Computer Arithmetic Behrooz Parhami

Part II Addition / Subtraction

ı				
	Parts	Chapters		
	I. Number Representation	Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems		
Elementary Operation	II. Addition / Subtraction	5. Basic Addition and Counting6. Carry-Look ahead Adders7. Variations in Fast Adders8. Multioperand Addition		
	III. Multiplication	 9. Basic Multiplication Schemes 10. High-Radix Multipliers 11. Tree and Array Multipliers 12. Variations in Multipliers 		
	IV. Division	13. Basic Division Schemes14. High-Radix Dividers15. Variations in Dividers16. Division by Convergence		
	V. Real Arithmetic	17. Floating-Point Reperesentations18. Floating-Point Operations19. Errors and Error Control20. Precise and Certifiable Arithmetic		
	VI. Function Evaluation	21. Square-Rooting Methods22. The CORDIC Algorithms23. Variations in Function Evaluation24. Arithmetic by Table Lookup		
	VII. Implementation Topics	25. High-Throughput Arithmetic26. Low-Power Arithmetic27. Fault-Tolerant Arithmetic28. Reconfigurable Arithmetic		

Appendix: Past, Present, and Future

About This Presentation

This presentation is intended to support the use of the textbook *Computer Arithmetic: Algorithms and Hardware Designs* (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Unauthorized uses are strictly prohibited. © Behrooz Parhami

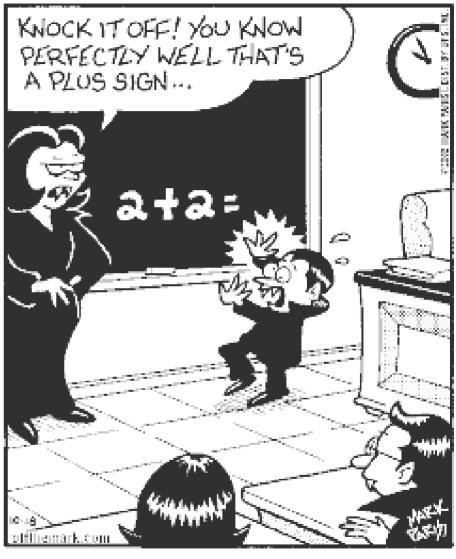
Edition	Released	Revised	Revised	Revised	Revised
First	Jan. 2000	Sep. 2001	Sep. 2003	Oct. 2005	Apr. 2007
	Apr. 2008	Apr. 2009			
Second	Apr. 2010	Mar. 2011			

II Addition/Subtraction

Review addition schemes and various speedup methods

- Addition is a key op (in itself, and as a building block)
- Subtraction = negation + addition
- Carry propagation speedup: lookahead, skip, select, ...
- Two-operand versus multioperand addition

Topics in This Part			
Chapter 5	Basic Addition and Counting		
Chapter 6	Carry-Lookahead Adders		
Chapter 7	Variations in Fast Adder		
Chapter 8	Multioperand Addition		



5 Basic Addition and Counting

Chapter Goals

Study the design of ripple-carry adders, discuss why their latency is unacceptable, and set the foundation for faster adders

Chapter Highlights

Full adders are versatile building blocks
Longest carry chain on average: $\log_2 k$ bits
Fast asynchronous adders are simple
Counting is relatively easy to speed up
Key part of a fast adder is its carry network

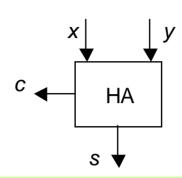
Basic Addition and Counting: Topics

Topics in This Chapter

- 5.1 Bit-Serial and Ripple-Carry Adders
- 5.2 Conditions and Exceptions
- 5.3 Analysis of Carry Propagation
- 5.4 Carry Completion Detection
- 5.5 Addition of a Constant
- 5.6 Manchester Carry Chains and Adders

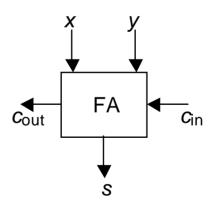
5.1 Bit-Serial and Ripple-Carry Adders

Inp	uts	Outputs	
X	Y	C	${\it s}$
0 0 1 1	0 1 0 1	0 0 0 0	 0 1 1 0



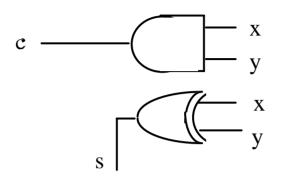
Half-adder (HA): Truth table and block diagram

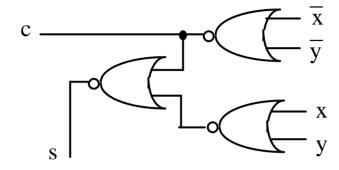
	Inputs		Outp	uts
X 	<i>Y</i>	C in	C out	<i>S</i>
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



Full-adder (FA): Truth table and block diagram

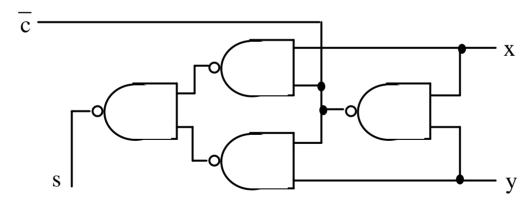
Half-Adder Implementations





(a) AND/XOR half-adder.

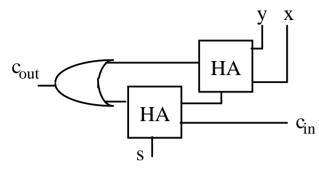
(b) NOR-gate half-adder.



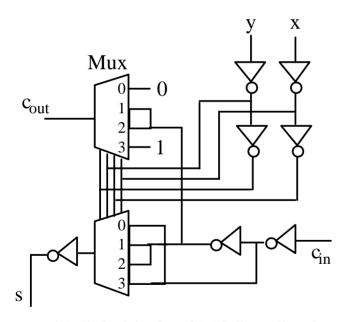
(c) NAND-gate half-adder with complemented carry.

Fig. 5.1 Three implementations of a half-adder.

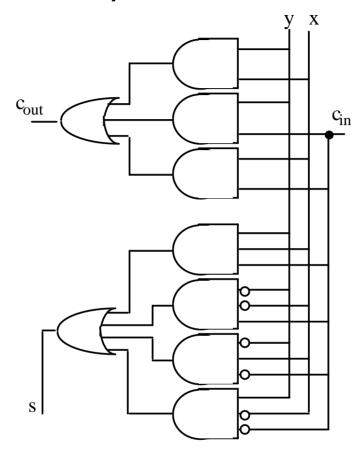
Full-Adder Implementations



(a) Built of half-adders.



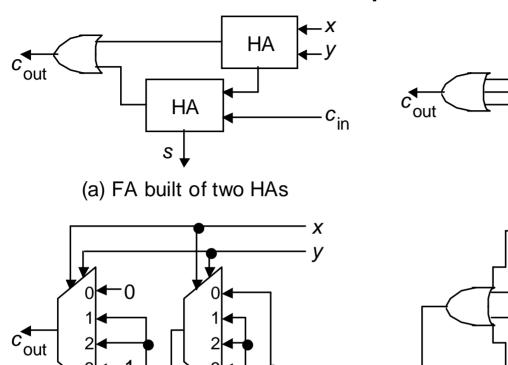
(c) Suitable for CMOS realization.



(b) Built as an AND-OR circuit.

Fig. 5.2 Possible designs for a full-adder in terms of half-adders, logic gates, and CMOS transmission gates.

Full-Adder Implementations



(b) CMOS mux-based FA

S

s (c) Two-level AND-OR FA

Fig. 5.2 (alternate version) Possible designs for a full-adder in terms of half-adders, logic gates, and CMOS transmission gates.

Some Full-Adder Details

Logic equations for a full-adder:

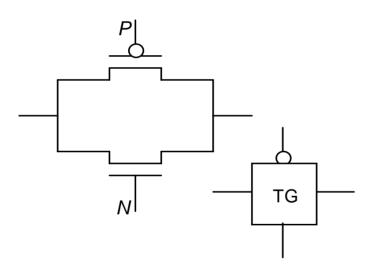
$$s = x \oplus y \oplus c_{in}$$

= $xyc_{in} \lor x'y'c_{in} \lor x'yc_{in}' \lor xy'c_{in}'$

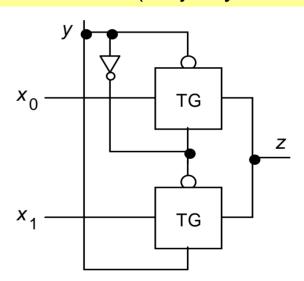
$$C_{\text{out}} = X y \vee X C_{\text{in}} \vee y C_{\text{in}}$$

(odd parity function)

(majority function)



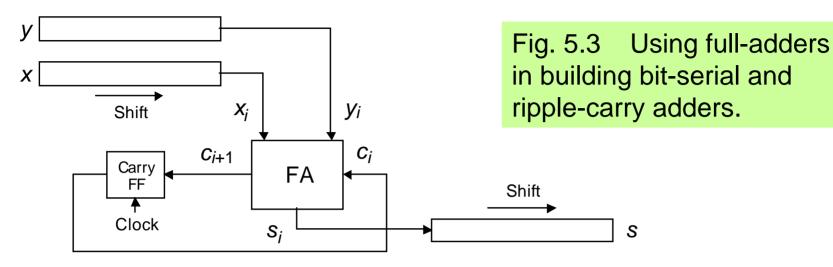
(a) CMOS transmission gate: circuit and symbol



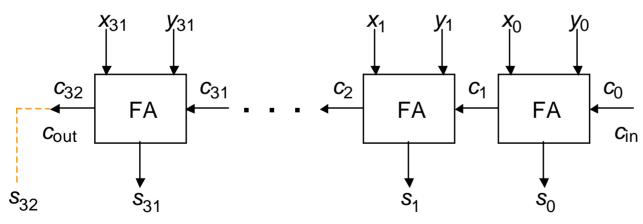
(b) Two-input mux built of two transmission gates

CMOS transmission gate and its use in a 2-to-1 mux.

Simple Adders Built of Full-Adders



(a) Bit-serial adder.



(b) Ripple-carry adder.

VLSI Layout of a Ripple-Carry Adder

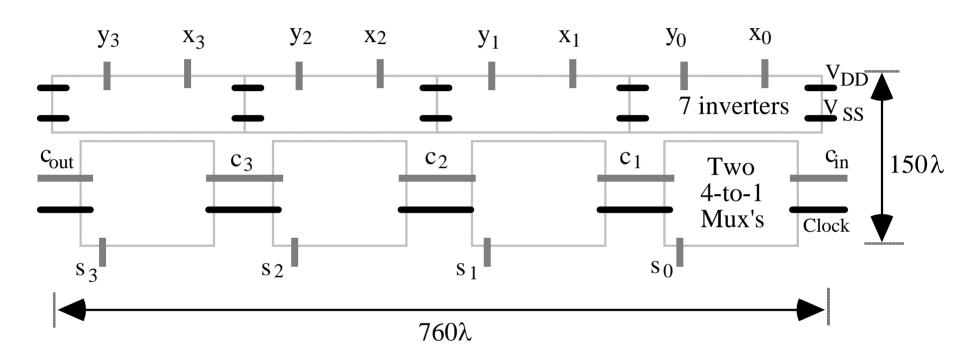


Fig. 5.4 The layout of a 4-bit ripple-carry adder in CMOS implementation [Puck94].

Critical Path Through a Ripple-Carry Adder

$$T_{\text{ripple-add}} = T_{\text{FA}}(x, y \rightarrow c_{\text{out}}) + (k-2) \times T_{\text{FA}}(c_{\text{in}} \rightarrow c_{\text{out}}) + T_{\text{FA}}(c_{\text{in}} \rightarrow s)$$

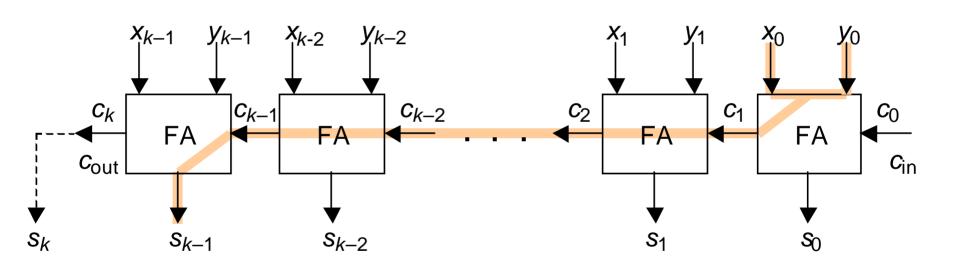


Fig. 5.5 Critical path in a *k*-bit ripple-carry adder.

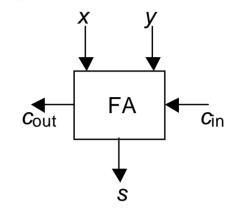
Binary Adders as Versatile Building Blocks

Set one input to 0: $c_{out} = AND$ of other inputs

Set one input to 1: $c_{out} = OR$ of other inputs

Set one input to 0

and another to 1: s = NOT of third input



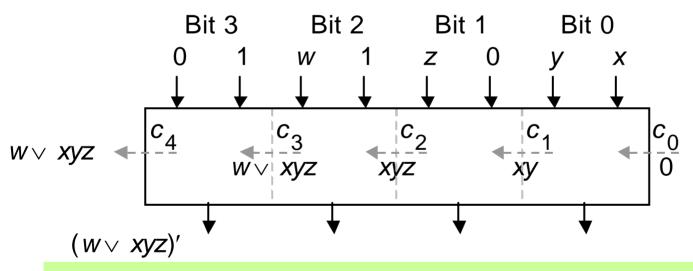


Fig. 5.6 Four-bit binary adder used to realize the logic function f = w + xyz and its complement.

