Zend Framework 2
Foundations

By Matthew Setter

Zend Framework 2 Foundations
Learn the Foundations of Zend Framework 2

Matthew Setter

This book is for sale at http://leanpub.com/zendframework2-for-beginners

This version was published on 2015-01-13

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2012 - 2015 Matthew Setter

http://leanpub.com/zendframework2-for-beginners
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Matthew Setter by spreading the word about this book on Twitter!
The suggested tweet for this book is:

I just bought Zend Framework 2 For Beginners and thought you’d like it too.
The suggested hashtag for this book is #zf2forbeginners.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#zf2forbeginners

http://twitter.com
https://twitter.com/search?q=%23zf2forbeginners
https://twitter.com/search?q=%23zf2forbeginners

This book is dedicated to some special people in my life, without who’s support, this book never
would have seen the light of day. These are: my beautiful wife Melanie and my parents Jane and
Barry. Thank you so much for your support of my ideas and dreams.

Contents

Getting Started 1
How is it Structured?
The Proper Tools
The Required Software L
Version Control L 2
Additional Tools 2
Testing 9
Required Knowledge 9
Key Concepts e e 10
Introduction L 10
Module Manager e 10
The EventManager 15
Service Manager e 18
Chapter Recap e 21
Routing e 22
Deleting Feeds 23
Managing Feeds (Adding & Editing) 23
Viewing Feeds L 24
The Search Route 24
Using Route with ViewHelpers 25
Accessing the Parameters in Controller Actions 26
Chapter Recap o e 27
3rd Party Modules 28
Integrating the Library Lo 29
Enabling the Module 29
Implementing the NotifyInterface Interface 29
Creating the Core Class - EmailNotifierphp 30
Instantiating the Class e 32
Making the EmailNotifier Availableto Qur App 34
The Notification Configuration 34

Wiring itupwith Events 35

CONTENTS

Further Information
Chapter Recap o e

Getting Started

How is it Structured?

The guide will teach you, from a hands-on perspective, the fundamentals of creating an application
using Zend Framework 2. When I say fundamentals, I mean just that; the fundamental knowledge
and sections of the framework which you should know to use it in any meaningful way.

There’s quite a lot to take in with ZF2 and for a beginner it can be quite overwhelming. A lot of the
time when learning, knowledge goes in one ear and out the other, because there’s nothing to relate
it to.

So in this book, I take the approach of a freelance developer, tasked with the requirement to build
an application which will allow a parent to record, search and display records of when their child
was fed. With this information a parent can keep track of when the child was fed and how much
they ate.

The Proper Tools

But before we get into the book proper, I want to make sure that you have everything you need to
follow along. So in this chapter, we cover the following key areas:

+ Required Software
« Additional Tools

« Composer Support

You don’t need to use all of the software covered here. But these tools have helped me out immensely.
So I recommend them to you, in the hopes they’ll help you out as well.

The Required Software

To follow this book, you don’t need a lot, except for the following requirements:

« PHP 5.4/ PHP 5.5
« SQLite 3°

'http://www.sqlite.org/download.html

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html

Getting Started 2

« Composer®
« PHPUnit®
« OPCache* or APC®

Version Control

The book’s code repository® is stored on Github. If you’ve not used Git’ before, or aren’t too familiar
with it, please don’t be concerned.

The only commands you’ll need to use are git clone to get a copy of the repository. However even
this isn’t a must, as you can also get a copy via direct download®.

Additional Tools

As well as the required software, I use a variety of tools which help me in my daily work”. If you’re
looking for something new or different to help you out, I hope these can be of assistance.

*https://getcomposer.org

*http://phpunit.de
“http://php.net/manual/en/book.opcache.php
*http://php.net/manual/en/book.apc.php
®https://github.com/settermjd/zf2forbeginners
"http://git-scm.com
®https://github.com/settermjd/zf2forbeginners
®http://www.matthewsetter.com/services/

https://getcomposer.org
http://phpunit.de
http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.apc.php
https://github.com/settermjd/zf2forbeginners
http://git-scm.com
https://github.com/settermjd/zf2forbeginners
http://www.matthewsetter.com/services/
https://getcomposer.org
http://phpunit.de
http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.apc.php
https://github.com/settermjd/zf2forbeginners
http://git-scm.com
https://github.com/settermjd/zf2forbeginners
http://www.matthewsetter.com/services/

Getting Started 3

PHPStorm

0 O |E FeedTablegatewayFactory.php - zf2forbeginners - [~/Workspace/zf2forbeginners] - PhpStorm PS-... ™

@

e FeedTablegatewayFactory.php %

El 1: Project

aseqeleq]

BabyMonitor\Tables\Factories;

Zend\ServiceManager\FactoryInterface;
Zend\ServiceManager\ServicelocatorInterface;
Zend\Stdlib\Hydratur\ArraySerhalizable;
BabyMonitor\Models\FeedModel;
Zend\Db\ResultSet\HydratingResultSet;
Zend\Db\TableGateway\TableGateway;

FeedTablegatewayFactory FactoryInterface

createService(ServiceLocatorInterface $servicelLocator)

$dbAdapter $servicelLocator->get('Zend\Db\Adapter\Adapter");
$hydrator ArraySerializable(};
$rowObjectPrototype FeedModel();
$resultSet HydratingResultSet(

$hydrator, $rowObjectPrototype

2: Favorites

|
TableGateway('tblfeeds', $dbAdapter, , $resultSet);

ol 7:5Structure

& 6: TODO Terminal & 9: Changes Event Log
18:34 |LF 5 |UTF-8 z Git:master = | & @

The PHPStorm IDE

If ever there was an IDE that was worthy of the title of Best PHP IDE of All Time, PHPStorm is it*.
It is a comprehensive, cross-platform, plugin-based, IDE. With extensive support for Vagrant, Git
and Subversion, Syntax Highlighting, and Remote Debugging amongst so many other features,
PhpStorm is literally a one-stop shop for everything you need for PHP. (no, I'm not paid to say that).

If you’ve not tried it out yet, I strongly encourage you to do so. However, if you’re more comfortable
with VIM, Emacs, Netbeans etc, don’t feel the need to change.

http://www.jetbrains.com/phpstorm/

http://www.jetbrains.com/phpstorm/
http://www.jetbrains.com/phpstorm/

Getting Started 4

Navicat Lite

e 0o EH tbivideos @main (ZF2 Course SQLite) o
2.
%Lﬁduﬁlﬂi. SOORT | NN | R—
Grid VIew Form \r'u!w Image Hex Filter Wiza.rd Impurt 'Mzard Export Wizard Smt Asuendlng Sort Desoendlng
\ndeold tlll.e dlreclorld durallon synopsis genre website l I
J 11 Die Hard 1 131 A truly excellent fi Action http: f fwww.dieha
J 12 Die Hard 2 1 120 Mot as good as the Action http:/ e dieha
J 13 Expendables 1 1 120 Loremn ipsum dolo Action
J 14 Expendables 2 1 121 Loremn ipsum dolo Action
J 15 Expendables 3 1 130 Loremn ipsum dolo Action
J 16 The Shawshank Re L 114 Loremn ipsum dolo Action
J 17 The Godfather 1 190 Loremn ipsum dolo Action
J 18 The Godfather Par L 186 Lorem ipsum dolo Action
J 19 The Dark Knight L 130 Lorem ipsum dolo Action
J 20 Pulp Fiction 1 140 Loremn ipsum dolo Action
J 21 The Good, the Bac 1 120 Loremn ipsum dolo Action
J 22 Schindler's List 1 130 Loremn ipsum dolo Action
J 23 12 Angry Men 1 112 Loremn ipsum dolo Action
J 24 The Lord of the Ri L 119 Loremn ipsum dolo Action
J 25 Fight Club 1 163 Lorem ipsum dolo Action
J 26 The Lord of the Ri 1 117 Lorem ipsum dola Action
J 27 Star Wars: Episode 1 112 Lorem ipsum dolo Action
J 28 Inception 1 130 Loremn ipsum dolo Action
J 28 Forrest Gump 1 154 Loremn ipsum dolo Action
J 30 One Flew Owver the 1 145 Loremn ipsum dolo Action
J 31 The Lord of the Ri L 260 Loremn ipsum dolo Action
J 32 Goodfellas 1 150 Loremn ipsum dolo Action
select *, rowid "NAVICAT_ROWID" from "main"."tblvideos" limit 0,1000 e gl wp K

