

You Don’t Know JS Yet: The
Unbooks

Previously Unpublished 2nd-Ed
Book Content (Raw & Uncut)

Kyle Simpson

This book is available at
https://leanpub.com/ydkjsy-unbooks

This version was published on 2025-04-24

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2025 Getify Solutions, Inc.

https://leanpub.com/ydkjsy-unbooks
https://leanpub.com/
https://leanpub.com/manifesto
https://leanpub.com/manifesto

Tweet This Book!

Please help Kyle Simpson by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

I’'m reading "YDK]S Yet: The Unbooks”, previously
unpublished (raw and uncut!) content from the YDK]JS 2nd
edition series! https://leanpub.com/ydkjsy-unbooks
#YDK]JSYetUnbooks

The suggested hashtag for this book is #YDK]JSYetUnbooks.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#YDK]SYetUnbooks

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20reading%20%22YDKJS%20Yet:%20The%20Unbooks%22,%20previously%20unpublished%20(raw%20and%20uncut!)%20content%20from%20the%20YDKJS%202nd%20edition%20series!%20https://leanpub.com/ydkjsy-unbooks%20%23YDKJSYetUnbooks
https://twitter.com/intent/tweet?text=I'm%20reading%20%22YDKJS%20Yet:%20The%20Unbooks%22,%20previously%20unpublished%20(raw%20and%20uncut!)%20content%20from%20the%20YDKJS%202nd%20edition%20series!%20https://leanpub.com/ydkjsy-unbooks%20%23YDKJSYetUnbooks
https://twitter.com/intent/tweet?text=I'm%20reading%20%22YDKJS%20Yet:%20The%20Unbooks%22,%20previously%20unpublished%20(raw%20and%20uncut!)%20content%20from%20the%20YDKJS%202nd%20edition%20series!%20https://leanpub.com/ydkjsy-unbooks%20%23YDKJSYetUnbooks
https://twitter.com/intent/tweet?text=I'm%20reading%20%22YDKJS%20Yet:%20The%20Unbooks%22,%20previously%20unpublished%20(raw%20and%20uncut!)%20content%20from%20the%20YDKJS%202nd%20edition%20series!%20https://leanpub.com/ydkjsy-unbooks%20%23YDKJSYetUnbooks
https://twitter.com/search?q=%23YDKJSYetUnbooks
https://twitter.com/search?q=%23YDKJSYetUnbooks

Published by GetiPub (http://getipub.com), a division
of Getify Solutions, Inc., and produced by Leanpub
(https://leanpub.com/ydkjsy-unbooks).

April 2025: Second Edition
Revision History for the Second Edition
2020-04-15: First Release

While the publisher and the author have used good faith
efforts to ensure that the information and instructions con-
tained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

I must first thank my wife and kids, whose constant support is
what allows me to keep going. I also want to thank the 500 orig-
inal backers of the Kickstarter for “You Don’t Know 3S” (1st
ed), as well as the hundreds of thousands of folks who bought
and read those books since. Without your financial support,
this second edition wouldn’t be happening. Thanks also to the
interviewer at a certain avian social media company who said
I didn’t “know enough about JS”... you helped me name the
series.

Next, I owe much of my current career path to Marc Grabanski
and Frontend Masters. Marc took a chance on me and gave me
my first shot at teaching years ago, and I wouldn’t have then
become a writer had it not been for that! Frontend Masters
is the Premier Sponsor of YDKJSY 2nd Edition. Thank you,
Frontend Masters (and Marc).

Lastly, my editor, Simon St.Laurent, who helped me conceive
the original YDKJS and was my first book editor. Simon’s
support and guidance have profoundly impacted me and been
an integral part of shaping me into the writer I am today. From
those drinks we enjoyed at the Driskill all those years back,
where YDKJS was born, through today, thank you so much
Simon for shepherding and improving these books!

CONTENTS

Contents

Preface.

