3.6 Analyzing the Graph of a Function

1.
$$f(x) = x^3 + 3x^2 - x - 3$$

Domain and Range

The function is a polynomial. The domain *D* is the set of all real numbers. The range *R* is the set of all real numbers.

Intercepts and Zeros

Find the zeros or x-intercepts by solving $x^3 + 3x^2 - x - 3 = 0$.

The possible integer roots of the polynomial are $\pm 1, \pm 3$.

We find that f(1) = 0. Thus 1 is a zero of the polynomial. Then we divide f(x) by the factor x - 1. The quotient is a 2nd-degree polynomial. Factoring that polynomial, the two roots there are -1, -3. Thus, the zeros are 1, -1, and 3

The y-intercept is f(0) = -3. The y-intercept is at (0, -3).

Asymptotes and limits at infinity

The function does not have any asymptotes.

$$\lim_{x \to \infty} (x^3 + 3x^2 - x - 3) = +\infty$$

$$\lim_{x \to -\infty} (x^3 + 3x^2 - x - 3) = -\infty$$

Differentiability

The function is a polynomial and hence is differentiable everywhere.

Intervals where f is increasing and decreasing

$$f(x) = x^3 + 3x^2 - x - 3$$
$$f'(x) = 3x^2 + 6x - 1$$

Find critical values:

Set $3x^2 + 6x - 1 = 0$ and solve for x.

The critical values are

$$x = \frac{-6 \pm \sqrt{36 + 12}}{6}$$

$$= \frac{-6 \pm \sqrt{48}}{6}$$

$$= \frac{-6 \pm 4\sqrt{3}}{6}$$

$$= \frac{-3 \pm 2\sqrt{3}}{3}$$

Function values of the two critical values:

$$f\left(\frac{-3-2\sqrt{3}}{3}\right) = 3.07$$
$$f\left(\frac{-3+2\sqrt{3}}{3}\right) = 3.07$$

Relative Extrema

There is a relative maximum at $x = \frac{-3-2\sqrt{3}}{3}$ located at (-2.15,3.07). There is a relative minimum at $x = \frac{-3+2\sqrt{3}}{3}$ located at (0.15,3.07).

Concavity

Find f''(x) and set it equal to 0. Solve for x to find possible inflection points.

$$f''(x) = 6x + 6$$
$$6x + 6 = 0$$
$$6x = -6$$
$$x = -1$$

Function value of x = -1: f(-1) = 0

Interval

$$(-\infty, -1)$$
 $(-1, \infty)$

 Test point $x = c$
 $c = -2$
 $c = 0$
 $f''(x) = 6x + 6$
 $6(-2) + 6$
 $6(0) + 6$
 $f''(c)$
 $= -12 + 6 < 0$
 $= 6 > 0$

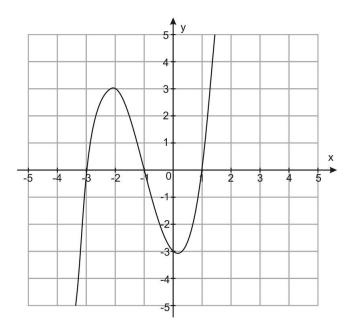
 Sign of $f''(x)$
 $f''(x) < 0$
 $f''(x) > 0$

 Concavity
 Concave down
 Concave up

Inflection Points

$$f(-1) = -1 + 3 + 1 - 3 = 0$$

There is an inflection point at (-1,0).



2.
$$f(x) = -x^4 + 4x^3 - 4x^2$$

Domain and Range

The domain *D* is the set of all real numbers. The range *R* is the set of all real numbers.

Intercepts and Zeros

Find the zeros or x-intercepts by solving $-x^4 + 4x^3 - 4x^2 = 0$.

$$-x^{4} + 4x^{3} - 4x^{2} = 0$$

$$-x^{2} (x^{2} - 4x - 4) = 0$$

$$-x^{2} (x - 2) (x - 2) = 0$$

$$x = 0 \text{ or } x = 2$$

The zeros are x = 0 and x = 2.

The y-intercept is f(0) = 0. The y-intercept is at (0,0).

Asymptotes and limits at infinity

The function does not have any asymptotes.

$$\lim_{x \to \infty} (-x^4 + 4x^3 - 4x^2) = -\infty$$

$$\lim_{x \to -\infty} (-x^4 + 4x^3 - 4x^2) = -\infty$$

Differentiability

The function is a polynomial and hence is differentiable everywhere.

Intervals where f is increasing and decreasing

$$f(x) = -x^4 + 4x^3 - 4x^2$$

$$f'(x) = -4x^3 + 12x^2 - 8x$$

Find critical values:

Set $-4x^3 + 12x - 8x = 0$ and solve for x.