Navicat Lite Showing Table Records

There are a lot of database GUIs around. But the one which I've found to be most reliable and feature-
rich is Navicat Lite'! - what’s more, it’s free. Whether you’re working with MySQL, PostgreSQL,
SQLite, or other database vendors, it has an intelligent and well thought out GUI, which helps
increase your productivity.

http://www.navicat.com/download

http://www.navicat.com/download
http://www.navicat.com/download

Getting Started

800 [zf2 (Git) "
A o KW @D%éia@v&‘rvds B »
FILE STATUS All Branches : | | Show Remote Branches : | | Ancestor Order Jump to: =
@ Working Copy Graph Description Commit Author Date
RO '? origin‘develop | Forward port #3375 4745db6 Maks3w <github.... 09 Jan 2013 20:54
@ Forward port #3391 2d0b2ba Maks3w <github.... 09 Jan 2013 19:34
master
Forward port #3387 eed4d3b Maks3w <github.... 09 Jan 2013 19:31
TAGS Merge pull request #3349 from weieroph... 7¢52¢20 Maks <github.ma... 08 Jan 2013 22:02
REMGRES Remove abstract keyword from new methods d5ff5ed Matthew Weier O°... 04 Jan 2013 21:46
- H origin Provide support for more HTTP methods i... a20cDE8 Matthew Weier O°... 04 Jan 2013 21:33
5 devel Merge branch ‘fabiorphp-master' into de... 10b2b6% Ralph Schindler <... 07 Jan 2013 23:28
evelop)
3 Heap Merge branch 'feature/3110" into develop lcaSch9 Matthew Weier O'... 07 Jan 2013 22:44
Merge branch 'string’ of git://github.com... 98c246e Matthew Weier O'... 07 Jan 2013 22:38
& master A comanod mmaccice o basoed nn ! neafise nened7 P e e e oo e
STASHES Sorted by path » | | = Q, (% ~|
SUEMODULES @ library f/Zend /Feed fReader/Extension/Atom/En .
: @ .../Feed [Reader/Extension/Atom /Entry.php
SUBTREES Qg‘l library/Zend /Feed fReader/Extension/Atom/Fe ; :
Py Hunk 1 : Lines 10-22 | Reverse hunk |
& library/Zend Feed /Reader/Extension/DublinCg R R —
(& library/Zend jFeed /Reader/Extension/DublinCg =~ 11 11 namespace Zend\Feed\Reader\Extension\Atom;
(3 library/Zend /Stdlib/DateTime.php 13 - use DateTime;
Commit: 14 13 use DOMDocument;
4 15 use DOMElement;
16 use stdClass;
feedfa3896ad09406e27494bc04bec6d58a288a 17 16 use Zend\Feed\Reader;
3f [feedfad] 16 17 use Zend\Feed‘\ReaderiCollection;
Parents: 8390015276, 92a7a6345d 19 14 use Zend\Feed‘\Reader\Extension;
Author: Maks3w 19+ use Zend\Stdlib\DateTime;
—rithiih maleQuw @i alnlanate nat— i i nea Tand)lleis
G' E ‘f master Q Clean m

SourceTree Viewing the ZF2 Codebase

As Martin Fowler'?, author of Patterns of Enterprise Application Architecture (PoEAA)*, said'*:

A shout out to developers of SourceTree - a nice GUI for git and hg. Useful even for a
command-line fan like me.

It really is a very well designed and developed front end for working with Git repositories.
Unfortunately it’s not, yet, available for Linux. Sourcetree® puts everything you need at your
fingertips, without overwhelming you, like other GUIs can. If you're keen to look back through
the repository as it developed, Sourcetree makes it really easy.

http://martinfowler.com
Phttp://martinfowler.com/books/eaa.html
"https://twitter.com/martinfowler/status/271001318888460290
Phttp://www.sourcetreeapp.com

http://martinfowler.com
http://martinfowler.com/books/eaa.html
https://twitter.com/martinfowler/status/271001318888460290
http://www.sourcetreeapp.com
http://martinfowler.com
http://martinfowler.com/books/eaa.html
https://twitter.com/martinfowler/status/271001318888460290
http://www.sourcetreeapp.com

Getting Started 6

GitG/GitK/GitX

8eo0o [[] zf2forbeginners (branch: master)

o i b R i e

Unstaged changes for module/BabyMonitor/Module.php

module/BabyMonitor/Module.php
@@ -21,7 +21,7 @@ class Module
$serviceManager = $e->getApplication()->getServiceManager();
$sem = SeventManager-»>getSharedManager();

‘(t
/tt
* Add a series of events cowvering the feed lifecycle (create, modify, delete)
*
$sem->attach(‘BabyMonitor\Controller\FeedsController’, 'Feed.Create’,
€0 -46,11 +46,19 €@ class Module

Unstaged Changes Commit Message Staged Changes

m Composer.json
|!| configfapplication.config.php
D module/BabyMonitor/Module.php
module /BabyMonit.. gatewayFactory.php
.ideaj.name
D .ideajencodings.xml
.idea/misc.xml

O
E] .idea/modules.xml
G
|

.idea/scopes/scope_settings.xml
.idea ves.xml

The GitX GUI

If you’re on Linux, a great Git front-end is GitG'®. Whilst not as full featured as SourceTree, it’s still
an excellent tool.

*®https://wiki.gnome.org/action/show/Apps/Gitg?action=show&redirect=Gitg

https://wiki.gnome.org/action/show/Apps/Gitg?action=show&redirect=Gitg
https://wiki.gnome.org/action/show/Apps/Gitg?action=show&redirect=Gitg

Getting Started 7

Composer Support

e 0o Composer

=y (@) [®] [+ [y hupsa gecomposerorg ¢ [Reader

Dependency Manager for PHP

Getting Started Download

The Composer Homepage

Composer is a tool which I'm eternally indebted to, when developing with PHP. If you’re not familiar
with Composer, the Composer site'” describes its as follows:

Composer is a tool for dependency management in PHP. It allows you to declare the
dependent libraries your project needs and it will install them in your project for you.

In short, Composer is for PHP, what APT*® or Yum" are for Linux, RubyGems® is for Ruby, and
PIP? is for Python. With a simple composer . json file, you can ensure that your project has all the

http://getcomposer.org
®http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.linuxcommand.org/man_pages/yum8.html
*%https://rubygems.org
*"http://www.pip-installer.org/en/latest/

http://getcomposer.org
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.linuxcommand.org/man_pages/yum8.html
https://rubygems.org
http://www.pip-installer.org/en/latest/
http://getcomposer.org
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.linuxcommand.org/man_pages/yum8.html
https://rubygems.org
http://www.pip-installer.org/en/latest/

Getting Started 8

dependencies, at the specific versions required.

Gone are the days of writing your application, where other developers experience issues because a
library, dependency or third party package either isn’t in their environment, or isn’t at the minimum
version required.