Objects & Classes (Unbook 3)

Chapter 1: Object Foundations (Objects & Classes) .
About ThisBook
Objects As Containers
Defining Properties.
Accessing Properties L L.
Assigning Properties oL
Deleting Properties
Determining Container Contents
Temporary Containers.
Containers Are Collections Of Properties

Chapter 2: How Objects Work (Objects & Classes) .
Property Descriptors,
Object Sub-Types
Object Characteristics
Extending The MOP
[[Prototype]] Chain
Objects Behavior

W

N N G

39

You Don’t Know]S Yet: The Unbooks

CONTENTS

Types & Grammar (Unbook 4) eo

Chapter 1: Primitive Values (Types & Grammar) . . . 61
Value Types 61
Empty Values 65
Boolean Values 71
String Values 72
Number Values 87
Biglnteger Values 106
Symbol Values 108
Primitives Are Built-In Types 115

Chapter 2: Primitive Behaviors (Types & Grammar) 116
Primitive Immutability 116
Primitive Assignments. 120
String Behaviors 121
Number Behaviors 144
Primitives Are Foundational 163

Sync & Async (Unbook 5) 165

Chapter 1: Lost Book (Sync & Async) 166
ThePlan 166
TheReality. 167
Thatsaid... 168

Second Edition Thank Yous .. . 170

You Don’t Know]S Yet: The Unbooks

Preface 1

Preface

This is the unfinished finish line.

You Don’t Know JS Yet: The Unbooks isn’t just the last release
in the 2nd edition of the YDK]S series—it’s the odd one, the
raw one, the one that was never supposed to exist. But here it
is, because even unfinished things can still carry meaning, and
sometimes clarity comes not just from what gets published,
but from what doesn’t.

The first part of this book contains two fully drafted but
previously unpublished titles: Book 3: Objects & Classes and
Book 4: Types & Coercion. These were written years ago
but never formally edited or finalized for print. For a long
time, I wasn’t sure they were worth releasing at all—not
because the content isn’t valuable (it is), but because I hold
a high bar for what I put in front of you. These chapters
are complete in structure and intention, but they’re raw.
Unpolished. Unvarnished. You’ll see the uneven edges. That’s
by design.

The second part of this book—what I call “The Lost Books™—
covers what would have been the final two titles in the series.
Book 5: Sync & Async and Book 6: ES.Next & Beyond were
never written, and never will be. But that doesn’t mean there’s
nothing to say. Instead of stretching them into books they
never earned the right to be, I distilled their essence into two
reflective chapters. They’re a glimpse into the ideas I wrestled
with, and the reasons I ultimately chose not to press on.

You Don’t Know]S Yet: The Unbooks

Preface 2

If you’ve made it this far in the series, you’re likely already fa-
miliar with the tone and mission of YDKJS: to treat JavaScript
seriously, to explore it thoroughly, and to challenge you—
gently but firmly—to question what you think you know
about how it works. That mission hasn’t changed here. If
anything, this volume sharpens it. It asks not only “What do
we teach?” but also “What do we leave out, and why?”

I won'’t pretend this book follows the same carefully plotted
arc as the others. It’s less of a textbook and more of a time
capsule—part artifact, part epilogue. But in a way, it’s the
most honest thing I could publish. These are the chapters that
didn’t fit the mold, the ones I debated over, struggled with,
and ultimately chose to release just as they are.

There’s something freeing about that. This book is for the
curious, the completist, the student who still cares about
understanding JavaScript—not just using it. If that’s you, I
hope this odd little volume feels like a final walk around the
edges of the map. Some parts you’ll recognize. Some parts will
feel unfinished. But you’ll see the whole picture a little more
clearly for it.

Thanks for walking all this way with me. These Unbooks may
not have the final polish—but they do, I hope, still shine.

