey"  function  h(x)  =  


 2 if  x  is a rational number

 1 if  x  is an irrational number
   

 is discontinuous everywhere. 

 

INTERMEDIATE VALUE PROPERTY OF CONTINUOUS FUNCTIONS 
 

Since the graph of a continuous function is connected and does not have any holes or  

breaks in it, the values of the function can not "skip" or "jump over" a horizontal line   

(Fig. 8).  If one value of the continuous function is below the line and another value of  

the function is above the line, then somewhere the graph will cross the line.  The next  

theorem makes this statement more precise.  The result seems obvious, but its proof is 

technically difficult and is not given here. 

 

 Intermediate Value Theorem for Continuous Functions 

  If   f  is continuous on the interval  [a,b]  and  V  is any value between  f(a)  and  f(b), 

 

  then  there is a number  c  between  a  and  b  so that  f(c) = V 

   (that is,  f  actually takes each intermediate value between  f(a) and f(b). ) 

     

 

If the graph of  f  connects the points  (a, f(a))  and  (b, f(b) )  and  V  is any 

number between  f(a)  and  f(b),  then  the graph of  f  must cross the horizontal 

line  y = V   somewhere  between  x = a  and  x = b  (Fig. 9).  Since  f  is 

continuous,  its graph cannot "hop" over the line  y = V. 

 

Most people take this theorem for granted in some common situations: 

 

• If a child's temperature rose from  98.6
o
 to 101.3

o
 , then there was an instant 

when the child's temperature was exactly 100
o
 .  In fact,  every temperature 

between 98.6
o
  and 101.3

o
 occurred at some instant. 

 

• If you dove to pick up a shell 25 feet below the surface of a lagoon, then at some instant in time you  

 were 17 feet below the surface.  (Actually, you want to be at 17 feet twice.  Why?) 

 

• If you started driving from a stop (velocity = 0)  and accelerated to a velocity of 30 kilometers per hour,   

 then there was an instant when your velocity was exactly 10 kilometers per hour. 
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But we cannot apply the Intermediate Value Theorem if the function is not continuous: 

 

• In 1987 it cost  22¢ to mail a letter first class inside the United States,  and in 1990 it cost  25¢ to mail  

 the same letter,  but we cannot conclude that there was a time when it cost 23¢ or 24¢ to send the letter.  Postal 

rates did not increase in a continuous fashion.  They jumped directly from  22¢  to  25¢ . 

 

• Prices, taxes and rates of pay change in jumps, discrete steps, without taking on the intermediate values. 

 

The Intermediate Value Property can help us finds roots of functions and solve equations.  If f  is continuous on [a,b]  

and  f(a)  and  f(b) have opposite signs  (one is positive and one is negative) ,  then  0  is an intermediate value 

between  f(a)  and  f(b)  so  f  will have a root between  x = a  and  x= b. 

 

Bisection Algorithm for Approximating Roots  
 

The Intermediate Value Theorem is an example of an "existence theorem"  because it concludes that  

something exists:  a number  c  so that  f(c) = V.  Many existence theorems do not tell us how to find the number or 

object which exists and are of no use in actually finding those numbers or objects.  However, the Intermediate Value 

is the basis for a method commonly used to approximate the roots of continuous functions, the Bisection Algorithm. 

 

Bisection Algorithm for Finding a Root of  f(x) 

 

 (i) Find two values of  x , say  a  and  b,  so that  f(a)  and  f(b)  have opposite signs 

  (then   f(x)  has a root between  a  and  b,  a root in the interval [a,b].) 

 

(ii) Calculate the midpoint  (bisection point) of the interval  [a,b],  m = (a+b)/2,  and evaluate  f(m). 

 

(iii) (a) If  f(m) = 0, then   m  is a root of  f  ,  and we are done. 

 (b) If  f(m) ≠ 0, then  f(m)  has the sign opposite one of  f(a)  or  f(b): 

  if  f(a)  and  f(m)  have opposite signs,  then  f  has a root in [a,m]  so  put  b = m  

  if  f(b)  and  f(m)  have opposite signs,  then  f  has a root in [m,b]  so  put  a = m   

  

(iv) Repeat steps (ii) and (iii) until a root is found exactly or is approximated closely enough.  
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The length of the interval known to contain a root  is cut in half 

each time through steps (ii) and (iii)  so the Bisection Algorithm 

quickly "squeezes" in on a root  (Fig. 10). 

 

The steps of the Bisection Algorithm can be done "by hand", but it 

is tedious to do very many of them that way.  Computers are very 

good with this type of tedious repetition, and the algorithm is simple 

to program.   