What’s more you’re able to document your application’s dependencies, making the application much
more self-documenting; in addition to the file, class and function documentation. With all this said
though, there are really only three commands which you need when using composer:

« composer sel f-update: ensures that composer itself is fully up to date with the current release,
or a specific release if you prefer

« composer install: resolves the packages dependencies adding them to a new vendor
directory;

+ composer update: retrieves the latest versions of the dependencies

There are a wealth of other commands available, which you can find documented on getcom-
poser.org?. If you’d like a simpler way of learning composer, check out the Composer Cheatsheet®.
This introduction has only touched the tip of the proverbial iceberg. I encourage you to familiarize
yourself with Composer, a tool I believe was long overdue.

Installing on Linux

To install it on Linux, run the following command from your terminal:

curl -sS https://getcomposer.org/installer | php
mv composer .phar /usr/local/bin/composer

This will download it, store it under /usr/local/bin/, calling it composer, where it is now globally
available to all users.

Installing on Windows

To install it on Windows, download and run the Composer Setup application®.

**http://getcomposer.org
Zhttp://www.sitepoint.com/composer-cheatsheet/
**https://getcomposer.org/Composer-Setup.exe

http://getcomposer.org
http://getcomposer.org
http://www.sitepoint.com/composer-cheatsheet/
https://getcomposer.org/Composer-Setup.exe
http://getcomposer.org
http://www.sitepoint.com/composer-cheatsheet/
https://getcomposer.org/Composer-Setup.exe

Getting Started 9

Testing

From flicking through the table of contents, you may have noticed there’s no specific section
strictly dedicated to testing. There’s a reason for that. To me, testing isn’t a separate section from
development, but an integral part of the process.

So to separate it out makes no sense. So as we move through the book and develop the respective
sections, we’ll be doing testing for that section before we develop it.

That way, we can be sure the code we’re implementing will be covered before we add it and it stays
mentally in context. We’ll be using PHPUnit. If you’re keen to use other tools, such as PHPSpec®,
feel free to do so. I'd love to see what you come up with.

Required Knowledge

This book assumes you’re familiar, though not an expert, with the following technologies:

« PHP (v5.4 min)
« Basic SQL? for creating queries with Where/Limit/Order By etc

« Familiarity with using micro or full-stack frameworks. PHP-specific frameworks will be of
greater assistance, but aren’t specifically necessary

If you’re not well versed in any of these, there are some excellent resources and tutorials in the
resources section to get you started.

“http://www.phpspec.net

Shttp://www.sqlcourse.com/index.html

http://www.phpspec.net
http://www.sqlcourse.com/index.html
http://www.phpspec.net
http://www.sqlcourse.com/index.html

Key Concepts

NB: The core of this chapter is taken from the beginning ZF2 section on Master Zend Framework®.

Introduction

Ok, let’s get underway learning Zend Framework 2. In this chapter, we get a basic understanding of
the key concepts, which you need to know.

These are:
« The Module Manager

+ The Event Manager
 The Service Manager

Module Manager

If T have seen further it is by standing on the shoulders of giants.

Though I and countless others enjoyed the 1.x series, it did leave some things to be desired, quite a
lot actually. Zend Framework 2 makes up for those misgivings in a number of ways. The first one
is the Module Manager, written by Evan Coury. Quoting directly from the manual?®, here is what
you can expect from 2.x Module.

Zend Framework 2.0 introduces a new and powerful approach to modules. This new
module system is designed with flexibility, simplicity, and re-usability in mind. A
module may contain just about anything: PHP code, including MVC functionality,
Library code, view scripts, public assets such as images, CSS, and JavaScript.

Matthew Weier O’Phinney, Zend Framework 2 Project Lead, says it most succinctly on his blog™:

In ZF2, a module is simply a namespaced directory, with a single “Module” class under
it; no more, and no less, is required.

And here’s the description from the Modules author himself, Evan Coury®":

A re-usable piece of functionality that can be used to construct a more complex
application.

*"http://www.masterzendframework.com/tutorial/zend- framework-2-modules-the-applications-heart
*http://framework.zend.com/manual/2.0/en/modules/zend. module- manager.intro.html
*http://mwop.net/blog/267-Getting- started-writing- ZF2-modules.html
*°http://evan.pro/zf2-modules-talk html#slide1

http://www.masterzendframework.com/tutorial/zend-framework-2-modules-the-applications-heart
http://framework.zend.com/manual/2.0/en/modules/zend.module-manager.intro.html
http://mwop.net/blog/267-Getting-started-writing-ZF2-modules.html
http://evan.pro/zf2-modules-talk.html#slide1
http://www.masterzendframework.com/tutorial/zend-framework-2-modules-the-applications-heart
http://framework.zend.com/manual/2.0/en/modules/zend.module-manager.intro.html
http://mwop.net/blog/267-Getting-started-writing-ZF2-modules.html
http://evan.pro/zf2-modules-talk.html#slide1

Key Concepts 11

What Are Modules

But what exactly are modules? Modules are composed of three key concepts:

+ The Module Autoloader - a specialized autoloader responsible for the locating and loading
of modules’ Module classes, from a variety of sources

« The Module Manager - which takes an array of module names and fires a sequence of events
for each one

« ModuleManager Listeners - event listeners can be attached to the module manager’s various
events

I’m not going to do you the injustice of parroting the manual; but instead say it as I understand it.
In the 1.x series, an application could be seen as a series of partially coupled components.

The 2.x series changes all that. Each module can stand alone, and is designed to work together
with other modules or provide the application’s entire functionality by itself. This is made possible
through the 3 previously mentioned components.

For a great example of this, checkout the excellent and rapidly growing ZF Modules project®'. It’s
still a fairly new project, but you can see that as new as it is, there’s likely a module to suit your
needs.

Here’s some good ones:

o SlmMail** from Jurian Sluiman®
« A static pages module** from MWOP (Matthew Weier O’Phinney)*’
« A ZendDi compiler utility module*® from Ocramius®’

Each module that you write can also provide its own views, layouts, images, css and javascript files,
and anything else that it needs. It can even make use of other modules, so that you only need to
write the minimal amount of code that’s required.

Module Configuration Paths

In the module_listener_options array key, you’ll see:

*"http://modules.zendframework.com
*?https://github.com/juriansluiman/SlmMail
*https://juriansluiman.nl
**https://github.com/phly/PhlySimplePage
*3http://mwop.net
*Shttps://github.com/Ocramius/OcraDiCompiler
*"http://ocramius.github.io

http://modules.zendframework.com
https://github.com/juriansluiman/SlmMail
https://juriansluiman.nl
https://github.com/phly/PhlySimplePage
http://mwop.net
https://github.com/Ocramius/OcraDiCompiler
http://ocramius.github.io
http://modules.zendframework.com
https://github.com/juriansluiman/SlmMail
https://juriansluiman.nl
https://github.com/phly/PhlySimplePage
http://mwop.net
https://github.com/Ocramius/OcraDiCompiler
http://ocramius.github.io

W N -

Key Concepts 12

'config_glob_paths' => array/(
'config/autoload/{,*. }{global,local}.php',
),

What this does is to tell the ModuleManager which configuration files to combine together in to
the aggregate configuration the application will use. Any file under config/autoload/ which ends
in either global.php or local.php will be merged together to form the application’s configuration
settings.

Important Functions

getConfig

The module configuration I've covered so far is the stock one. It’s made possible by the following
function in Module.php:

public function getConfig()
{

return include __DIR__ . '/config/module.config.php';

}

It returns an array or Traversable object that contains the environment delineated configuration
for your application, i.e., production, staging, development, etc. In it you can include a number of
configurations areas, such as dependency injection, routing, views and more.

getAutoloaderConfig

You have to make sure that the Module Autoloader can make best use of your module implement
the getAutoloaderConfig function. This informs the Module Autoloader where to find the required
classes.

The Remaining Module Structure

Now what I’ve covered so far is a basic module. Let’s look at the remainder of the standard module
directory structure.