You Don’t Know]S Yet: The Unbooks

Objects & Classes
(Unbook 3)

Chapter 1: Object Foundations (Objects & Classes) 4

Chapter 1: Object
Foundations (Objects &
Classes)

“Everything in JS is an object.”

— most JS developers

This is one of the most pervasive, but most incorrect, “facts”
that perpetually circulates about JS. Let the myth busting
commence.

JS definitely has objects, but that doesn’t mean that all values
are objects. Nevertheless, objects are arguably the most im-
portant (and varied!) value type in the language, so mastering
them is critical to your JS journey.

The object mechanism is certainly the most flexible and
powerful container type — something you put other values
into; every JS program you write will use them in one way or
another. But that’s not why objects deserve top billing for this
book. Objects are the foundation for the second of JS’s three
pillars: the prototype.

Why are prototypes (along with the this keyword, covered
later in the book) so core to JS as to be one of its three pillars?
Among other things, prototypes are how]JS’s object system
can express the class design pattern, one of the most widely
relied on design patterns in all of programming.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 5

So our journey here will start with objects, build up a com-
pelete understanding of prototypes, de-mystify the this key-
word, and explore the class system.

About This Book

Welcome to book 3 in the You Don’t Know FS Yet series! If
you already finished Get Started (the first book) and Scope &
Closures (the second book), you're in the right spot! If not,
before you proceed I encourage you to read those two as
foundations before diving into this book.

The first edition of this book is titled, “this & Object Proto-
types”. In that book, our focus started with the this keyword,
as it’s arguably one of the most confused topics in all of JS. The
book then spent the majority of its time focused on expositing
the prototype system and advocating for embrace of the lesser-
known “delegation” pattern instead of class designs. At the
time of that book’s writing (2014), ES6 would still be almost
2 years to its completion, so I felt the early sketches of the
class keyword only merited a brief addendum of coverage.

It’s quite an understatement to say a lot has changed in the
JS landscape in the almost 8 years since that book. ES6 is old
news now; at the time of this book’s writing, JS has seen 7
yearly updates after ES6 (ES2016 through ES2022).

Now, we still need to talk about how this works, and how
that relates to methods invoked against various objects. And
class actually operates (mostly!) via the prototype chain
deep under the covers. But JS developers in 2022 are almost
never writing code to explicitly wire up prototypal inheri-
tance anymore. And as much as I personally wish differently,
class design patterns — not “behavior delegation” — are how

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 6

the majority of data and behavior organization (data struc-
tures) in JS are expressed.

This book reflects JS’s current reality: thus the new sub-title,
new organization and focus of topics, and complete re-write
of the previous edition’s text.

Objects As Containers

One common way of gathering up multiple values in a
single container is with an object. Objects are collections of
key/value pairs. There are also sub-types of object in JS with
specialized behaviors, such as arrays (numerically indexed)
and even functions (callable); more on these sub-types later.

0 Keys are often referred to as “property names”,

with the pairing of a property name and a value
often called a “property”. This book will use those
terms distinctly in that manner.

Regular JS objects are typically declared with literal syntax,
like this:

myObj = {
/.
};

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 7

TIP

There’s an alternate way to create an object
(using myObj = new Object()), but this is not
common or preferred, and is almost never the
appropriate way to go about it. Stick with object
literal syntax.

It’s easy to get confused what pairs of { .. } mean, since
JS overloads the curly brackets to mean any of the following,
depending on the context used:

« delimit values, like object literals

« define object destructuring patterns (more on this later)

« delimit interpolated string expressions, like “some ${
getNumber () } thing’

« define blocks, like on 1 f and for loops

« define function bodies

Though it can sometimes be challenging as you read code,
look for whether a { .. } curly brace pair is used in the
program where a value/expression is valid to appear; if so,
it’s an object literal, otherwise it’s one of the other overloaded
uses.