 

Example 7: Find a root of  f(x) =  x – x3  + 1. 

 

Solution:  f(0) = 1  and  f(1) = 1  so we cannot conclude that  f  has  

 a root between 0 and 1.   f(1) = 1  and  f(2) = –5  have opposite 

signs, so by the Intermediate Value Property of continuous 

functions  (this function is a polynomial so it is continuous 

everywhere)  we know that there is a number  c  between  1   

 and  2  such that  f(c) = 0  (Fig. 11).  The midpoint of the  

 interval  [1,2]  is  m = (1+2)/2 = 3/2 = 1.5 ,  and  f(3/2) = –7/8  so  

f  changes sign between  1  and  1.5  and we can be sure that 

there is a root between  1  and  1.5 .  If we repeat the operation  

 for the interval  [1, 1.5],  the midpoint is   m = (1+1.5)/2 = 1.25, and  f(1.25) = 19/64 > 0    

 so  f  changes sign between  1.25  and  1.5  and we know  f  has a root between  1.25  and  1.5 . 

 

 Repeating this procedure a few more times, we get that 

  

 a b m = (b+a)/2 f(a) f(b) f(m) root between 

           

 1 2  1 –5  1 2 

 1 2 1.5 1 –5 –0.875 1 1.5 

 1 1.5 1.25 1 –0.875 0.2969 1.25 1.5 

 1.25 1.5 1.375 0.2969 –0.875 –0.2246 1.25 1.375 

 1.25 1.375 1.3125 0.2969 –0.2246 0.0515 1.3125 1.375 

 1.3125 1.375 1.34375 

 

If we continue the table,  the interval containing the root will squeeze around the value  1.324718 . 
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The Bisection Algorithm has one major drawback –– there are some roots it does not find.  The algorithm requires 

that the function be both positive and negative near the root so that the graph actually crosses the x–axis.  The 

function    f(x) = x2  – 6x + 9 = (x – 3)2   has the root  x = 3  but is never negative  (Fig. 12).  We cannot find two 

starting points  a  and  b  so that  f(a)  and  f(b)  have  

opposite signs, and we cannot use the Bisection Algorithm to find the root   

x = 3.  In Chapter 2 we will see another method, Newton's Method, which  

does find roots of this type. 

 

The Bisection Algorithm requires that we supply two starting points  a  and   

b,  two x–values at which the function has opposite signs.  These values can  

often be found with a little "trial and error",  or we can examine the graph of 

the function and use it to help pick the two values.  

 

 

Finally,  the Bisection Algorithm can also be used to solve equations because the solution of any equation can always be 

transformed into an equivalent problem of finding roots by moving everything to one side of the equal sign.  For example,  

the problem of solving the equation  x3  = x + 1 can be transformed into the equivalent problem of solving  x + 1 –  x3  = 0  

or of finding the roots of  f(x) = x  + 1 –  x3   which we did in the previous example.   

 

Example 8: Find all of the solutions of   sin(x)  =   
2x +1

x – 2
   .  (x is in radians.) 

 

Solution:  We can convert this problem of solving an equation to the problem of finding the roots of    

 f(x)  =   sin(x)  –   
2x +1

x – 2
   = 0.  The function  f(x)  is continuous everywhere except at  x = 2,  and the graph of  

f(x)  in Fig. 13  can help us find two starting values for the Bisection Algorithm.  The graph shows that  f(–1) is 

negative  and  f(0) is positive, and we know  f(x)  is continuous on the interval   

 [–1,0].  Using the algorithm with the starting interval  [–1,0], we get that the root is contained in the shrinking 

intervals:  

 [–.5,0], [–.25,0], [–.25, –.125], . . . ,  

 [–.238281, –.236328] , . . . , [–.237176, –.237177]   

 so the root is approximately  –.237177  . 

 

 We might also notice that  f(0) = 0.5  is positive and   

 f(π) = 0 –  
2π + 1

π – 2
   ≈ –6.38  is negative.  Why is it  

 wrong to conclude that  f(x)  has another root between   

 x = 0  and  x = π? 
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PROBLEMS FOR SOLUTION 
 

1. At which points is the function in Fig. 14  

discontinuous? 

 

2. At which points is the function in Fig. 15  

discontinuous?  

 

 

3. Find at least one point at which each function is not continuous and  

 state which of the  3  conditions in the definition of continuity is  

 violated at that point. 

(a) 
x + 5

x – 3
  (b) 

x
2
 + x – 6

x – 2
  (c) cos(x)  

 

(d) INT( x
2
 ) (e) 

x

sin(x)
  (f) 

x

x
  

 

(g) ln( x
2
 ) (h) 

π

x
2
 –6x + 9

  (i) tan(x) 

 

4. Which three of the following functions are not continuous.  Use the appropriate theorems of this  

 section to justify that each of the other functions is continuous. 