The critical values are

$$-4x^{3} + 12x - 8x = 0$$

$$-4x(x^{2} - 3x^{2} + 2) = 0$$

$$x(x^{2} - 3x + 2) = 0$$

$$x(x - 2)(x - 1) = 0$$

$$x = 0 \text{ or } x = 2 \text{ or } x = 1$$

Function values of these points:

$$f(0) = 0$$
$$f(1) = -1$$
$$f(2) = 0$$

Interval
$$(-\infty,0)$$
 $(0,1)$ $(1,2)$
Test point $x = c$ $c = -1$ $c = \frac{1}{2}$ $c = \frac{3}{2}$
evaluating $-4(-1)^3 + 12(-1)^2 - 8(-1)$ $-4\left(\frac{1}{4}\right)^3 + 12\left(\frac{1}{2}\right)^2 - 8\left(\frac{1}{2}\right)$ $-4\left(\frac{3}{2}\right)^3 + 12\left(\frac{3}{2}\right)^2 - 8\left(\frac{3}{2}\right)$
 $f'(x) = -4x^3 + 12x - 8$ $= 4 + 12 + 8 > 0$ $= -\frac{4}{8} + \frac{12}{4} - 4 < 0$ $= -13.5 + 27 - 12 > 0$
at $x = c$
sign of $f'(x)$ $f'(x) > 0$ $f'(x) < 0$ $f'(x) > 0$

Decreasing

Increasing

Relative Extrema

Increasing/Decreasing

There is a relative maximum at x = 0 located at (0,0). There is a relative minimum at x = 1 located at (1,-1). There is a relative maximum at x = 2 located at the point (1,-1).

Concavity

Find f''(x) and set it equal to 0. Solve for x to find possible inflection points.

Increasing

$$f''(x) = -12x^{2} + 12x - 8$$

$$12x^{2} + 24x - 8 = 0$$

$$-4(3x^{2} - 6x + 2) = 0$$

$$3x^{2} - 6x + 2 = 0$$

$$x = \frac{3 \pm \sqrt{3}}{3}$$

$$x = 0.42, 1.58$$

$$f\left(\frac{3 - \sqrt{3}}{3}\right) = -0.44$$

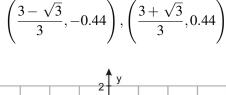
$$f\left(\frac{3 + \sqrt{3}}{3}\right) = -0.44$$

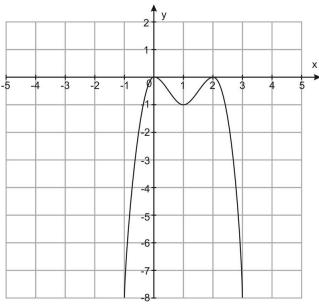
Interval
$$\begin{pmatrix} -\infty, \frac{3-\sqrt{3}}{3} \end{pmatrix} \qquad \begin{pmatrix} \frac{3-\sqrt{3}}{3}, \frac{3+\sqrt{3}}{3} \end{pmatrix} \qquad \begin{pmatrix} \frac{3+\sqrt{3}}{3}, \infty \end{pmatrix}$$
 Test point $x=c$
$$c=0 \qquad c=1 \qquad c=2$$

$$f''(x)=-12x^2+24x-8 \qquad -12(0)^2+24(0)-8 \qquad -12(1)^2+24(1)-8 \qquad -12(2)^2+24(2)-8$$

$$f''(c) \qquad =-8<0 \qquad =-8<0 \qquad =-8<0$$
 Sign of $f''(x) \qquad f''(x) < 0 \qquad f''(x) > 0 \qquad f''(x) < 0$ Concave down Concave up Concave down

Inflection Points





3.
$$f(x) = \frac{2x-2}{x^2}$$

Domain and Range

The function is undefined when $x^2 = 0$, or x = 0. The domain D is $(-\infty, 0) \cup (0, \infty)$. The range R is the set of all real numbers.

Intercepts and Zeros

zeros:

$$2x - 2 = 0$$
$$x = 2$$

(2,0) is a zero.

The y-intercept is f(0), which is undefined. There is no y-intercept.

Asymptotes and Limits at Infinity

$$\lim_{x \to \infty} \frac{2x - 2}{x^2} = \frac{\frac{2x}{x^2} - \frac{2}{x^2}}{\frac{x^2}{x^2}} = \frac{\frac{2}{x} - \frac{2}{x^2}}{1} = 0$$

$$\lim_{x \to \infty} \frac{2x - 2}{x^2} = 0$$

There is a horizontal asymptote: y = 0.