Defining Properties

Inside the object literal curly braces, you define properties
(name and value) with propertyName: propertyValue
pairs, like this:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 8

myObj = {
favoriteNumber: 42,
isDeveloper: true,
firstName: "Kyle"

s

The values you assign to the properties can be literals, as
shown, or can be computed by expression:

function twenty() { return 20; }

myObj = {
favoriteNumber: (twenty() + 1) % 2,
}s

The expression (twenty() + 1) * 2 is evaluated immedi-
ately, with the result (42) assigned as the property value.

Developers sometimes wonder if there’s a way to define an
expression for a property value where the expression is “lazy”,
meaning it’s not computed at the time of assignment, but
defined later. JS does not have lazy expressions, so the only
way to do so is for the expression to be wrapped in a function:

function twenty() { return 20; }
function myNumber () { return (twenty() + 1) % 2; }

myObj = {
favoriteNumber: myNumber // notice, NOT “myNumber ()\
as a function call

}s

In this case, favoriteNumber is not holding a numeric value,
but rather a function reference. To compute the result, that
function reference must be explicitly executed.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 9

Looks Like JSON?

You may notice that this object-literal syntax we've seen
thus far resembles a related syntax, “JSON” (JavaScript Object
Notation):

{
"favoriteNumber": 42,
"isDeveloper": true,
"firstName": "Kyle"
}

The biggest differences between JS’s object literals and JSON
are, for objects defined as JSON:

1. property names must be quoted with " double-quote
characters

2. property values must be literals (either primitives, ob-
jects, or arrays), not arbitrary JS expressions

In JS programs, an object literal does not require quoted
property names — you can quote them (' or " allowed),
but it’s usually optional. There are however characters that
are valid in a property name, but which cannot be included
without surrounding quotes; for example, leading numbers or
whitespace:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 10

myObj = {

favoriteNumber: 42,

isDeveloper: true,

firstName: "Kyle",

"2 nicknames": ["getify", "ydkjs"]
}s

One other minor difference is, JSON syntax — that is, text
that will be parsed as JSON, such as from a .json file - is
stricter than general JS. For example, JS allows comments (//
..and /* .. x/),and trailing , commas in object and array
expressions; JSON does not allow any of these. Thankfully,
JSON does still allow arbitrary whitespace.

Property Names
Property names in object literals are almost always treated/-
coeced as string values. One exception to this is for integer (or

“integer looking”) property “names”:

anotherObj = {

42: "<-- this property name will be treated as \
an integer",

"41": "<-- ...and so will this one",

true: "<-- this property name will be treated as \
a string",

[myObj]: "<-- ...and so will this one"

}s

The 42 property name will be treated as an integer property
name (aka, index); the "41" string value will also be treated
as such since it looks like an integer. By contrast, the true
value will become the string property name "true", and the

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 11

myObj identifier reference, computed via the surrounding [
1, will coerce the object’s value to a string (generally the
default "[object Object]").

A WARNING

If you need to actually use an object as a key/prop-
erty name, never rely on this computed string
coercion; its behavior is surprising and almost
certainly not what’s expected, so program bugs
are likely to occur. Instead, use a more specialized
data structure, called a Map (added in ES6), where
objects used as property “names” are left as-is
instead of being coerced to a string value.

As with [myObj] above, you can compute any property
name (distinct from computing the property value) at the time
of object literal definition:

anotherObj = {
["x" + (21 % 2)]: true
};

The expression "x" + (21 % 2), which must appear inside
of [..] brackets, is computed immediately, and the result
("x42") is used as the property name.

Symbols As Property Names

ES6 added a new primitive value type of Symbol, which is
often used as a special property name for storing and re-
trieving property values. They’re created via the Symbol¢(. .)
function call (without the new keyword), which accepts an

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 12

optional description string used only for friendlier debugging
purposes; if specified, the description is inaccessible to the JS
program and thus not used for any other purpose than debug
output.

myPropSymbol = Symbol("optional, developer-friendly descr\
iption");

NOTE

Symbols are sort of like numbers or strings, ex-
cept that their value is opaque to, and globally
unique within, the JS program. In other words,
you can create and use symbols, but JS doesn’t
let you know anything about, or do anything
with, the underlying value; that’s kept as a hidden
implementation detail by the JS engine.