Src

src stores all the PHP code files for your application. Similar in style to the 1.x series it can also
include directories for:

« Controller - All your modules controller files with the accompanying actions
« Form - All your form objects
« Model - All your database objects

Key Concepts 13

view

Not much different from version 1, in version 2 all of the view templates are located under view
using a directory structure which by default adheres to the following naming convention:

module/
controller/
<action name>.phtml

test

This is a very welcome inclusion in 2.x. I felt so often that testing was really an after thought in
Zend Framework 1? Despite documentation being available on the Internet, there always seemed to

be:

1. Problems using it
2. Alack of consistency in the information provided
3. Gaps in what was written

As I originally followed the testing section of the Zend Framework 2 manual, I was relieved to see it
work first time; no issues and no hassles. It was a real pleasure to see how easy and integral testing
was now considered. Nothing gives more confidence than solid tests when developing applications.

language
Unless you’re developing a very localized application, the possibility of not localizing or interna-
tionalizing it is very slim. So localization is baked in, right from the get go.

If you're getting started with the skeleton application, which I strongly suggest you do, you’ll see
it contains an Application module that has its language directory pre-populated with PO and MO
files for a wide assortment of languages.

However the book doesn’t cover translations, so I'm not going to cover it in further depth. However
it’s handy to know that it’s available.

Other Essentials

autoload_classmap.php

You may be familiar with an option in the 1.x series that allowed you to compile a class list so that
it didn’t have be searched on every invocation.

Key Concepts 14

An even better setup is integrated in to the 2.x series. Under your module, you can add a file, called
autoload_classmap.php. This returns an array of classes which is PSR-0 compliant®®; then use the
built in classmap_generator . php, script, available in /vendor/bin/, to keep it up to date.

To create a classmap file for a module, run the following command from the project root directory:

php ../vendor/bin/classmap_generator.php --library <Your Module> --output <Your \
Module>/autoload_classmap.php --overwrite --sort

For a good understanding of the new autoloader, check out the great post by Rob Allen (one of the
core ZF2 contributors)*’.

module_paths

As you may have seen in the code snippet above, there was an array key called module_paths
in the configuration returned from application.config.php. This is part of what makes the new
module structure so flexible. The directories specified there are the paths that the Module Autoloader
searches when loading modules.

If you want to stick with the recommended structure, then keep ‘./module’ in there. If you want to
go with a different structure, change the name. I like the configuration provided, because you keep
your modules under ./modules and add 3rd party libraries under ./vendor. That way you know
what’s yours and what’s external.

It’s a simple approach, which I believe will pay off big maintenance dividends down the track.

q& Key Points To Be Aware Of

Though all this change is very exciting, please be aware that you can’t just make a simple
transition to the 2.x series. The 2.x series takes a lot of the PHP 5.3 advancements in to
account.

To make as smooth transition as possible ensure that you’re conversant with:

« Namespaces*’
+ Closures / Anonymous Functions*'

For a good understanding of what’s required to migrate a Zend Framework 1 application to
Zend Framework 2, read this presentation*” by Bart McLeod (Zend Framework 2 developer
and contributor).

**http://www.php-fig.org/psr/psr-0/
**http://akrabat.com/zend-framework-2/using-zendloaderautoloader/
““http://www.php.net/manual/en/language.namespaces.php
“Thttp://de3.php.net/manual/en/functions.anonymous.php
“’http://spaceweb.nl/presentations/zf1-zf2-pfe.pdf

http://www.php-fig.org/psr/psr-0/
http://akrabat.com/zend-framework-2/using-zendloaderautoloader/
http://akrabat.com/zend-framework-2/using-zendloaderautoloader/
http://www.php.net/manual/en/language.namespaces.php
http://de3.php.net/manual/en/functions.anonymous.php
http://spaceweb.nl/presentations/zf1-zf2-pfc.pdf
http://www.php-fig.org/psr/psr-0/
http://akrabat.com/zend-framework-2/using-zendloaderautoloader/
http://www.php.net/manual/en/language.namespaces.php
http://de3.php.net/manual/en/functions.anonymous.php
http://spaceweb.nl/presentations/zf1-zf2-pfc.pdf

Key Concepts 15

The EventManager

The Event Manager is the component of the framework which allows you to both setup and hook
in to events in your application’s lifecycle. These can be events which come with Zend Framework
2** or ones which you define yourself.

There are events for modules, controllers and views, covering routing, errors, dispatching, bootstrap-
ping, rendering and responses. Let’s look at it in a bit more detail.

It Implements the Observer Pattern

This is the key pattern to be familiar with when understanding the EventManager. The concept,
according to Wikipedia**, is simply this:

An application has an object, which has a registered list of observers. It performs its
actions as normal and notifies the observers when a specific event has occurred. These
observers are then able to take action relevant to only themselves.

On the surface of it, this is a rather simple and effective method of approaching development, as it
has several advantages. These are:

« No Monster Classes: code can be written with a single purpose in mind, following the Single
Responsibility Principle*’

« Easier to extend: So much code starts out simply, then new requests and desires appear. With
the Observer pattern it’s simple to satisfy both aims

« Easier to test: Imagine trying to test a monolithic codebase, or one which has so many
different needs and desires? When each part is simple, concise and decoupled, it makes the
job of testing far simpler.

“*http://akrabat.com/zend-framework-2/a-list-of-zf2-events/
“*http://en.wikipedia.org/wiki/Observer_pattern
“Shttp://www.objectmentor.com/resources/articles/srp.pdf

http://akrabat.com/zend-framework-2/a-list-of-zf2-events/
http://akrabat.com/zend-framework-2/a-list-of-zf2-events/
http://en.wikipedia.org/wiki/Observer_pattern
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://akrabat.com/zend-framework-2/a-list-of-zf2-events/
http://en.wikipedia.org/wiki/Observer_pattern
http://www.objectmentor.com/resources/articles/srp.pdf

Key Concepts 16

It Implements Aspect-Oriented Programming (AOP)

Subject
Observer ———————=_s+observerlollection

- +registerlbserver(observer)
tnotifyl) +unregisterObserver{observer)
Y +notifydbservers()

notifylbservers()
for abserver in observerCollection

call observer, notifyi}

ConcreteObserverA ConcreteObserverB

+notify() +notify()

Aspect Oriented Programming

Wikipedia says this*® about Aspect-Oriented programming:

The motivation for aspect-oriented programming approaches stem from the problems
caused by code scattering and tangling. The purpose of Aspect-Oriented Software
Development is to provide systematic means to modularize crosscutting concerns.

The implementation of a concern is scattered if its code is spread out over multiple mod-
ules. The concern affects the implementation of multiple modules. Its implementation
is not modular. The implementation of a concern is tangled if its code is intermixed
with code that implements other concerns. The module in which tangling occurs is not
cohesive.

In short, think about it this way: Write clean, well organized, code, with one purpose in mind; code
which doesn’t try to solve more than one problem. For example, if you write code which searches a
datasource for information matching a query, it doesn’t attempt to render the information for the
user as well.

It has an Event-Driven Architecture

The following two statements from an article on Event-driven architecture show why it’s an
excellent approach to take:

Building applications and systems around an event-driven architecture allows these
applications and systems to be constructed in a manner that facilitates more responsive-
ness, because event-driven systems are, by design, more normalized to unpredictable
and asynchronous environments.[2]

“Shttps://en.wikipedia.org/wiki/Aspect-oriented_programming

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Aspect-oriented_programming

Key Concepts

Event-driven architecture can complemen

17

t service-oriented architecture (SOA) because

services can be activated by triggers fired on incoming events.[2][3] This paradigm is

particularly useful whenever the sink doe

s not provide any self-contained executive.