There is a vertical asymptote: x = 0.

Differentiability

The function is differentiable everywhere, except at x = 0.

Intervals where f is increasing and decreasing

$$f'(x) = \frac{x^2(2) - (2x - 2)(2x)}{x^4}$$
$$= \frac{2x^2 - 4x^2 + 4x}{x^4}$$
$$= \frac{-2x^2 + 4x}{x^4}$$
$$= \frac{-2x + 4}{x^3}$$

Critical values: x = 2, x = 0

$$f(2) = \frac{1}{2} = 0.5$$

Interval	$(-\infty,0)$	(0,2)	$(2,\infty)$
Test point $x = c$	c = -1	c = 1	c = 3
evaluating	$\frac{-2(-1)+4}{(-1)^3} < 0$	$\frac{-2(1)+4}{(1)^3} > 0$	$\frac{-2(3)+4}{(3)^3}<0$
$\frac{-2x+4}{x^3} \text{ at } x = c$			
Sign of $f'(x)$	f'(x) < 0	f'(x) > 0	f'(x) < 0
Increasing/Decreasing	Decreasing	Increasing	Decreasing

Relative extrema

There is a relative maximum at x = 2 located at (2, 0.5).

Concavity

$$f''(x) = \frac{x^3(-2) - (-2x+4)(3x^2)}{x^6}$$

$$= \frac{4x^3 - 12x^2}{x^6}$$

$$= \frac{4x - 12}{x^4}$$

$$4x - 12 = 0$$

$$4x = 12$$

$$x = 3$$

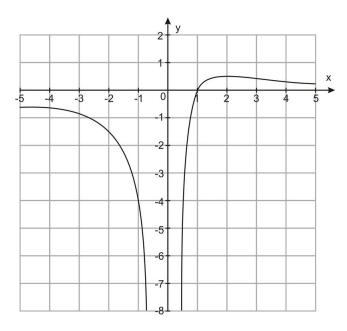
f''(x) is undefined at x = 0.

$$f(3) = \frac{4}{9}$$

Interval	$(-\infty,0)$	(0,3)	$(3,\infty)$
Test point $x = c$	c = -1	c = 1	c = 4
$f''(x) = \frac{4x - 12}{x^4}$	$\frac{4(-1)-12}{(-1)^4}$	$\frac{4(1)-12}{(1)^4}$	$\frac{4(4)-12}{4^4}$
f''(c)	= -8 < 0	= -8 < 0	$=\frac{1}{4^3}>0$
Sign of $f''(x)$	f''(x) < 0	f''(x) < 0	f''(x) > 0
Concavity	Concave down	Concave down	Concave up

Inflection Points

There is an inflection point at x = 3 located at $\left(3, \frac{4}{9}\right)$.



4.
$$f(x) = x - x^{\frac{1}{3}}$$

Domain and Range

The domain of each individual function is the set of real numbers. The domain D of the function is $(-\infty,\infty)$. The range R is the set of all real numbers.

Intercepts and Zeros

$$x - x^{\frac{1}{3}} = 0$$
$$x^{\frac{1}{3}} \left(x^{\frac{2}{3}} - 1 \right) = 0$$

$$x = 0 \text{ or } x^{\frac{2}{3}} - 1 = 0$$

 $x^{\frac{2}{3}} = 1$
 $x^{2} = 1^{3}$
 $x = \pm 1$

The *x*-intercepts are x = 0, x = -1, and x = 1.

The y-intercept is (0,0).

Asymptotes and Limits at Infinity

There are no asymptotes.

$$\lim_{x \to \infty} \left(x - x^{\frac{1}{3}} \right) = \infty$$

$$\lim_{x \to -\infty} \left(x - x^{\frac{1}{3}} \right) = -\infty$$

Differentiability

 $f'(x) = 1 - \frac{1}{3}x^{-\frac{2}{3}} = 1 - \frac{1}{3\sqrt[3]{x^2}}$. The function is differentiable on $(-\infty, 0) \cup (0, \infty)$.

Intervals where f is increasing and decreasing

$$1 - \frac{1}{3\sqrt[3]{x^2}} = 0$$

$$-\frac{1}{3\sqrt[3]{x^2}} = -1$$

$$1 = 3\sqrt[3]{x^2}$$

$$\frac{1}{3} = \sqrt[3]{x^2}$$

$$\frac{1}{27} = x^2$$

$$\pm \sqrt{\frac{1}{27}} = x$$

$$\pm \frac{1}{3\sqrt{3}} = x$$

$$\pm \frac{\sqrt{3}}{9} = x$$

f'(x) is undefined at x = 0.