Computed property names, as previously described, are how
to define a symbol property name on an object literal:

myPropSymbol = Symbol("optional, developer-friendly descr\

iption'");

anotherObj = {
[myPropSymbol]: "Hello, symbol!"

}s

The computed property name used to define the property on
anotherobj will be the actual primitive symbol value (what-
ever it is), not the optional description string ("optional,
developer-friendly description").

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 13

Because symbols are globally unique in your program, there’s
no chance of accidental collision where one part of the
program might accidentally define a property name the same
as another part of the program tried defined/assigned.

Symbols are also useful to hook into special default behaviors
of objects, and we’ll cover that in more detail in “Extending
the MOP” in the next chapter.

Concise Properties

When defining an object literal, it’s common to use a property
name that’s the same as an existing in-scope identifier that
holds the value you want to assign.

coolFact = "the first person convicted of speeding was go\
ing 8 mph";

anotherObj = {
coolFact: coolFact

+s

0 NOTE
That would have been the same thing as the

quoted property name definition "coolFact":
coolFact, but JS developers rarely quote prop-
erty names unless strictly necessary. Indeed, it’s
idiomatic to avoid the quotes unless required, so
it’s discouraged to include them unnecessarily.

In this situation, where the property name and value expres-
sion identifier are identical, you can omit the property-name
portion of the property definition, as a so-called “concise
property” definition:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 14

coolFact = "the first person convicted of speeding was go\
ing 8 mph";

anotherObj = {
coolFact // <-- concise property short-hand

s

The property name is "coolFact" (string), and the value
assigned to the property is what’s in the coolFact variable at
that moment: "the first person convicted of speed-
ing was going 8 mph".

At first, this shorthand convenience may seem confusing. But
as you get more familiar with seeing this very common and
popular feature being used, you’ll likely favor it for typing
(and reading!) less.

Concise Methods

Another similar shorthand is defining functions/methods in
an object literal using a more concise form:

anotherObj = {
// standard function property
greet: function() { console.log("Hello!"); 1},

// concise function/method property
greet2() { console.log("Hello, friend!"); }
};

While we’re on the topic of concise method properties, we can
also define generator functions (another ES6 feature):

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 15

anotherObj = {
// instead of:
// greet3: functionx() { yield "Hello, everyone!'"; }

// concise generator method
xgreet3() { yield "Hello, everyone!'; }
}s

And though it’s not particularly common, concise methods/-
generators can even have quoted or computed names:

anotherObj = {
"greet-4"() { console.log("Hello, audience!"); 1},

// concise computed name
["gr" + "eet 5"]() { console.log("Hello, audience!"\

)5 1

// concise computed generator name
*["ok, greet 6".toUpperCase()]() { yield "Hello, au\
dience!"; }

33

Object Spread

Another way to define properties at object literal creation
time is with a form of the ... syntax - it’s not technically
an operator, but it certainly seems like one — often referred to
as “object spread”.

The ... when used inside an object literal will “spread”
out the contents (properties, aka key/value pairs) of another
object value into the object being defined:

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 16

anotherObj = {
favoriteNumber: 12,

...myObj, // object spread, shallow copies "'myObj"

greeting: "Hello!"

The spreading of myObj’s properties is shallow, in that it only
copies the top-level properties from myObj; any values those
properties hold are simply assigned over. If any of those values
are references to other objects, the references themselves are
assigned (by copy), but the underlying object values are not
duplicated - so you end up with multiple shared references
to the same object(s).

You can think of object spreading like a for loop that runs
through the properties one at a time and does an = style
assignment from the source object (myObj) to the target object
(anotheroObj).

