Visual Studio 2022 editie

SAMPLE

Leren programmeren in C#
van beginner naar gevorderde

DOOR TIM DAMS

Zie Scherp Scherper

3e editie

Object georiénteerd programmeren met C#, van beginner naar gevorderde

Tim Dams

Zie Scherp Scherper
3e editie

Tim Dams

ISBN 9789464651560
© 2021 - 2024 Tim Dams

Inhoudsopgave

Welkom
1 Watjekuntverwachten L.
2 Overdebronnen e
3 Benodigdheden L
4 Dankwoord e e e

1 De eerste stappen

1.1 Watisprogrammeren? e e e e e e e
1.2 KennismakenmetC#enVisualStudio.
1.3 Console-applicaties
1.4 Foutenoplossen e e
1.5 Kleureninconsole L
1.6 Waarzijndeoefeningen?!

2 De basisconcepten van C#

2.1 Keywords:dewoordenschat
2.2 Variabelen, identifiersennaamgeving
2.3 Commentaar e e e e e
2.4 Datatypes L e e
2.5 Variabelen. L
2.6 Expressiesenoperators e e e e
2.7 Expressiedatatypes
2.8 Solutionsenprojecten

3 Tekst gebruiken in code

3.1 Tekstdatatypes
3.2 Escapecharacters e
3.3 Stringssamenvoegen. L.l e e e
3.4 Optellenvancharvariabelen.
3.5 Vreemdetekensinconsoletonen
3.6 Environmentbibliotheek

4 Werken met data
4.1 Appelenenperen e
4.2 Casting e

14
25
29
31

33
34
35
38
39
45
51
54
58

67
68
70
75
79
80
83

85
85
86

Inhoudsopgave Inhoudsopgave

4.3 CONVEISIE . . o v it e e e e e e e 90
44 Parsingo e e e e 91
4.5 Invoervande gebruikerverwerken oo o o L. 92
4.6 BerekeningenmetSystem.Math oo o oo L. 94
4.7 Randomgetallengenereren ool 97
4.8 Debuggen e 100
Beslissingen 105
5.1 Relationeleenlogischeoperators 106
5.2 e e 110
53 Scopevanvariabelen 119
5.4 Switch L e 121
55 Enum ..o e 124
Loops 131
6.1 Soortenloops e 131
6.2 While e e 133
6.3 Dowhile. 136
6.4 For-loops e 139
6.5 Nestedloops e 143
Methoden 145
7.1 Werkingvanmethoden. 146
7.2 Returntypesvanmethoden, 149
7.3 Eenuitgewerktemethode 151
7.4 ParametersdOOrgeven v i it e e e e e e e e e 153
7.5 Bestaande methoden en bibliotheken. 163
7.6 Geavanceerde methode-technieken Lo 167
Arrays 173
8.1 Nutvanarrays i i i e e e e e e 173
8.2 Werkenmetarrays e e 176
8.3 Geheugengebruikbijarrays o L 186
8.4 System.Array e 190
8.5 Algoritmesenarrays e e e e e e 193
8.6 Stringenarrays e e 195
8.7 Methodenenarrays e 199
8.8 Meer-dimensionalearrays e 204
Object georiénteerd programmeren 211
9.1 C#isOOinhartennieren 212
9.2 Klassenenobjecten 219
9.3 OO0PINCH . . o e e e e e e 224

Inhoudsopgave

Inhoudsopgave

9.4 Properties
9.5 OOP in de praktijk : DateTime

10 Geheugen- en codebeheer
10.1 Geheugenbeheerin C#
10.2 Objecten en methoden
10.3 Object referenties en null
10.4 Namespacesenusing
10.5 Exception handling

11 Gevorderde klasseconcepten
11.1 Constructors
11.2 Object initializer syntax
11.3 required properties

11.4 Static

12 Arrays en klassen
12.1 Arrays van objecten aanmaken
12.2 List collectie
12.3 Foreach loops
12.4 Hetvar keyword
12.5 varen foreach
12.6 Nuttige collectie-klassen

13 Overerving

13.1 Watis overerving
13.2 Overervingin C#
13.3 Constructors bij overerving
13.4 Virtual en Override
13.5 Het base keyword

14 Gevorderde overervingsconcepten
14.1 System.Object
14.2 Abstracte klassen
14.3 Zelf exceptions maken

15 Associaties

16 Polymorfisme
16.1 De “is een”-relatie in actie

331

................................... 332
................................... 334
............................. 339
.................................. 344
.................................. 347

351

.................................. 351
................................... 357
................................ 363

365

................................... 365
.............................. 372
................................ 374
.................................. 375

379

Inhoudsopgave

Inhoudsopgave

16.2 Objecten en polymorfisme
16.3 Arrays en polymorfisme
16.4 Polymorfisme in de praktijk
16.5 Deisen as keywords
16.6 s, as en polymorfisme: een krachtige bende

17 Interfaces

17.1 Interfaces en klassen
17.2 Het is keyword met interfaces
17.3 Interfaces in de praktijk
17.4 Bestaande interfacesin .NET
17.5 Alles samen : Polymorfisme, interfaces en is/as

18 Bestandsverwerking
18.1 Bestands- en folderlocaties
18.2 Schrijven en lezen
18.3 Binaire bestanden
18.4 De FileInfoklasse
18.5 DirectoryInfoklasse
18.6 Klassen serialiseren

19 Conclusie

Appendix: Handig om weten
Visual Studio snippets

Regions

O 0o N O U1 b W N B

String.Format()
out en ref keywords
Foute invoer opvangen met TryParse
Operator overloading
Expression bodied members
Generics
Records & structs

Welkom

Zo, je hebt besloten om C# te leren? Je bent hier aan het juiste adres. Dit boek is ontstaan als
handboek voor de opleidingen professionele bachelor elektronica-ict en toegepaste informatica
van de AP Hogeschool. Ondertussen wordt het ook in tal van andere hogescholen en middelbare
scholen gebruikt. Ik ga je op een laagdrempelige manier leren programmeren in C#, waarbij geen
voorkennis vereist is.

Eerst zullen we de fundering leggen en zaken behandelen zoals variabelen, loops methoden en
arrays. Vervolgens zal de wonderlijke wereld van het object georiénteerd programmeren uit de
doeken gedaan worden.

Je vraagt je misschien af hoe up-to-date dit boek is? Wel, het is origineel samengesteld tijdens de
lockdowns in 2020... Mmm, het jaar 2020 als kwaliteitslabel gebruiken is een beetje zoals zeggen
dat je wijn maakt met rioolwater. Toen eind 2021 een nieuwe versie van Visual Studio verscheen
werd het tijd om dit boek grondig te updaten. De versie die je nu in handen hebt werd gelipdatet
in de zomer van 2024, na reeds een grote herziening in 2022.

Net zoals spreektalen, evolueert ook de programmeertaal C# constant. Terwijl ik dit schrijf zijn we
aan versie 10.0 van C# en staat versie 11 in de startblokken. Bij iedere nieuwe C#-versie worden
bepaalde concepten plots veel eenvoudiger of zelfs gewoon overbodig. Een goed programmeur
moet natuurlijk zowel met de oude als de nieuwe constructies kunnen werken.

Ik heb getracht een gezonde mix tussen oud en nieuw te zoeken, waarbij de nadruk ligt op maximale
bruikbaarheid in je verdere professionele carriére. Je zal hier dus geen stoere, state-of-the-art
C# innovaties terugvinden die enkel in heel specifieke projecten bruikbaar zijn. Integendeel. Ik
hoop dat als je aan het laatste hoofdstuk bent, je een zodanige basis hebt, dat je ook zonder
problemen in andere ‘zustertalen’ durft te duiken (zoals Java, C en C++, maar ook zelfs Python of
JavaScript).

Dit boek ambieert niet om de volledige C#-taal en alles dat daar rond hangt aan te leren. Het boek
daarentegen is gericht op eender wie die interesse heeft in de wondere wereld van programmeren,
maar mogelijk nog nooit één letter code effectief heeft geprogrammeerd. Bepaalde concepten die
ik te ingewikkeld acht voor een beginnende programmeur werden dan ook weg gelaten. Beschouw
wat je gaat lezen dus maar als een gateway drug naar meer C#, meer programmeertalen en vooral
meer programmeerplezier! U weze gewaarschuwd.

1. WAT JE KUNT VERWACHTEN HOOFDSTUK 0. WELKOM

1 Wat je kunt verwachten

Voor we verder gaan wil ik je wel even waarschuwen. Dit boek gaat uit van geen enkele kennis van
programmeren, laat staan C#. Daarom beginnen we bij het prille begin. Verwacht echter niet dat
je aan het einde van dit boek supercoole grafische applicaties of games kunt maken. Het is zelfs
zo dat we hoegenaamd geen woord gaan reppen over “windows applicaties”, met knoppen en
menu’s enz.

Alles dat in dit boek gemaakt wordt zal uitgevoerd “in de console”. Die oeroude DOS-schermen -
ook wel een shell genoemd - die je nu nog vaak in films ziet wanneer hackers proberen in een erg
beveiligd systeem in te breken. Deze aanpak helpt je te focussen op de essentie van het probleem,
zonder afgeleid te worden door visuele elementen.

T
Microsoft Windows [Version 10.0.22621.1]
(c) Microsoft Corporation. Alle rechten voorbehouden.

C:\Users\damst>_

Figuur 1: De “console”. Qua zwarte inkt-verspilling zal deze afbeelding de hoofdprijs winnen!

2 Over de bronnen

Dit boek is het resultaat van bijna een decennium C# doceren aan de AP Hogeschool (eerst nog
Hogeschool Antwerpen, dan Artesis Hogeschool, dan Artesis Plantijn Hogeschool, enz.). De eerste
schrijfsels verschenen op een eigen gehoste blog (“Code van 1001 Nacht”, die ondertussen ter ziele
is gegaan) en vervolgens kreeg deze een iets strakkere, eenduidige vorm als gitbook cursus.

Deze cursus, alsook een hele resem oefeningen en andere nuttige extra’s kan je terugvinden op
ziescherp.be. De inhoud van die cursus loopt integraal gelijk aan die van dit boek. Uiteraard is de
kans bestaande dat er in de online versie ondertussen weer wat minder schrijffoutjes staan.

Waarom deze korte historiek? Wel, de kans is bestaande dat er hier en daar flarden tekst, code
voorbeelden, of oefeningen niet origineel de mijne zijn. Ik heb getracht zo goed mogelijk aan
te geven wat van waar komt, maar als ik toch iets vergeten ben, aarzel dan niet om me er op te
wijzen.

3 Benodigdheden

Alle codevoorbeelden in deze cursus kan je zelf (na)maken met de gratis Visual Studio 2022
Community editie die je kan downloaden op visualstudio.microsoft.com.

https://visualstudio.microsoft.com

HOOFDSTUK 0. WELKOM 4. DANKWOORD

4 Dankwoord

Aardig wat mensen - grotendeels mijn eerstejaars studenten van de professionele bachelor
Elektronica-ICT en Toegepaste Informatica van de AP Hogeschool - hebben me met deze cursus
geholpen. Hen allemaal afzonderlijk bedanken zou me een extra pagina kosten, en ik heb de
meeste al nadrukkelijk bedankt in de vorige editie van dit boek.

Een speciale dank nogmaals aan Maarten Wachters die de originele pixel-art van me maakte waar
ik vervolgens enkele varianten op heb gemaakt.

Ook een bos bloemen voor collega’s Olga Coutrin en Walter Van Hoof om de ondankbare taak op
zich te nemen mijn vele dt-fouten uit de vorige editie te halen op nog geen week voor de deadline.
Bedankt!

De trainers van Multimedi BV. die dit handboek ook gebruiken wil ik expliciet bedanken voor hun
nuttige feedback op de eerste versie van dit boek, alsook om mij een extra reden te geven om dit
boek in de eerste plaats uit te brengen.

Als laatste, in deze 2024 editie, een shoutout naar de leerkrachten van het middelbaar die sinds de
laatste onderwijshervorming C# en OOP aan hun leerlingen mogen onderwijzen!

Veel lees-en programmeerplezier,

Tim Dams Zomer 2024

1 De eerste stappen

First, solve the problem. Then, write the code.

Wel, wel, wie we hier hebben?! lemand die de edele kunst van het programmeren wil leren? Dan
ben je op de juiste plaats gekomen. Je gelooft het misschien niet, maar reeds aan het einde van
dit hoofdstuk zal je je eerste eigen computer-applicaties kunnen maken. De weg naar eeuwige
roem, glorie, véél vloeken en code herbruiken ligt voor je. Ben je er klaar voor?

De eerste stappen zijn nooit eenvoudig. Ik probeer daarom het aantal dure woorden, vreemde
afkortingen en ingewikkelde schema’s tot een minimum te beperken. Maar toch. Als je een nieuwe
kunst wil leren zal je je handen én toetsenbord vuil moeten maken.

Wat er ook gebeurt de komende hoofdstukken: blijf volhouden. Leren programmeren is een beetje
als een berg leren beklimmen waarvan je nooit de top lijkt te kunnen bereiken. Wat ook zo is. Er is
geen “top”, en dat is net het mooie van dit alles. Er valt altijd iets nieuws te leren! De zaken waar je
de komende pagina’s op gaat vloeken zullen over enkele hoofdstukken al kinderspel lijken. Hou
dus vol. Blijf oefenen. Vloek gerust af en toe. En vooral: geniet van het ontdekken van nieuwe
dingen!

1.1 Watis programmeren?

Je hoort de termen geregeld: softwareontwikkelaar, programmeur, app-developer, enz. Allen zijn
beroepen die in essentie kunnen herleid worden tot hetzelfde: programmeren. Programmeurs
hebben geleerd hoe ze computers opdrachten kunnen geven (programmeren) zodat deze hopelijk
doen wat je ze vraagt.

In de 21e eeuw is de term computer natuurlijk erg breed. Quasi ieder apparaat dat op elektriciteit
werkt bevat tegenwoordig een computertje. Gaande van slimme lampen, tot de servers die het
Internet draaiende houden of de smartwatch aan je pols. Zelfs aardig wat ijskasten en wasmachines
beginnen kleine computers te bevatten.

Het probleem van computers is dat het in essentie ongelooflijk domme dingen zijn. Hoe krachtig
ze ook soms zijn. Ze zullen altijd exact doen wat jij hen vertelt dat ze moeten doen. Als je hen dus
de opdracht geeft om te ontploffen, schrik dan niet dat je even later naar de 112 kunt bellen.

Programmeren houdt in dat je leert praten met die domme computers zodat ze doen wat jij
wilt dat ze doen.

1.1. WAT IS PROGRAMMEREN? HOOFDSTUK 1. DE EERSTE STAPPEN

1.1.1 Hetalgoritme

Deze quote van John Johnson wordt door veel beginnende programmeurs soms met een scheef
hoofd aanhoort. “Ik wil gewoon code schrijven!” Het is een mythe dat programmeurs constant
code schrijven. Integendeel, een goed programmeur zal veel meer tijd in de “voorbereiding” tot
code schrijven steken: het maken van een goed algoritme na een grondige analyse van het
probleem .

Het algoritme is de essentie van een computerprogramma en kan je beschouwen als het recept
dat je aan de computer gaat geven zodat deze jouw probleem op de juiste manier zal oplossen.
Het algoritme bestaat uit een reeks instructies die de computer moet uitvoeren telkens jouw
programma wordt uitgevoerd.

Het algoritme van een programma moet je zelf verzinnen. De volgorde waarin de instructies
worden uitgevoerd zijn echter zeer belangrijk. Dit is exact hetzelfde als in het echte leven: een
algoritme om je fiets op te pompen kan zijn:

1 Haal dop van het ventiel.
2 Plaats pomp op ventiel.
3 Begin te pompen.

Eender welke andere volgorde van bovenstaande algoritme zal vreemde - en soms fatale - fouten
geven.