5.2 Conditions and Exceptions

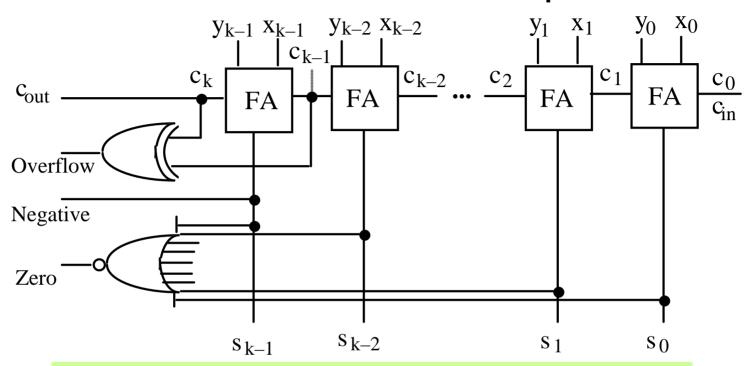


Fig. 5.7 Two's-complement adder with provisions for detecting conditions and exceptions.

overflow_{2's-compl} =
$$x_{k-1} y_{k-1} s_{k-1}' \lor x_{k-1}' y_{k-1}' s_{k-1}$$

overflow_{2's-compl} = $c_k \oplus c_{k-1} = c_k c_{k-1}' \lor c_k' c_{k-1}$

Saturating Adders

Saturating (saturation) arithmetic:

When a result's magnitude is too large, do not wrap around; rather, provide the most positive or the most negative value that is representable in the number format

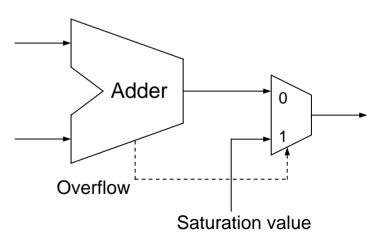
Example – In 8-bit 2's-complement format, we have: $120 + 26 \rightarrow 18$ (wraparound); $120 +_{sat} 26 \rightarrow 127$ (saturating)

Saturating arithmetic in desirable in many DSP applications

Designing saturating adders

Unsigned (quite easy)

Signed (only slightly harder)



5.3 Analysis of Carry Propagation

Fig. 5.8 Example addition and its carry propagation chains.

Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position *i* we have

Probability of carry generation = $\frac{1}{4}$ (both 1s)

Probability of carry annihilation = $\frac{1}{4}$ (both 0s)

Probability of carry propagation = $\frac{1}{2}$ (different)

Probability that carry generated at position i propagates through position j-1 and stops at position j (j > i)

$$2^{-(j-1-i)} \times 1/2 = 2^{-(j-i)}$$

Expected length of the carry chain that starts at position i

$$2 - 2^{-(k-i-1)}$$

Average length of the longest carry chain in k-bit addition is strictly less than $\log_2 k$; it is $\log_2 (1.25k)$ per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls many dice, the expected value of the largest number shown grows

5.4 Carry Completion Detection

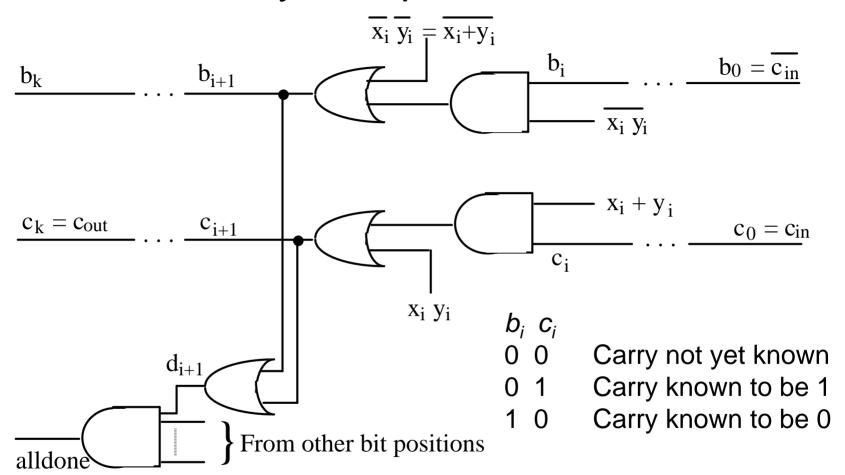


Fig. 5.9 The carry network of an adder with two-rail carries and carry completion detection logic.

5.5 Addition of a Constant: Counters

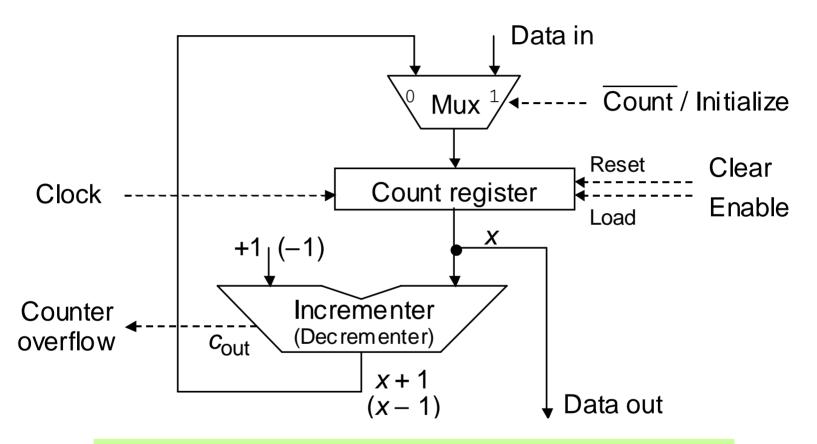
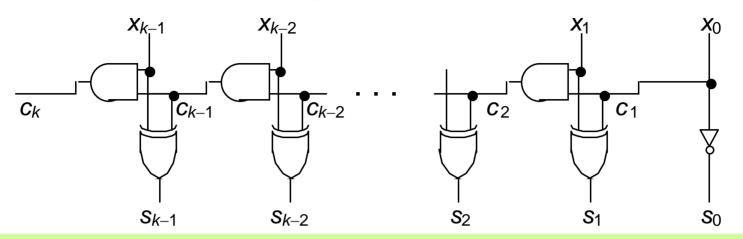


Fig. 5.10 An up (down) counter built of a register, an incrementer (decrementer), and a multiplexer.

Implementing a Simple Up Counter



(Fm arch text) Ripple-carry incrementer for use in an up counter.

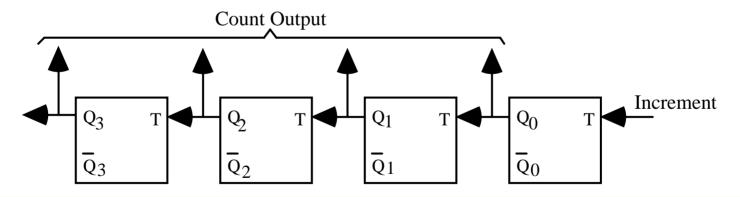


Fig. 5.11 Four-bit asynchronous up counter built only of negative-edge-triggered T flip-flops.

Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield a fast counter (carry-lookahead, carry-skip, etc.)

One can use redundant representation to build a constant-time counter, but a conversion penalty must be paid during read-out

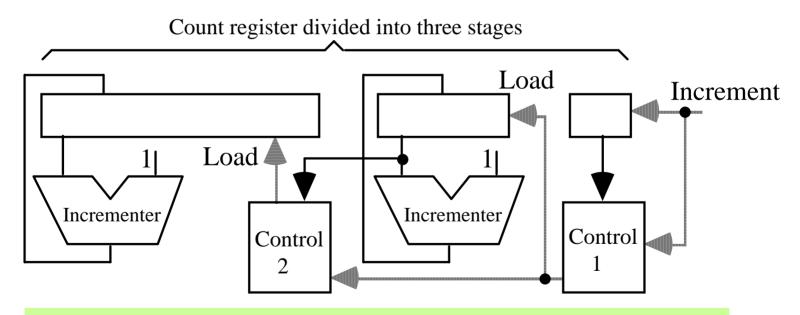


Fig. 5.12 Fast (constant-time) three-stage up counter.

5.6 Manchester Carry Chains and Adders

Sum digit in radix r $s_i = (x_i + y_i + c_i) \mod r$ Special case of radix 2 $s_i = x_i \oplus y_i \oplus c_i$

Computing the carries c_i is thus our central problem For this, the actual operand digits are not important What matters is whether in a given position a carry is

generated, propagated, or annihilated (absorbed)

For binary addition:

$$g_i = x_i y_i$$
 $p_i = x_i \oplus y_i$ $a_i = x_i' y_i' = (x_i \vee y_i)'$

It is also helpful to define a *transfer* signal:

$$t_i = g_i \vee p_i = a'_i = x_i \vee y_i$$

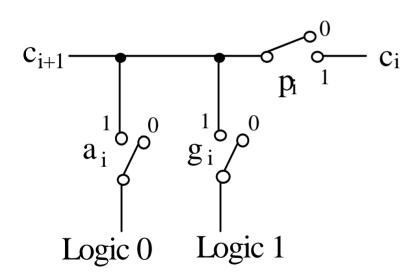
Using these signals, the carry recurrence is written as

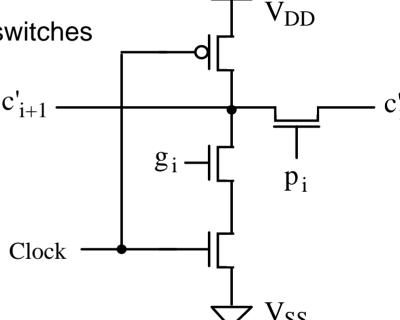
$$c_{i+1} = g_i \vee c_i p_i = g_i \vee c_i g_i \vee c_i p_i = g_i \vee c_i t_i$$

Manchester Carry Network

The worst-case delay of a Manchester carry chain has three components:

- 1. Latency of forming the switch control signals
- 2. Set-up time for switches
- 3. Signal propagation delay through k switches





(a) Conceptual representation

(b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.

Details of a 5-Bit Manchester Carry Network

The transistors must be sized appropriately for maximum speed

Smaller transistors

Larger transistors

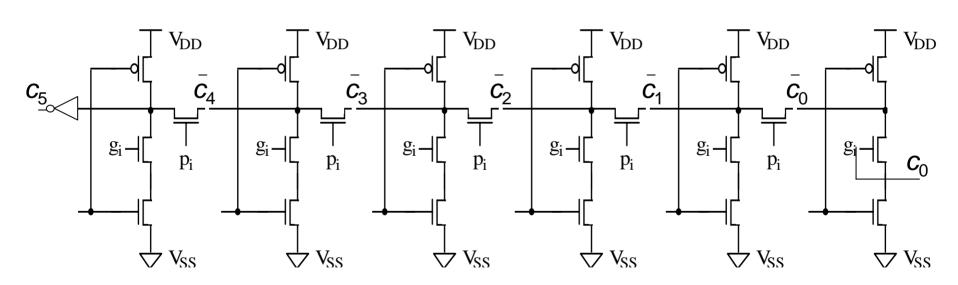
$$i = 4$$

$$i = 3$$

$$i = 2$$

$$i = 1$$

$$i = 0$$



Carry chain of a 5-bit Manchester adder.

Carry Network is the Essence of a Fast Adder

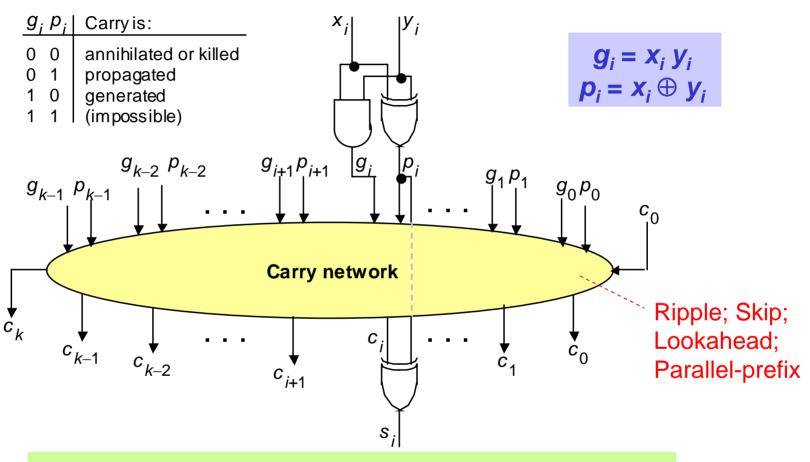


Fig. 5.14 Generic structure of a binary adder, highlighting its carry network.

Ripple-Carry Adder Revisited

The carry recurrence: $c_{i+1} = g_i \vee p_i c_i$

Latency of *k*-bit adder is roughly 2*k* gate delays:

1 gate delay for production of p and g signals, plus

2(k-1) gate delays for carry propagation, plus

1 XOR gate delay for generation of the sum bits

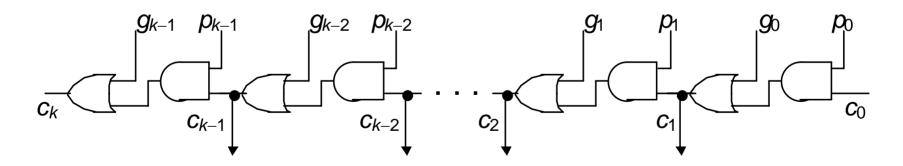


Fig. 5.15 Alternate view of a ripple-carry network in connection with the generic adder structure shown in Fig. 5.14.

The Complete Design of a Ripple-Carry Adder

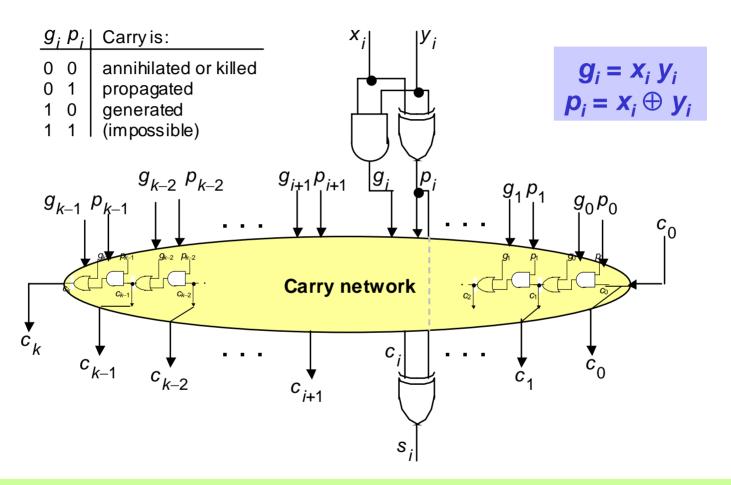


Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).