Also, consider these property definition operations to happen
“in order”, from top to bottom of the object literal. In the above
snippet, since myObj has a favoriteNumber property, the
object spread will end up overwriting the favoriteNumber:
12 property assignment from the previous line. Moreover, if
myObj had contained a greeting property that was copied
over, the next line (greeting: "Hello!") would override
that property definition.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 17

NOTE

Object spread also only copies owned properties
(those directly on the object) that are enumerable
(allowed to be enumerated/listed). It does not
duplicate the property — as in, actually mimic the
property’s exact characteristics — but rather do a
simple assignment style copy. We’ll cover more
such details in the “Property Descriptors” section
of the next chapter.

A common way ... object spread is used is for performing
shallow object duplication:

myObjShallowCopy = { ...myObj };

Keep in mind you cannot . .. spread into an existing object
value; the ... object spread syntax can only appear inside
the { .. } object literal, which is creating a new object
value. To perform a similar shallow object copy but with
APIs instead of syntax, see the “Object Entries” section later
in this chapter (with coverage of Object.entries(..) and
Object.fromEntries(..)).

But if you instead want to copy object properties (shallowly)
into an existing object, see the “Assigning Properties” section
later in this chapter (with coverage of Object.assign(..)).

Deep Object Copy

Also, since ... doesn’t do full, deep object duplication, the
object spread is generally only suitable for duplicating objects
that hold simple, primitive values only, not references to other
objects.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 18

Deep object duplication is an incredibly complex and nuanced
operation. Duplicating a value like 42 is obvious and straight-
forward, but what does it mean to copy a function (which is
a special kind of object, also held by reference), or to copy
an external (not entirely in JS) object reference, such as a
DOM element? And what happens if an object has circular
references (like where a nested descendant object holds a
reference back up to an outer ancestor object)? There’s a
variety of opinions in the wild about how all these corner
cases should be handled, and thus no single standard exists
for deep object duplication.

For deep object duplication, the standard approaches have
been:

1. Use a library utility that declares a specific opinion
on how the duplication behaviors/nuances should be
handled.

2. Use the JSON.parse(JSON.stringify(..)) round-
trip trick — this only “works” correctly if there are no
circular references, and if there are no values in the
object that cannot be properly serialized with JSON
(such as functions).

Recently, though, a third option has landed. This is not a
JS feature, but rather a companion API provided to JS by
environments like the web platform. Objects can be deep
copied now using structuredClone(..)"

“Structured Clone Algorithm”, HTML Specification;
https://html.spec.whatwg.org/multipage/structured-data.html#structured-cloning
Accessed July 2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 19
myObjCopy = structuredClone(myObj);

The underlying algorithm behind this built-in utility supports
duplicating circular references, as well as many more types
of values than the JSON round-trip trick. However, this al-
gorithm still has its limits, including no support for cloning
functions or DOM elements.

Accessing Properties

Property access of an existing object is preferably done with
the . operator:

myObj . favoriteNumber; /] 42
myObj . isDeveloper; // true

If it’s possible to access a property this way, it’s strongly
suggested to do so.

If the property name contains characters that cannot appear
in identifiers, such as leading numbers or whitespace, [..]
brackets can be used instead of the .:

myObj["2 nicknames"]; // ["getify", "ydkjs"]

anotherObj[42]; // "<-- this property name will.\

anotherObj["41"]; // "<-- this property name will.\

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 20

Even though numeric property “names” remain as numbers,
property access via the [..] brackets will coerce a string
representation to a number (e.g., "42" as the 42 numeric
equivalent), and then access the associated numeric property
accordingly.