Critical values: $x = \pm \frac{\sqrt{3}}{9}, x = 0$

$$f\left(-\frac{\sqrt{3}}{9}\right) = 0.384$$
$$f\left(\frac{\sqrt{3}}{9}\right) = 0.384$$

Intervals Where f is Increasing or decreasing

Relative Extrema

There is a relative maximum at $x = -\frac{\sqrt{3}}{9}$ located at $\left(-\frac{\sqrt{3}}{9}, 0.384\right)$. There is a relative minimum at $x = -\frac{\sqrt{3}}{9}$ located at $\left(\frac{\sqrt{3}}{9}, 0.384\right)$.

Concavity

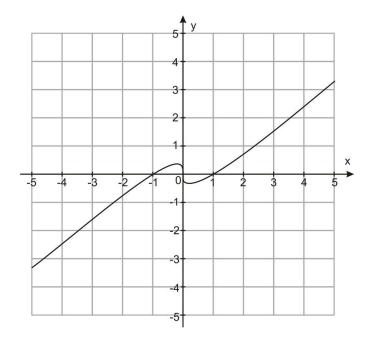
$$f''(x) = 0 + x^{-\frac{5}{3}} = \frac{1}{\sqrt[3]{x^5}}$$

f''(x) is undefined at 0.

Interval	$(-\infty,0)$	$(0, \infty)$
Test point $x = c$	c = -1	c = 1
evaluating $\frac{1}{\sqrt[3]{x^5}}$ at $x = c$	$\frac{1}{\sqrt[3]{(-1)^5}} < 0$	$\frac{1}{\sqrt[3]{(1)^5}} < 0$
Sign of $f''(x)$	f''(x) < 0	f''(x) > 0
Concavity	Concave down	Concave up

Inflection Points

There is an inflection point at x = 0 located at (0,0).



5.
$$f(x) = -\sqrt{2x-6} + 3$$

Domain and Range

2x - 6 needs to be greater than or equal to 0.

$$2x - 6 \ge 0$$
$$2x \ge 6$$
$$x \ge 3$$

Domain $D = [3, \infty)$

The greatest that f can be is 3. The range is $(\infty, 3]$.

Intercepts and Zeros

Since 0 is not in the domain, there is no y-intercept.

Find the zeros:

$$-\sqrt{2x-6}+3=0$$

$$-\sqrt{2x-6}=-3$$

$$2x-6=9$$

$$2x=15$$

$$x=\frac{15}{2}$$

There is a zero at $x = \frac{15}{2}$.

Asymptotes and Limits at Infinity

$$\lim_{x \to \infty} \left(-\sqrt{2x - 6} + 3 \right) = -\infty$$

There are no asymptotes.

Differentiability

$$f'(x) = -\frac{1}{2} (2x - 6)^{-\frac{1}{2}} (2)$$
$$= \frac{-1}{(2x - 6)^{\frac{1}{2}}}$$

The derivative is undefined at x = 3.

$$f(3) = 3$$

The function is differentiable on $(3, \infty)$.

Intervals Where f is increasing/decreasing

Check the sign of f'(x) on $(3, \infty)$. One test point is x = 4. $f'(4) = -\frac{1}{\sqrt{2(4) - 6}} < 0$. The function is decreasing on $(3, \infty)$.

Relative Extrema

There is an absolute maximum at x = 3 located at (3,3).

Concavity

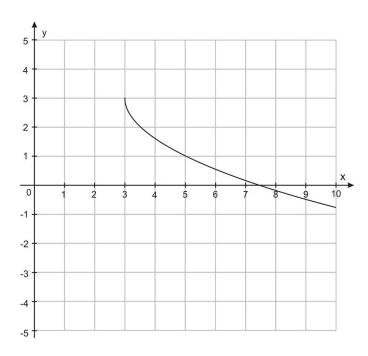
$$f''(x) = \frac{1}{2} (2x - 6)^{-\frac{3}{2}} (2)$$
$$= (2x - 6)^{-\frac{3}{2}}$$
$$= \frac{1}{\sqrt{(2x - 6)^3}}$$

f''(x) is undefined at x = 0.

On the interval $(3,\infty)$, f''(x) > 0 for all values in the interval. The function is concave up in the interval.

Inflection Points

There are no inflection points.



6.
$$f(x) = x^2 - 2\sqrt{x}$$

Domain and Range

Because of the square root function, the domain D is $[0, \infty)$.

From using the first derivative, the minimum value of f is -1.19. The range is $[-1.19, \infty)$.