6 Carry-Lookahead Adders

Chapter Goals

Understand the carry-lookahead method and its many variations used in the design of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem
to parallel prefix computation
Implementing fast adders in VLSI

Carry-Lookahead Adders: Topics

Topics in This Chapter

- 6.1 Unrolling the Carry Recurrence
- 6.2 Carry-Lookahead Adder Design
- 6.3 Ling Adder and Related Designs
- 6.4 Carry Determination as Prefix Computation
- 6.5 Alternative Parallel Prefix Networks
- 6.6 VLSI Implementation Aspects

6.1 Unrolling the Carry Recurrence

Recall the *generate*, *propagate*, *annihilate* (*absorb*), and *transfer* signals:

<u>Signal</u>	Radix r	<u>Binary</u>
\mathcal{G}_i	is 1 iff $x_i + y_i \ge r$	$X_i Y_i$
p_i	is 1 iff $x_i + y_i = r - 1$	$\mathbf{x}_i \oplus \mathbf{y}_i$
a_i	is 1 iff $x_i + y_i < r - 1$	$x_i'y_i' = (x_i \vee y_i)'$
t_i	is 1 iff $x_i + y_i \ge r - 1$	$X_i \vee Y_i$
S_i	$(x_i + y_i + c_i) \mod r$	$\mathbf{x}_i \oplus \mathbf{y}_i \oplus \mathbf{c}_i$

The carry recurrence can be unrolled to obtain each carry signal directly from inputs, rather than through propagation

$$C_{i} = g_{i-1} \lor c_{i-1} p_{i-1}$$

$$= g_{i-1} \lor (g_{i-2} \lor c_{i-2} p_{i-2}) p_{i-1}$$

$$= g_{i-1} \lor g_{i-2} p_{i-1} \lor c_{i-2} p_{i-2} p_{i-1}$$

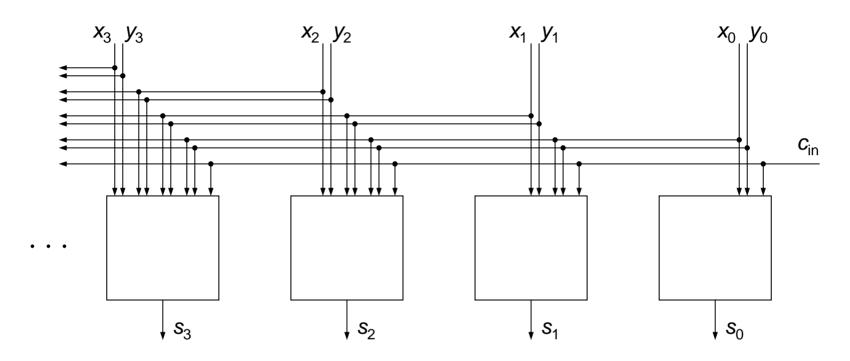
$$= g_{i-1} \lor g_{i-2} p_{i-1} \lor g_{i-2} p_{i-1} \lor c_{i-3} p_{i-3} p_{i-2} p_{i-1}$$

$$= g_{i-1} \lor g_{i-2} p_{i-1} \lor g_{i-3} p_{i-2} p_{i-1} \lor g_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-3} p_{i-2} p_{i-1}$$

$$= g_{i-1} \lor g_{i-2} p_{i-1} \lor g_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-3} p_{i-2} p_{i-1}$$

$$= g_{i-1} \lor g_{i-2} p_{i-1} \lor g_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-4} p_{i-4} p_{i-3} p_{i-2} p_{i-1} \lor g_{i-4} p_{i-4} p_{i-4}$$

Full Carry Lookahead

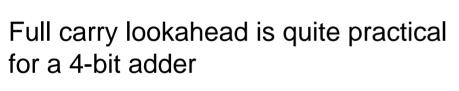


Theoretically, it is possible to derive each sum digit directly from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing the complexity of this ideal, but impractical, arrangement by hardware sharing among the various lookahead circuits

Four-Bit Carry-Lookahead Adder

Complexity reduced by deriving the carry-out indirectly



$$c_{1} = g_{0} \lor c_{0} p_{0}$$

$$c_{2} = g_{1} \lor g_{0} p_{1} \lor c_{0} p_{0} p_{1}$$

$$c_{3} = g_{2} \lor g_{1} p_{2} \lor g_{0} p_{1} p_{2} \lor c_{0} p_{0} p_{1} p_{2}$$

$$c_{4} = g_{3} \lor g_{2} p_{3} \lor g_{1} p_{2} p_{3} \lor g_{0} p_{1} p_{2} p_{3}$$

$$\lor c_{0} p_{0} p_{1} p_{2} p_{3}$$

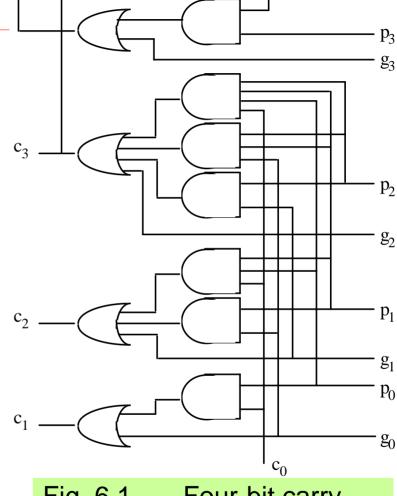


Fig. 6.1 Four-bit carry network with full lookahead.

Carry Lookahead Beyond 4 Bits

Consider a 32-bit adder

$$c_1 = g_0 \lor c_0 p_0$$

 $c_2 = g_1 \lor g_0 p_1 \lor c_0 p_0 p_1$
 $c_3 = g_2 \lor g_1 p_2 \lor g_0 p_1 p_2 \lor c_0 p_0 p_1 p_2$
.

32-input AND

$$c_{31} = g_{30} \lor g_{29} p_{30} \lor g_{28} p_{29} p_{30} \lor g_{27} p_{28} p_{29} p_{30} \lor \ldots \lor c_0 p_0 p_1 p_2 p_3 \ldots p_{29} p_{30}$$

32-input OR

High fan-ins necessitate tree-structured circuits

Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2^h)

Increases the latency for generating *g* and *p* signals and sum digits, but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition

Radix-16 (four digits)

Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c_4 , c_8 , and c_{12} are determined first

$${f c}_{16}$$
 ${f c}_{15}$ ${f c}_{14}$ ${f c}_{13}$ ${f c}_{12}$ ${f c}_{11}$ ${f c}_{10}$ ${f c}_{9}$ ${f c}_{8}$ ${f c}_{7}$ ${f c}_{6}$ ${f c}_{5}$ ${f c}_{4}$ ${f c}_{3}$ ${f c}_{2}$ ${f c}_{1}$ ${f c}_{0}$ ${f c}_{11}$ ${f c}_{01}$

6.2 Carry-Lookahead Adder Design

Block generate and propagate signals

$$g_{[i,i+3]} = g_{i+3} \vee g_{i+2} p_{i+3} \vee g_{i+1} p_{i+2} p_{i+3} \vee g_i p_{i+1} p_{i+2} p_{i+3}$$

$$p_{[i,i+3]} = p_i p_{i+1} p_{i+2} p_{i+3}$$

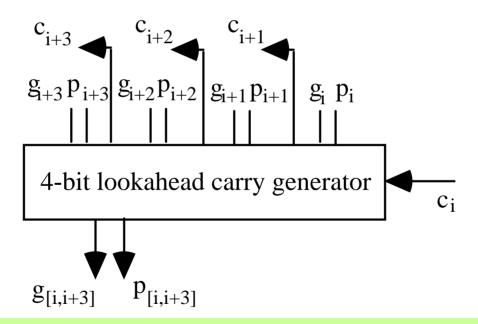
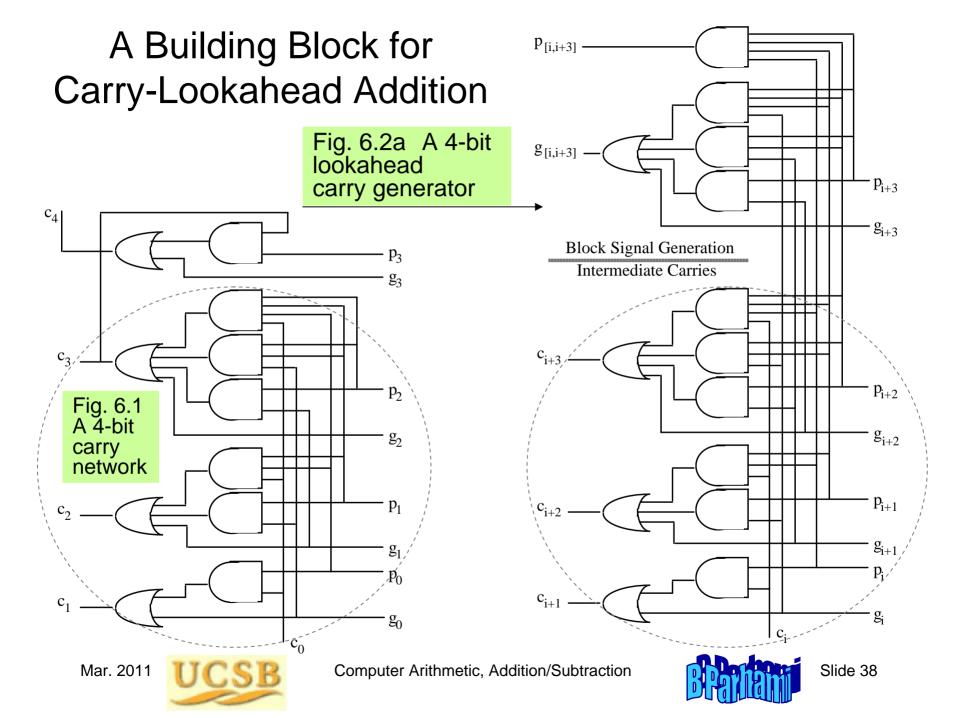
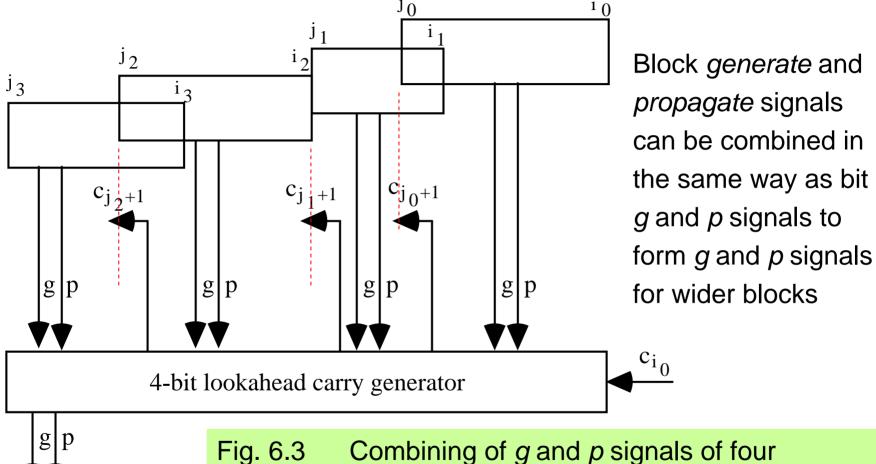


Fig. 6.2b Schematic diagram of a 4-bit lookahead carry generator.



Combining Block g and p Signals



(contiguous or overlapping) blocks of arbitrary widths into the g and p signals for the overall block $[i_0, j_3]$.

A Two-Level Carry-Lookahead Adder

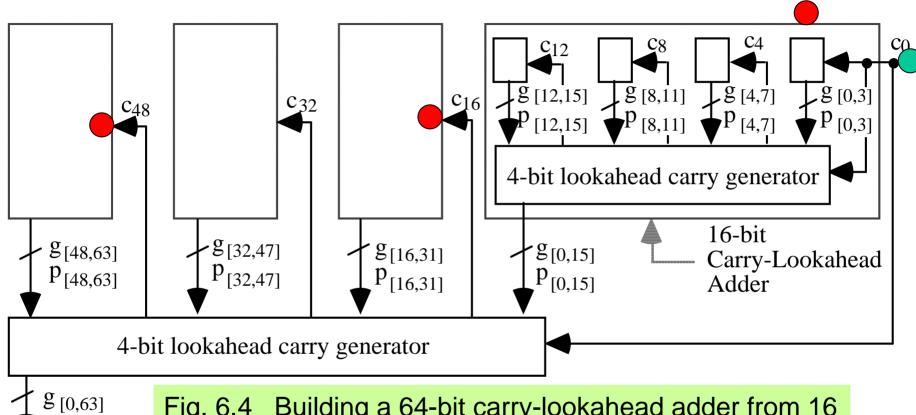


Fig. 6.4 Building a 64-bit carry-lookahead adder from 16 4-bit adders and 5 lookahead carry generators.

Carry-out:
$$c_{\text{out}} = g_{[0,k-1]} \lor c_0 p_{[0,k-1]} = x_{k-1} y_{k-1} \lor s_{k-1}' (x_{k-1} \lor y_{k-1})$$

p_[0,63]

Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions	1 gate level
g and p signals for 4-bit blocks	2 gate levels
Block carry-in signals c_4 , c_8 , and c_{12}	2 gate levels
Internal carries within 4-bit blocks	2 gate levels
Sum bits	2 gate levels

Total latency for the 16-bit adder

9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)

Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: $T_{lookahead-add} = 4 log_4 k + 1 gate levels$

6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:

$$c_{i} = g_{i-1} \lor c_{i-1} t_{i-1}$$

$$= g_{i-1} \lor g_{i-2} t_{i-1} \lor g_{i-3} t_{i-2} t_{i-1} \lor g_{i-4} t_{i-3} t_{i-2} t_{i-1} \lor c_{i-4} t_{i-4} t_{i-3} t_{i-2} t_{i-1}$$

Ling's modification: Propagate
$$h_i = c_i \lor c_{i-1}$$
 instead of c_i
 $h_i = g_{i-1} \lor h_{i-1} t_{i-2}$

$$=g_{i-1} \vee n_{i-1}t_{i-2}$$

$$=g_{i-1} \vee g_{i-2} \vee g_{i-3}t_{i-2} \vee g_{i-4}t_{i-3}t_{i-2} \vee h_{i-4}t_{i-4}t_{i-3}t_{i-2}$$

Propagate harry, not carry!