Wil je dus leren programmeren, dan zal je logisch moeten leren denken en een analytische geest
hebben. Als je eerst tegen een bal trapt voor je kijkt waar de goal staat dan zal de edele kunst van
het programmeren voor jou een...speciale aangelegenheid worden.?

1.1.2 Programmeertaal

Om een algoritme te schrijven dat onze computer begrijpt dienen we een programmeertaal te
gebruiken. Computers hebben hun eigen taaltje dat programmeurs moeten kennen voor ze hun
algoritme aan de computer kunnen voeden. Er zijn tal van computertalen, de ene al wat obscuurder
dan de andere. Maar wat al deze talen gelijk hebben is dat ze meestal:

« ondubbelzinnig zijn: iedere opdracht of woord kan door de computer maar op exact één
manier geinterpreteerd worden. Dit in tegenstelling tot bijvoorbeeld het Nederlands waar
“wat een koele kikker” zowel een letterlijke, als een figuurlijke betekenis heeft die niets met
elkaar te maken heeft.

vanaf nu ben je trouwens gemachtigd om naar de nieuwsdiensten te mailen telkens ze foutief het woord “logaritme”
gebruiken in plaats van “algoritme”. Het woord logaritme is iets wat bij sommige nachtmerries uit de lessen wiskunde
opwekt en heeft hoegenaamd niets met programmeren te maken. Uiteraard kan het wel zijn dat je ooit een algoritme
moet schrijven om een logaritme te berekenen. Hopelijk moet een journalist nooit voorgaande zin in een nieuwsbericht
gebruiken.

HOOFDSTUK 1. DE EERSTE STAPPEN 1.1. WAT IS PROGRAMMEREN?

+ bestaan uit woordenschat: net zoals het Nederlands heeft ook iedere programmeertaal
een lijst woorden die je kan gebruiken. Je gaat ook niet in het Nederlands zelf woorden
verzinnen in de hoop dat je partner je kan begrijpen.

« bestaan uit grammaticaregels: Enkel Yoda mag Engels in een verkeerde volgorde gebruiken.
ledereen anders houdt zich best aan de grammatica-afspraken die een taal heeft. “bal rood
is” lijkt nog begrijpbaar, maar als we zeggen “bal rood jongen is gooit veel”?

1.1.3 siesjarp

Net zoals er ontelbare spreektalen in de wereld zijn, zijn er ook vele programmeertalen. C# - spreek
uit ‘siesjarp’, soms ook cs geschreven - is er één van de vele. C# is een taal die deel uitmaakt van
de .NET (spreek uit ‘dotnet’) . De .NET omgeving werd meer dan 20 jaar geleden door Microsoft
ontwikkeld. Het fijne van C# is dat deze een zogenaamde hogere programmeertaal is. Hoe “hoger”
de programmeertaal, hoe leesbaarder deze wordt voor leken omdat hogere programmeertalen
dichter bij onze eigen taal aanleunen.

De geschiedenis van de hele .NET-wereld vertellen zou een boek op zich betekenen en gaan ik
hier niet doen. Het is nuttig om weten dat er een gigantische bron aan informatie over .NET en C#
online te vinden is.

@ Het fijne van leren programmeren is dat je binnenkort op een bepaald punt gaat

- komen waarbij de keuze van programmeertaal er minder toe doet. Vergelijk het met
het leren van het Frans. Van zodra je Frans onder knie hebt is het veel eenvoudiger
om vervolgens Italiaans of Spaans te leren. Zo ook met programmeertalen. De C#
taal lijkt bijvoorbeeld als twee druppels water op Java. Ook de talen waar C# van
afstamt - C en C++ - hebben erg herkenbare gelijkenissen.
Zelfs JavaScript, Python en veel andere moderne talen zullen weinig geheimen voor
jou hebben wanneer je aan het einde van dit boek bent.

1.1.4 Anders Hejlsberg

Deze Deen krijgt een eigen sectie in dit boek. Waarom? Hij is niemand minder dan de “uitvinder”
van C#. Anders Hejlsberg heeft een stevig palmares inzake programmeertalen verzinnen. Voor
hij C# boven het doopvont hield bij Microsoft, schreef hij ook al Turbo Pascal én was hij de chief
architect van Delphi.

Je zou denken dat hij na 3 programmeertalen wel op z’'n lauweren zou rusten, maar zo werkt
Anders niet. In 2012 begon hij te werken aan een JavaScript alternatief, wat uiteindelijk hetimmens
populaire TypeScript werd. Dit allemaal om maar te zeggen dat als je één poster in je slaapkamer
moet ophangen, het die van Anders zou moeten zijn.

2Zie docs.microsoft.com/en-us/dotnet/csharp/getting-started.

docs.microsoft.com/en-us/dotnet/csharp/getting-started

1.1. WAT IS PROGRAMMEREN? HOOFDSTUK 1. DE EERSTE STAPPEN

1.1.5 De compiler

Rechtstreeks onze algoritmen tegen de computer vertellen vereist dat we machinetaal kunnen.
Deze is echter zo complex dat we tientallen lijnen machinetaal nodig hebben om nog maar gewoon
1 letter op het scherm te krijgen. Er werden daarom dus hogere programmeertalen ontwikkeld die
aangenamer zijn dan deze zogenaamde machinetalen om met computers te praten.

Uiteraard hebben we een vertaler nodig die onze code zal vertalen naar de machinetaal van
het apparaat waarop ons programma moet draaien. Deze vertaler is de compiler die aardig
wat complex werk op zich neemt, maar dus in essentie onze code gebruiksklaar maakt voor de
computer.

Algoritme
in hogere
programmeer-
taal

Compiler Machinetaal

Figuur 1.1: Vereenvoudigd compiler overzicht.

Merk op dat ik hier veel details van de compiler achterwege laat. De compiler is een uitermate
complex element. In deze fase van je programmeursleven hoeven we enkel de kern van de com-
piler te begrijpen: het omzetten van C# code naar een uitvoerbaar bestand geschreven in
machinetaal.

@ Microsoft .NET
- Bij de geboorte van .NET in 2000 kwam ook de taal C#.

.NET is een framework dat bestaat uit een grote verzameling bibliotheken (class
libraries) en een virtual execution system genaamd de Common Language Runtime
(CLR). De CLR zal ervoor zorgen dat C# en .NET talen (bv. F# en Visual Basic.NET)
kunnen samenwerken met de vele bibliotheken.

Om een uitvoerbaar bestand te maken (executable) zal de broncode die je hebt
geschreven in C# worden omgezet naar Intermediate Language (IL) code. Op zich
is deze IL code nog niet uitvoerbaar, maar dat is niet ons probleem.

Wanneer een gebruiker een in IL geschreven bestand wil uitvoeren dan zal de CLR
achter de schermen deze code ogenblikkelijk naar machine code omzetten en uit-
voeren. Dit concept noemt men Just-In-Time of JIT compilatie. De gebruiker zal dus
nooit dit proces opmerken (tenzij er geen .NET framework werd geinstalleerd op het
systeem).

HOOFDSTUK 1. DE EERSTE STAPPEN 1.1. WAT IS PROGRAMMEREN?

1.1.6 Nummering en naamgeving van C#

Microsoft heeft er een handje van weg om hun producten ingewikkelde volgnummers-of letters te
geven, denk maar aan Windows 10 die de opvolger was van Windows 8 (dat had trouwens een erg
goede reden; zoek maar eens op), of Windows 7 dat Windows Vista opvolgde. Het helpt ook niet
dat ze geregeld hun producten een nieuwe naam geven. Zo was het binnen .NET tot voor kort erg
ingewikkeld om te weten welke versie nu eigenlijk de welke was.

Microsoft heeft gelukkig recent de naamgevingen herschikt én hernoemt in de hoop het allemaal
wat duidelijker te maken. Ik zal daarom even kort te bespreken waar we nu zitten.

.NET 6 (framework)

Telkens er een nieuwe .NET framework werd gereleased verscheen er ook een bijhorende nieuwe
versie van Visual Studio. Vroeger had je verschillende frameworks binnen de .NET familie zoals
.NET Framework, “NET Standard”, .NET Core enz. die allemaal net niet dezelfde doeleinden hadden
wat het erg verwarrend maakte. Om dit te vereenvoudigen bestaat sinds 2020 enkel nog .NET
gevolgd door een nummer.

Zo had je in 2020 .NET 5 en verschijnt eind 2022 .NET 7. Dit boek maakt gebruikt van .NET 6 dat
verscheen samen met Visual Studio 2022...in november 2021. Je moet er maar aan uit kunnen.

Ci#10

De C# taal is eigenlijk nog het eenvoudigst qua nummering. Om de zoveel tijd krijgt C# een update
met een nieuwe reeks taal-eigenschappen die je kan, maar niet hoeft te gebruiken. Momenteel
zitten we aan C# 10 dat werd uitgebracht samen met .NET 6.

Eind 2023 kwam .NET 8 uit en dus ook alweer een nieuwe versie van C#, namelijk versie 12. De
kans is dus groot dat voorgaande zin alweer gedateerd is tegen dat je hem leest. De vernieuwingen
in C# zijn niet altijd belangrijk voor beginnende programmeurs. In dit boek heb ik getracht de
belangrijkste én meest begrijpbare nieuwe features uit de taal te gebruiken waar relevant. Over het
algemeen gezien mag je stellen dat dit boek tot en met versie NET 7.3 / C# versie 11 de belangrijkste
zaken zal behandelen.

@ Je vraagt je misschien af waarom dit allemaal verteld wordt? Waarom wordt deze

- geschiedenisles gegeven? De reden is heel eenvoudig. Je gaat zeker geregeld zaken
op het internet willen opzoeken tijdens het (leren) programmeren en zal dan ook
vaker op artikels stuiten met de oude(re) naamgeving en dan mogelijks niet kunnen
volgen.

1.2. KENNISMAKEN MET C# EN VISUAL STUDIO HOOFDSTUK 1. DE EERSTE STAPPEN

1.2 Kennismaken met C# en Visual Studio

Je gaat in dit boek leren programmeren met Microsoft Visual Studio 2022, een softwarepakket
waar ook een gratis community versie voor bestaat. Microsoft Visual Studio (vanaf nu VS) is een
pakket dat een groot deel van de tools samenvoegt die een programmeur nodig heeft. Zo zit er
een onder andere een debugger, code editor en compiler in.

VS is een zogenaamde IDE (“Integrated Development Environment”) en is op maat gemaakt
om in C# geschreven applicaties te ontwikkelen. Je bent echter verre van verplicht om enkel
C# applicaties in VS te ontwikkelen. Je kan gerust VB.NET, TypeScript, Python en andere talen
gebruiken. Ook vice versa ben je niet verplicht om VS te gebruiken om te ontwikkelen. Je kan zelfs
in notepad code schrijven en vervolgens compileren. Er bestaan zelfs online C# programmeer
omgevingen, zoals dotnetfiddle.net.

1.2.1 De compiler en Visual Studio

Zoals gezegd: jouw taak als programmeur is algoritmes in C# taal uitschrijven. Je zou dit in een
eenvoudige tekstverwerker kunnen doen, maar dan maak je het jezelf lastig. Net zoals je tekst in
notepad kunt schrijven, is het handiger dit bijvoorbeeld in tekstverwerker zoals Word te doen: je
krijgt een spellingchecker en allerlei handige extra’s.

Ook voor het schrijven van computer code is het handiger om een IDE te gebruiken, een omgeving
die ons zal helpen foutloze C# code te schrijven.

Het hart van Visual Studio bestaat uit de compiler die ik hiervoor besprak. De compiler zal je C#
code omzetten naar de IL-code zodat je je applicatie op een computer kunnen gebruiken. Zolang
je C# code niet exact voldoet aan de C# syntax en grammatica zal de compiler het vertikken een
uitvoerbaar bestand voor je te genereren.

I: Indien code foutloos [

Compiler

Low Level
Instructions

| ' (bytecode)
Indien fout in code (compiler error)

Figuur 1.2: Vereenvoudigd compiler overzicht.

C# code

HOOFDSTUK 1. DE EERSTE STAPPEN 1.2. KENNISMAKEN MET C# EN VISUAL STUDIO

1.2.2 Visual Studio Installeren

In dit boek zullen de voorbeelden steeds met de Community editie van VS gemaakt zijn. Je kan
deze gratis downloaden en installeren via visualstudio.microsoft.com/vs.

Het is belangrijk bij de installatie dat je zeker de .NET desktop development workload kiest.
Uiteraard ben je vrij om meerdere zaken te installeren.
Installing — Visual Studio Community 2022 — 17.2.2 x

Workloads Individual components Language packs Installation locations
Web & Cloud (4)

Installation details

@ ASPINET and web development 0O Azure development ~ NET desktop development
Build web applications using ASP.NET Core, ASP.NET, i Azure SDKS, tools, and prajects for developing cloud apps
HTML/JavaScript, and Containers including Docker supp.. ; and creating resources using NET and .NET Framework... plrelied
¥ NET desktop development tools
¥ NET Framework 472 development tools
C# and Visual Basic
', Python development MNode js development © @
Editing, debugging, interactive development and source Build scalable network applications using Node s, an Development tools for NET
control for Python. asynchronous event-driven JavaScript runtime.

NET Framework 4.8 development tools

Blend for Visual Studio

I bil Entity Framework 6 tools
pesidop & Moble () NET profiling tocls

IntelliCode
Mebile development with NET | NET desketop development

Build cross-platform applications for iCS, Android or
Windows using Xamarin.

Just-In-Time debugger
Build WPF, Windows Forms, and console applications LA

. Visual Basic, and F# with .NET and JNET Frame.. Live Share

MLNET Model Builder
F# desktop language support

[<J B l< BN <N<H<EgRN

PreEmptive Protection - Dotfuscator

*+— Desktop development with C++ WM Universal Windows Platform development NET Framework 46.2-4.7.1 development ..
Build modem C++ apps for Windows using tools of your MM Create applications for the Universal Windows Platform D —y
choice, including MSVC, Clang, CMake, or MSBuild with C# VB, or optionally C++ ANET Partable Library targeting p
Location

C:\Program Files\Microsoft Visual Studic\2022\Community Change.

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Total space required 55 GB
Studio. This software is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those
licenses Install while downloading = Install

Figuur 1.3: In dit boek zullen we enkel met de .NET desktop development workload werken.

@ In dit boek zullen we dus steeds werken met Visual Studio Community 2022. Niet met
- Visual Studio Code. Visual Studio code is een zogenaamde lightweight versie van VS
die echter zeker ook z'n voordelen heeft. Zo is VS Code makkelijk uitbreidbaar, snel,
en compact. Visual Studio vindt dankzij VS Code eindelijk ook z’n weg op andere
platformen dan enkel die van Microsoft. Je kan de laatste versie ervan downloaden

op: code.visualstudio.com.

http://visualstudio.microsoft.com/vs
http://code.visualstudio.com

1.2. KENNISMAKEN MET C# EN VISUAL STUDIO HOOFDSTUK 1. DE EERSTE STAPPEN

1.2.3 Visual studio opstarten

Als alles goed is geinstalleerd kan je Visual Studio starten via het start-menu van Windows.

“ Visual Studio 2022
App

Figuur 1.4: “We are going on an adventure!” (Bron: Bilbo Baggins)

De allereerste keer dat je VS opstart krijg je 2 extra schermen te zien:

+ Het “sign in” scherm mag je overslaan. Kies “Not now, maybe later”.
« Op het volgende scherm kies je best als “Development settings” voor Visual C#. Vervolgens
kan je je kleurenthema kiezen. Dit heeft geen invloed op de manier van werken.

=

H Dark is uiteraard het coolste thema om in te coderen. Je voelt je ogenblikkelijk
Neo uit The Matrix. Het nadeel van dit thema is dat het veel meer inkt verbruikt indien je
screenshots in een boek zoals dit wilt plaatsen.

De keuze voor Development Setting kan je naar “Visual C#” veranderen, maar General is even goed
(je zal geen verschil merken in eerste instantie). Je kan dit achteraf nog aanpassen in VS via “Tools”
in de menubalk, dan “Import and Export Settings” en kiezen voor “Import and Export Settings
Wizard”.