Intercepts and Zeros

zeros:

$$x^{2} - 2\sqrt{x} = 0$$

$$x^{\frac{1}{2}} \left(x^{\frac{3}{2}} - 2\right) = 0$$

$$x = 0 \text{ or } x^{\frac{3}{2}} = 2$$

$$x = \sqrt[3]{4}$$

There are two zeros: $x = \sqrt[3]{4}$ and x = 0.

$$f(0) = 0$$

Asymptote and Limits at Infinity

There are no asymptotes.

$$\lim_{x \to \infty} x^2 - 2\sqrt{x} = \infty$$

Differentiability

$$f'(x) = 2x - 2\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = 2x - \frac{1}{\sqrt{x}}$$

Find critical values:

$$2x - \frac{1}{\sqrt{x}} = 0$$

$$2x^{\frac{3}{2}} - 1 = 0$$

$$2x^{\frac{3}{2}} = 1$$

$$x^{\frac{3}{2}} = \frac{1}{2}$$

$$x^{3} = \left(\frac{1}{2}\right)^{2}$$

$$x = \left(\frac{1}{4}\right)^{\frac{1}{3}} = \frac{1}{\sqrt[3]{4}} = \frac{\sqrt[3]{16}}{4}$$

$$f\left(\frac{\sqrt[3]{16}}{4}\right) = -1.19$$

f'(x) is undefined at x = 0. The function is differentiable in $(0, \infty)$.

Intervals where f is increasing/decreasing

Interval	$\left(0, \frac{\sqrt[3]{16}}{4}\right)$	$\left(\frac{\sqrt[3]{16}}{4},\infty\right)$
Test point $x = c$	c = 0.5	c = 1
evaluating $2x - \frac{1}{\sqrt{x}}$ at $x = c$	$2(.5) - \frac{1}{\sqrt{0.5}} < 0$	$2(1) - \frac{1}{\sqrt{1}} < 0$
Sign of $f'(x)$	f'(x) < 0	f'(x) > 0
Increasing/Decreasing	Decreasing	Increasing

Relative Extrema

There is a relative minimum at $x = \frac{3\sqrt{16}}{4}$ located at the point $\left(\frac{\sqrt[3]{16}}{4}, -1.19\right)$

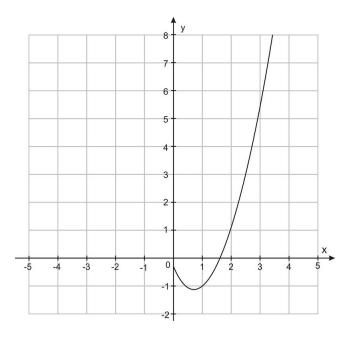
Concavity

$$f''(x) = 2 - \left(-\frac{1}{2}\right)x^{-\frac{3}{2}} = 2 + \frac{1}{\sqrt[3]{x^2}}$$

The second derivative is undefined at x = 0. It is greater than 0 for all values in $(0, \infty)$. The function is concave up on $(0, \infty)$.

Inflection Points

There are no inflection points.



7.
$$f(x) = 1 + \cos x$$
 on $[-\pi, \pi]$

Domain and Range

The domain *D* is $[-\pi, \pi]$. Since $-1 \le \cos x \le 1$, the range of $1 + \cos x$ is [0, 2].

Intercepts and Zeros

zeros:

$$1 + \cos x = 0$$
$$\cos x = -1$$
$$x = -\pi \text{ or } x = \pi$$

y-intercept

$$f(0) = 1 + \cos 0 = 2$$

There is a y-intercept at (0,2).

Asymptotes and limits at infinity

There are no asymptotes. The limits at infinity are not relevant because we are looking at a function on a finite, closed interval.

Differentiability

The function is differentiable at every point of its domain.

Intervals where f is Increasing/Decreasing

$$f'(x) = -\sin x$$
$$-\sin x = 0$$
$$x = 0$$
$$f(0) = 1 + \cos 0 = 2$$

Because we are analyzing a continuous function on a closed interval, we check the endpoints for extrema.

$$f(-\pi) = 0$$
$$f(\pi) = 0$$

There is an absolute maximum at x = 0 located at (0,2). There are absolute minimums at $x = -\pi$ and $x = \pi$ located at $(-\pi,0)$ and $(\pi,0)$.

Concavity

$$f''(x) = -\cos x$$
$$-\cos x = 0$$
$$x = -\frac{\pi}{2} \text{ or } x = \frac{\pi}{2}$$

$$f\left(-\frac{\pi}{2}\right) = 1$$
$$f\left(\frac{\pi}{2}\right) = 1$$

Inflection Points

The points of inflection are at $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$ located at $\left(-\frac{\pi}{2}, 1\right)$ and $\left(\frac{\pi}{2}, 1\right)$.