CLA: 5 gates max 5 inputs 19 gate inputs Ling: 4 gates max 5 inputs 14 gate inputs

The advantage of h_i over c_i is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs Ling: 3 gates max 4 inputs 9 gate inputs

Once h_i is known, however, the sum is obtained by a slightly more complex expression compared with $s_i = p_i \oplus c_i$

$$s_i = p_i \oplus h_i t_{i-1}$$

6.4 Carry Determination as Prefix Computation

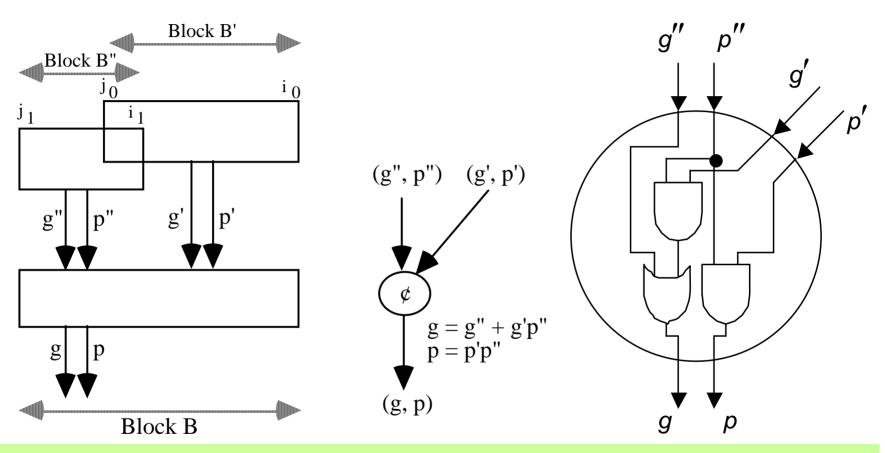


Fig. 6.5 Combining of *g* and *p* signals of two (contiguous or overlapping) blocks B' and B" of arbitrary widths into the *g* and *p* signals for block B.

Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:

Carry-in can be viewed as an extra (-1) position: $(g_{-1}, p_{-1}) = (c_{in}, 0)$

The desired pairs are found by evaluating all prefixes of

$$(g_0, p_0) \notin (g_1, p_1) \notin \dots \notin (g_{k-2}, p_{k-2}) \notin (g_{k-1}, p_{k-1})$$

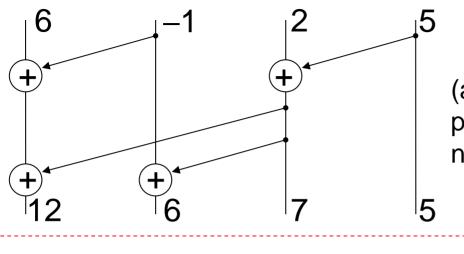
The carry operator ¢ is associative, but not commutative

$$[(g_1, p_1) \notin (g_2, p_2)] \notin (g_3, p_3) = (g_1, p_1) \notin [(g_2, p_2) \notin (g_3, p_3)]$$

Prefix sums analogy:

Given
$$X_0$$
 X_1 X_2 ... X_{k-1}
Find X_0 $X_0 + X_1$ $X_0 + X_1 + X_2$... $X_0 + X_1 + ... + X_{k-1}$

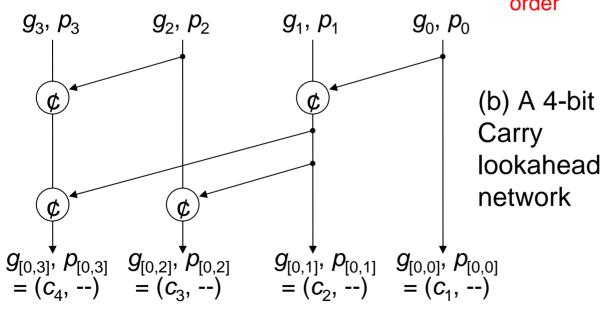
Example Prefix-Based Carry Network

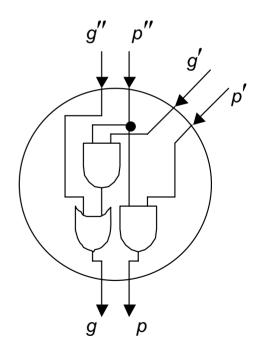


(a) A 4-input prefix sums network

Fig. 6.6 Four-input parallel prefix sums network and its corresponding carry network.

Scan order





6.5 Alternative Parallel Prefix Networks

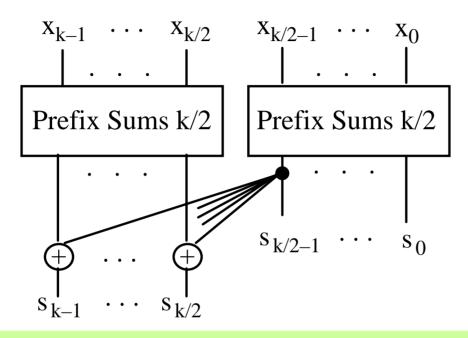


Fig. 6.7 Ladner-Fischer parallel prefix sums network built of two k/2-input networks and k/2 adders.

Delay recurrence $D(k) = D(k/2) + 1 = \log_2 k$ Cost recurrence $C(k) = 2C(k/2) + k/2 = (k/2) \log_2 k$

The Brent-Kung Recursive Construction

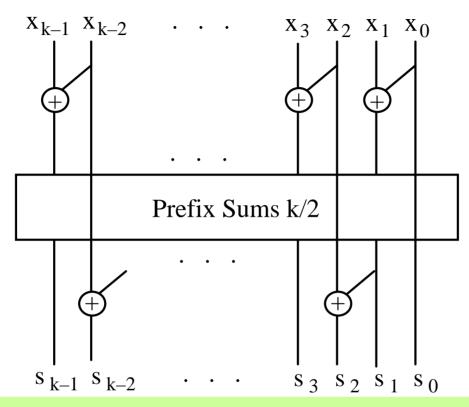


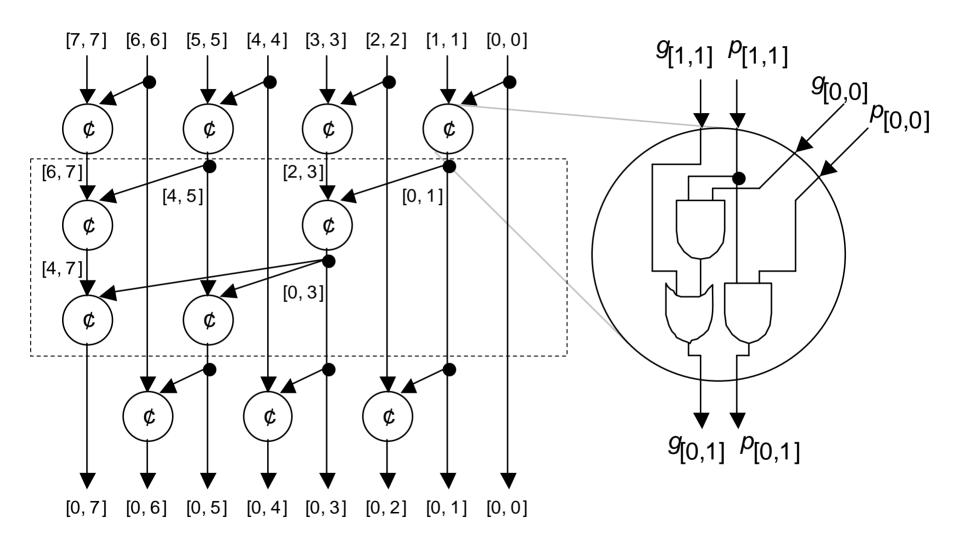
Fig. 6.8 Parallel prefix sums network built of one k/2-input network and k-1 adders.

Delay recurrence Cost recurrence

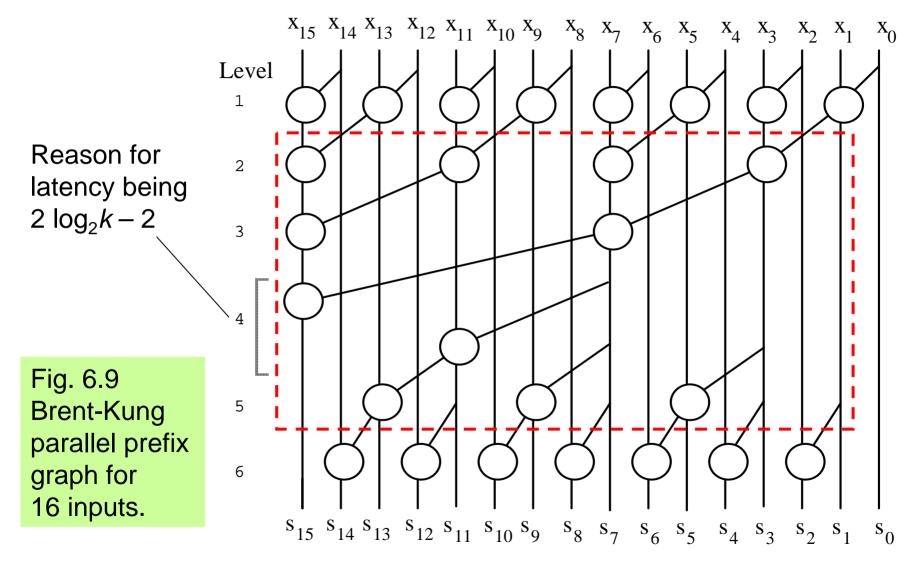
$$D(k) = D(k/2) + 2 = 2 \log_2 k - 1$$
 (-2 really)

$$C(k) = C(k/2) + k - 1 = 2k - 2 - \log_2 k$$

Brent-Kung Carry Network (8-Bit Adder)



Brent-Kung Carry Network (16-Bit Adder)

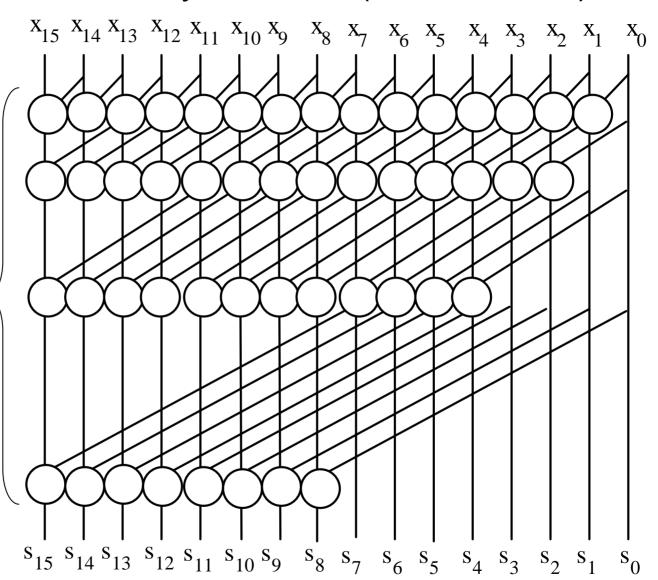


Kogge-Stone Carry Network (16-Bit Adder)

Cost formula C(k) = (k-1) + (k-2) $+ (k-4) + \dots$ + (k-k/2) $= k \log_2 k - k + 1$

 $log_2 k$ levels (minimum possible)

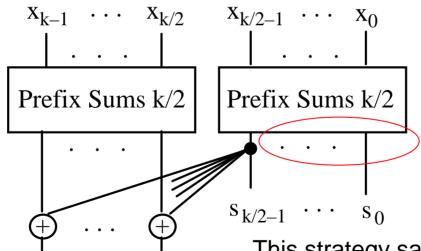
Fig. 6.10 Kogge-Stone parallel prefix graph for 16 inputs.



Speed-Cost Tradeoffs in Carry Networks

Method	Delay	Cost
Ladner-Fischer	log ₂ k	(k/2) log ₂ k
Kogge-Stone	log ₂ k	$k \log_2 k - k + 1$
Brent-Kung	$2 \log_2 k - 2$	$2k-2-\log_2 k$

Improving the Ladner/Fischer design

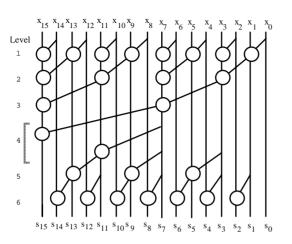


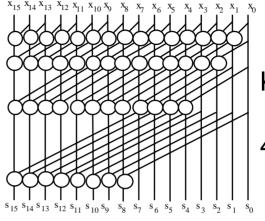
These outputs can be produced one time unit later without increasing the overall latency

This strategy saves enough to make the overall cost linear (best possible)

Hybrid B-K/K-S Carry Network (16-Bit Adder)

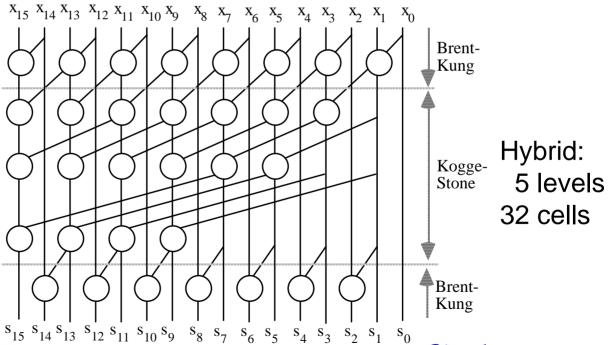
Brent-Kung: 6 levels 26 cells





Kogge-Stone: 4 levels 49 cells

Fig. 6.11
A Hybrid
Brent-Kung/
Kogge-Stone
parallel prefix
graph for
16 inputs.