Developiment setiings
Cicnerel

Choose your color theme
® Durk

O Blue: (1t Contenst) D light

0 Visual Studio 04 Visual Stucio

Start Visual Studio

Figuur 1.5: Je kan dit nadien ook altijd nog aanpassen. En zelfs personaliseren tot de vreemdste
kleur- en lettertypecombinaties.

HOOFDSTUK 1. DE EERSTE STAPPEN

1.2. KENNISMAKEN MET C# EN VISUAL STUDIO

1.2.3.1 Project keuze

Na het opstarten van VS krijg je het startvenster te zien van waaruit je verschillende dingen kan
doen.Van zodra je projecten gaat aanmaken zullen deze in de toekomst ook op dit scherm getoond
worden zodat je snel naar een voorgaand project kunt gaan.

Visual Studio 2022

Open recent

Search recent (Alt+S p-

De

Pinned
Today

This week
This month
Older

Figuur 1.6: Het startscherm van Visual Studio.

1.2.3.2 Een nieuw project aanmaken

Get started

Clone a repository
Get code from an online repositery like GitHub or
Azure DevOps

Open a project or solution

Open a local Visual Studio project or sin file

Open a local folder
Navigate and edit code within any folder

Create a new project
Choose a project template with code seaffolding
1o get started

Continue without code -

We zullen nu een nieuw project aanmaken, kies hiervoor “Create a new project”.

- o X
Create a new project [o
Recent project templates Alllanguages Al platforms All project types
Alist of your recently accessed templates wil be =
displayed here, = I
A project for creating a commandk-line application that can un on .NET on Windows,
Linux and macO!
C+ L maoS Windows Console
“ﬁ“ Class Library
a0 A project for creating a class library that targets NET or .NET Standard
C+ Android Lnux macOS Windows Library
JR] Vet e et
BB 4 project that contains WiSTest unitteststhat can rum on NET Core on Windows,
Linux and Mac0S.
G L mac0s Windows Test
Bl Comoese
Aproject for creating a command-line application that can run on NET on Windows,
Linux and mac0s
VisuslBasic Linux macOS Windows Console
niw Class Library
ol | A project for creating a class library that targets .NET or .NET Standard
Back Next

Figuur 1.7: Kies je projecttype.

1.2. KENNISMAKEN MET C# EN VISUAL STUDIO HOOFDSTUK 1. DE EERSTE STAPPEN

@ Het “New Project” venster dat nu verschijnt geeft je hopelijk al een glimp van de

- veelzijdigheid van VS. In het rechterdeel zie je bijvoorbeeld alle Project Types staan.

M.a.w. dit zijn alle soorten programma’s die je kan maken in VS. Naargelang de
geinstalleerde opties en bibliotheken zal deze lijst groter of kleiner zijn.

In dit boek zal je altijd het Project Type “Console App” gebruiken (ZONDER .NET Framework
achteraan). Je vindt deze normaal bovenaan de lijst terug, maar kunt deze ook via het zoekveld
bovenaan terugvinden. Zoek gewoon naa - je raadt het nooit - console. Let er op dat je een
klein groen C# icoontje ziet staan bij het zwarte icoon van de Console app. Ook andere talen
ondersteunen console applicaties, maar wij gaan natuurlijk met C# aan het werk.

LY Console App
A project for creating a command-line application that can run on .NET on Windows,
C# i Linux and mac05
4

Linux macO5 Windows Console

ﬁ’ Console App
A project for creating a command-line application that can run on .NET on Windows,
Linux and mac05

Wisual Basic Linux macO5 Windows Console

Figuur 1.8: Kies voor C#, niet Visual Basic (VB). Dank bij voorbaat!

Een console applicatie is een programma dat alle uitvoer naar een zogenaamde console stuurt,
een shell. Je kan met andere woorden enkel tekst als uitvoer genereren. Multimedia elementen
zoals afbeeldingen, geluid en video zijn dus uit den boze.

Kies dit type en klik ‘Next’.

Op het volgende scherm kan je een naam ingeven voor je project alsook de locatie op de harde
schijf waar het project dient opgeslagen te worden. Onthoud waar je je project aanmaakt zodat
je dit later terugvindt.

Het “Solution name” tekstveld blijf je af. Hier zal automatisch dezelfde tekst
komen als die dat je in het “Project name” tekstveld invult.

@ Geef je projectnamen ogenblikkelijk duidelijke namen zodat je niet opgezadeld ge-
- raakt met projecten zoals Project201, enz. waarvan je niet meer weet welke belangrijk
zijn en welke niet.

10

HOOFDSTUK 1. DE EERSTE STAPPEN 1.2. KENNISMAKEN MET C# EN VISUAL STUDIO

Geef je project de naam “MijnEersteProgramma” en kies een goede locatie. Ik raad aan om de
checkbox “Place solution and project in the same directory” onderaan niét aan te vinken. In
de toekomst zal het nuttig zijn dat je meer dan 1 project per solution zal kunnen hebben. Lig er
nog niet van wakker.

Configure your new project

CO[]Sole App 9 Lirnng [UETISN) Wirtdowrs Console

Project name

| MijnEersteProgramma

Location

C\Users\damst\source\repos -

Solution name (1)

MijnEersteProgramma

l:‘ Place solution and project in the same directory

Project will be created in "C\Users\damst\source\repos\MijnEersteProgramma’\MijnEersteProgrammal,”

Figuur 1.9: Kijk altijd goed na waar je je solution gaat plaatsen.

Klik op next en kies als Target Framework de meest recente versie. Duidt hier zeker de checkbox
aan met “Do not use-top level statements”!!!3, Klik nu op Create.

Additional information

Console App c# Linwx mac0s Windows Console

Framework (&)

MET 7.0 (Standard Term Support) -

[«] Do not use top-level statements (@)

Figuur 1.10: Gebruik alsjeblieft geen top-level statements!

)

VS heeft nu reeds een aantal bestanden aangemaakt die je nodig hebt om een ‘Console Applicatie
te maken.

3De auteur van dit boek kan fier melden dat die checkbox er staat mede dankzij zijn gezaag op git-
hub.com/dotnet/docs/issues/2742.

11

https://www.github.com/dotnet/docs/issues/2742
https://www.github.com/dotnet/docs/issues/2742

1.2. KENNISMAKEN MET C# EN VISUAL STUDIO HOOFDSTUK 1. DE EERSTE STAPPEN

1.2.4 IDE Layout

Wanneer je VS opstart zal je mogelijk overweldigd worden door de hoeveelheid menu’s, knopjes,
schermen, enz. Dit is normaal voor een IDE: deze wil zoveel mogelijk mogelijkheden aanbieden
aan de gebruiker. Vergelijk dit met Word: afhankelijk van wat je gaat doen gebruikt iedere gebruiker
andere zaken van Word. De makers van Word kunnen dus niet bepaalde zaken weglaten, ze moeten
net zoveel mogelijk aanbieden.

Eens kijken wat we allemaal zien in VS na het aanmaken van een nieuw programma...

2,

internal class Program

Ew noe |f

static void Main(string[])
{

Console.WriteLine("Hello, World!");
3

}
}

[SICI I]

=

Figuur 1.11: VS IDE overzicht.

+ Je kan meerdere bestanden tegelijkertijd openen in VS. leder bestand zal z'n eigen tab
krijgen. De actieve tab is het bestand wiens inhoud je in het hoofdgedeelte eronder te
zien krijgt. Merk op dat enkel open bestanden een tab krijgen. Je kan deze tabbladen ook
“lostrekken” om bijvoorbeeld enkel dat tabblad op een ander scherm te plaatsen.

+ De “solution explorer” aan de rechterzijde toont alle bestanden en elementen die tot het
huidige project behoren. Als we dus later nieuwe bestanden toevoegen, dan kan je die hier
zien en openen. Verwijder hier géén bestanden zonder dat je zeker weet wat je aan het doen
bent!

Indien je een nieuw project hebt aangemaakt en de code die je te zien krijgt lijkt in
o de verste verte niet op de code die je hierboven ziet dan heb je vermoedelijk een
verkeerd projecttype of taal gekozen. Of je hebt de “Do not use top-level statements”
checkbox niet aangeduid.

12

HOOFDSTUK 1. DE EERSTE STAPPEN 1.2. KENNISMAKEN MET C# EN VISUAL STUDIO

Layout kapot/kwijt/vreemd?
o De layout van VS kan je volledig naar je hand zetten. Je kan ieder (deel-)venster en
tab verzetten, verankeren en zelfs verplaatsen naar een ander bureaublad. Expe-
rimenteer hier gerust mee en besef dat je steeds alles kan herstellen. Het gebeurt
namelijk al eens dat je layout een beetje om zeep is:

« Omeenvoudigeenvenster terug te krijgen, bijvoorbeeld het properties window
of de solution explorer: klik bovenaan in de menubalk op “View” en kies dan
het gewenste venster (soms staat dit in een submenu).

« Je kan ook altijd je layout in z’n geheel resetten: ga naar “Window” en kies
“Reset window layout”.

1.2.,5 Je programma starten

De code in Program.cs die VS voor je heeft gemaakt is reeds een werkend programma. Erg nuttig is
het helaas nog niet. Je kan de code compileren en uitvoeren door op de groene driehoek bovenaan
te klikken:

P MijnEersteProgramma -
Figuur 1.12: Het programma uitvoeren.

Als alles goed gaat krijg je nu “Hello World!” te zien en wat extra informatie omtrent het programma
dat net werd uitgevoerd:

Microsoft Visual Studio Debug Console - m} X
ello World!

:\Program Files\dotnet\dotnet.exe (process 9888) exited with code @.
o0 automatically close the console when debugging stops, enable Tools->Options->Debug

bing->Automatically close the console when debugging stops.
Press any key to close this window . . .

Figuur 1.13: Uitvoer van het programma.

Veel doet je programma nog niet natuurlijk, dus sluit dit venster maar terug af door een willekeurige
toets in te drukken.

1.2.6 Isditalles?
Nee hoor. Visual Studio is lekker groot, maar laat je dat niet afschrikken. Net zoals voor het eerst

op een nieuwe reisbbestemming komen, kan deze in het begin overweldigend zijn. Tot je weet
waar het zwembad en de pingpongtafel staat en je van daaruit begint te oriénteren.

13

1.3. CONSOLE-APPLICATIES HOOFDSTUK 1. DE EERSTE STAPPEN

1.3 Console-applicaties

Een console-applicatie is een programma dat zijn in- en uitvoer via een klassiek commando/shell-
scherm toont. Zoals al verteld: in dat boek ga ik je enkel console-applicaties leren maken. Grafische
Windows applicaties komen niet aan bod.

1.3.1 In en uit - ReadLine en WriteLine

Een programma zonder invoer van de gebruiker is niet erg boeiend. De meeste programma’s die
we leren schrijven vereisen dan ook “input” (IN). We moeten echter ook zaken aan de gebruiker
kunnen tonen. Denk bijvoorbeeld aan een foutboodschap of de uitkomst van een berekening
tonen. Dit vereist dat er ook “output” (UIT) naar het scherm kan gestuurd worden.

£ IN UIT

oooooo ooo
gooocs o | > C# applicatie | |
ooc—=o ool Console.ReadLine() Console.WriteLine()

Figuur 1.14: In het begin zullen al je applicaties deze opbouw hebben.

Console-applicaties maken in C# vereist dat je minstens twee belangrijke C# methoden leert
gebruiken:

« Met behulp van Console.ReadLine() kunnen we input van de gebruiker inlezen enin
ons programma verwerken.
« ViaConsole.WritelLine() kunnen we tekst op het scherm tonen.

14

HOOFDSTUK 1. DE EERSTE STAPPEN 1.3. CONSOLE-APPLICATIES

1.3.2 Je eerste console programma

Sluit het eerder gemaakte “MyFirstProject” project af en herstart Visual Studio. Maak nu een
nieuw console-project aan. Noem dit project Demol. Open het Program.cs bestand via de solution
Explorer (indien het nog niet open is). Veeg de code die hier reeds staat niet weg!

Voeg onder de lijn Console.WriteLine("Hello World!") ; volgende code toe (vergeet
de puntkomma niet):

‘ 1 Console.WriteLine("Hoi, ik ben het!"); \

Zodat je dus volgende code krijgt:

1 namespace Demol

2 {

3 internal class Program

4 {

5 static void Main(string[] args)

6 {

7 Console.WriteLine("Hello World!");
8 Console.WriteLine("Hoi, ik ben het");
9 1

10 }

1 }

Compileer deze code en voer ze uit: druk hiervoor weer op het groene driehoekje bovenaan.
Of via het menu Debug en dan Start Debugging.

Moet ik niets bewaren?
o Neen. Telkens je op de groene “build en run” knop duwt worden al je aanpassingen
automatisch bewaard. Trouwens: Kies nooit voor “save as...”! want dan bestaat
de kans dat je project niet meer compileert. Dit zal aardig wat problemen in je project
voorkomen, geloof me maar.

Laat je niet afschrikken door wat er nu volgt. Ik gooi je even in het diepe gedeelte
o van het zwembad maar zal je er op tijd uithalen . Vervolgens kunnen we terug in
het babybadje rustig op de glijbaan kunnen gaan spelen en C# op een trager tempo
verder ontdekken.

15

1.3. CONSOLE-APPLICATIES HOOFDSTUK 1. DE EERSTE STAPPEN

1.3.2.1 Analyse van de code

Ik zal nu iedere lijn code kort bespreken. Sommige lijnen code zullen lange tijd niet belangrijk
zijn. Onthoud nu alvast dat: alle belangrijke code staat tussen de accolades onder de lijn
static void Main(string[] args)!

« Lijn 1: Dit is de unieke naam waarbinnen we ons programma zullen plaatsen, en het is niet
toevallig de naam van je project. Verander dit nooit tenzij je weet wat je aan het doen bent.lk
bespreek namespaces in hoofdstuk 10.

+ Lijn 3: Hier start je echte programma. Alle code binnen deze Program accolades zullen
gecompileerd worden naar een uitvoerbaar bestand. Vanaf hoofdstuk 9 zal deze lijn geen
geheimen meer hebben voor je.

+ Lijn 5: Het startpunt van iedere console-applicatie. Wat hier gemaakt wordt is een methode
genaamd Main. Je programma kan meerdere methoden (of functies) bevatten, maar enkel
degene genaamd Ma1in zal door de compiler als het startpunt van het programma gemaakt
worden. Deze lijn zal ik in hoofdstuk 7 en hoofdstuk 8 uit de doeken doen.

« Lijn 7: Dit is een statement dat de WriteLine-methode aanroept van de Console-
bibliotheek. Het zal alle tekst die tussen de aanhalingstekens staat op het scherm tonen.

+ Lijn 8: en ook deze lijn zorgt ervoor dat er tekst op het scherm komt wanneer het programma

zal uitgevoerd worden.

Accolades op lijnen 2,4, 6, 9 tot en met 10: vervolgens moet voor iedere openende accolade

eerder in de code nu ook een bijhorende sluitende volgen. We gebruiken accolades om de

scope aan te duiden, iets dat we in hoofdstuk 5 geregeld zullen nodig hebben.

Net zoals een recept, zal ook in C# code van boven naar onder worden uitgevoerd.

Voor ons wordt het echter pas interessant op lijn7*. Dit is het startpunt van ons programma en de
uitvoer ervan. Al de zaken ervoor kan je voorlopig keihard nergeren.

Het programma zal alles uitvoeren dat tussen de accolades van het Ma1in-blok staat. Dit blok
wordt afgebakend door de accolades van lijn 6 en 9. Dit wil ook zeggen dat van zodra lijn 9 wordt
bereikt, dit het signaal voor je computer is om het programma af te sluiten.

4“Hello world” op het scherm laten verschijnen wanneer je een nieuwe programmeertaal leert is ondertussen een traditie
bij programmeurs. Er is zelfs een website die dit verzamelt namelijk helloworldcollection.de. Deze site toont in
honderden programmeertalen hoe je “Hello world” moet programmeren.