(a)  
7

2 + sin(x)
  (b) cos(x

5
 – 7x +π) (c) 

x
2
 – 5

 1 + cos
2
(x)

  

 

(d) 
x

2
 – 5

 1 + cos(x)
  (e) INT( 3 + 0.5sin(x) )   (f) INT( 0.3sin(x) + 1.5 ) 

 

(g) cos( sin(x) )  (h) x
2
 – 6x + 10  (i) 

3
cos(x)

 
 

 

(j) 2
sin(x)

   (k) log( |x| ) (l) 1 – 3
–x

 

 

 

5. A continuous function  f  has the values given below: 

 

  x 0 1 2 3 4 5    

  f(x) 5 3 –2 –1 3 –2 

 

(a) f  has at least       roots between 0 and 5. (b) f(x) = 4  at least       times between 0 and 5. 

(c) f(x) = 2  at least      times between 0 and 5. (d) f(x) = 3  at least       times between 0 and 5. 
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(e) Is it possible for  f(x) to equal 7 for some x values between  0  and  5? 

 

6. A continuous function  g  has the values given below: 

 

  x 1 2 3 4 5 6 7     

  g(x) –3 1 4 –1 3 –2 –1 

 

(a) g  has at least       roots between 1 and 5. (b) g(x) = 3.2  at least       times between 1 and 7. 

(c) g(x) = –0.7  at least      times between 3 and 7. (d) g(x) = 1.3  at least       times between 2 and 6. 

(e) Is it possible for  g(x) to equal  π  for some value(s) of  x  between  5  and  6? 

 

7. This problem asks you to verify that the Intermediate Value Theorem is true for some particular functions, intervals 

and intermediate values.  In each problem you are given a function  f , an interval [a,b] and a value V.  Verify that  V  

is between  f(a)  and  f(b) and find a value of  c  in the interval so that  f(c) = V. 

(a) f(x) = x
2
  on  [0,3],  V = 2. (b) f(x) = x

2
  on  [–1,2],  V = 3. 

(c) f(x) = sin(x)  on  [0,π/2],  V = 1/2 . (d) f(x) = x  on  [0,1],  V = 1/3. 

(e) f(x) = x
2
  – x  on  [2,5],  V = 4. (f) f(x) = ln(x)  on  [1,10],  V = 2. 

 

 

8. Two students claim that they both started with the points  x = 1   

 and  x = 9 and applied the Bisection Algorithm to the function in  

 Fig. 16.  The first student says that the algorithm converged to 

the root near  x = 8, but the second claims that the algorithm will  

 converge to the root near x = 4.  Who is right? 

 

 

9. Two students claim that they both started with the points  x = 0   

 and  x = 5 and applied the Bisection Algorithm to the function  

 in Fig. 17.  The first student says that the algorithm converged to  

 the root labeled A, but the second claims that the algorithm will  

 converge to the root labeled B.  Who is right? 
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10. If you apply the Bisection Algorithm to the function in  

 Fig. 18 and use the given starting points, which root does  

 the algorithm find?    (a)  starting points  0  and  9. 

 (b) starting points  1  and  5. (c) starting points  3  and  5. 

 

11. If you apply the Bisection Algorithm to the function in Fig. 19 and  

 use the given starting points, which root does the algorithm find? 

 (a) starting points  3  and  7. (b) starting points  4  and  6. 

 (c) starting points  1  and  6. 

 

 

In problems 12 – 17 , use the Intermediate Value Theorem to verify that each function has a root in the  

given interval(s).  Then use the Bisection Algorithm to narrow the location of that root to an interval of length less 

than or equal to  0.1 . 

 

12. f(x) =  x
2
 – 2  on  [ 0, 3]. 13. g(x) =  x

3
 – 3x

2
 + 3  on  [ –1, 0] , [ 1, 2], [ 2, 4] . 

 

14. h(t) =  t
5

 – 3t + 1   on  [ 1, 3] . 15. r(x) =  5 – 2
x
   on  [ 1, 3] . 

 

16. s(x) =  sin(2x) – cos(x)  on  [ 0, π] 17. p(t) =  t
3
 + 3t + 1   on  [ –1, 1] 

 

18. What is wrong  with this reasoning: "If  f(x) = 1/x  then  f(–1) = –1  and  f(1) = 1.  Because  f(–1)  and  f(1)  

have opposite signs,  f  has a root between  x = –1  and  x = 1." 