6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder

In radix-256, 64-bit addition, only these carries are needed:

 C_{56} C_{48} C_{40} C_{32} C_{24} C_{16} C_{8}

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are used to derive g and p signals for 4-bit blocks

Next, the *g* and *p* signals for 4-bit blocks are combined to form the desired carries, using the MCCs in Fig. 6.12b

Four-Bit Manchester Carry Chains

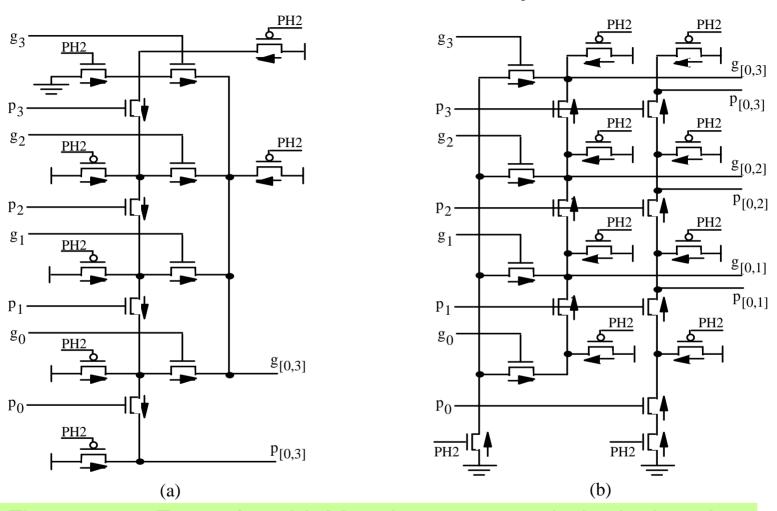


Fig. 6.12 Example 4-bit Manchester carry chain designs in CMOS technology [Lync92].

Carry Network for 64-Bit Adder

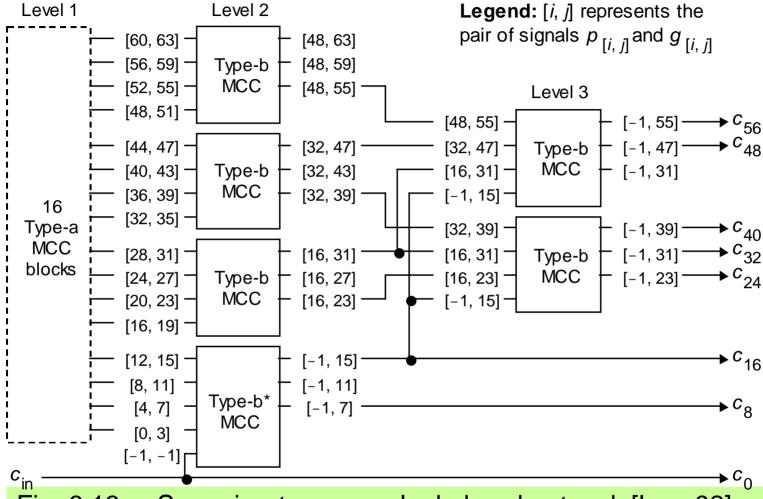


Fig. 6.13 Spanning-tree carry-lookahead network [Lync92]. Type-a and Type-b MCCs refer to the circuits of Figs. 6.12a and 6.12b, respectively.

7 Variations in Fast Adders

Chapter Goals

Study alternatives to the carry-lookahead method for designing fast adders

Chapter Highlights

Many methods besides CLA are available (both competing and complementary)
Best design is technology-dependent (often hybrid rather than pure)
Knowledge of timing allows optimizations

Variations in Fast Adders: Topics

Topics in This Chapter

- 7.1 Simple Carry-Skip Adders
- 7.2 Multilevel Carry-Skip Adders
- 7.3 Carry-Select Adders
- 7.4 Conditional-Sum Adder
- 7.5 Hybrid Designs and Optimizations
- 7.6 Modular Two-Operand Adders

7.1 Simple Carry-Skip Adders

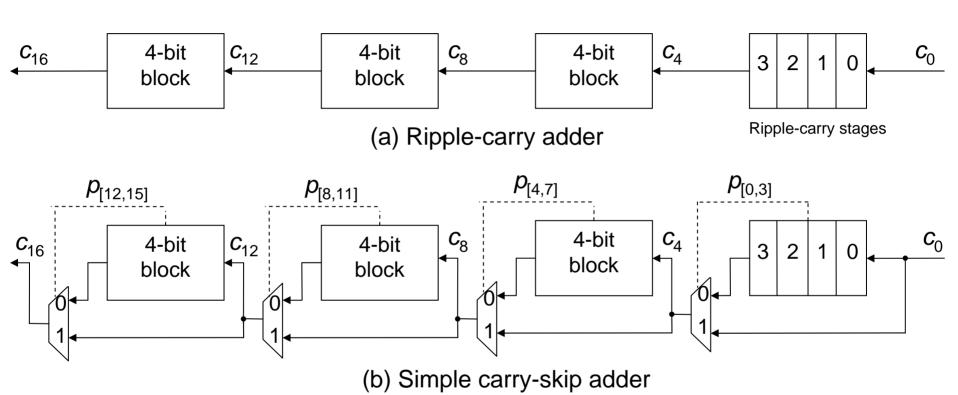
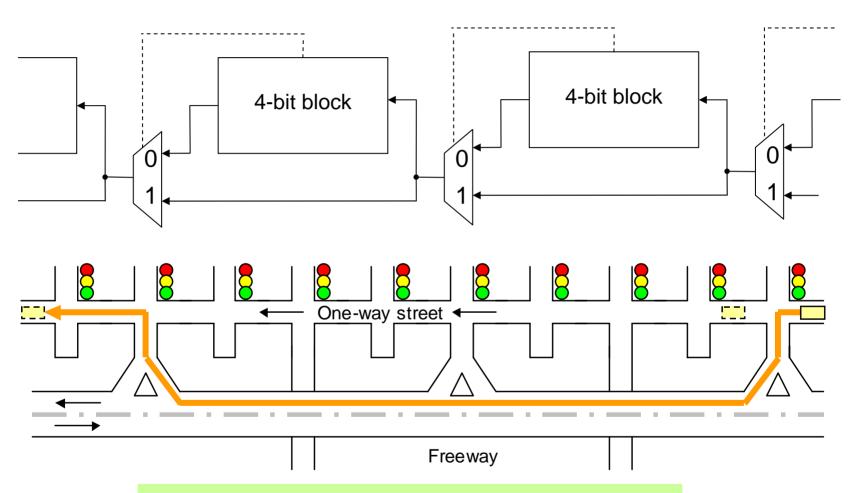


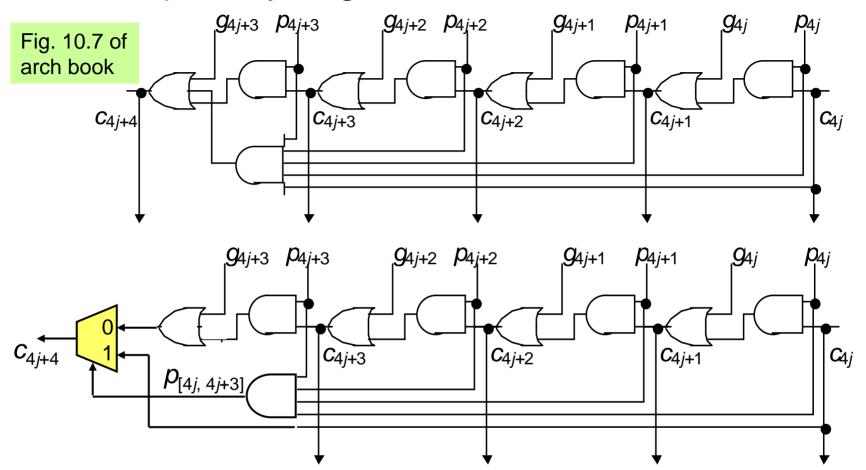
Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.

Another View of Carry-Skip Addition



Street/freeway analogy for carry-skip adder.

Skip Carry Logic with OR Gate vs. Mux



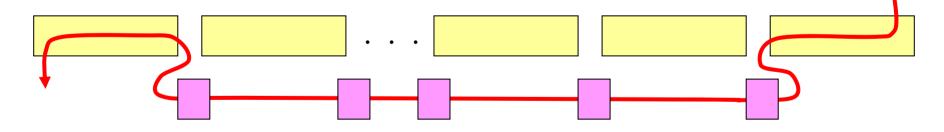
The carry-skip adder with "OR combining" works fine if we begin with a clean slate, where all signals are 0s at the outset; otherwise, it will run into problems, which do not exist in mux-based version

Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

$$T_{\text{fixed-skip-add}} = (b-1) + (k/b-1) + (b-1)$$

in block 0 skips in last block
 $\cong 2b + k/b - 3$ stages
 $dT/db = 2 - k/b^2 = 0 \implies b^{\text{opt}} = \sqrt{k/2}$
 $T^{\text{opt}} = 2\sqrt{2k} - 3$



Example: k = 32, $b^{\text{opt}} = 4$, $T^{\text{opt}} = 13$ stages (contrast with 32 stages for a ripple-carry adder)

Carry-Skip Adder with Variable-Width Blocks

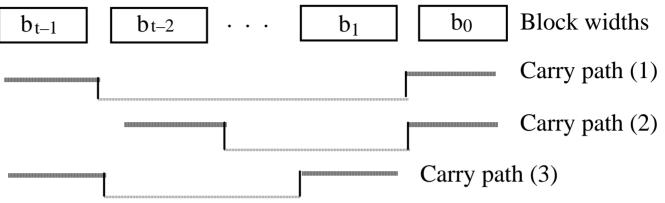


Fig. 7.2 Carry-skip adder with variable-size blocks and three sample carry paths.

Ripple Skip

The total number of bits in the t blocks is k:

$$2[b + (b + 1) + \dots + (b + t/2 - 1)] = t(b + t/4 - 1/2) = k$$

$$b = k/t - t/4 + 1/2$$

$$T_{\text{var-skip-add}} = 2(b - 1) + t - 1 = 2k/t + t/2 - 2$$

$$dT/db = -2k/t^2 + 1/2 = 0 \qquad \Rightarrow \qquad t^{\text{opt}} = 2\sqrt{k}$$

$$T^{\text{opt}} = 2\sqrt{k} - 2$$
 (a factor of $\sqrt{2}$ smaller than for fixed-block)

7.2 Multilevel Carry-Skip Adders

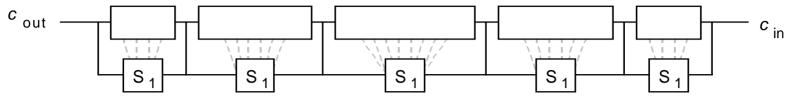


Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

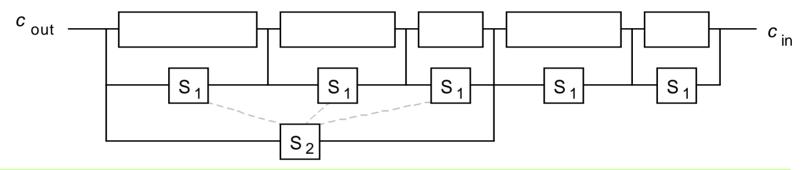


Fig. 7.4 Example of a two-level carry-skip adder.

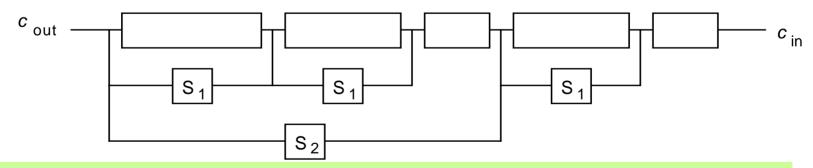


Fig. 7.5 Two-level carry-skip adder optimized by removing the short-block skip circuits.

Designing a Single-Level Carry-Skip Adder

Example 7.1

Each of the following takes one unit of time: generation of g_i and p_i , generation of level-i skip signal from level-(i-1) skip signals, ripple, skip, and formation of sum bit once the incoming carry is known

Build the widest possible one-level carry-skip adder with total delay of 8

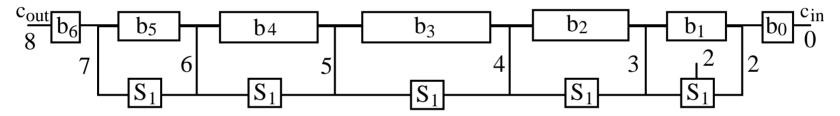


Fig. 7.6 Timing constraints of a single-level carry-skip adder with a delay of 8 units.

Max adder width =
$$18$$

(1 + 2 + 3 + 4 + 4 + 3 + 1)

Generalization of Example 7.1 for total time *T* (even or odd)

1 2 3 ...
$$(T+1)/2$$
 ... 4 3 1

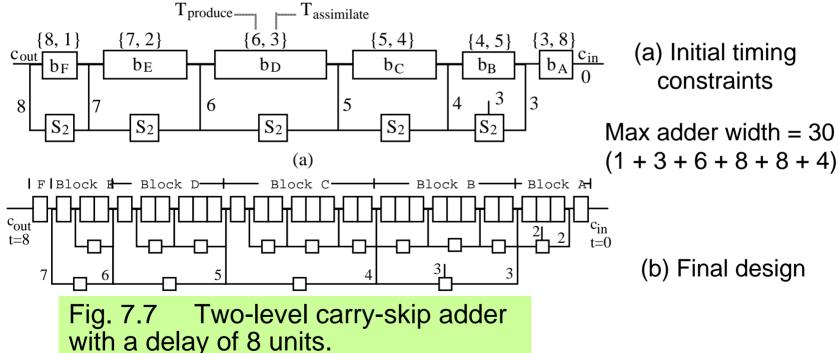
Thus, for any T, the total width is $\lfloor (T+1)^2/4 \rfloor - 2$

Designing a Two-Level Carry-Skip Adder

Example 7.2

Each of the following takes one unit of time: generation of g_i and p_i , generation of level-i skip signal from level-(i-1) skip signals, ripple, skip, and formation of sum bit once the incoming carry is known

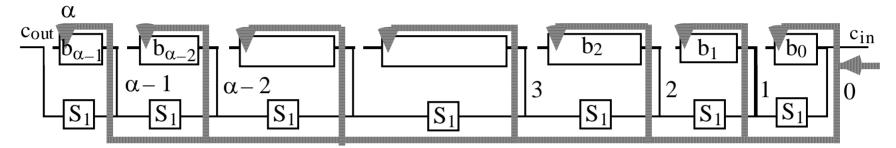
Build the widest possible two-level carry-skip adder with total delay of 8



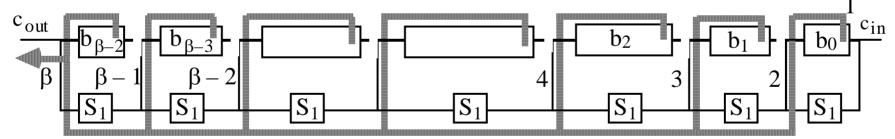
Elaboration on Two-Level Carry-Skip Adder

Example 7.2

Given the delay pair $\{\beta, \alpha\}$ for a level-2 block in Fig. 7.7a, the number of level-1 blocks that can be accommodated is $\gamma = min(\beta - 1, \alpha)$



Single-level carry-skip adder with $T_{\rm assimilate} = \alpha$



Single-level carry-skip adder with $T_{produce} = \beta$

Width of the *i*th level-1 block in the level-2 block characterized by $\{\beta, \alpha\}$ is $b_i = min(\beta - \gamma + i + 1, \alpha - i)$; the total block width is then $\sum_{i=0 \text{ to } \gamma-1} b_i$

Carry-Skip Adder Optimization Scheme

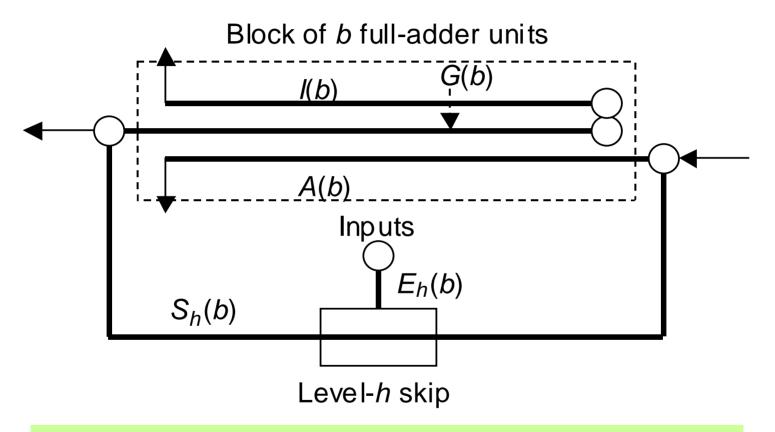


Fig. 7.8 Generalized delay model for carry-skip adders.