16

HOOFDSTUK 1. DE EERSTE STAPPEN 1.3. CONSOLE-APPLICATIES

]]
|
b
Jawadde... Wat was dit allemaal?! We hebben al aardig wat vreemde

code zien passeren en het is niet meer dan normaal dat je nu denkt “dit ga ik nooit kunnen’.
Wees echter niet bevreesd: je zal sneller dan je denkt bovenstaande code als ‘kinderspel’
gaan bekijken. Een tip nodig? Test en experimenteer met wat je al kunt!

Laat deze info rustig inzinken en onthoud alvast volgende belangrijke zaken:

« Al je eigen code komt momenteel enkel tussen de Main accolades.
« Eindig iedere lijn code daar met een puntkomma ().
« Code wordt van boven naar onder uitgevoerd.

@ De oerman verschijnt wanneer we een stevige stap gezet hebben en je mogelijk even

onder de indruk bent van al die nieuwe informatie. Hij zal proberen informatie nog

eens vanuit een ander standpunt toe te lichten en te herhalen waarom deze nieuwe

kennis zo belangrijk is.

17

1.3. CONSOLE-APPLICATIES HOOFDSTUK 1. DE EERSTE STAPPEN

1.3.3 WriteLine: Tekst op het scherm

De Wr1iteLine-methode is een veelgebruikte methode in Console-applicaties. Het zorgt ervoor
dat we tekst op het scherm kunnen tonen.

Voeg volgende lijn toe na de vorige WriteLine-lijnin je project:

‘ 1 Console.WriteLine("Wie ben jij?!"); ‘

De WritelLine methode zal alle tekst tonen die tussen de aanhalingstekens (" ") staat. De
aanhalingstekens aan het begin en einde van de tekst zijn uiterst belangrijk! Alsook het
puntkomma helemaal achteraan.

Je code binnen de Ma+in accolades zou nu moeten zijn:

1 Console.WriteLine("Hello World!");
2 Console.WritelLine("Hoi, ik ben het");
3 Console.WriteLine("Wie ben jij?!");

Kan je voorspellen wat de uitvoer zal zijn? Test het eens!

@ Ik toon niet telkens de volledige broncode. Als ik dat zou blijven doen dan wordt dit
boek dubbel zo dik. Ik toon daarom (meestal) enkel de code die binnen de Ma-in (of
later ook elders) moet komen.

18

HOOFDSTUK 1. DE EERSTE STAPPEN 1.3. CONSOLE-APPLICATIES

1.3.4 ReadLine: Input van de gebruiker verwerken

In de Console kan je met een handvol methoden reeds een aantal interessante dingen doen.

Zo kan je bijvoorbeeld input van de gebruiker inlezen en bewaren in een variabele als volgt:

1 string result;
2 result = Console.ReadLine();

Wat gebeurt er hier juist?

De eerste lijn code:

+ Concreet zeggen we hiermee aan de compiler: maak in het geheugen een plekje vrij waar
enkel data van het type string in mag bewaard worden (wat deze zin exact betekent komt
later. Onthoud nu dat geheugen van het type string enkel “tekst” kan bevatten).

+ Noem deze geheugenplek result zodat we deze later makkelijk kunnen in en uitlezen.

Tweede lijn code:

« Vervolgens roepen we de ReadLine methode aan. Deze methode zal de invoer van de
gebruiker van het toetsenbord uitlezen tot de gebruiker op enter drukt.
+ Het resultaat van de ingevoerde tekst wordt bewaard in de variabele result.

@ Merk op dat de toekenning in C# van rechts naar links gebeurt. Vandaar dat
- result dus links van de toekenning (=) staat en de waarde krijgt van het gedeelte
rechts ervan.

Je programma zou nu moeten zijn:

Console.WriteLine("Hello World!"); \
Console.WriteLine("Hoi, ik ben het!"); \
Console.WriteLine("Wie ben jij?!"); \
string result; \
result = Console.ReadLine(); \

a b~ wWN =

Start nogmaals je programma. Je zal merken dat je programma nu een cursor toont en wacht op
invoer nadat het de eerste 3 lijnen tekst op het scherm heeft gezet. Je kan nu eender wat intypen
en van zodra je op enter duwt gaat het programma verder. Maar aangezien lijn 5 de laatste lijn van
ons algoritme is, zal je programma hierna afsluiten. We hebben dus de gebruiker voor niets iets
laten invoeren.

19

1.3. CONSOLE-APPLICATIES HOOFDSTUK 1. DE EERSTE STAPPEN

1.3.5 Input gebruiker gebruiken

Een variabele is een geheugenplekje met een naam waar we zaken in kunnen bewaren. In het
volgende hoofdstuk gaan we zo vaak het woord variabele gebruiken dat je oren en ogen ervan gaan
bloeden. Trek je nu dus nog niet te veel aan van dit woord. We kunnen nu invoer van de gebruiker
gebruiken en tonen op het scherm. De invoer hebben we bewaard in de variabele ‘result:

1 Console.WriteLine("Dag");
2 Console.WriteLine(result);
3 Console.WriteLine("hoe gaat het met je?");

In de tweede lijn hier gebruiken we de variabele result als parameter in de WriteLine-
methode.

Met andere woorden: de Wr-iteLine methode zal op het scherm tonen wat de gebruiker even
daarvoor heeft ingevoerd.

Je volledige programma ziet er dus nu zo uit:

Console.WriteLine("Hello World!");
Console.WriteLine("Hoi, ik ben het!");
Console.WriteLine("Wie ben jij?!");

string result;

result = Console.ReadLine();
Console.WriteLine("Dag ");
Console.WriteLine(result);
Console.WriteLine("hoe gaat het met je?");

0o ~No Ul WN =

Test het programma en voer je naam in wanneer de cursor knippert.

Voorbeelduitvoer (lijn 3 is wat de gebruiker heeft ingetypt)

Hoi, ik ben het!

Wie ben jij?!

tim [enter]

Dag

tim

hoe gaat het met je?

o Uk, WN -

20

HOOFDSTUK 1. DE EERSTE STAPPEN 1.3. CONSOLE-APPLICATIES

1.3.6 Aanhalingsteken of niet?
Wanneer je de inhoud van een variabele wil gebruiken in een methode zoals WriteLine () dan
plaats je deze zonder aanhalingstekens!

Bekijk zelf eens wat het verschil wordt wanneer je volgende lijn code Console.Write(result
) ; vervangt door Console.Write("result") ;.

De uitvoer wordt dan:

Hoi, ik ben het!

Wie ben jij?!

tim [enter]

Dag

result

hoe gaat het met je?

o U WN -

We krijgen dus letterlijk de tekst “result” op het scherm in plaats van de gebruikersinvoer die we in
de variabele bewaarden.

1.3.7 Write en WriteLine

Naast WritelLine bestaat er ook Write.

De Wr1iteLine-methode zal steeds een line break - een enter zeg maar - aan het einde van de lijn
zetten zodat de cursor naar de volgende lijn springt.

De Write-methode daarentegen zal geen enter aan het einde van de lijn toevoegen. Als je
dus vervolgens iets toevoegt met een volgende Write of WritelLine, dan zal dit aan dezelfde
lijn toegevoegd worden.

Vervang daarom eens in de laatste 3 lijnen code in je project WriteLine doorWrite:

1 Console.Write("Dag");
2 Console.Write(result);
3 Console.Write("hoe gaat het met je?");

Voer je programma uit en test het resultaat. Je krijgt nu:

Hoi, ik ben het!

Wie ben jij?!

tim [enter]

Dagtimhoe gaat het met je?

A WN

Wat is er hier “verkeerd” gelopen? Al je tekst van de laatste lijn plakt zo dicht bij elkaar?

21

1.3. CONSOLE-APPLICATIES HOOFDSTUK 1. DE EERSTE STAPPEN

Inderdaad, ik ben spaties vergeten toe te voegen. Spaties zijn ook tekens die op scherm moeten
komen - ook al zien we ze niet - en je dient dus binnen de aanhalingstekens spaties toe te voegen.

Namelijk:

1 Console.Write("Dag ");
2 Console.Write(result);
3 Console.Write(" hoe gaat het met je?");

Je uitvoer wordt nu:

Hoi, ik ben het!

Wie ben jij?!

tim [enter]

Dag tim hoe gaat het met je?

A WD

1.3.8 Witregelsin C#

C# trekt zich niets aan van witregels die niét binnen aanhalingstekens staan. Zowel spaties,
enters en tabs worden genegeerd. Met andere woorden: je kan het voorgaande programma perfect
in één lange lijn code typen, zonder enters. Dit is echter niet aangeraden want het maakt je code
een pak onleesbaarder.

[c] MyFistProject - *%, Demol.Program 2 | ~ @, Main(string[] args)
0 references
1 using System;namespace Demol{class Program{static void=
Main(string[]){Console.WritelLine("Hello ?
World!");Console.WriteLine("Hoi, ik ben ?
het!");Console.WritelLine("Wie ben jij?!");string ?

result;result = Console.ReadlLine();Console.WritelLine +
("Dag");Console.WriteLine(result); Console.WritelLine »
("hoe gaat het met je?");}}}

Figuur 1.15: Voorgaande programma in exact 1 lijn. Cool? Ja, in sommige kringen. Dom en
onleesbaar? Ook ja.

22

HOOFDSTUK 1. DE EERSTE STAPPEN 1.3. CONSOLE-APPLICATIES

Opletten met spaties
o Let goed op hoe je spaties gebruikt bij WriteLine. Indien je spaties buiten de
aanhalingstekens plaatst dan heeft dit geen effect.
Hier een fout gebruik van spaties (de code zal werken maar je spaties worden gene-
geerd):

1 //we visualiseren de spaties even als liggende streepjes
in volgende voorbeeld

2 Console.Write("Dag"_);

3 Console.Write(result_);

4 Console.Write("hoe gaat het met je?");

En een correct gebruik:

1 Console.Write("Dag_");
2 Console.Write(result);
3 Console.Write("_hoe gaat het met je?");

1.3.9 Zinnen aan elkaar plakken

We kunnen dit allemaal nog een pak korter tonen zonder dat de code onleesbaar wordt. De plus-
operator (+) in C# kan je namelijk gebruiken om tekst achter elkaar te plakken. De laatste 3 lijnen
code kunnen dan korter geschreven worden als volgt:

‘ 1 Console.WriteLine("Dag " + result + " hoe gaat het met je?");

Merk op dat result dus NIET tussen aanhalingstekens staat, in tegenstelling tot de andere
stukken van de zin. Waarom is dit? Aanhalingstekens in C# duiden aan dat een stuk tekst moet
beschouwd worden als tekst van het type string. Als je geen aanhalingsteken gebruikt dan zal
C# de tekst beschouwen als een variabele met die naam.

Bekijk zelf eens wat het verschil wordt wanneer je volgende lijn code:

‘ 1 Console.WriteLine("Dag "+ result + " hoe gaat het met je?");

Vervangt door:

‘ 1 Console.WriteLine("Dag "+ "result" + " hoe gaat het met je?");

We krijgen dan altijd dezelfde output, namelijk:

‘ 1 Dag result hoe gaat het met je?

We tonen dus niet de inhoud van result, maar gewoon de tekst “result”.

23

1.3. CONSOLE-APPLICATIES HOOFDSTUK 1. DE EERSTE STAPPEN

1.3.10 Meer input vragen

Als je meerdere inputs van de gebruiker wenst te bewaren zal je meerdere geheugenplekken

(variabelen) nodig hebben. Bijvoorbeeld:

o Ul WN -

Console.WriteLine("Geef leeftijd");

string leeftijd; //eerste variabele aanmaken
leeftijd = Console.ReadLine();
Console.WriteLine("Geef adres'");

string adres; //tweede variabele aanmaken
adres = Console.ReadLine();

Je mag echter ook de variabelen al vroeger aanmaken. In C# zet men de geheugenplek creatie zo
dicht mogelijk bij de code waar je die variabele gebruikt. Maar dat is geen verplichting. Dit mag

dus ook:
1 string leeftijd; //eerste variabele aanmaken
2 string adres; //tweede variabele aanmaken
3 Console.WriteLine("Geef leeftijd");
4 leeftijd = Console.ReadLine();
5 Console.WriteLine("Geef adres");
6 adres = Console.ReadLine();

24

(r') Je zal vaak Console.WriteLine moeten schrijven als je dit boek volgt.lk heb
- echter goed nieuws voor je: er zit een ingebouwde snippet in VS om sneller Console

.WritelLine op het scherm te toveren.lk ga je niet langer in spanning houden... of
toch... nog even. Ben je benieuwd? Spannend he!

Hier gaanwe: cw [tab] [tab]

Als je dus cw schrijft en dan twee maal op de tab-toets van je toetsenbord duwt
verschijnt daar automagisch een verse lijn met Console.WriteLine() ;.

HOOFDSTUK 1. DE EERSTE STAPPEN 1.4. FOUTEN OPLOSSEN

1.4 Fouten oplossen

Je code zal pas compileren indien deze foutloos is geschreven. Herinner je dat computers uiterst
dom zijn en dus vereisen dat je code 100% foutloos is qua woordenschat en grammatica.

Zolang er dus fouten in je code staan moet je deze eerst oplossen voor je verder kan. Gelukkig
helpt VS je daarmee op 2 manieren:

+ Fouten in code worden met een rode squiggly onderlijnd.
« Onderaan zie je in de statusbalk of je fouten hebt.

” File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Cirl-Q) ¥l MyFi..ject - m] x
@ - - & 9 ~ Debug - AnyCPU - P MyFistProject - > ¢ - B3 R - R =% W S & LiveShare B
g + @ [Soltion Eplorer 1w v B x|
g [E MyFirstProject - - % Demol.Program - @ Main(string[] args) -+ af B-sam &7 §
1@ ||=namespace Demol T | Search Solution Explarer (Ctri+5) P~ ;
2 { £ Solution ‘MyFirstProject’ (1 of 1 project) | &
0 references 4 [MyFirstProject
3 - internal class Program b &4 Dependencies
u N b C# Program.cs
eferences 1
5 - static void Main(string[] args) |
6 { [
7 string leeftijd; //eerste variabele aanmaken
8 string adres; //tweede variabele aanmaken
9 Console.WritelLie("Geef leeftijd"); Solution Explorer | Git Changes
10 leeftijd = %m; P ———— vy
11 Console.WritelLine("Geef adres"); -
12 adres = Console.ReadLine(); E
13 }
14 }
15 }
146% ~ (<R A2 T 4 ¥~ 4 » n:1 Ch:2 SPC CRLF

1 Addto Source Control ~ 4 Select Repository = [

Figuur 1.16: Zie je de fout?

Laat je trouwens niet afschrikken door de gigantische reeks fouten die soms plots op je scherm
verschijnen. VS begint al enthousiast fouten te zoeken terwijl je mogelijk nog volop aan het typen
bent.

@ Als je plots veel fouten krijgt, kijk dan altijd vlak boven de plek waar de fouten
- verschijnen. Heel vaak zit daar de echte fout:en meestal is dat gewoon het ontbreken
van een kommapunt aan het einde van een statement.

25

1.4. FOUTEN OPLOSSEN HOOFDSTUK 1. DE EERSTE STAPPEN

1.4.1 Fouten sneller vinden

Uiteraard ga je vaak code hebben die meerdere schermen omvat. Je kan via de error-list snel naar
al je fouten gaan. Open deze door op het error-icoontje onderaan te klikken:

@ A2

Figuur 1.17: So many errors?!

Dit zal de “error list” openen (een schermdeel van VS dat ik aanraad om altijd open te laten én
dus niet weg te klikken). Warnings kunnen we - voorlopig - meestal negeren en deze filter’ hoef
je dus niet aan te zetten.