 

19. Each of the following statements is false for some functions.  For each statement, sketch the graph of  

 a counterexample. 

a) If  f(3) = 5  and  f(7) = –3, then  f  has a root between  x = 3  and  x = 7. 

b) If  f  has a root between  x = 2  and  x = 5, then  f(2)  and  f(5)  have opposite signs. 

c) If the graph of a function has a sharp corner, then the function is not continuous there. 

 

20. Define  A(x)  to be the area  bounded by the  x  and  y axes, the curve  y = f(x),  

  and the vertical line at  x  (Fig. 20).  From the figure, it  

  is clear that A(1) < 3  and  A(3) > 3. 

  Do you think there is a value of  x, between  1  and  3,   

  so  A(x) = 3? If so, justify your conclusion and estimate 

   the location of the value of  x  so   A(x) = 3.   

  If not, justify your conclusion. 
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21. Define  A(x)  to be the area  bounded by the  x  and  y axes, the curve   

 y = f(x), and the vertical line at  x  (Fig. 21). 

 

 a) Shade the part of the graph represented  

  by  A(2.1) – A(2)  and  

  estimate the value of  
A(2.1) – A(2)

0.1
  . 

 b) Shade the part of the graph represented by   

  A(4.1) – A(4)  and  

  estimate the value of  
A(4.1) – A(4)

0.1
  . 

 

22. (a) A square sheet of paper has a straight line drawn on it from the lower left corner to the upper right   

  corner.  Is it possible for you to start on the left edge of the sheet and draw a connected line to the right 

edge that does not cross the diagonal line? 

 (b) Prove:  If  f  is continuous on the interval  [0,1]  and  0 ≤ f(x) ≤ 1 for all  x, then there is a number  c, 0 ≤ c ≤ 

1, such that  f(c) = c.  (The number  c  is called a "fixed point"  of  f  because the image of  c  is  the same as 

c  ––  f  does not move c.) 

 Hint:  Define a new function  g(x) = f(x) – x  and start by considering the values  g(0)  and   g(1). 

 (c) What does part (b) have to do with part (a) of this problem? 

(d) Is the theorem in part (b) true if we replace  the closed interval  [0,1]  with the open interval  (0,1)?  

True/False:  "If  f  is continuous on the interval  (0,1)  and  0 < f(x) < 1 for all  x, then there is a number  c, 0 < 

c < 1, such that  f(c) = c." 

 

23. A piece of string is tied in a loop and tossed onto quadrant I  enclosing  

 a single region (Fig. 22). 

(a)  Is it always possible to find a line L which goes through the origin  

 so that L divides the region into two equal areas?  (Justify your 

answer.)  

(b) Is it always possible to find a line  L  which is parallel to the   

 x–axis so that L divides the region into two equal areas?   

 (Justify your answer.) 

(c) Is it always possible to find  2 lines, L parallel to the x–axis and  

 M parallel to the y–axis, so  L  and  M  divide the region into 4 equal areas?  (Justify your answer.) 
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Section 2.4 PRACTICE  Answers

 

Practice 1: 

| |
( )  

x
f x

x


    (Fig. 23)  is continuous everywhere except at  x = 0  where this function  

 is not defined. 

  

If  a > 0, then   

| |
lim 
x a

x

x  = 1  = f(a)  so  f  is continuous at  a. 

 

If  a < 0, then   

| |
lim 
x a

x

x  = –1  = f(a)  so  f  is continuous at  a. 

 

f(0) is not defined., 
0

| |
lim  
x

x

x  = –1  and  0

| |
lim  
x

x

x = +1   so  

 

  0

| |
lim  
x

x

x  does not exist. 

 

Practice 2: (a) To prove that  kf  is continuous at  a, we need to prove that  kf  satisfies  

   

  the definition of continuity  at  a: lim  
x a

kf(x)  =  kf(a) . 

 

  Using results about limits, we know   

 

   lim  
x a

kf(x)  =  k lim  
x a

f(x)  =  k f(a)   (since  f  is assumed to be  

 

  continuous at a)  so   kf  is continuous at  a. 

 

 (b) To prove that  f – g  is continuous at  a, we need to prove that  f – g  satisfies  

 

  the definition of continuity  at  a: lim  
x a

( f(x) – g(x) )  =  f(a) – g(a). 

 

   Again using information about limits, 

 

     lim  
x a

 ( f(x) – g(x) )  =    lim  
x a

f(x)  – lim  
x a

g(x)  =  f(a) – g(a)   (since  f  and  g  are  

 

   both continuous at  a)  so  f – g  is continuous at  a. 
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