7.3 Carry-Select Adders

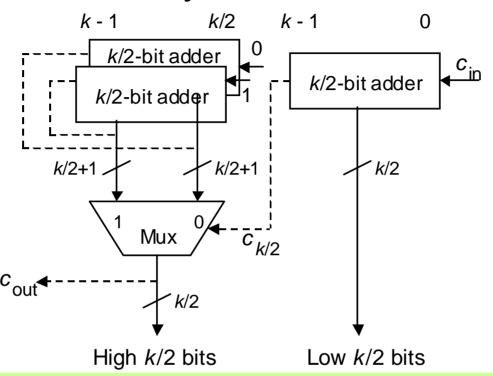


Fig. 7.9 Carry-select adder for *k*-bit numbers built from three *k*/2-bit adders.

$$C_{\text{select-add}}(k) = 3C_{\text{add}}(k/2) + k/2 + 1$$

 $T_{\text{select-add}}(k) = T_{\text{add}}(k/2) + 1$

Multilevel Carry-Select Adders

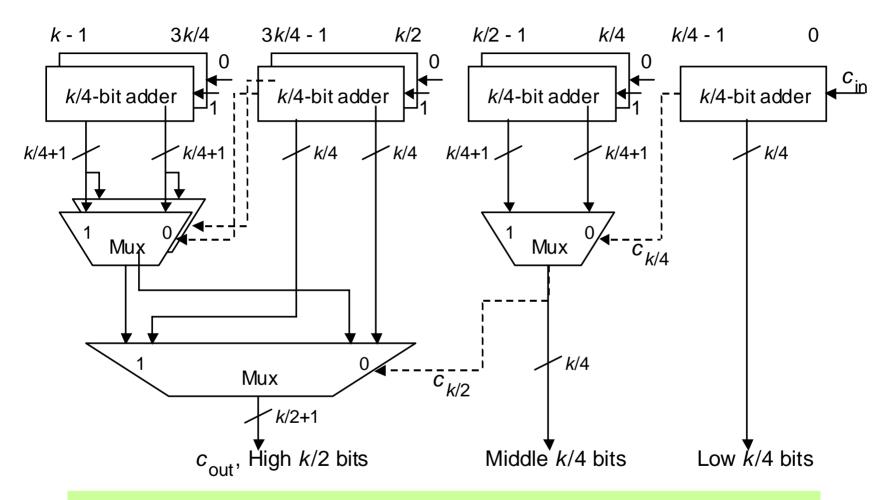


Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.

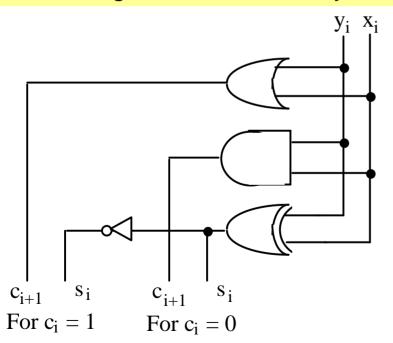
7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.

$$C(k) \cong 2C(k/2) + k + 2 \cong k(\log_2 k + 2) + kC(1)$$

$$T(k) = T(k/2) + 1 = \log_2 k + T(1)$$

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11 for deriving the sum and carry bits with a carry-in of 0 and 1



k + 2 is an upper bound on number of single-bit 2-to-1 multiplexers needed for combining two k/2-bit adders into a k-bit adder

Fig. 7.11 Top-level block for one bit position of a conditional-sum adder.

Mar. 2011

Conditional-Sum Addition Example

Table 7.2

Conditional-sum addition of two 16-bit numbers. The width of the block for which the sum and carry bits are known doubles with each additional level, leading to an addition time that grows as the logarithm of the word width k.

		х У	0	0	1	0 0	0	1 0	1 1	0 1	1 0	1 1	1 0	0 1	1 1	0 1	1 0	0	
Block width	Block carry-in					n an 12			car 9	ry-c	out 7	6	5	4	3	2	1	0	С
1	0	D D	0 0	1	1	0	1	1	0 1	1	1	0	1	1	0	1 0	1	1	0
	1	а c	1	0	0	1 0	0	0 1	1 1	0	0	1 1	0 1	0 1	1 1	0 1	0 1		
2	0	а c	0	1	1	0	1	1	0 1	1	0 1	0	1	1	0 1	1	1	1	
	1	и C	1	0	1	1	0	0	1 1	0	0 1	1	0 1	0	1 1	0			
4	0	и С	0	1	1	0	0 1	0	0	1	0 1	0	1	1	0 1	1	1	1	
	1	и C	0	1	1	1	0	0	1	0	0 1	1	0	0					
8	0	м С	0 0	1	1	1	0	0	0	1	0 1	1	0	0	0	1	1	1	
	1	D D	0	1	1	1	0	0	1	0									
16	0	ш С	0 0 :	1	1	1	0	0	1	0	0	1	0	0	0	1	1	1	
	1	м С																	
Cout																			

UCSB

Elaboration on Conditional-Sum Addition

Two adjacent 4-bit blocks, forming an 8-bit block

Two versions of sum bits and carry-out in 4-bit blocks

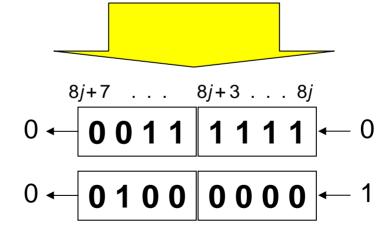
Left 4-bit block

Right 4-bit block

$$0 \leftarrow \boxed{1111} \leftarrow 0$$

$$1 \leftarrow \boxed{0000} \leftarrow 1$$

Two versions of sum bits and carry-out in 8-bit block



7.5 Hybrid Designs and Optimizations

The most popular hybrid addition scheme:

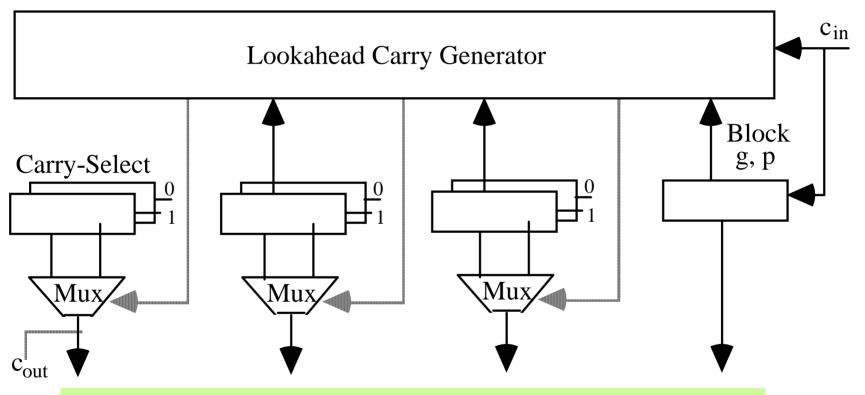
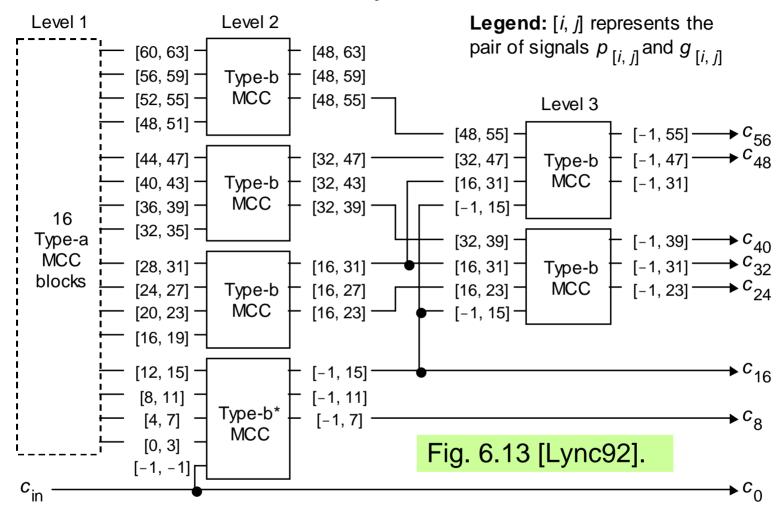


Fig. 7.12 A hybrid carry-lookahead/carry-select adder.

Details of a 64-Bit Hybrid CLA/Select Adder



Each of the carries c_{8j} , produced by the tree network above is used to select one of the two versions of the sum in positions 8j to 8j + 7

Any Two Addition Schemes Can Be Combined

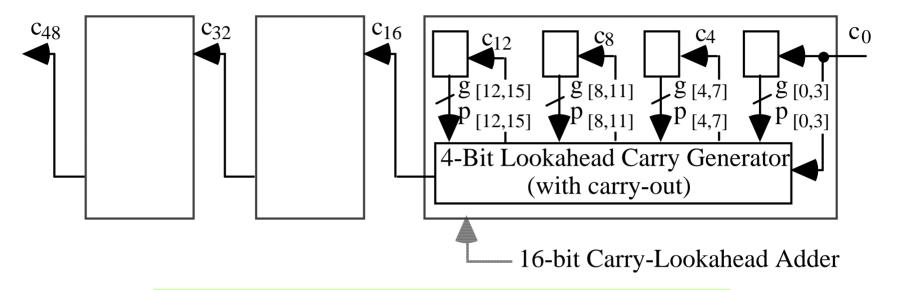


Fig. 7.13 Example 48-bit adder with hybrid ripple-carry/carry-lookahead design.

Other possibilities: hybrid carry-select/ripple-carry hybrid ripple-carry/carry-select

. . .

Optimizations in Fast Adders

What looks best at the block diagram or gate level may not be best when a circuit-level design is generated (effects of wire length, signal loading, ...)

Modern practice: Optimization at the transistor level

Variable-block carry-lookahead adder

Optimizations for average or peak power consumption

Timing-based optimizations (next slide)

Optimizations Based on Signal Timing

So far, we have assumed that all input bits are presented at the same time and all output bits are also needed simultaneously

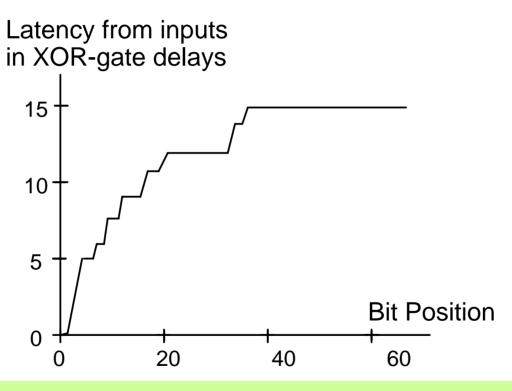
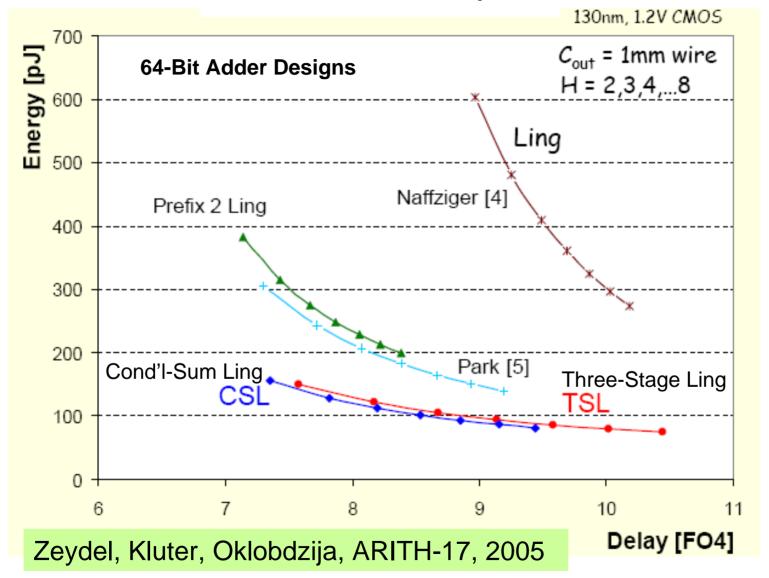
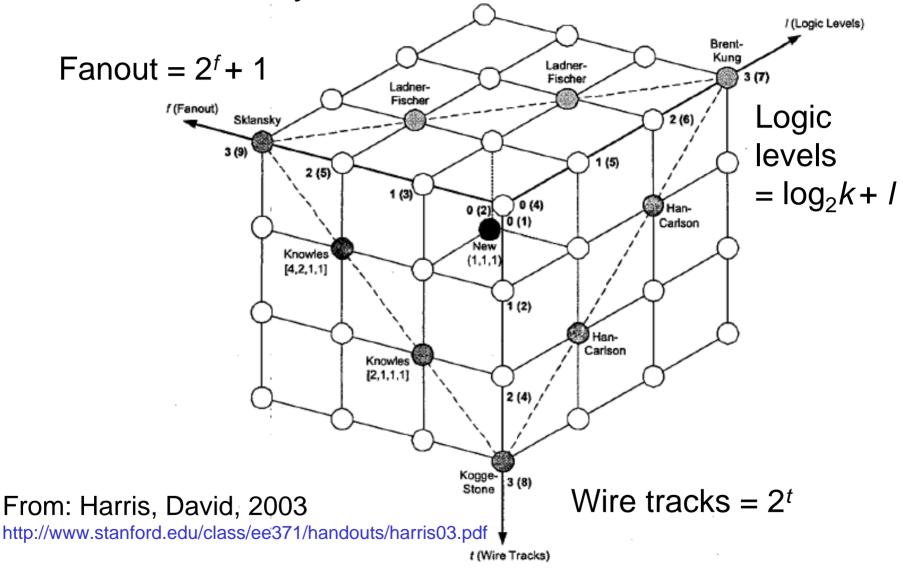


Fig. 7.14 Example arrival times for operand bits in the final fast adder of a tree multiplier [Oklo96].