Error List =

Entire Solution A 0of 2Warnings @ 0 Messages Search Error Lis P~
" Code Description Project File Line Suppression State
D csony .5\,3;;;?::. S E e O EEEm D MyFirstProject Program.cs 9 Active

Figuur 1.18: De error list.

In de error list kan je nu op iedere foutboodscap klikken om ogenblikkelijk naar de correcte lijn te
gaan.

Zou je toch willen compileren en je hebt nog fouten dan zal VS je proberen tegen te houden. Lees

nu onmiddellijk wat de voorman hierover te vertellen heeft.

Microsoft Visual Studic *

(i} There were build errors. Would you like to continue and run the last
successful build?

[] Do not show this dialog again

Figuur 1.19: OPLETTEN!

wing krijgt KLIK DAN NOOIT OP YES EN DUID NOOIT DE CHECKBOX AAN!

Lees de boodschap eens goed na: wat denk je dat er gebeurt als je op ‘yes’ duwt?
Inderdaad, VS zal de laatste werkende versie uitvoeren en dus niet de code die je nu
hebt staan waarin nog fouten staan.

g Opletten aub : Indien je op de groene start knop duwt en bovenstaande waarschu-

26

HOOFDSTUK 1. DE EERSTE STAPPEN 1.4. FOUTEN OPLOSSEN

1.4.2 Fouten oplossen met lampje

Wanneer je je cursor op een lijn met een fout zet dan zal je soms vooraan een geel error-lampje
zien verschijnen (dit duurt soms even):

6 i
7 string leeftijd; //eerste variabele aanmaken
8 string adres; //tweede variabele aanmaken
<G Console.WriteLie("Geef leeftijd");

1€ Change "Writelie' to "Writeline', € 50117 'Console’ does not contain a definition for "WriteLie'

11 Introduce local for 'Console WriteLie("Geef leeftijd")’ Lines 8 to 10

12 I adres = (o] string adres; //tweede variabele aanmaken

~ Console.

13 ¥ Console.priteLing("Geef leeftijd");

14 h leeftijd = Console.ReadLine();

ar 1

Figuur 1.20: Lampje: de brenger der oplossingen...In tegenstelling tot Clippy de Office assistent
uit de jaren '90....

Je kan hier op klikken en heel vaak krijg je dan ineens een mogelijke oplossing. Wees steeds
kritisch hierover want VS is niet alwetend en kan niet altijd raden wat je bedoelt. Neem dus het
voorstel niet zomaar over zonder goed na te denken of het dat was wat je bedoelde.

Warnings kan je voorlopig over het algemeen negeren . Bekijk ze gewoon af en toe.
Wie weet bevatten ze nuttige informatie om je code te verbeteren.

27

1.4. FOUTEN OPLOSSEN HOOFDSTUK 1. DE EERSTE STAPPEN

1.4.3 Meest voorkomende fouten

De meest voorkomende fouten die je als beginnende C# programmeur maakt zijn:

28

Puntkomma vergeten.

Schrijffouten in je code, bijvoorbeeld RaedL1inei.p.v. ReadLine.

Geen rekening gehouden met hoofdletter gevoeligheid van C#, bijvoorbeeld Readline
i.p.v. ReadL1ine (zie verder).

Per ongeluk accolades verwijderd.

Code geschreven op plekken waar dat niet mag (je mag momenteel enkel binnen de accola-
des van Ma1in schrijven).

HOOFDSTUK 1. DE EERSTE STAPPEN 1.5. KLEUREN IN CONSOLE

1.5 Kleuren in console

Je kan in console-applicaties zelf bepalen in welke kleur nieuwe tekst op het scherm verschijnt. Je
kan zowel de kleur van het lettertype instellen (via ForegroundCo'lor) als de achtergrond-
kleur (BackgroundCo'lor).

Je kan met de volgende expressies de console-kleur veranderen, bijvoorbeeld de achtergrond in
blauw en de letters in groen:

1 Console.BackgroundColor = ConsoleColor.Blue;
2 Console.ForegroundColor ConsoleColor.Green;

Vanaf dan zal alle tekst die je hierna met WriteLine en Write naar het scherm stuurt met
deze kleuren werken. Merk op dat we bestaande tekst op het scherm niét van kleur kunnen
veranderen zonder deze eerst te verwijderen en dan opnieuw, met andere kleurinstellingen,
naar het scherm te sturen.

@ Alle kleuren die beschikbaar zijn staan beschreven in ConsoleColor deze zijn:
- Black, DarkBlue, DarkGreen, DarkCyan, DarkRed, DarkMagenta, DarkYellow, Gray,
DarkGray, Blue, Green, Cyan, Red, Magenta, Yellow.
Wens je dus de kleur Red dan zal je deze moeten aanroepen doorer ConsoleColor
. voor te zetten: ConsoleCo'lor . Red.
Waarom is dit? ConsoleColor is een zogenaamd enum-type. Enums leggen we
verderop in hoofdstuk 5 uit.

Een voorbeeld:

Console.WriteLine("Tekst in de standaard kleur");
Console.BackgroundColor = ConsoleColor.Yellow;
Console.ForegroundColor = ConsoleColor.Black;
Console.WriteLine("Zwart met gele achtergrond");
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine("Rood met gele achtergrond");

o U, WN -

Als je deze code uitvoert krijg je als resultaat:

Figuur 1.21: Resultaat voorgaande code.

29

1.5. KLEUREN IN CONSOLE HOOFDSTUK 1. DE EERSTE STAPPEN

Kleur in console gebruiken is nuttig om je gebruikers een minder eentonig en meer
o informatieve applicatie aan te bieden. Je zou bijvoorbeeld alle foutmeldingen in
het rood kunnen laten verschijnen. Let er wel op dat je applicatie geen aartslelijk
programma wordt.
Hou er ook rekening mee dat niet iedereen (alle) kleuren kan zien. In de vorige editie
van dit boek gebruikte ik rode letters op een groene achtergrond. Dat resulteerde in
onleesbare tekst voor mensen met Daltonisme.

1.5.1 Kleurresetten

Soms wil je terug de originele applicatie-kleuren hebben. Je zou manueel dit kunnen instellen,
maar wat als de gebruiker slechtziend is en in z'n besturingssysteem andere kleuren als standaard

heeft ingesteld?!

De veiligste manier is daarom de kleuren te resetten door de Console.ResetColor () me-
thode aan te roepen zoals volgend voorbeeld toont:

Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine("Error!!!! Contacteer de helpdesk");
Console.ResetColor();

Console.WriteLine("Het programma sluit nu af'");

AW N

30

HOOFDSTUK 1. DE EERSTE STAPPEN 1.6. WAAR ZIJN DE OEFENINGEN?!

1.6 Waar zijn de oefeningen?!

Huh?! Waar zijn de oefeningen naartoe die de vorige edities van dit handboek nog wel hadden? Om
bomen te besparen heb ik besloten om alle oefeningen via ziescherp.be beschikbaar te stellen. Je
zal langs die webpagina een grote verzamelingen oefeningen vinden, die op de koop toe geregeld
vernieuwd en verbeterd worden.

Je kan trouwens gratis op Quizlet deze cursus dagelijks instuderen®, de ideale manier om snel
essentiele C# begrippen voor altijd te onthouden.

Sinds 2023 is er een gigantische opkomst van nog straffere A.l. tools, met ChatGPT
A voorop. Alhoewel deze tools vaak heel goede C# code kunnen genereren, raden we
af deze te gebruiken, om dezelfde redenen dat je best IntelliCode niet gebruikt (zie
hoofdstuk 7). Vraag daarom nooit aan ChatGPT om “oefening x” voor je op te lossen.
Moet je dan ChatGPT volledig links laten liggen? Uiteraard niet. Gebruik hem als
extra leermiddel om bijvoorbeeld stukken code toe te lichten, bepaalde concepten
op een andere manier uit te leggen enz.

5Via https://quizlet.com/join/mqzQCGJCF.

31

https://quizlet.com/join/mqzQCGJCF

2 De basisconcepten van C#

Om een werkend C#-programma te maken moeten we de C#-taal beheersen. Net zoals iedere taal
bestaat ook C# uit:

» grammatica: in de vorm van de C# syntax
« woordenschat: in de vorm van gereserveerde keywords.

Een C#-programma bestaat uit een opeenvolging van instructies, statements genoemd. State-
ments eindigen steeds met een puntkomma. Net zoals ook in het Nederlands een zin meetal
eindigt met een punt. leder statement kan je vergelijken als één lijn in ons recept, het algoritme.

De volgorde van de woorden in C# zijn niet vrijblijvend en moeten aan grammaticale regels voldoen
’(de syntax). Enkel indien alle statements correct zijn zal het programma gecompileerd worden
naar een werkend programma.

Enkele belangrijke regels van C#:

+ Hoofdlettergevoelig: C# is hoofdlettergevoelig. Dat wil zeggen dat hoofdletter R en kleine

letter r totaal verschillende zaken zijn voor C#. Reiinhardt en reinhardt zijn dus ook

niet hetzelfde.

Statements afsluiten met puntkomma (;**): Doe je dat niet dan zal C# denken dat de

regel gewoon op de volgende lijn doorloopt en zal deze dan als één (fout) geheel proberen

te compileren.

« Witruimtes: Spaties, tabs en enters worden door de C# compiler genegeerd. Je kan ze
dus gebruiken om de layout van je code (bladspiegel) te verbeteren. De enige plek waar

witruimtes wél een verschil geven is tussen aanhalingstekens " " die we later zullen leren
gebruiken.

« Commentaar toevoegen kan: door / / voor een enkele lijn te zetten zal deze lijn genegeerd
worden door de compiler. Je kan ook meerdere lijnen code in commentaar zetten door er
/* voor en x/ achter te zetten.

+ Je code begint altijd in de Main-methode!!!

+ Van boven naar onder: je code wordt van boven naar onder uitgevoerd en zal enkel naar
andere plaatsen springen als je daar expliciet in je code om vraagt.

33

2.1. KEYWORDS: DE WOORDENSCHAT HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

2.1 Keywords: de woordenschat

C# bestaat zoals gezegd niet enkel uit grammaticale regels. Grammatica zonder woordenschat is
nutteloos. Er zijn binnen C# dan ook momenteel 80 woorden, zogenaamde reserved keywords die
de woordenschat voorstellen. Het spreekt voor zich dat deze keywords een eenduidige, specifieke
betekenis hebben en dan ook enkel voor dat doel gebruikt kunnen worden.

In dit boek zullen we stelselmatig deze keywords leren kennen en gebruiken op een correcte
manier om zo werkende code te maken.

Deze keywords zijn:

abstract as base bool
break byte case catch
char checked class const
continue decimal default delegate
do double else enum
event explicit extern false
finally fixed float for
foreach goto if implicit
in int interface internal
is lock long namespace
new null object operator
out override params private
protected public readonly ref
return shyte sealed short
sizeof stackalloc static string
struct switch this throw
true try typeof uint
ulong unchecked unsafe ushort
using using static virtual void

volatile while

De keywords in vet zijn keywords die we in het eerste deel van dit boek zullen bekijken (hoofdstuk-
ken 1 tot en met 8). Die in cursief in het tweede deel (9 en verder). De overige zal je zelf moeten
ontdekken ... of mogelijk zelfs nooit in je carriere gebruiken vanwege hun soms obscure nut.

34

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.2. VARIABELEN, IDENTIFIERS EN NAAMGEVING

@ C#is een levende taal. Soms verschijnen er dan ook nieuwe keywords. De afspraak

is echter dat de lijst hierboven niet verandert. Nieuwe keywords maken deel uit van
de contextual keywords en zullen nooit gereserveerde keywords worden. We zullen
enkele van deze “nieuwere” keywords tegenkomen waaronder: get, set, value

envar.

"

Aandacht, aandacht! Step away from the keyboard! | repeat. Step away
from the keyboard. Hierbij wil ik u attent maken op een belangrijke, onbeschreven, wet voor
C# programmeurs: “NEVER EVER USE GOTO”

Het moet hier alvast even uit m’n systeem. goto is weliswaar een officieel C# keyword, toch
zal je het in dit boek nooit zien terugkomen in code. Je kan alle problemen in je algoritmes
oplossen zonder ooit goto nodig te hebben.

Voel je toch de drang: don’t! Simpelweg, don’t. Het is het niet waard. Geloof me.
NEVER USE GOTO.

Enneuh, ik hou je in’t oog hoor!

2.2 Variabelen, identifiers en naamgeving

Variabelen zijn nodig om tijdelijke data in op te slaan, zoals gebruikersinput, zodat we deze later
in het programma kunnen gebruiken.

We doen hetzelfde in ons hoofd wanneer we bijvoorbeeld zeggen “tel 3 en 4 op en vermenigvuldig
dat resultaat met 5”. Eerst zullen we het resultaat van “3+4” in een variabele moeten bewaren.
Vervolgens zullen we de inhoud van die variabele vermenigvuldigen met 5 en dat nieuwe resultaat
ook in een nieuwe variabele opslaan.

Wanneer we een variabele aanmaken, zal deze moeten voldoen aan enkele afspraken. Zo moeten
we minstens 2 zaken meegeven:

+ Deidentifier waarmee we snel aan de variabele-waarde kunnen. Dit is de gebruiksvriende-
lijke naam die we geven aan een geheugenplek.

+ Het datatype dat aangeeft wat voor soort data we wensen op te slaan. Enkel en alleen dat
soort type data zal in deze variabele kunnen bewaard worden.

35

2.2. VARIABELEN, IDENTIFIERS EN NAAMGEVING HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

2.2,

1 Regels voor identifiers

De code die we gaan schrijven moet voldoen aan een hoop regels. Wanneer we in onze code zelf
namen (identifiers) geven aan variabelen (en later ook methoden, objecten, enz.) dan moeten we
een aantal regels volgen:

Hoofdlettergevoelig: de identifiers timen T1im zijn verschillend zoals reeds vermeld.
Geen keywords: identifiers mogen geen gereserveerde C# keywords zijn. De keywords van
2 pagina’s terug mogen dus niet. Varianten waarbij de hoofdletters anders zijn mogen wel.
g0TO en stRINg mogen dus wel, maar niet goto of string want dat zijn gereserveerde
keywords. Een ander voorbeeld INT mag bijvoorbeeld wel, maar int niet.

Eerste karakter-regel: het eerste karakter van de identifier mag een kleine of grote letter,
of een liggend streepje (_) zijn.

Alle andere karakters-regels: de overige karakters volgende de eerste karakter-regel, maar
mogen ook cijfers zijn.

Lengte: Een legale identifier mag zo lang zijn als je wenst, maar je houdt het best leesbaar.

Volg je voorgaande regels niet dan zal je code niet gecompileerd worden en zal VS de identifiers in
kwestie als een fout aanduiden. Of beter, als een hele hoop foutboodschappen. Schrik dus niet als

je bijvoorbeeld het volgende ziet:
7 = static void Main(string[] args)
8 {
9 string 12results;
an 1
177% - & <IN] T+ 3 i
Error List ...
Entire Solution v |@ 5 Errors | |A 0 Warnings | © 0 Messages Build + IntelliSense v

" Code Description
C51001 Identifier expected
C51002 ; expected

C51002 ; expected

C50103 The name 'results’ does not exist in the current context

00000

C50201 Only assignment, call, increment, decrement, await, and new object expressions can be used as a statement

Figuur 2.1: Zoals je ziet raakt VS volledig de kluts kwijt als je je niet houdt aan de identifier regels.

36

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.2. VARIABELEN, IDENTIFIERS EN NAAMGEVING

2.2.1.1 Enkele voorbeelden

Enkele voorbeelden van toegelaten en niet toegelaten identifiers:

Identifier Toegelaten?
werknemer ja
kerst2018 ja

pippo de clown neen

4dPlaats neen
_ILOVE2022 ja
Tor+Bjorn neen

ALLCAPSMAN ja

B_A_L ja
class neen
WriteLine ja
______ ja

2.2.2 Naamgeving afspraken

Uitleg indien niet toegelaten

geen spaties toegestaan

mag niet starten met een cijfer

enkel cijfers, letters en liggende streepjes toegestaan

gereserveerd keyword

Er zijn geen vaste afspraken over hoe je je variabelen moet noemen toch hanteren we enkele

coding richtlijnen:

+ Duidelijke naam: de identifier moet duidelijk maken waarvoor de identifier dient. Schrijf
dus liever gewicht of Lleeftijdin plaats van a of meuh.