Similar to the object literal, the property name to access can
be computed via the [..] brackets. The expression can be
a simple identifier:

propName = "41";
anotherObj[propName];

Actually, what you put between the [..] brackets can
be any arbitrary JS expression, not just identifiers or literal
values like 42 or "isDeveloper".]JS will first evaluate the
expression, and the resulting value will then be used as the
property name to look up on the object:

function howMany(x) {
return x + 1;

myObj [${ howMany(1l) } nicknames]; // ["getify", "ydk\
jS"]

In this snippet, the expression is a back-tick delimited " tem-
plate string literal’ with an interpolated expression
of the function call howMany (1). The overall result of that
expression is the string value "2 nicknames", which is then
used as the property name to access.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 21

Object Entries

You can get a listing of the properties in an object, as an array
of tuples (two-element sub-arrays) holding the property name
and value:

myObj = {
favoriteNumber: 42,
isDeveloper: true,
firstName: "Kyle"
+s

Object.entries(myObj);
// [["favoriteNumber",42], ["isDeveloper",true], ["first\
Name","Kyle"]]

Added in ES6, Object.entries(..) retrieves this list of
entries — containing only owned an enumerable properties;
see the “Property Descriptors” section in the next chapter —
from a source object.

Such a list can be looped/iterated over, potentially assign-
ing properties to another existing object. However, it’s also
possible to create a new object from a list of entries, using
Object.fromEntries(..) (added in ES2019):

myObjShallowCopy = Object.fromEntries(Object.entries(myO0\
bj))

// alternate approach to the earlier discussed:
// myObjShallowCopy = { ...myObj };

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 22

Destructuring

Another approach to accessing properties is through object
destructuring (added in ES6). Think of destructuring as defin-
ing a “pattern” that describes what an object value is supposed
to “look like” (structurally), and then asking JS to follow that
“pattern” to systematically access the contents of an object
value.

The end result of object destructuring is not another object,
but rather one or more assignments to other targets (variables,
etc) of the values from the source object.

Imagine this sort of pre-ES6 code:

myObj = {
favoriteNumber: 42,
isDeveloper: true,
firstName: "Kyle"

s
const favoriteNumber = (

myObj . favoriteNumber !== undefined ? myObj.favoriteNu\
mber : 42

)3
const isDev = myObj.isDeveloper;
const firstName = myObj.firstName;
const lname = (
myObj.lastName !== undefined ? myObj.lastName : "--mi\
ssing—-"

)3

Those accesses of the property values, and assignments to
other identifiers, is generally called “manual destructuring”.
To use the declarative object destructuring syntax, it might

look like this:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 23

myObj = {
favoriteNumber: 42,
isDeveloper: true,
firstName: "Kyle"
s

const { favoriteNumber = 12 } = myObj;
const {

isDeveloper: qisDev,

firstName: firstName,

lastName: lname = "--missing--"
} = myObj;

favoriteNumber; /] 42

isDev; // true

firstName; // "Kyle"

lhame; // "--missing--"

Asshown,the { .. } objectdestucturing resembles an object

literal value definition, but it appears on the left-hand side
of the = operator rather than on the right-hand side where
an object value expression would appear. That makes the {

} on the left-hand side a destructuring pattern rather than
another object definition.

The { favoriteNumber } = myObj destructuring tells JS to
find a property named favoriteNumber on the object, and to
assign its value to an identifier of the same name. The single
instance of the favoriteNumber identifier in the pattern is
similar to “concise properties” as discussed earlier in this
chapter: if the source (property name) and target (identifier)
are the same, you can omit one of them and only list it once.

The = 12 part tells JS to provide 12 as a default value for the
assignment to favoriteNumber, if the source object either

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 24

doesn’t have a favoriteNumber property, or if the property
holds an undefined value.

In the second destructuring pattern, the isDeveloper: is-
Dev pattern is instructing JS to find a property named is-
Developer on the source object, and assign its value to
an identifier named isDev. It’s sort of a “renaming” of the
source to the target. By contrast, firstName: firstName
is providing the source and target for an assignment, but is
redundant since they’re identical; a single firstName would
have sufficed here, and is generally more preferred.