Modern Low-Power Adders Implemented in CMOS



Taxonomy of Parallel Prefix Networks



7.6 Modular Two-Operand Adders

mod- 2^k : Ignore carry out of position k-1

 $\text{mod-}(2^k-1)$: Use end-around carry because $2^k=(2^k-1)+1$

 $mod-(2^k + 1)$: Residue representation needs k + 1 bits

Number	Std. binary	Diminished-1	$x + y \ge 2^k + 1$ iff
0	00000	1 x x x x	$(x-1) + (y-1) + 1 \ge 2^k$
1	00001	0 0 0 0 0	
2	00010	0 0 0 0 1	(x + y) - 1 =
			(x + y) - 1 - (x - 1) + 1
•	•	•	(X 1) 1 (y 1) 1 1
•	•		
2 ^k –1	01111	0 1 1 1 0	xy - 1 =
2^k	10000	0 1 1 1 1	(x-1)(y-1)+(x-1)+(y-1)

General Modular Adders

 $(x + y) \mod m$

if $x + y \ge m$ then x + y - melse x + y

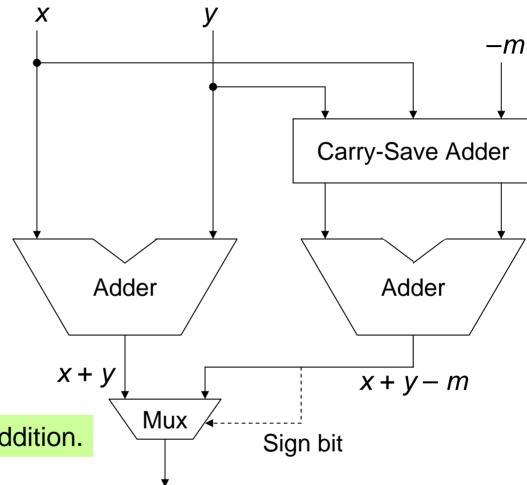


Fig. 7.15 Fast modular addition.

 $(x + y)^{\dagger} \mod m$

8 Multioperand Addition

Chapter Goals

Learn methods for speeding up the addition of several numbers (needed for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form

Current total + Next number → New total

Deferred carry assimilation

Wallace/Dadda trees, parallel counters

Modular multioperand addition

Multioperand Addition: Topics

Topics in This Chapter

- 8.1 Using Two-Operand Adders
- 8.2 Carry-Save Adders
- 8.3 Wallace and Dadda Trees
- 8.4 Parallel Counters and Compressors
- 8.5 Adding Multiple Signed Numbers
- 8.6 Modular Multioperand Adders

8.1 Using Two-Operand Adders

Some applications of multioperand addition

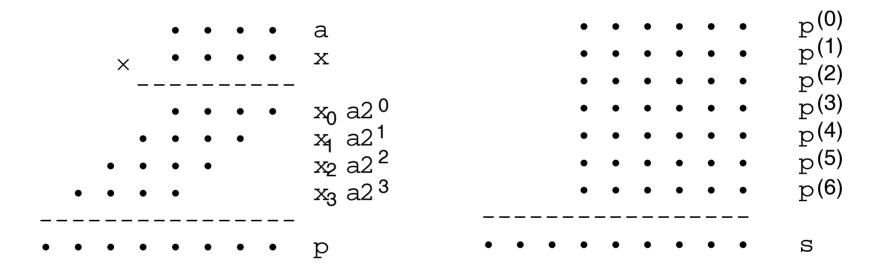


Fig. 8.1 Multioperand addition problems for multiplication or inner-product computation in dot notation.

Serial Implementation with One Adder

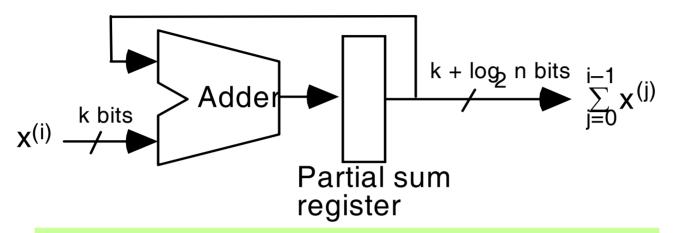


Fig. 8.2 Serial implementation of multioperand addition with a single 2-operand adder.

$$T_{\text{serial-multi-add}} = O(n \log(k + \log n))$$

= $O(n \log k + n \log \log n)$

Therefore, addition time grows superlinearly with n when k is fixed and logarithmically with k for a given n

Pipelined Implementation for Higher Throughput

Problem to think about: Ignoring start-up and other overheads, this scheme achieves a speedup of 4 with 3 adders. How is this possible?

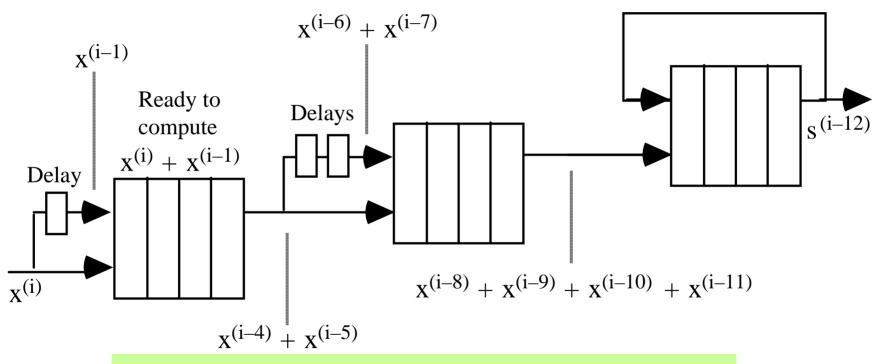


Fig. 8.3 Serial multioperand addition when each adder is a 4-stage pipeline.

Parallel Implementation as Tree of Adders

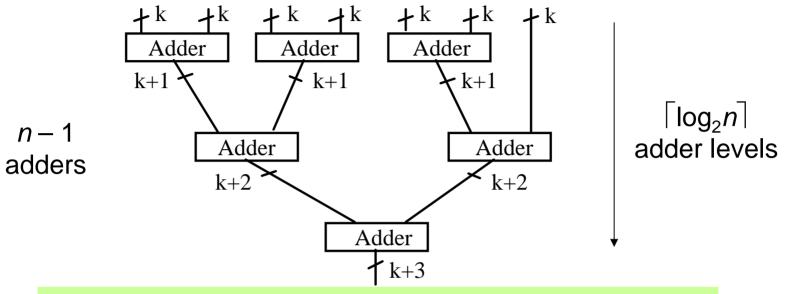


Fig. 8.4 Adding 7 numbers in a binary tree of adders.

$$T_{\text{tree-fast-multi-add}} = O(\log k + \log(k+1) + \dots + \log(k + \lceil \log_2 n \rceil - 1))$$

= $O(\log n \log k + \log n \log \log n)$

$$T_{\text{tree-ripple-multi-add}} = O(k + \log n)$$
 [Justified on the next slide]

Elaboration on Tree of Ripple-Carry Adders

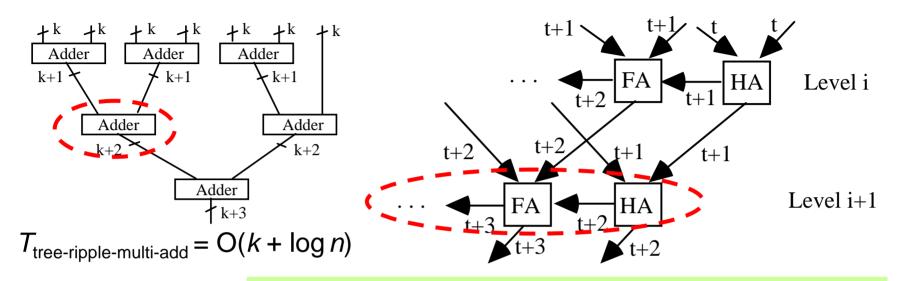


Fig. 8.5 Ripple-carry adders at levels i and i + 1 in the tree of adders used for multi-operand addition.

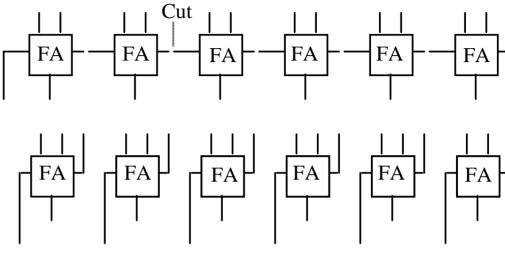
The absolute best latency that we can hope for is $O(\log k + \log n)$

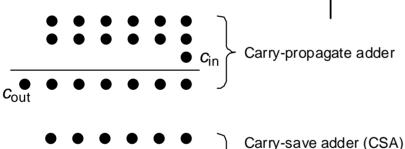
There are kn data bits to process and using any set of computation elements with constant fan-in, this requires O(log(kn)) time

We will see shortly that carry-save adders achieve this optimum time

8.2 Carry-Save Adders

Fig. 8.6 A ripple-carry adder turns into a carry-save adder if the carries are saved (stored) rather than propagated.





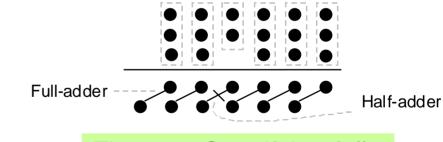


Fig. 8.7 Carry-propagate adder (CPA) and carry-save adder (CSA) functions in dot notation.

(3; 2)-counter

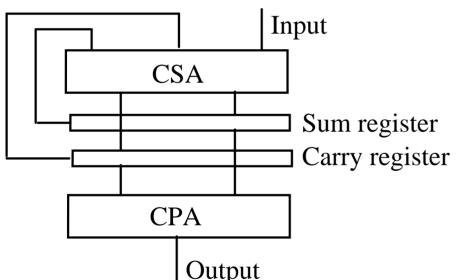
Fig. 8.8 Specifying fulland half-adder blocks, with their inputs and outputs, in dot notation.

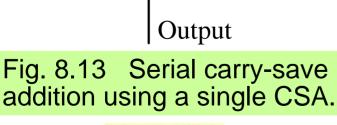
Multioperand Addition Using Carry-Save Adders

$$T_{\text{carry-save-multi-add}} = O(\text{tree height} + T_{\text{CPA}})$$

= $O(\log n + \log k)$

$$C_{\text{carry-save-multi-add}} = (n-2)C_{\text{CSA}} + C_{\text{CPA}}$$





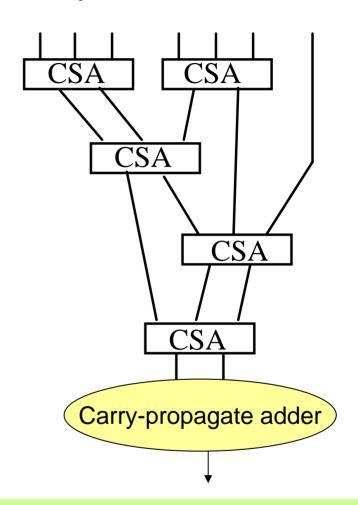
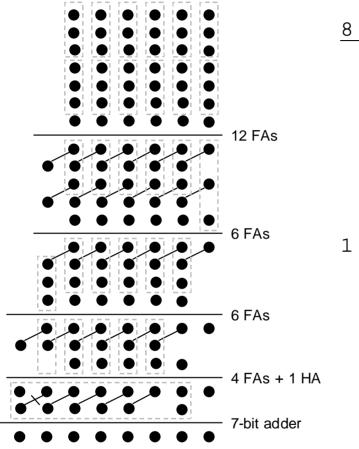


Fig. 8.9 Tree of carry-save adders reducing seven numbers to two.