« Camel casing: gebruik camel casing indien je meerdere woorden in je identifier wenst te
gebruiken. Camel casing wil zeggen dat ieder nieuw woord terug met een hoofdletter begint.
Een goed voorbeeld kan dus zijn LleeftijdTimDams of aantallLeerlingenKlaslEA.
Merk op dat we liefst het eerste woord met kleine letter starten. Uiteraard zijn er geen spaties

toegelaten.

37

2.3. COMMENTAAR HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

2.3 Commentaar

Soms wil je misschien extra commentaar bij je code zetten. Op die manier kan je extra informatie
aan jezelf of andere lezers van je code geven.

2.3.1 Enkele lijn commentaar

Eén lijn commentaar geef je aan door de lijn te starten met twee voorwaartse slashes / /. Uiteraard
mag je ook meerdere lijnen op deze manier in commentaar zetten. Zo wordt dit ook vaak gebruikt
om tijdelijk een stuk code “uit te schakelen”. Ook mogen we commentaar achter een stuk C# code
plaatsen zoals we hieronder tonen.

/ / zal alle tekens die volgen tot aan de volgende witregel in commentaar zetten:

//De start van het programma

int getal = 3;

//Nu gaan we rekenen

int result = getal * 5;

// result = 3%5;

Console.WriteLine(result); //We tonen resultaat op scherm: 15

o U WN =

2.3.2 Blok commentaar

We kunnen een stuk tekst als commentaar aangeven door voor de tekst / * te plaatsen en x/
achteraan. Een voorbeeld:

1 /x

2 Een blok commentaar

3 Een heel verhaal, dit wordt mooi
4 Is dit een haiku?

5 x/

6 1dnt leeftijd = 0;

Je kan ook code in VS selecteren en dan met de comment/uncomment-knoppen in de menubalk
heel snel lijnen of hele blokken code van commentaar voorzien, of deze net weghalen:

2,

Figuur 2.2: De linkse knop voegt comment tags toe, de andere verwijdert ze.

38

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.4. DATATYPES

2.4 Datatypes

Een essentieel onderdeel van C# is kennis van datatypes. Binnen C# zijn een aantal types gede-
finieerd die je kan gebruiken om data in op te slaan. Wanneer je data wenst te bewaren in je
applicatie dan zal je je moeten afvragen wat voor soort data het is. Gaat het om een geheel getal,
een kommagetal, een stuk tekst of misschien een binaire reeks? leder datatype in C# kan één
welbepaald soort data bewaren en dit zal telkens een bepaalde hoeveelheid computergeheugen

vereisen.
@ Datatypes zijn een belangrijk concept in C# omdat deze taal een zogenaamde “stron-
- gly typed language” is (in tegenstelling tot bijvoorbeeld JavaScript). Wanneer je in

C# data wenst te bewaren (in een variabele) zal je van bij de start moeten aangeven
wat voor data dit zal zijn. Vanaf dan zal de data op die geheugenplek op dezelfde
manier verwerkt worden en niet zo maar van ‘vorm’ kunnen veranderen zonder extra
input van de programmeur.

Bij JavaScript kan dit bijvoorbeeld wel, wat soms een fijn werken is, maar ook vaak
vloeken: je bent namelijk niet gegarandeerd dat je variabele wel het juiste type zal
bevatten wanneer je het gaat gebruiken.

Er zijn verscheine basistypes in C# gedeclareerd, zogenaamde primitieve datatypes:.

In dit boek leren we werken met datatypes voor:

+ Gehele getallen: sbyte, byte, short, ushort, 1int, uint, long, ulong

« Kommagetallen: double, float, decimal

+ Tekst: char, string

+ Booleans: bool

« Enums (een speciaal soort datatype dat een beetje een combinatie van meerdere datatypes
is én dat je zelf deels kan definiéren.)

leder datatype wordt gedefinieerd door minstens volgende eigenschappen:

+ Soort data dat in de variabele van dit type kan bewaard worden (tekst, geheel getal, enz.)

+ Geheugengrootte: de hoeveelheid bits dat 1 element van dit datatype inneemt in het
geheugen. Dit kan belangrijk zijn wanneer je met véél data gaat werken en je niet wilt dat de
gebruiker drie miljoen gigabyte RAM nodig heeft.

« Schrijfwijze van de literals: hoe weet C# of 2 een komma getal (2 . 0) of een geheel getal
(2) is? Hiervoor gebruiken we specifieke schrijfwijzen van deze waarden (literals) wat we
verderop uiteraard uitgebreid zullen bespreken.

39

2.4. DATATYPES HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

@ Het datatype string heb je al gezien in het vorig hoofdstuk. Je hebt toen een
- variabele aangemaakt van het type string door de zin string result;.
Verderop plaatsen we dan iets waar de gebruiker iets kan intypen in die variabele:

\ 1 result = Console.ReadlLine(); \

2.4.1 Basistypen voor getallen

Alhoewel een computer digitaal werkt en enkel 0’'n en 1’'n bewaart zou dat voor ons niet erg handig
werken. C# heeft daarom een hoop datatypes gedefinieerd om te werken met getallen zoals wij ze
kennen, gehele en kommagetallen. Intern zullen deze getallen nog steeds binair bewaard worden,
maar dat is tijdens het programmeren zelden een probleem.

De basistypen van C# om getallen in op te slaan zijn:

« Voor gehele getallen: sbhyte, byte, short, int , longenchar.
« Voor natuurlijke getallen (enkel positief): ushort, uintenulong.
« Voor kommagetallen: double, floatendecimal.

Deze datatypes hebben allemaal een verschillend bereik, wat een rechtstreekse invioed heeft op
de hoeveelheid geheugen die ze innemen.

leder type hierboven heeft een bepaald bereik en hoeveelheid geheugen nodig. Je
o zal dus steeds moeten afwegen wat je wenst. Op een high-end pc met vele gigabytes
aan werkgeheugen (RAM) is geheugen zelden een probleem waar je rekening mee
moet houden.
Of toch: wat met real-time first person shooters die miljoenen berekeningen per
seconde moeten uitvoeren? Daar zal iedere bit en byte tellen. Op andere apparaten
(smartphone, arduino, smart fridges, enz.) is iedere byte geheugen nog kostbaarder.
Kortom: kies steeds bewust het datatype dat het beste ‘past’ voor je probleem
qua bereik, precisie en geheugengebruik.

40

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.4. DATATYPES

2.4.1.1 Gehele getallen

Voor de gehele getallen zijn er volgende datatypes:

Type

sbyte
byte
short
ushort
int
uint
long
ulong

char

Geheugen

8 bits

8 bits

16 bits
16 bits
32 bits
32 bits
64 bits
64 bits
16 bits

Bereik (waardenverzameling)

-128 tot 127

0 tot 255

-32 768 tot 32 767

0 tot 65535

-2 147 483 648 tot 2 147 483 647

0 tot 4294 967 295

-9223 372036 854 775 808 tot 9223 372 036 854 775 807
0tot 18 446 744 073 709 551 615

0 tot 65 535

Het bereik van ieder datatype is een rechtstreeks gevolg van het aantal bits waarmee het getal

in dit type wordt voorgesteld. De short bijvoorbeeld wordt voorgesteld door 16 bits. Eén bit

daarvan wordt gebruikt voor het teken (0 of 1, + of -). De overige 15 bits worden gebruikt voor de
waarde: van 0 tot 215-1 (= 32767) en van -1 tot -21° (= -32768)

Enkele opmerkingen bij voorgaande tabel:

+ De s vooraan sbyte staat voor signed: m.a.w. 1 bit wordt gebruikt om het + of - teken te

bewaren.

« De uvooraanushort,uint en ulong staatvoor uns-igned. Het omgekeerde van signed

dus. Kwestie van het ingewikkeld te maken. Deze twee datatypes hebben dus geen teken en
zijn altijd positief.
« char bewaart karakters. We zullen verderop dit datatype uitspitten en ontdekken dat

karakters (alle tekens op het toetsenbord, inclusief getallen, leesteken, enz.) als gehele,

binaire getallen worden bewaard. Daarom staat char in deze lijst.

Het grootste getal bij Long is 253-1 (negen triljoen tweehonderddrieéntwintig biljard drie-

honderd tweeénzeventig biljoen zesendertig miljard achthonderdvierenvijftig miljoen zeven-

honderdvijfenzeventigduizend achthonderd en zeven). Dit zijn maar 63 bits?! Inderaad, de

laatste bit wordt wederom gebruikt om het teken te bewaren.

41

2.4. DATATYPES HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#
]]
|
-

tekst op het scherm kon tonen.”

“Wow. Moet je al die datatypes uit het hoofd kennen? Ik was al blij dat ik

Uiteraard kan het geen kwaad dat je de belangrijkste datatypes onthoudt, anderzijds zul je
zelf merken dat door gewoon veel te programmeren je vanzelf wel zult ontdekken welke
datatypes je waar kunt gebruiken. Laat je dus niet afschrikken door de ellenlange tabellen
met datatypes in dit hoofdstuk, we gaan er maar een handvol effectief van gebruiken.

2.4.1.2 Kommagetallen

Voor de kommagetallen zijn er maar 3 mogelijkheden. leder datatype heeft een ‘voordeel’ tegen-
over de 2 andere, dit voordeel staat vet in de tabel:

Type Geheugen Bereik Precisie

float 32 bits gemiddeld ~6-9 digits
double 64 bits meeste ~15-17 digits
decimal 128 bits minste 28-29 digits

Zoals je ziet moet je bij kommagetallen een afweging maken tussen 3 even belangrijke criteria.
Heb je ongelooflijk grote precisie nodig dan ga je voor een decimal. Wil je vooral erg grote of
erg kleine getallen kies je voor double. Zoals je merkt zal je dus zelden decimal nodig hebben,
deze zal vooral nuttig zijn in financiéle en wetenschappelijke programma’s waar met erg exacte
cijfers moet gewerkt worden.

@ Bij twijfel opteren we meestal voor kommagetallen om het double datatype te
w gebruiken. Bij gehele getallen kiezen we meestal voor int.

42

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.4. DATATYPES

@ De precisie van een getal is het aantal beduidende cijfers. Enkele voorbeelden:

w
+ 2.2345 heeft precisie 5.

« 2.23 heeft precisie 3.
+ 0.0032 heeft precisie 2.

2.4.2 Boolean datatype

boo'l (boolean) is het eenvoudigste datatype van C#. Het kan maar 2 mogelijke waarden bevatten:
true of false. 0 of 1 met andere woorden.

We zullen het bool datatype erg veel nodig hebben wanneer we met beslissingen zullen werken
in een later hoofdstuk, specifiek de 1 f statements die afhankelijk van de waarde van een boo'l
bepaalde code wel of niet zullen doen uitvoeren.

Het gebeurt vaak dat beginnende programmeurs een int variabele gebruiken terwijl
A ze toch weten dat de variabele maar 2 mogelijke waarden zal hebben. Om dus geen
onnodig geheugen te verbruiken is het aan te raden om in die gevallen steeds met
een bool variabele te werken.

(r) Het boo'l datatype is uiteraard het kleinst mogelijke datatype. Hoeveel geheugen
- zal een variabele van dit type innemen denk je? Inderdaad 1 bit.

2.4.3 Tekst/String datatype
Ik besteed verderop een heel apart hoofdstuk om te tonen hoe je één enkel karakter of volledige
flarden tekst kan bewaren in variabelen.

Hier alvast een voorsmaakje:

« Tekst kan bewaard worden in het string datatype.
« Een enkel karakter wordt bewaard in het char datatype dat we ook hierboven al even
hebben zien passeren.

43

2.4. DATATYPES HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

T T

-

I Wat een gortdroge tekst was me dat nu net? Waarom moeten we al deze
datatypes kennen? Wel, we hebben deze nodig om variabelen aan te maken. En variabelen
zijn het hart van ieder programma. Zonder variabelen ben je aan het programmeren aan
een programma dat een soort vergevorderde vorm van dementie heeft en hoegenaamd
niets kan onthouden.

44

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.5. VARIABELEN

2.5 Variabelen

De data die we in een programma gebruiken bewaren we in een variabele van een bepaald
datatype. Een variabele is een plekje in het geheugen dat in je programma zal gereserveerd
worden om daarin data te bewaren van het type dat je aan de variabele hebt toegekend.

Een variabele heeft een geheugenadres, namelijk de plek waar de data in het geheugen staat. Maar
het zou lastig programmeren zijn indien je steeds dit adres moest gebruiken. Daarom moeten
we ook steeds een naam oftewel identifier aan de variabele geven. Op die manier kunnen we
eenvoudig de geheugenplek aanduiden en hoeven we niet te werken met een lang hexadecimaal
geheugen adres (bv. 0x4234FE13EF1).

@ De identifier van de variabele moet uiteraard voldoen aan de identifier regels zoals
- eerder besproken.

2.5.1 Variabelen aanmaken en gebruiken

Om een variabele te maken moeten we deze declareren, door een type en naam te geven. Vanaf
dan zal de computer een hoeveelheid geheugen voor je reserveren waar de inhoud van deze
variabele in kan bewaard worden. Hiervoor dien je minstens op te geven:

1. Het datatype (bv. int, double).

2. Een identifier zodat de variabele uniek kan geidentificeerd worden volgens de naamge-
vingsregel van C#.

3. (optioneel) Een beginwaarde die de variabele krijgt bij het aanmaken ervan.

Een variabele declaratie heeft als syntax:

‘ 1 datatype identifier;

Enkele voorbeelden:

1 Hdnt leeftijd;
2 string leverAdres;
3 bool isGehuwd;

Indien je weet wat de beginwaarde moet zijn van de variabele dan mag je de variabele ook reeds
deze waarde toekennen bij het aanmaken:

‘ 1 dnt mijnLeeftijd = 37;

45

2.5. VARIABELEN HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

@ Je mag ook meerdere variabelen van het zelfde datatype in 1 enkele declaratie
- aanmaken door deze met komma’s te scheiden:

. 1 datatype didentifierl, identifier2, identifier3; \

Bijvoorbeeld string voornaam, achternaam, adres;

2.5.2 Waarden toekennen aan variabelen

Van zodra je een variabele hebt gedeclareerd kunnen we dus ten allen tijde deze variabele gebrui-
ken om een waarde aan toe te kennen, de bestaande waarde te overschrijven, of de waarde te
gebruiken, zoals:

+ Waarde toekennen: Herinner dat de toekenning steeds gebeurt van rechts naar links: het
deel rechts van het gelijkheidsteken wordt toegewezen aan het deel links er van, bijvoor-
beeld:mijnGetal = 15;

+ Waarde gebruiken: Bijvoorbeeld anderGetal = mijnGetal + 15;

+ Waarde tonen op scherm: Bijvoorbeeld Console.WriteLine(mijnGetal);

Met de toekennings-operator (=) kan je een waarde toekennen aan een variabele. Hierbij kan je
zowel een literal toekennen oftewel het resultaat van een expressie .

Je kan natuurlijk ook een waarde uit een variabele uitlezen en toewijzen (kopiéren) aan een andere
variabele:

‘ 1 1int eenAnderelLeeftijd = mijnLeeftijd; \

2.5.3 Literals

Literals zijn expliciet neergeschreven waarden in je code. De manier waarop je een literal schrijft
in je code zal bepalen wat het datatype van die literal is:

+ Gehele getallen worden standaard als int beschouwd, vb: 125.
« Kommagetallen (met punt .) worden standaard als double beschouwd, vb: 12. 5.