To help you out a bit more, here’s a simple, diagram courtesy of IBM*’

T
—

f EDA Post

node

EDA
/ node
MNaotify ‘
Motify EDA
| "1 node

DA

—

EDA Architectu

I hope you can see from this definition how Eve

\ E
Motify node)

re, courtesy of IBM

nt-Driven architecture and Aspect-Oriented design

serve to compliment each other. By implementing them, Zend Framework 2 allows you to write
complex applications in a cohesive, yet decoupled, manner.

Because you can write a series of components (
really well. These components are then linked to

or sub-components) all focusing on doing one task
gether through listeners and are triggered (or called

in to action) as needed. I'd suggest this, in combination with good lazy-loading, makes it even simpler

and more effective.

What else can you do?

Here’s what else you can do with events:

« Attach to many events at once: Need

to listen on multiple events, such as logging the

occurrence of all actions in a controller being fired?

« Detach listeners: Maybe a listener is no
outage; then remove it from the list.

longer required, or not available due to a service

« Short-circuit execution: This helps you stop other listeners executing if, for example, there’s
no further work to be done. It’s also handy for performance by flattening out the call stack.

« Set priorities on events: This is handy i

f different listeners need to fire off earlier or later

in the event process. A trivial example is form validation where you want to log information
before and afterwards. The higher the number, the higher its priority — and the earlier it will

fire.

“"https://www.ibm.com/developerworks/library/ws-soa-eda-esb/#N100A3

https://www.ibm.com/developerworks/library/ws-soa-eda-esb/#N100A3
https://www.ibm.com/developerworks/library/ws-soa-eda-esb/#N100A3

Key Concepts 18

Why Events Are Good

Events, when used properly, are a good thing as they let your code listen for and respond to events
throughout the application’s lifecycle. Say for example, your application, a simple one like what
we’ll be making here, has registered events for when records are created, updated and deleted.

Your boss walks in and says that it now needs to send a tweet when a new record’s created. Who
knows why, but it’s now a must-have feature. Traditionally, you might have extended the database
class to add the tweet functionality.

Or you may have instantiated a Twitter object in your controller, after the original save work was
completed, sending the tweet. The first way is just all-round wrong, the second way, not too bad.
But both ways, especially the first, can make the code much less maintainable.

Since you have events registered which listen for the record creation event, you can hook in there to
send a tweet, retrieving or instantiating the relevant class, which can retrieve relevant information
from the event which’s just fired and not need to know anything else about the state of the
application.

This allows you to add the required functionality, but in a much more maintainable way:.

Service Manager

The Zend Framework 2 Service Manager simplifies web application development in a number of
ways, primarily by making configuration a breeze. In this chapter we’ll step through what the
ServiceManager is, how to use it and how it simplifies application development time.

The ServiceManager component is a highly critical, but potentially misunderstood, aspect of the
framework; one that when understood makes the rest of the framework a breeze, well sort of. It’s
often believed that the ServiceManager over-complicates the entire framework. Some people say it’s
an attempt to out Java Java.

I completely disagree!

I believe that it’s this fundamental concept that makes the framework simpler, that makes
developing web applications with it easier, less stressful and more maintainable.

What is the ServiceManager

Put in simplest terms, the ZF ServiceManager component is an implementation of the Service Locator
pattern*®; in short a simple application registry that provides objects (in a lazy-loaded fashion) within
application as needed — but with some nice additions.

“*http://en.wikipedia.org/wiki/Service_locator_pattern

http://en.wikipedia.org/wiki/Service_locator_pattern
http://en.wikipedia.org/wiki/Service_locator_pattern
http://en.wikipedia.org/wiki/Service_locator_pattern

Key Concepts 19

It allows us to perform Inversion of Control (IoC)*’, which allows us to remove dependencies and
tight coupling from our applications. The result of this is applications that are simpler to build,
test and maintain.

You can try to think of it in more complex ways if you’d like to, but really there’s no need. Where
it does get a little complicated however, at least initially, is how it’s all configured. It does take a bit
of getting your head around — but not too much.

How do you Configure it?
The Service Manager is able to be configured in a number of ways, the key ones are:

» factories: A fully qualified class name, PHP callable object, or a class implementing Zend\ServiceManager \Fa

« invokables: A string, which is a fully qualified class name, able to be instantiated later

« initializers: A fully qualified class name, PHP callable object, or a class implementing
Zend\ServiceManager\InitializerInterface. If listed, will be applied to objects retrieved
from the Service Manager to perform additional initialization

« configuration classes: These are classes implementing Zend\ServiceManager \ConfigInter face.
Classes implementing this interface are able to configure the Service Manager, performing the
initialization that is covered in these five points

. aliases: An associative array of aliases to services (or aliases to aliases). It may not seem like
a good idea, but from a readability perspective, I believe this is an excellent technique to have
available. What’s more, they help alleviate namspace clashes, where one class has the same
name as another. Aliasing one of the conflicting keys to another can resolve the clash.

0 Quick Note

There are a few others, but they’re outside the scope of the book.

Dependency Injection

This is likely one of the most controversial choices in the Framework, basing so much of it around
the use of a Dependency Injection (DI)*° implementation. You may not, consciously, have a lot of
experience with dependency injection and dependency injection containers. But you’ll likely have
used them at one time or another, without realizing it.

What’s more, DI containers aren’t new; Symfony has one, there’s a more common, framework-
agnostic one, PHP-DI**, Aura Di** and Pimple*. The majority of the critique of them comes from
two fronts:

“’http://en.wikipedia.org/wiki/Inversion_of_control
*°http://en.wikipedia.org/wiki/Dependency_injection
Thttp://php-di.org
>?http://auraphp.com/packages/Aura.Di/
**http://pimple.sensiolabs.org

http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Dependency_injection
http://php-di.org
http://auraphp.com/packages/Aura.Di/
http://pimple.sensiolabs.org
http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Dependency_injection
http://php-di.org
http://auraphp.com/packages/Aura.Di/
http://pimple.sensiolabs.org

Key Concepts 20

1. That by using them, the configuration of the application isn’t as transparent
2. It makes maintaining applications quite complex

I'll discount the often cited argument:

but what if you leave and our other developers don’t have those skills, so we can’t
maintain it

This isn’t valid and smacks of laziness as well as an unwillingness to learn and try new things. But
before I get in to how to use it in Zend Framework 2, I want to debunk both of the prior stated
objections.

When done correctly, you'll have a central location where all of your objects are configured. When
you need to make a change, you only need look in the repository for the relevant configuration and
change it there.

After the change is applied every reference to objects retrieved from the repository reflect the change.
You don’t need to search for usages throughout the application and refactor them. You don’t need
to update multiple tests. The changes benefit the entire application.

What Has This Shown Us?

This process of stepping through the configuration and usage of the ServiceManager has shown us
5 things:

1. Configuration Is Straight-Forward: Whilst a bit involved (because of all the locations where
configurations can be located) it follows a clearly defined set of conventions, in a standard set
of locations.

2. It’s Easy to Debug: By having standard conventions and locations, we can track configura-
tions in the application logically and systematically.

3. It Works across Modules: In Zend Framework 1, we had to jump through hoops to work
with multiple modules. In ZF2 it’s all baked in. Just follow the conventions and it works.

4. Applications are More Dependable: This is a bit of a reiteration of the previous points. But
by being able to configure applications in a readily debuggable manner, you need less time
and effort; effort which can be spent more meaningfully in other aspects of development.

5. Easier to Maintain: When applications as more consistent, predictable, debuggable, logical
(in my mind if nowhere else), they’re easier to optimize. Why? Because you’re working with
a known quantity.

Possibly a little boring, but following convention makes adding new components quicker and more
predictable. Being a maintainer, you know how applications hang together, you know where to look,
the options which can be used, how to override them and so on.