Example Reduction by a CSA Tree



Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

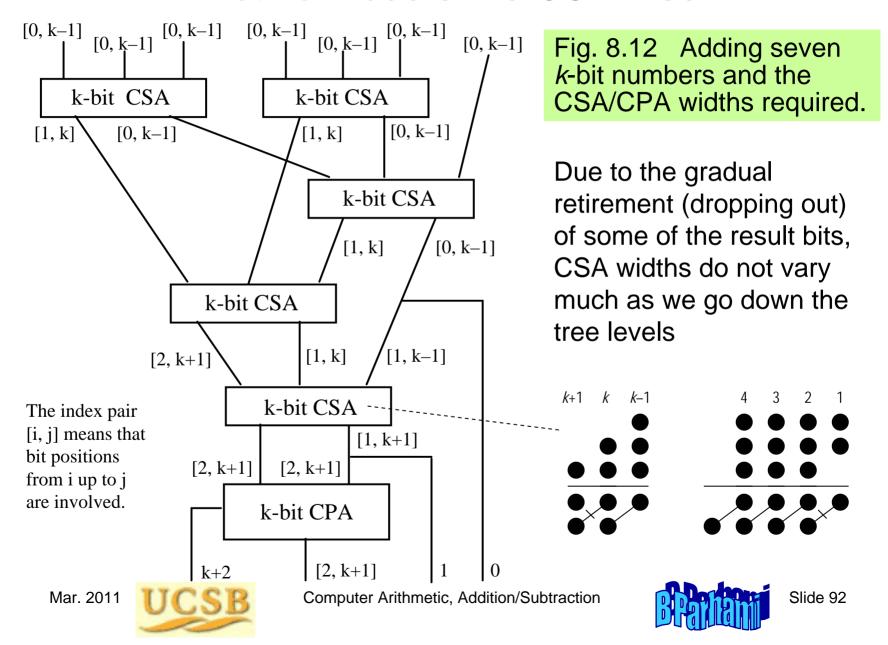
8 7 6 5 4 3 2 1 0 Bit position
7 7 7 7 7 7 7 6 FAS
2 5 5 5 5 5 3 6 FAS
3 4 4 4 4 4 1 6 FAS
1 2 3 3 3 3 2 1 4 FAS + 1 HA
2 2 2 2 2 1 2 1 7-bit adder
--Carry-propagate adder-1 1 1 1 1 1 1 1 1 1

Fig. 8.11 Representing a sevenoperand addition in tabular form.

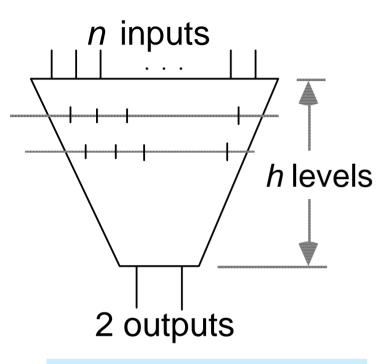
A full-adder compacts 3 dots into 2 (compression ratio of 1.5)

A half-adder rearranges 2 dots (no compression, but still useful)

Width of Adders in a CSA Tree



8.3 Wallace and Dadda Trees



$$h(n) = 1 + h(\lceil 2n/3 \rceil)$$

$$n(h) = \lfloor 3n(h-1)/2 \rfloor$$

$$2 \times 1.5^{h-1} < n(h) \le 2 \times 1.5^{h}$$

Table 8.1 The maximum number n(h) of inputs for an h-level CSA tree

h	n(h)	h	n(h)	h	n(h)
0	2	7	28	14	474
1	3	8	42	15	711
2	4	9	63	16	1066
3	6	10	94	17	1599
4	9	11	141	18	2398
5	13	12	211	19	3597
6	19	13	316	20	5395

n(h): Maximum number of inputs for h levels

Example Wallace and Dadda Reduction Trees

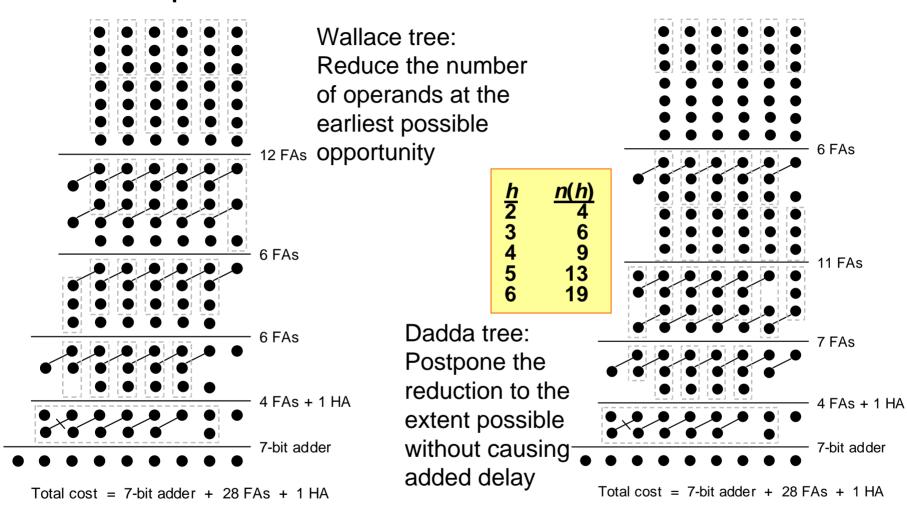


Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

Fig. 8.14 Adding seven 6-bit numbers using Dadda's strategy.

A Small Optimization in Reduction Trees

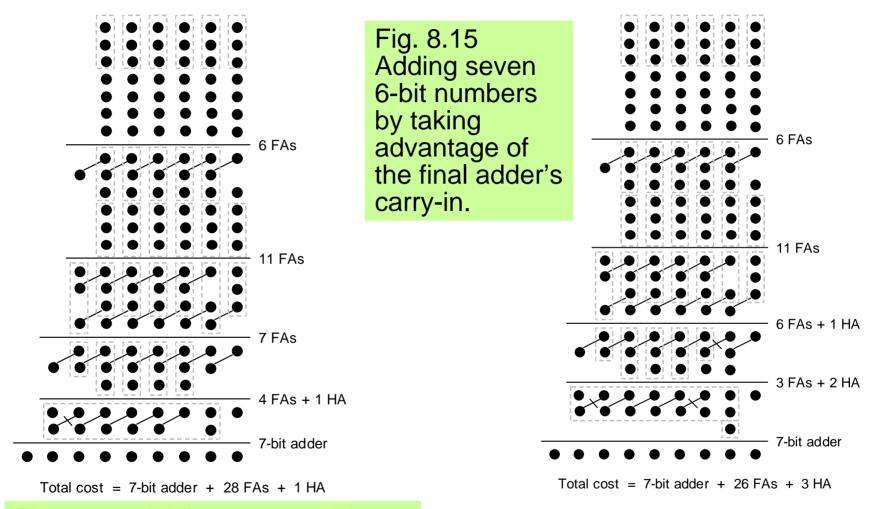
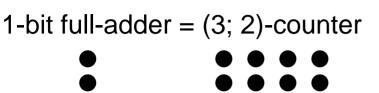
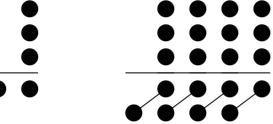


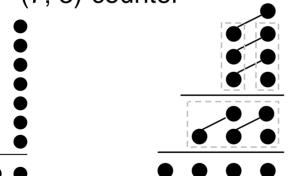
Fig. 8.14 Adding seven 6-bit numbers using Dadda's strategy.

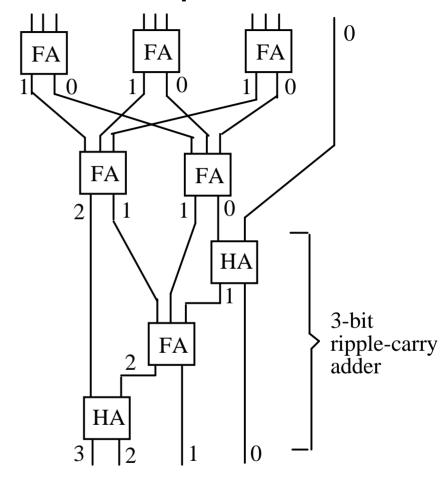
8.4 Parallel Counters and Compressors





Circuit reducing 7 bits to their 3-bit sum = (7; 3)-counter



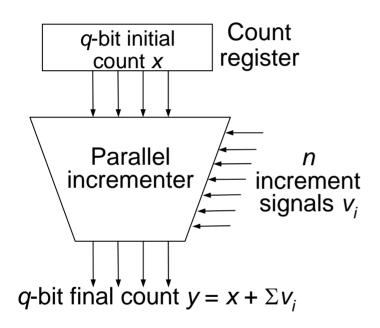


Circuit reducing n bits to their $\lceil \log_2(n+1) \rceil$ -bit sum $= (n; \lceil \log_2(n+1) \rceil)$ -counter

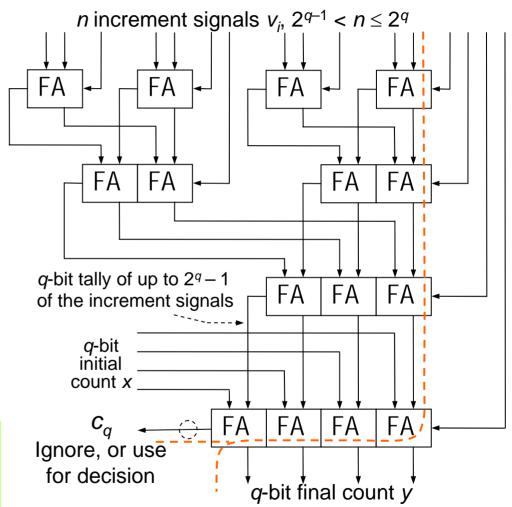
Fig. 8.16 A 10-input parallel counter also known as a (10; 4)-counter.

Accumulative Parallel Counters

True generalization of sequential counters



Possible application: Compare Hamming weight of a vector to a constant



Up/Down Parallel Counters

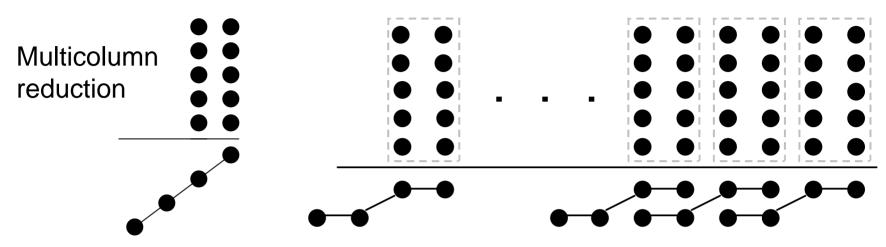
Generalization of up/down counters



Possible application:

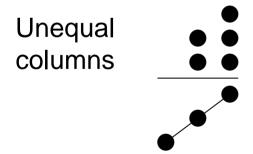
of two input vectors

8.5 Generalized Parallel Counters



(5, 5; 4)-counter

Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of such counters for reducing five numbers to two numbers.

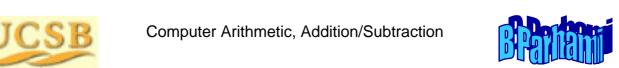


Mar. 2011

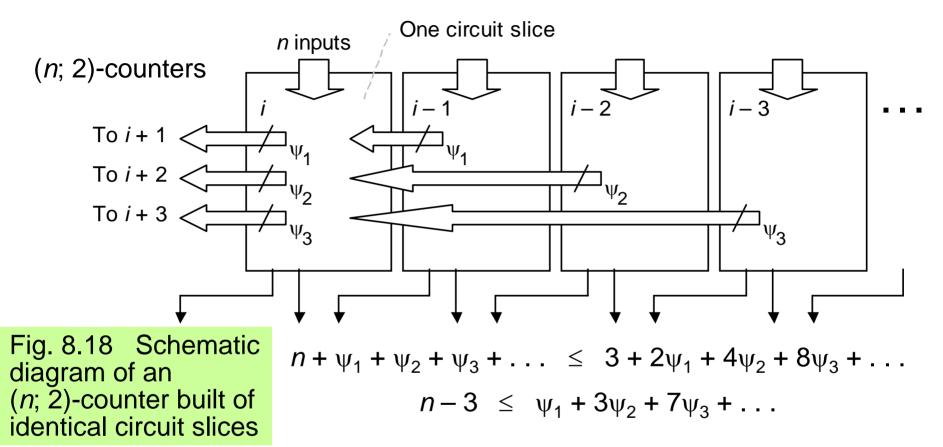
Gen. parallel counter = Parallel compressor

Slide 99

(2, 3; 3)-counter



A General Strategy for Column Compression



Example: Design a bit-slice of an (11; 2)-counter

Solution: Let's limit transfers to two stages. Then, $8 \le \psi_1 + 3\psi_2$

Possible choices include $\psi_1 = 5$, $\psi_2 = 1$ or $\psi_1 = \psi_2 = 2$

8.5 Adding Multiple Signed Numbers

Extended positions				Sign	Magn	Magnitude positions			
<i>X</i> _{<i>k</i>-1}	<i>X_k</i> -1	<i>X</i> _{<i>k</i>-1}	<i>X</i> _{<i>k</i>-1}	<i>X</i> _{<i>k</i>-1}	<i>X</i> _{<i>k</i>-1}	X_{k-2}	X _{k-3}	X_{k-4}	
y_{k-1}	y_{k-1}	y_{k-1}	y_{k-1}	y_{k-1}	y_{k-1}	y_{k-2}	y_{k-3}	$\mathbf{y}_{k\!-\!4}$	
Z_{k-1}	Z_{k-1}	Z_{k-1}	Z_{k-1}	Z_{k-1}	Z_{k-1}	Z_{k-2}	Z_{k-3}	$Z_{k\!-\!4}$	

(a) Using sign extension

(b) Using negatively weighted bits

Fig. 8.19 Adding three 2's-complement numbers.

8.6 Modular Multioperand Adders

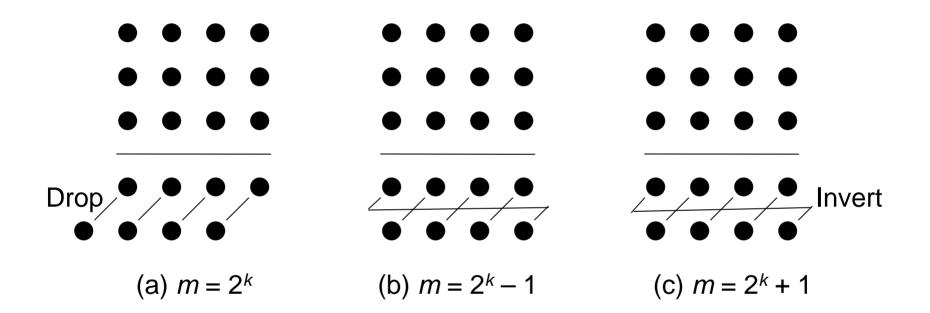


Fig. 8.20 Modular carry-save addition with special moduli.

Modular Reduction with Pseudoresidues

Six inputs in the range [0, 20]**Pseudoresidues** in the range [0, 63]Add with end-around carry

Fig. 8.21 Modulo-21 reduction of 6 numbers taking advantage of the fact that 64 = 1 mod 21 and using 6-bit pseudoresidues.

Final pseudoresidue (to be reduced)