Wil je echter andere getaltypes dan int of double een waarde geven dan moet je dat dus expliciet
in de literal aanduiden. Hiervoor plaats je een suffix achter de literalwaarde. Afhankelijk van deze
suffix duidt je dan aan om welke datatype het gaat:

« Uofuvooruint,vb: 125U (dus bijvoorbeeld uint aantalSchapen = 27u;)
« Lof Lvoorlong,vb: 125L.

« UL of ul voorulong,vb: 125ul.

« Fof fvoor float,vb:12.5f.

« Mofmvoordecimal,vb: 12.5M.

46

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.5. VARIABELEN

Naast getallen zijn er uiteraard ook nog andere datatypes waar we de literals van moeten kunnen
schrijven:

Voor bool zijn dit enkel true en false.

Voor char wordt dit aangeduid met een enkele apostrof voor en na de literal. Denk maar aan
char laatsteletter = 'z';.

Voor string wordt dit aangeduid met aanhalingsteken voor en na de literal. Bijvoorbeeld
string myPoke = "pikachu".

(;) Om samen te vatten, even de belangrijkste literal schrijfwijzen op een rijtje:

- 1 1int getal = 5;

double anderGetal = 5.5;

uint nogAnderGetal = 15u;
float kleinKommaGetal = 158.9f;
char letter = 'k';

bool isDitCool = true;

string zin = "Ja hoor";

~No b~ wWwN

De overige types sbyte, short en ushort hebben geen literal aanduiding. Er wordt vanuit
gegaan wanneer je een literal probeert toe te wijzen aan één van deze datatypes dat dit zonder
problemen zal gaan (ze worden impliciet geconverteerd).

Volgende code mag dus:

‘ 1 sbyte start = 127;

Dit wordt toegestaan, de int literal 127 zal geconverteerd worden achter de schermen naar een
sbyte en dan toegewezen worden.

2.5.3.1 Literal toewijzen

Als je in je code expliciet de waarde 4 wilt toekennen aan een variabele dan is het getal 4 in je
code een zogenaamde literal.

Voorbeelden van een literal toekennen:

1 Hdnt temperatuurGisteren = 20; //20 is de literal
2 1dnt temperatuurVandaag = 25; //25 1is de literal

47

2.5. VARIABELEN HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

Het is belangrijk dat het type van de literal overeenstemt met dat van de variabele waaraan je
deze zal toewijzen. Volgende code zal dan ook een compiler-fout genereren. Je probeert een
string-literal aan een int-variabele wil toewijzen, en omgekeerd:

string eenTekst;
int eenGetal;
eenTekst = 4;
eenGetal = "4";

A WN =

Als je bovenstaande probeert te compileren dan krijg je volgende foutboodschappen:

Error List

Entire Solution ~ €3 2 Errors ! 0 Warnings

* Code Description
€3 CS0029 Cannot implicitly convert type ‘int' to 'string’
€3 CS0029 Cannot implicitly convert type 'string’ to 'int’

Figuur 2.3: Foutboodschap wanneer je literals toekent van een verkeerd datatype.

2.5.3.1.1 Hexadecimale en binaire notatie Je kan ook hexadecimale notatie (starten met 0x
of ©X) gebruiken wanneer je bijvoorbeeld met int of byte werkt:

1 dnt mijnLeeftijd = Ox0024; //36
2 byte mijnByteWaarde = 0x00C9; //201

0ok binaire notatie (starten met Ob of ©B) kan:

1 dint mijnLeeftijd = 0b001001060; //72
2 1dnt anderelLeeftijd = 0b0EO1_0110_0011_0160_0010 //idem, maar met _
als seperator

Deze schrijfwijzen kunnen handig zijn wanneer je met binaire of hexadecimale data wilt werken.

48

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.5. VARIABELEN

2.5.3.2 Beginwaarden van variabelen

Het is een goede gewoonte om variabelen steeds ogenblikkelijk een beginwaarde toe te wijzen.
Alhoewel C# altijd vers gedeclareerde variabelen een standaard beginwaarde zal geven, is dit niet
zo in oudere programmeertalen. In sommige talen zal een variabele een volledig willekeurige
beginwaarde krijgen. Gelukkig in C# is dat niet, maar geef toch maar direct steeds een waarde, al
was het maar om je literals te oefenen.

De standaard beginwaarde van een variabele hangt natuurlijk van het datatype af:

« Voor getallen is dat steeds de nulwaarde (dus 0 bij int, 0. 0 bij double, enz.).

+ Bijvariabelen van het type bool is dat false.

« Bij char is dat de literal: \ @ (in het volgende hoofdstuk leggen we die vreemde backslash
uit).

« En bij tekst is dat de lege string-literal: """ (maarje mag ook String.Empty gebruiken).

2.5.4 Nieuwe waarden overschrijven oude waarden

Wanneer je een reeds gedeclareerde variabele een nieuwe waarde toekent dan zal de oude
waarde in die variabele onherroepelijk verloren zijn. Probeer dus altijd goed op te letten of je de
oude waarde nog nodig hebt of niet. Wil je de oude waarde ook nog bewaren dan zal je een nieuwe,
extra variabele moeten aanmaken en daarin de nieuwe waarde moeten bewaren:

1 1dnt temperatuurGisteren = 20;
2 temperatuurGisteren = 25;

In dit voorbeeld zal er voor gezorgd worden dat de oude waarde van temperatuurGisteren (20)
overschreven zal worden met 25.

Volgende code toont hoe je bijvoorbeeld eerst de vorige waarde kunt bewaren en dan overschrij-
ven:

int temperatuurGisteren = 20;

//Doe van alles

Nl ooo

//Vervolgens: vorige temperatuur in eergisteren bewaren
int temperatuurEerGisteren = temperatuurGisteren;
//temperatuur nu overschrijven

temperatuurGisteren = 25;

~N~No b WN

We hebben aan het einde van het programma zowel de temperatuur van eergisteren (20), als die
van gisteren (25).

49

2.5. VARIABELEN HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

50

Een veel gemaakte fout is variabelen meer dan één keer declareren. Dit mag niet!
Van zodra je een variabele declareert is deze bruikbaar in de scope (zie hoofdstuk
5) tot het einde. Binnen de scope van die variabele kan je geen nieuwe variabele
aanmaken met dezelfde naam (zelfs niet wanneer het type anders is).

Volgende code zal dus een fout geven:

1 double kdRating = 2.1;
2 //even later...
3 double kdRating = 3.4;

De foutboodschap vertelt duidelijk wat het probleem is: A local variable or function
named ‘kdRating’ is already defined in this scope.
Lijn 3 moet dus worden:

‘ 1 kdRating = 3.4;

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.6. EXPRESSIES EN OPERATORS

2.6 Expressies en operators

Zonder expressies is programmeren saai: je kan dan enkel variabelen aan elkaar toewijzen. Ex-
pressies zijn als het ware eenvoudige tot complexe sequenties van bewerkingen die op 1 resultaat
uitkomen met een specifiek datatype. De volgende code is bijvoorbeeld een expressie: 3+2.

Het resultaat van deze expressie is 5 (type int).

2.6.1 Expressie-resultaat toewijzen

Meestal zal je expressies schrijven waarin je bewerkingen op en met variabelen uitvoert. Vervolgens
zal je het resultaat van die expressie willen bewaren voor verder gebruik in je code. In de volgende
code kennen we het expressie-resultaat toe aan een variabele:

‘ 1 1int temperatuursVerschil = temperatuurGisteren - temperatuurVandaag; \

Hierbij zal de temperatuur uit de rechtse 2 variabelen worden uitgelezen, van elkaar worden
afgetrokken en vervolgens bewaard worden in temperatuursVerschil.

Een ander voorbeeld van een expressie-resultaat toewijzen maar nu met literals:

‘ 1 1dnt temperatuursVerschil = 21 - 25;

Uiteraard mag je ook combinaties van literals en variabelen gebruiken in je expressies:

1 1dnt breedte = 15;
2 1int oppervlakte = 20 x breedte;

2.6.2 Operators en operanden

Om expressies te gebruiken hebben we ook zogenaamde operators nodig. Operators in C# zijn de
wiskundige bewerkingen zoals optellen, aftrekken, vermenigvuldigen en delen. Deze volgen de
klassieke wiskundige regels van volgorde van berekeningen:

1. Haakjes
2. Vermenigvuldigen, delen en modulo: x, / , % (rest na deling, ook modulo genoemd).
3. Optellen en aftrekken: + en -

51

2.6. EXPRESSIES EN OPERATORS HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

@ We spreken over operators en operanden. Een operand is het element dat we links
- en/of rechts van een operator zetten. In de som 3+2 zijn 3 en 2 de operanden, en +

de operator. In dit voorbeeld spreken we van een binaire operator omdat er twee
operanden zijn.
Er bestaan ook unaire operators die maar 1 operand hebben. Denk bijvoorbeeld
aan de - operator om het teken van een getal om te wisselen: -6.
In hoofdstuk 5 zullen we nog een derde type operator ontdekken: de ternaire ope-
rator die met 3 operanden werkt!

Net zoals in de wiskunde kan je in C# met behulp van de haakjes verplichten het deel tussen de
haakjes eerst te berekenen, ongeacht de andere operators en hun volgorde van berekeningen:

1 3+45%2 // zal 13 (type int) als resultaat geven
2 (3+5)*2 // zal 16 (type int) geven

Je kan nu complexe berekeningen doen door literals, operators en variabelen samen te voegen.
Bijvoorbeeld om te weten hoeveel je op Mars zou wegen:

double gewichtOpAarde = 80.3; //kg

double gAarde = 9.81;

double gMars = 3.711;

double gewichtOpMars = (gewichtOpAarde/gAarde) * gMars; //kg
Console.WriteLine("Je weegt op Mars " + gewichtOpMars + " kg");

a b~ wWN

2.6.2.1 Modulo operator %

De modulo operator die we in C# aanduiden met % verdient wat meer uitleg. Deze operator zal als
resultaat de gehele rest teruggeven wanneer we het linkse getal door het rechtse getal delen:

1 Hdnt rest = 7%2;
2 1dnt resultaat2 = 10%5;

Lijn 1 resulteert in de waarde 1 die in rest wordt bewaard: 7 delen door 2 geeft 3 met rest 1. Lijn
2 zal 0 geven, want 10 delen door 5 heeft geen rest.

De modulo-operator zal je geregeld gebruiken om bijvoorbeeld te weten of een getal een veelvoud
van iets is. Als de rest dan 0 is weet je dat het getal een veelvoud is van het getal waar je het door
deelde.

Bijvoorbeeld om te testen of getal even is gebruiken we %2:

int getal = 1234234;

int rest = getal%2;

Console.WriteLine("Indien het getal als rest 0 geeft is deze even.");
Console.WriteLine("De rest is: " + rest);

A WN

52

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.6. EXPRESSIES EN OPERATORS

2.6.2.2 Verkorte operator notaties

Heel vaak wil je de inhoud van een variabele bewerken en dan terug bewaren in de variabele zelf.
Bijvoorbeeld een variabele vermenigvuldigen met 10 en het resultaat ervan terug in de variabele
plaatsen. Hiervoor zijn enkele verkorte notaties in C#. Stel dat we een variabele int getal
hebben:

Verkorte notatie Lange notatie Beschrijving

getal++; getal = getal+l; variabele met1verhogen

getal--; getal = getal-1; variabele met1 verlagen

getal+=3; getal = getal+3; variabele verhogen met een getal
getal-=6; getal = getal-6; variabele verminderen meteen getal
getal*=7; getal = getalx7; variabelevermenigvuldigen meteen getal
getal/=2; getal = getal/2; variabele delen door een getal

@ Je zal deze verkorte notatie vaak tegenkomen. Ze zijn identiek aan elkaar en zullen

dus je code niet versnellen. Ze zal enkel compacter zijn om te lezen. Bij twijfel, gebruik
gewoon de lange notatie.

De verkorte notaties hebben ook een variant waarbij de operator links en de operand
rechts staat. Bijvoorbeeld —-geta'l. Beide doen het zelfde, maar niet helemaal. Je
merkt het verschil in volgende voorbeeld:

1 1dnt getal = 1;
2 1dnt som = getal++; //som wordt 1, getal wordt 2
3 dnt som2 = ++som; //som2 wordt 2, som wordt 2

Als je de operator achter de operand zet (som++) dan zal eerst de waarde van de
operand worden teruggegeven, vervolgens wordt deze verhoogd. Bij de andere (++
som) is dat omgekeerd: eerst wordt de operand aangepast, vervolgens wordt nieuwe
waarde als resultaat van de expressie teruggegeven.

53

2.7. EXPRESSIEDATATYPES HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

Gegroet! Zet je helm op en let alsjeblieft goed op. Als je de volgende sectie
goed begrijpt dan heb je al een grote stap vooruit gezet in de wondere wereld van C#.

Ik zei je al dat variabelen het hart van programmeren zijn. Wel, expressies zijn het bloedva-
tensysteem dat ervoor zorgt dat al je variabelen ook effectief gecombineerd kunnen worden
tot wondermooie nieuwe dingen.

Succes!
@ De voorman verschijnt wanneer er iets beschreven wordt waar véél fouten op ge-
- maakt worden, zelfs bij ervaren programmeurs. Opletten geblazen dus.

2.7 Expressiedatatypes

Lees deze zin enkele keren luidop voor, voor je verder gaat: De types die je in je expressies
gebruikt bepalen ook het type van het resultaat. Als je bijvoorbeeld twee int variabelen of
literals optelt zal het resultaat terug een int geven (klink logisch, maar lees aandachtig verder):

‘ 1 dnt result = 3 + 4;

Je kan echter geen kommagetallen aan 1int toewijzen. Als je dus twee double variabelen deelt
is het resultaat terug een double en zal deze lijn een fout geven daar je probeert een double
aan een int toe te wijzen:

| 1 dint otherResult = 3.1 / 45.2; //dit is fout!!!

Bovenstaande code geeft volgende fout: “Cannot implicitly convert double to int.”

Let hier op!

54

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.7. EXPRESSIEDATATYPES

2.7.1 But wait... it gets worse!

Watalsjeeenintdooreen-intdeelt? Het resultaatis terug een int. Je bent echter alle informatie
na de komma kwijt. Kijk maar:

int getall 9;
int getal2 = 2;
int result = getall/getal2;
Console.WriteLine(result);

AW N

Er zal 4 op het scherm verschijnen! (niet 4.5 daar dat geen intis).

2.7.2 Datatypes mengen in een expressie

Wat als je datatypes mengt? Als je een berekening doet met bijvoorbeeld een int en een double
dan zal C# het ‘grootste’ datatype kiezen. In dit geval een double.

Volgende code zal dus werken:

‘ 1 double result = 3/5.6;

Volgende code niet:

‘ 1 1int result = 3/5.6;

En zal weer dezelfde fout genereren: “Cannot implicitly convert type ‘double’ to ‘int’ An explicit
conversion exists (are you missing a cast?)”

Wil je dus het probleem oplossen om 9 te delen door 2 en toch 4.5 te krijgen (en niet 4) dan zal je
minstens 1 van de 2 literals of variabelen naar een double moeten omzetten.

Het voorbeeld van hierboven herschrijven we daarom naar:

int getall = 9;

double getal2 = 2.0; //slim he
double result = getall/getal2;
Console.WriteLine(result);

A WDN -

En nu krijgen we wel 4. 5 aangezien we nu een int door een double delen en C# dus ook het
resultaat dan als een doube zal teruggeven.

55

2.7. EXPRESSIEDATATYPES HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

Begrijp je nu waarom dit een belangrijk deel was? Je kan snel erg foute berekeningen
A en ongewenste afrondingen krijgen indien je niet bewust omgaat met je datatypes.
Laten we eens kijken of je goed hebt opgelet, het kan namelijk subtiel en ambetant
worden in grotere berekeningen.

Stel dat ik afspreek dat je van mij de helft van m’n salaris krijgt*. Ik verdien 10 000 euro per maand
(I wish).