Key Concepts 21

Chapter Recap

Please don’t feel cheated with this introduction. To be honest, there’s a hell of a lot that can be
involved in making full use of the new Modules system, despite what I said at the start. My aim here
was to give you a simple and effective introduction that we can build on progressively.

Routing

Now that we have a, basic, working application, let’s start to dive deeper in to how it’s configured
and constructed, starting with routing. In Zend Framework 2 routing is quite similar to version 1,
supporting a wide variety of possibilities** for composing routes.

Given that, I want to show you the simplest, least energy intensive, ways to configure it. To do that
let’s review the routing table, how it’s constructed, and how it works. When it’s completed it’s going
to support routes for the following actions:

Adding Feeds
Editing Feeds
Deleting Feeds

Searching Feeds
Viewing All Feeds

All of the routes will have the prefix /baby-monitor, as they’re child routes of the original parent
and will inherit all of the configuration and settings of the parent. Here’s what they’ll look like and
what they’ll do.

Route Name Route Description

Managing Feeds /baby-monitor/feeds/manage(/:id] Supports creating new feeds and update
existing feeds. A feed is located based on

the value of id route parameter.
Deleting Feeds ~ /baby-monitor/feeds/delete[/:id] Supports deleting an existing feed based

on the value of :id. A feed is located

based on the value of id route parameter.
Viewing Feeds /baby-monitor/feeds/view[/:id] Supports displaying a feed based on the

value of :id. A feed is located based on

the value of id route parameter.
Feeds Index /baby -monitor Display all feeds

Search Feeds /baby-monitor/feeds/search|/:startDate$lippard®astaiching feeds based on the
values supplied in the :startDate and
:endDate route parameters.

**http://framework.zend.com/manual/2.3/en/modules/zend. mve.routing. html

http://framework.zend.com/manual/2.3/en/modules/zend.mvc.routing.html
http://framework.zend.com/manual/2.3/en/modules/zend.mvc.routing.html

O 00 9 O O b W N =~

_ e o
W N =~

Routing 23

Deleting Feeds

Starting with the delete action, add the following route in config/module.config.php, after the
action element, in the child_routes element.

'delete' => array(
"type' => 'segment',
'options' => array(
'route' => '/feeds/delete[/:id]"',
'constraints' => array(
'id' = '[0-9]+',
),
'defaults' => array(
'action' => 'delete’,
)
),
'may_terminate' => true,

)I

This defines the route /baby-monitor/feeds/delete. Notice the route definition contains [/:id]?
This defines an optional, named, parameter called id. If it’s supplied in the request, the constraints
element limits the value that can be supplied to only integers. This is done by supplying the regex
(regular expression): ‘[0-9]+".

o New to Regular Expressions?

If regexes are new to you, I suggest getting to know the basics®®>. Not only do regexes come
in very handy, but they save you a lot of time and effort, even when the basics are mastered.

We’ve also defined a defaults element; this defines the action which will handle the request when
it’s matched, specifically the delete action. We didn’t need to specify the controller, as it was defined
in the parent route, which this route inherits.

Managing Feeds (Adding & Editing)

>*http://www.regular-expressions.info

http://www.regular-expressions.info
http://www.regular-expressions.info

© 00 9 O O b W N =

10
1
12
13

© 00 39 O Ol & W N =~

Y
W N =~

Routing 24

'manage' => array(
"type' => 'segment',
'options' => array(
'route' => '/feeds/manage[/:id]",
'constraints' => array(
'id' = '[@-9]+',
),
"defaults' => array(
'action' => 'manage',
)
)
'may_terminate' => true,

),

Next we’'ve defined the /baby-monitor/feeds/manage route, which is almost identical to the delete
route. I'll skip going over it as the only thing things which have changed are the name, base of the
route and the default action which handles the request, which is manage.

Viewing Feeds

"manage’' => array(
'type' => 'segment',
'options' => array(
'route' => '/feeds/view[/:id]",
'constraints' => array(
'id' = '[0-9]+',
),
"defaults' => array(
'action' => 'view',
)
),
'may_terminate' => true,

),

Next we've defined the /baby-monitor/feeds/view route, which again is almost identical to the
delete and manage routes, and handled by the view action.

The Search Route

Finally, let’s look at the search route.

Routing 25

'search' => array(
"type'’ => 'segment',
'options' => array(
'route’ => '/feeds/search[/][:start][/:end]"’,
'constraints' => array(
'start' => '[0-9]{4}(-[0-9]{4}){2}",
‘end' = '[0-9]{4}(-[0-9]{4}){2}",
)
'defaults' => array(
'action' => 'Search'
),
),
),

As in the first example, we’ve specified options for route name, route, constraints and defaults. Based
on the first example, you can see that the route’s called search and we’ve specified two optional
constraints, start and end. These will, later, support two elements: startDate and endDate.

We’ve then specified a regex constraint for both, which requires the dates supplied to be in the
format yyyy-mm-dd. Finally, we've specified an extra default, action, which will route all matching
requests to the Search action.

0~¢ Why That Date Format?

Just a quick note on the date format; I’ve chosen this format, because I'm Australian and it
makes more sense to me than the U.S. format of yyyy-dd-mm. Ok, this regex wouldn’t care
whether you specified it in US or standard English format. I'm mentioning it to avoid any
confusion later, because the way the code will process it is the standard English format.

p Try Dispatching to Each Route

Now that all the routes are setup, take a moment to route to all of them, to see what they’re
like and make sure they work.

Using Route with ViewHelpers

With the routes setup, let’s look at how we can make use of the routes, and demonstrate their
flexibility, in view templates. One of the best and most straight-forward examples is by using the
URL ViewHelper in a view template.

This will show how to create a url href, just by supplying the route name, with some optional
parameters. For example, to generate the route /baby-monitor, we’'d invoke the url view helper, in
any view template, like this:

W N -

O = W N =

O O b W N =~

Routing 26

<?php print $this->url('feeds', array(
'controller' => 'feeds',
'action' => 'index'

), 7

This will generate a route based on the configuration in the route named feeds, and supply the
parameters in the associative array supplied as the second parameter. This works for both parent
and child routes.

Referencing Child Routes

It may not be clear at first how to reference a child route, so let’s look at how it’s done in the
following example, where we’ll reference the delete and manage child routes.

// Generate the delete feed route
<?php print $this->url('feeds/delete', array('id' => 1)); 2>

// Generate the manage feed route
<?php print $this->url(' feeds/manage', array('id' => 1)); 2>

In both of these examples, we've started with the parent route name, feeds, then added the child
route name on to the end, separated by a slash, supplying the route parameters as and where
required. Each route supports an optional parameter, id, which has been supplied in the second
parameter.

Accessing the Parameters in Controller Actions

As we saw in the last example both the delete and manage both accept one parameter, id, let’s look
at how to get access to it, in a controller action, if it’s supplied in a request. Assuming that you’ve
dispatched to http://localhost:8080/baby-monitor/feeds/delete/234, let’s see how we retrieve
234 in the delete action.

public function deleteAction()
{

return new ViewModel (array(
"id' => $this->params()->fromRoute('id', 0)
));

Routing 27

Here, Ive initialized a view template variable id by calling fromRoute() on the params controller
helper. This retrieves the route parameter named id. Notice @ as the second parameter to fromRoute?
This supplies a default value, in case id is not available.

To complete the example, I've added <?php print $this->id; ?> to delete.phtml. Now, when
you route to http://localhost:8080/baby-monitor/feeds/delete, if you supply nothing, 0 will
be displayed, along with the other template information. If, on the other hand, you dispatched to
http://localhost:8080/baby-monitor/feeds/delete/23, 23 would be displayed.

8eo0oe ZF2 Skeleton Application

Module: BabyMonitor Controller: Feeds Action: delete 234

© 2005 - 2014 by Zend Technologies Ltd. All rights reserved.

View route parameter

Chapter Recap

And that’s the basics of setting up routing in Zend Framework 2, covering simple, literal routes,
to slightly more complicated segment routes. I encourage you to explore and experiment with the
other route types available.

3rd Party Modules

One of the best things about Zend Framework 2 is its modular structure. One of the key advantages
of Zend Framework 2 over version 1 is that modules are now first class citizens. If you're familiar
with version 1, you’ll know that modules were really only modules in name only.

As well as making this much needed change, some of the contributors also started modules.zendframework.com?.
I encourage you to check it out and consider searching the 510+ available modules (at the time of
writing) before thinking of writing your own.

You may be re-implementing the wheel.

Like Packagist® is for the wider PHP community, ZF2 Modules is the place where the best modules
can be found; helping us all save time in our development efforts.

To demonstrate just how flexible 3rd party modules make development with Zend Framework 2,
we’ll now integrate a third party module to implement email support in the application, which we’ll
use in the chapter on Events shortly.

Specifically, we're going to use the excellent SlmMail package®® by Jurian Sluiman® and Michaél
Gallego®. SlmMail provides a range of transport layers for \Zend\Mail, which will make it easy
to integrate with the excellent Mandrill email service from MailChimp®'. To complete this chapter,
you’ll need to have an account with Mandrill**.

When you have one (or if you already have one), navigate to the SMTP and API Credentials
page®®, and click +New API Key at the bottom of the page, add in a description and click
Create API Key. You'll then be redirected to the page again, where you can copy the key in to
/config/autoload/slm_mail.mandrill.local.php. Uncomment the keyelement and paste the key
in.

Here’s what we’ll do:

1. Add the library as a dependency in composer . json

2. Create a class, \BabyMonitor \Noti fy\Feed\EmailNotifier.php which will use the SlmMail
when creating and sending emails

3. The class will implement the FactoryInterface to have it’s dependencies automatically
supplied when it’s instantiated by the ServiceManager

*Shttp://modules.zendframework.com

*"https://packagist.org
*®http://modules.zendframework.com/juriansluiman/SlmMail
**https://juriansluiman.nl

“http://www.michaelgallego.fr

Thttp://mandrill.com

“*https://www.mandrill.com/signup/
https://mandrillapp.com/settings/index

http://modules.zendframework.com
https://packagist.org
http://modules.zendframework.com/juriansluiman/SlmMail
https://juriansluiman.nl
http://www.michaelgallego.fr
http://www.michaelgallego.fr
http://mandrill.com
https://www.mandrill.com/signup/
https://mandrillapp.com/settings/index
https://mandrillapp.com/settings/index
http://modules.zendframework.com
https://packagist.org
http://modules.zendframework.com/juriansluiman/SlmMail
https://juriansluiman.nl
http://www.michaelgallego.fr
http://mandrill.com
https://www.mandrill.com/signup/
https://mandrillapp.com/settings/index

O© 00 9 O O P W N =

-
(]

3rd Party Modules 29

Integrating the Library

First we need to add the dependency in composer . json as previously mentioned. You can either add
"slm/mail": "~1.4", into the "require" section by hand. Or from the command line, in the root
of your project directory, run the following command:

composer require slm/mail "dev-master"

If you added the entry by hand to composer.json, run composer update and wait for that to complete.
When it’s done, you’ll see a new directory under vendor called sim/mail. Feel free to explore as you
have time.

Enabling the Module

With the module source now in vendor, we need to activate the module. Inconfig/application.config.php
add 'SlmMail', to 'modules’ array. It doesn’t matter where in the list it goes, so long as it’s there.

Finally, copy . /vendor/slm/mail/config/slm_mail.mandrill.local.php.dist toconfig/autoload,
removing the .dist extension. With these steps carried out, you’re ready to go. So let’s move on
and create a class which uses the functionality.

Implementing the Notifylnterface Interface

Now we’ll create an interface, called Not i fyInter face, undermodule/BabyMonitor/src/BabyMonitor/Noti fy/Feec
which our email class, called EmailNotifier.php, also located in that directory, will implement. Ok

an interface isn’t strictly necessary. But I wanted to do it to maintain good habits. Copy the code

below in to the new interface class.

namespace BabyMonitor\Notify\Feed;
use BabyMonitor\Model \FeedModel;

interface NotifyInterface

{
public function notify(

FeedModel $feed, $notificationType
);
}

You can see it declares one method, notify(), which takes two parameters:

+ A FeedModel object, which provides data for the email notification
« A string, which specifies the notification type

O b W N =

© 00 9 O O b W N =

0 N O O & W N =~

11
12
13

3rd Party Modules 30

Creating the Core Class - EmailNotifier.php

Now let’s step through the notification class, EmailNotifier.php, and see how it makes use of
Slm\Mail.

namespace BabyMonitor\Notify\Feed;

use BabyMonitor\Model \FeedModel;
use Zend\Mail\Message;
use Zend\Mail\Transport\Transportlnterface;

Firstly we specify the namespace and bring in the classes which we’ll need in the class.

class EmailNotifier implements NotifyInterface
{
const DEFAULT_SUBJECT = 'Baby Monitor Feed Notification';
const NOTIFY_CREATE = 'create';
const NOTIFY_UPDATE = 'update';
const NOTIFY_DELETE = 'delete';

protected $_config;
protected $_mailTransport;

Next, we define a set of constants, used for the notification states and default email subject, as
well as two variables, $_config and $_mailTransport. $_config stores the config we’ll need and
$_mailTransport stores the Email transport. Both of these two are provided in the constructor,
below.

public function __construct(
$emailConfig,
TransportInterface $mailTransport
) {
if (empty($emailConfig)) {
throw new EmailNotifierException(
'Missing notifier configuration data'

);

$this-> config = $emailConfig;
$this-> mailTransport = $mailTransport;

W N O Ol & W N =

= U UGN
0 0 O b WON =~ O

19
20

3rd Party Modules 31

If $emailConfig is empty, an EmailNotifierException is thrown so that we know what happened.
I’ve not included the code for that class, as it only extends the base PHP \Exception class. Now let’s
look at the notify() method.

public function notify(FeedModel $feed, $notificationType)
{
if (empty($this-> config['subject'])) {
$subject = self::DEFAULT_SUBJECT;
} else {
$subject = $this-> config['subject'];

$message = new Message();
$message->setBody (
$this->getNotificationBody(
$feed, $notificationType

)
->setSubject($subject)
->addFrom($this-> _config['address']['from'])
->addTo($this-> config['address']['to']);

return $this->_mailTransport->send($message);

Here we have the core of the class, noti fy(). Firstly, we try and extract the subject from $_config.
If it’s not available, we use DEFAULT_SUBJECT instead. Then we create a new \Zend\Mail\Message
object, forming the basis of the email we’ll be sending.

We create the body using the getNotificationBody() method we’ll see next, set the subject, from
and fo email addresses; and finish up by returning the result of calling the send() method of $_-
mailTransport.

public function getNotificationBody(FeedModel $feed, $notificationType)
{
switch ($notificationType) {
case (self::NOTIFY_UPDATE):
$message = sprintf(
"Feed %d has been updated", $feed->feedld
),

break;

case (self::NOTIFY_DELETE):

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

O &= W N =

3rd Party Modules 32

$message = sprintf(
"Feed %d has been deleted", $feed->feedld

),
break;
case (self::NOTIFY_CREATE):
default:
$message = sprintf(
"Feed has been created. Id is: %d", $feed->feedId
);

break;

return $message;

}

Right, let’s look at how we construct the message body. Using a FeedModel object and notification
type, we use sprintf to construct a simple message, informing the user what has happened, whether
that’s that a feed has been updated, deleted or created.