Ik stel je voor om volgende expressie te gebruiken om te berekenen wat je van mij krijgt:

| 1 double helft = 10000.0 * (1 / 2);

Hoeveel krijg je van me?
0.0 euro, MUHAHAHAHA!!!

Begrijp je waarom? De volgorde van berekeningen zal eerst het gedeelte tussen de haakjes doen:

« 1 delen door 2 geeft 0, daar we een int door een int delen en dus terug een int als
resultaat krijgen.

+ Vervolgens zullen we deze 0 vermenigvuldigen met 10000 .0 waarvan ik zo slim was
om deze in doub'le te zetten. Niet dus. We vermenigvuldigen weliswaar een double
(10000.0) met een int, maar die int is reeds 0 en we krijgen dus 0. 0 als resultaat.

Als ik dus effectief de helft van m’n salaris wil afstaan dan moet ik de expressie aanpassen naar
bijvoorbeeld:

| 1 double helft = 10000.0 * (1.0 / 2);

Nu krijgt het gedeelte tussen de haakjes een doub'le als resultaat, namelijk 0.5 dat we dan
kunnen vermenigvuldigen met het salaris om 5000. 0 te krijgen, wat jij vermoedelijk een fijner
resultaat vindt.

IVoorgaande voorbeeld is gebaseerd op een oefening uit het handboek “Programmeren in C#” van Douglas Bell en Mike
Parr, een boek dat werd vertaald door collega lector Kris Hermans bij de Hogeschool PXL. Als je de console-applicaties
beu bent en liever leert programmeren door direct grafische Windows-applicatie te maken, dan raad ik je dit boek ten
stelligste aan!

56

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.7. EXPRESSIEDATATYPES

2.7.3 Constanten

Je zal het const keyword hier en daar in codevoorbeelden zien staan. Je gebruikt dit om aan te
geven dat een variabele onveranderlijk is én niet per ongeluk kan aangepast worden. Door dit
keyword voor de variabele declaratie te plaatsen zeggen we dat deze variabele na initialisatie niet
meer aangepast kan worden.

Volgende voorbeeld toont in de eerste lijn hoe je het const gebruikt. De volgende lijn zal dankzij
dit keyword een error geven reeds bij het compileren en jou dus waarschuwen dat er iets niet
klopt.

1 const double G_AARDE = 9.81;
2 G_AARDE = 10.48; //ZAL ERROR GEVEN

Merk op hoe we de const variabelen een identifier geven: deze zetten we in ALLCAPS. Hierbij
gebruiken we een liggend streepjes om het onderscheid tussen de onderlinge woorden aan te
geven. Dit is geen verplichting, maar gewoon een aanbeveling.

@ Constanten in code worden ook soms magic numbers genoemd. De reden hiervoor
- is dat ze vaak plotsklaps ergens in de code voorkomen, maar wel op een heel andere

plek werden gedeclareerd. Hierdoor is het voor de ontwikkelaar niet altijd duidelijk
wat de variabele juist doet. Het is daarom belangrijk dat je goed nadenkt over het
gebruik van magic numbers én deze zeer duidelijke namen geett.
Er worden vele filosofische oorlogen gevoerd tussen ontwikkelaars over de plek van
magic numbersin code. In de C/C++ tijden werden deze steeds bovenaan aan de start
van de code gegroepeerd. Op die manier zag de ontwikkelaar in één oogopslag alle
belangrijke variabelen en konden deze ook snel aangepast worden. In C# prefereert
men echter om variabelen zo dicht mogelijk bij de plek waar ze nodig zijn te schrijven,
dit verhoogt de modulariteit van de code: je kan sneller een flard code kopiéren en
op een andere plek herbruiken.
De applicaties die wij in dit boek ontwikkelen zijn niet groot genoeg om over te
debatteren. Veel bedrijven hanteren hun eigen coding guidelines en het gebruik,
naamgeving en plaatsing van magic numbers zal zeker daarin zijn opgenomen.

57

2.8. SOLUTIONS EN PROJECTEN HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

2.8 Solutions en projecten

Het wordt tijd om eens te kijken hoe Visual Studio jouw code juist organiseert wanneer je een
nieuw project start. Zoals je al hebt gemerkt in de solution Explorer wordt er meer aangemaakt
dan enkel een Program.cs codebestand. Visual Studio werkt volgens volgende hiérarchie:

1. Een solution is een folder waarbinnen één of meerdere projecten bestaan.

2. Een project is een verzameling (code)bestanden die samen een specifieke functionaliteit
vormen en kunnen worden gecompileerd tot een uitvoerbaar bestand, bibliotheek, of andere
vorm van output (we vereenvoudigen bewust het concept project in dit handboek).

Wanneer je dus aan de start van een nieuwe opdracht staat en in VS kiest voor “Create a new
project” dan zal je eigenlijk aan een nieuwe solution beginnen met daarin één project.

Je bent echter niet beperkt om binnen een solution maar één project te bewaren. Integendeel,
vaak kan het handig zijn om meerdere projecten samen te houden. leder project bestaat op zichzelf,
maar wordt wel logisch bij elkaar gehouden in de solution. Dat is ook de reden waarom we vanaf
de start hebben aangeraden om nooit het vinkje “Place solution and project in the same directory”
aan te duiden.

2.8.1 Folderstructuur van een solution

Wanneer je in VS een nieuw project start ben je niet verplicht om de “Project name” en “Solution
name” dezelfde waarde te geven. Je zal wel merken dat bij het invoeren van de “Project name”
de “Solution name” dezelfde invoer krijgt. Je mag echter vervolgens perfect de “Solution name”
aanpassen.

Stel dat we een nieuw VS project aanmaken met volgende informatie:

1. Naam van het project = Opdracht1
2. Naam van de solution = Huiswerk

En plaatsen deze in de folder C: \ Temp.

58

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.8. SOLUTIONS EN PROJECTEN

Wanneer we het project hebben aangemaakt en de Solution Explorer bekijken zien we volgende
beeld:

Solution E‘.{ICI'EIFEF ..

i O - SEHE W K=

Search Solution Explorer (Ctrl+5)
B4 Solution 'Huiswerk' (1 of 1 project)
4 [c#] Opdrachti
b O Dependencies

B C# Program.cs

Figuur 2.4: Je ziet duidelijk een hiérarchie: bovenaan de solution Huiswerk, met daarin een
project Opdrachtl, gevuld met informatie zoals het Program.cs bestand. Deze hiérarchie zal je ook
terugzien als je via de verkenner vervolgens naar de aangemaakte folder zou gaan.

/ Huiswerk \

Opdracht1

Program.cs

Andere items

A /

Figuur 2.5: De hiérarchie anders voorgesteld.

Rechterklik nu op de solution en kies “Open folder in file explorer”. Je kan deze optie kiezen
bij eender welk item in de solution explorer. Het zal er voor zorgen dat de verkenner wordt geopend
op de plek waar het item staat waar je op rechterklikte. Op die manier kan je altijd ontdekken waar
een bestand of of folder zich fysiek bevindt op je harde schijf.

59

2.8. SOLUTIONS EN PROJECTEN

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

B

&
‘s

el
i

Build Solution

Rebuild Solution

Clean Solution

Analyze and Code Cleanup
Batch Build...

Configuration Manager...

Manage NuGet Packages for Solution...

Restore NuGet Packages

Collapse All Descendants
Mew Solution Explorer View
File Mesting

Add

Sync Namespaces

Configure Startup Projects...

Create Git Repository...

Rename

Copy Full Path

= Search Solution Explorer (Ctrl+5)

= Solution 'Huiswerk' (1 of 1 project)
Ctrl+Shift+B acht1

tpendencies

ogram.cs

Ctrl+Left Arrow

F2

I

Open Folder in File Explorer

=

Figuur 2.6: Tip: rechterklikken in veel programma’s geeft je vaak toegang tot meer geavanceerde

commando’s, zo ook in VS.

We zien nu een tweede belangrijke aspect dat we in deze sectie willen uitleggen: Een solution
wordt in een folder geplaatst met dezelfde naam én bevat één .sln bestand. Binnenin deze
folder wordt een folder aangemaakt met de naam van het project. Je folderstructuur volgt

dus flink de structuur van je solution in VS.

Deze pc » Windows (C:) » Temp » Huiswerk »

Opdrachtl

Huiswerk.sln

Figuur 2.7: Merk op dat je mogelijk ook nog verborgen bestanden zal zien, afhankelijk van de

instellingen van je verkenner.

60

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.8. SOLUTIONS EN PROJECTEN

Je kan dus je volledige solution, inclusief het project, openen door in deze folder het .sln bestand
te selecteren. Dit .sln bestand zelf bevat echter geen code.

A

Die laatste zin heeft als gevolg dat je de hele folderstructuur moet verplaatsen
indien je aan je solution op een andere plek wilt werken. Open gerust eens een
.sln-bestand in notepad en je zal zien dat het bestand onder andere oplijst waar
het onderliggende project zich bevindt. Wil je dus je solution doorgeven of mailen
naar iemand, zorg er dan voor je de hele foldestructuur doorgeeft, inclusief het .sln
bestand en alles folders die er bij horen.

2.8.2 Folderstructuur van een project

Laten we nu eens kijken hoe de folderstructuur van het project zelf is. Rechterklik deze keer op het

project in de solution explorer (Opdrachtl) en kies weer “Open folder in file explorer™.

Hier staat een herkenbaar bestand! Inderdaad, het Program.cs codebestand. In dit bestand staat
de actuele code van Opdrachtl.

Voorts zien we ook een .csproj bestand genaamd Opdrachtl. Net zoals het .sln bestand zal dit

bestand beschrijven welke bestanden én folder(s) deel uitmaken van het huidige project. Je kan

dit bestand dus ook openen vanuit de verkenner en je zal dan je volledige project zien worden
ingeladen in Visual Studio.

A

Een .cs-bestand rechtstreeks vanuit de verkenner openen werkt niet zoals je
zou verwachten. VS zal weliswaar de inhoud van het bestand tonen, maar je kan
verder niets doen. Je kan niet compileren, debuggen, enz. De reden is eenvoudig: een
.cs bestand op zichzelf is nutteloos. Het heeft pas een bestaansreden wanneer het
wordt geopend in een project. Het project zal namelijk beschrijven hoe dit specifieke
bestand juist moet gebruikt worden in het huidige project.

61

2.8. SOLUTIONS EN PROJECTEN HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

2.8.2.1 De bin-folder

De “obj” folder ga ik in dit handboek negeren. Maar kijk eens wat er in de “bin” folder staat?! Een
folder genaamd “debug”. In deze folder zal je de gecompileerde (debug-)versie van je huidige
project terecht komen. Je zal wat moeten doorklikken tot de binnenste folder (die de naam van de
huidige .net versie bevat waarin je compileert).

Deze pc » Windows (C:) » Temp @ Huiswerk » Opdrachtl * bin * Debug » netd.0

AN AN

) a. — |)

Opdrachtl.deps. Opdracht1.dll Opdrachtl.exe Opdrachtl.pdb Opdrachtl.runti
san meconfig,json

Figuur 2.8: Inhoud van bin/debug/net8.0 nadat project werd gecompileerd

Je kan in principe vanuit deze folder ook je gecompileerde project uitvoeren door te dubbelklikken
op Opdrachtl.exe. Je zal echter merken dat het programma ogenblikkelijk terug afsluit omdat het
programma aan het einde van de code altijd afsluit. Voeg daarom volgende lijn code toe onderaan
in je Main: Console.ReadLine (). Het programma zal nu pas afsluiten wanneer je op Enter
hebt gedrukt en de gecompileerde versie kan dus nu vanuit de verkenner gestart worden, hoera!

Merk op dat je de volledige inhoud van deze folder moet meegeven indien je je gecompileerde
resultaat aan iemand wilt geven om uit te voeren.

62

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

2.8. SOLUTIONS EN PROJECTEN

2.8.3 Meerdere projecten

/ Solution
Project 1 Project 2
Program.cs Program.cs

Andere items Andere items

(S

\

/

Figuur 2.9: Er is geen limiet op het aantal projecten in 1 solution. De enige beperking is de kracht

van je computer.

Ik zei net dat een solution meerdere projecten kan bevatten. Maar hoe voeg je een extra project
toe? Terwijl je huidige solution open is (waar je een project wenst aan toe te voegen) kies je in het

menu voor File->Add->New project...

w File = Edit View Git Project Build Debug Test Analyze Tools
L -| Any CPU -] » Opdi
Open »

& Clene Repository...

B3 Start Window - ‘g Opdracht
Add to Source Control pace ODdI‘aCh
Add ’| MNew Project... |
Close

[F

Close Solution

Existing Project...
Existing Web Site...

Start Live Share Session

nternal clas:

Figuur 2.10: Ook “Existing project...” is een handige actie om te kennen!

Je moet nu weer het klassieke proces doorlopen om een console-project aan te maken. Alleen
ontbreekt deze keer het “Solution name” tekstveld, daar dit reeds gekend is.

Wanneer je klaar bent zal je zien dat in de solution Explorer een tweede project is verschenen.
Als we de folderstructuur van onze solution opnieuw bekijken, zien we dat er een nieuwe folder
(Opdracht2) is verschenen met een eigen Program.cs en .csproj-bestand.

63

2.8. SOLUTIONS EN PROJECTEN HOOFDSTUK 2. DE BASISCONCEPTEN VAN C#

£ Solution 'Huiswerk' (2 of 2 projects)
4 Opdracht1

b &8 Dependencies

P C# Program.cs
4 Opdracht2

b #& Dependencies

P C#® Program.cs

Figuur 2.11: Gelukkig kan je zaken dichtklappen m.b.v. driehoekjes naast iedere item.

Nu rest ons nog één belangrijke stap: selecteren welk project moet gecompileerd en uitgevoerd
worden. In de solution explorer kan je zien welk het actieve project is, namelijk het project dat vet
gedrukt staat.

Je kan nu op 2 manieren kiezen welk project moet uitgevoerd worden:

Manier 1: Rechterklik in de Solution Explorer op het actief te zetten project en kies voor “Set as
startup project.”

Manier 2: Bovenaan, links van de groene “compiler/run” knop, staat een selectieveld met het
actieve project. Je kan hier een andere project selecteren.

[Opdrachtl B » opdrachi

Opdracht?
Opdracht2 \

Figuur 2.12: Tijd om naar Opdracht2 over te schakelen.

Controleer altijd goed dat je in het juiste Program.cs bestand bent aan het werken.
A Je zou niet de eerste zijn die maar niet begrijpt waarom de code die je invoert z’'n
weg niet vindt naar je debugvenster. Inderdaad, vermoedelijk heb je het verkeerde
Program.cs bestand open of heb je het verkeerde actieve project gekozen.

64

HOOFDSTUK 2. DE BASISCONCEPTEN VAN C# 2.8. SOLUTIONS EN PROJECTEN

@ Ook nu reeds heb je mogelijk interesse in meerdere projecten in 1 solution. Je kan
- nu perfect je opdrachten groeperen onder 1 solution, maar toch iedere opdracht
mooi gescheiden houden. In de echte wereld gebruikt men meerdere projectenin 1
solution om het overzicht te bewaren en alles zo modulair mogelijk aan te pakken.
Denk maar aan een solution met een projecten dat de (unit)testen bevat, een project

voor de frontend, en nog een project voor de backend.

2.8.3.1 Delen met de oma

Om een gecompileerde .NET applicatie te kunnen uitvoeren op een computer heb je nog een .NET
runtime nodig. Gebruikers die geen Visual Studio hebben geinstalleerd hebben deze runtime
meestal niet op hun systeem.

Wil je dus dat je oma kan genieten van jouw laatste creatie, zorg er dan voor dat ze de juiste
.NET runtime heeft draaien. Je zal haar hier wat mee moeten helpen want je moet de runtime
installeren? voor die versie waar tegen jouw applicatie is gecompileerd.

2Je kan alle .NET runtimes hier terugvinden:dotnet.microsoft.com/en-us/download/dotnet

65

https://dotnet.microsoft.com/en-us/download/dotnet