Whilst we only need the feedId property from the FeedModel object, I passed in the entire object,
as this was the first draft of the function and I'm thinking about fleshing out the function as time
goes on.

Finishing up, create a new class, EmailNotifierException, in the Notify/Feed directory. This class isn’t
special, as it only extends PHP’s core Exception class. It’s there so that we have a Notify-specific
exception class, in case things go wrong. In it, add the following code:

namespace BabyMonitor\Notify\Feed;

class EmailNotifierException extends \Exception {

Instantiating the Class

Let’s wind this up by looking at how the class is instantiated. In the final new class, EmailNotifier-
Factory.php, located in Noti fy/Feed/Factory.

~N O O B W N -

0 N O O & W N =

[SIS T G S G G G G G QY
N P © © 0 0 O b W N~ O O

3rd Party Modules 33

namespace BabyMonitor\Notify\Feed\Factory;

use Zend\ServiceManager\FactoryInterface;

use Zend\ServiceManager\ServicelocatorInterface;

use Zend\ServiceManager \Exception\ServiceNotCreatedException;
use Zend\Cache\Exception\ExtensionNotlLoadedException;

use BabyMonitor\Notify\Feed\EmailNotifier;

As always, we start off with the namespace declaration and use statements which we’ll need in the
class.

class EmailNotifierFactory implements FactorylInterface

{

public function createService(ServicelocatorInterface $servicelLocator)

{

$config = $servicelocator->get('Config');

(]

$emailConfig = '';

if (array_key_exists('notification', $config)) {
$emailConfig = $config['notification'];

$mailTransport = $servicelLocator->get(
'SlmMail\Mail\Transport\MandrillTransport'

);

$notifier = new EmailNotifier(
$emailConfig, $mailTransport

);

return $notifier;

Then we implement the one function, createService(), mandated by the FactorylInterface
interface which we’re implementing. We retrieve the application config from the ServiceLocator
object, which we’ll see shortly passes in the email element.

If it has an element called notification, we use it to initialize $emailConfig, just making it a
bit easier to reference. After this, we initialize a new variable, $mailTransport by retrieving the
S1mMail\Mail\Transport\MandrillTransport service which is made available in S1m\Mail.

O 00 9 O O b W N =~

NN
= o

3rd Party Modules 34

This makes it really simple to use Mandrill** as the underlying transport for our emails. We finish
up by instantiating and returning a new EmailNotifier object, passing in the $emailConfig and
$mailTransport parameters which it needs.

Making the EmailNotifier Available to Our App

One final step’s still required, defining the service in ServiceManager. As we’re implementing
FactorylInter face, then we need to add a reference (below) to the class in the factories element
of the array returned from getServiceConfig.

'BabyMonitor\Notify\Feed\EmailNotifier' => 'BabyMonitor\Notify\Feed\Factory\Emai\
INotifierFactory',

In the snippet above, I've just included the relevant code section. Here, you can see that when
BabyMonitor\Noti fy\Feed\EmailNotifier is retrieved from the ServiceManager in the Events
chapter, EmailNotifierFactory will be instantiated and the result of calling createService() will
be returned.

We really didn’t need to go to all this effort just to send an email, which contained a simple body
and subject, right? No, we didn’t. But it was a good example of using an external module, which is
actively developed, tested and maintained, which avoids us having to commit to doing so both now
and over the longer term lifetime of our application.

The Notification Configuration

We now need to provide the configuration which the notification classes will use. Inconfig/autoload,
create a new class, notify.global.php and in there, add a to and from email address as appropriate.

<?php

return array(
'notification' => array(
'address' => array/(
"to' =
"from' =>
),

'subject' => 'Baby Monitor Feed Notification'

7

)
)

**https://mandrill.com

https://mandrill.com
https://mandrill.com

0 = O O b W N =~

NN N N B S s s s
W N, O © 03O0 O b WO N~ O O

3rd Party Modules 35
Wiring it up with Events

Now let’s trigger an email to be automatically sent when a new record is created, by creating a
custom event. I appreciate that I've not touched much on events in the book, so I'll keep this simple.
But they’re a good thing to get to know as you learn Zend Framework 2.

In Module.php, firstly add in the following use statements:

use Zend\Mvc\ModuleRoutelListener;
use Zend\Mvc\MvcEvent;
use BabyMonitor\Notify\Feed\EmailNotifier;

Then, add in the function below, then we’ll work through it.

public function onBootstrap(MvcEvent $e)

{
$eventManager = $e->getApplication()->getEventManager();
$moduleRoutel istener = new ModuleRoutelistener();
$moduleRoutel istener->attach($eventManager);
$serviceManager = $e->getApplication()->getServiceManager();
$sem = $eventManager->getSharedManager();

$sem->attach(
'BabyMonitor\Controller\FeedsController',
'Feed.Create’',
function($e) use($serviceManager)
{
$notifier = $serviceManager->get(
'BabyMonitor\Notify\Feed\EmailNotifier"'
);
$notifier->notify(
$e->getParams()[' feedData'],
EmailNotifier: :NOTIFY_CREATE

Firstly we get access to the EventManager and by calling its attach() method, create a custom
event, Feed.Create, on the FeedsController, which will fire off the closure when it’s triggered.
The closure will retrieve the EmailNotifier service from the ServiceManager and call its notify()
method, passing in the event information, which we’ll see in a moment, and the notification type.

3rd Party Modules 36

The event information provides state and related information for the event to work with. In this
case, a FeedModel object. Now let’s update the FeedsController manage action to trigger the event
after a record’s been created. In the manageAction, after the call to save()on $this->_feedTable,
add in the following code.

$this->getEventManager()->trigger('Feed.Modify', $this, array(
' feedData' => $feed

));

This gets access to the EventManager and triggers the Feed.Modify event, by passing in the event
to trigger and the object to trigger it on, followed by the event data, an associative array containing
the FeedModel object. To run it, create a new feed record and check your email inbox. You should
see an email with the body Feed has been created. Id is: 1.

Further Information

One thing I should add, before we finish up, is give you further information to work with on the
module. So be sure to check out the project site®® where you’ll find copious information on the
module, as well as all of the providers which are available with it.

As these are all commercial email providers, Jurian and Michaél have created a pricing table for
each provider®®, so you know what the cost may be if you use them.

Chapter Recap

And that’s how to integrate external modules in to your application. In case you’re overly
enthusiastic, please don’t just grab any module and add it to your application. Make sure that you’re
comfortable with the developer(s) and with the code itself, that it doesn’t contain anything malicious.
I’'m not suggesting that you should suspect everyone, but please keep a healthy respect for security
as you bring in external code in to your application.

**http://modules.zendframework.com/juriansluiman/SlmMail
®http://modules.zendframework.com/docs/Pricing.md

http://modules.zendframework.com/juriansluiman/SlmMail
http://modules.zendframework.com/docs/Pricing.md
http://modules.zendframework.com/docs/Pricing.md
http://modules.zendframework.com/juriansluiman/SlmMail
http://modules.zendframework.com/docs/Pricing.md

	Table of Contents
	Getting Started
	How is it Structured?
	The Proper Tools
	The Required Software
	Version Control
	Additional Tools
	Testing
	Required Knowledge

	Key Concepts
	Introduction
	Module Manager
	The EventManager
	Service Manager
	Chapter Recap

	Routing
	Deleting Feeds
	Managing Feeds (Adding & Editing)
	Viewing Feeds
	The Search Route
	Using Route with ViewHelpers
	Accessing the Parameters in Controller Actions
	Chapter Recap

	3rd Party Modules
	Integrating the Library
	Enabling the Module
	Implementing the NotifyInterface Interface
	Creating the Core Class - EmailNotifier.php
	Instantiating the Class
	Making the EmailNotifier Available to Our App
	The Notification Configuration
	Wiring it up with Events
	Further Information
	Chapter Recap