The lastName: lname = "--missing--" combines both
source-target renaming and a default value (if the lastName
source property is missing or undefined).

The above snippet combines object destructuring with vari-
able declarations — in this example, const is used, but var
and let work as well — but it’s not inherently a declaration
mechanism. Destructuring is about access and assignment
(source to target), so it can operate against existing targets
rather than declaring new ones:

let fave;

// surrounding () are required syntax here,
// when a declarator is not used
({ favoriteNumber: fave } = myObj);

fave; // 42

Object destructuring syntax is generally preferred for its
declarative and more readable style, over the heavily im-
perative pre-ES6 equivalents. But don’t go overboard with
destructuring. Sometimes just doing x = someObj.x is per-
fectly fine!

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 25

Conditional Property Access

Recently (in ES2020), a feature known as “optional chaining”
was added to JS, which augments property access capabilities
(especially nested property access). The primary form is the
two-character compound operator ?., like A?.B.

This operator will check the left-hand side reference (A) to
see if it’s null’ish (null or undefined). If so, the rest of the
property access expression is short-circuited (skipped), and
undefined is returned as the result (even if it was null
that was actually encountered!). Otherwise, ? . will access the
property just as a normal . operator would.

For example:
myObj?.favoriteNumber

Here, the null’ish check is performed against the myObj,
meaning that the favoriteNumber property access is only
performed if the value in myObj is non-null’ish. Note that
it doesn’t verify that myobj is actually holding a real object,
only that it’s non-nullish. However, all non-nullish values can
“safely” (no JS exception) be “accessed” via the . operator,
even if there’s no matching property to retrieve.

It’s easy to get confused into thinking that the null’ish check
is against the favoriteNumber property. But one way to keep
it straight is to remember that the ? is on the side where the
safety check is performed, while the . is on the side that is
only conditionally evaluated if the non-null’ish check passes.

Typically, the ?. operator is used in nested property accesses
that may be 3 or more levels deep, such as:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 26

myObj?.address?.city

The equivalent operation with the ? . operator would look like
this:

(myObj != null && myObj.address != null) ? myObj.address.\
city : undefined

Again, remember that no check has been performed against
the right-most property (city) here.

Also, the ?. should not universally be used in place of every
single . operator in your programs. You should endeavor to
know if'a . property access will succeed or not before making
the access, whenever possible. Use ? . only when the nature of
the values being accessed is subject to conditions that cannot
be predicted/controlled.

For example, in the previous snippet, the myObj?. usage is
probably mis-guided, because it really shouldn’t be the case
that you start a chain of property access against a variable that
might not even hold a top-level object (aside from its contents
potentially missing certain properties in certain conditions).

Instead, I would recommend usage more like this:
myObj.address?.city

And that expression should only be used in part of your
program where you’re sure that myObj is at least holding a
valid object (whether or not it has an address property with
a sub-object in it).

Another form of the “optional chaining” operator is ?.[,
which is used when the property access you want to make
conditional/safe requires a [..] bracket.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 27
myObj["2 nicknames"]?.[0]; // "getify"

Everything asserted about how ?. behaves goes the same for

2. [

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes)

A

WARNING

There’s a third form of this feature, named
“optional call”, which uses ?.(as the oper-
ator. It’s used for performing a non-null’ish
check on a property before executing the func-
tion value in the property. For example, in-
stead of myObj.someFunc(42), you can do
myObj .someFunc?. (42). The ?.(checks to
make sure myObj.someFunc is non-null’ish be-
fore invoking it (with the (42) part). While that
may sound like a useful feature, I think this is
dangerous enough to warrant complete avoid-
ance of this form/construct.

My concern
is that 7. (makes it seem as if we’re ensuring
that the function is “callable” before calling it,
when in fact we’re only checking if it’s non-

null’ish. Unlike ?. which can allow a “safe” .

access against a non-null’ish value that’s also
not an object, the ?. (non-null’ish check isn’t
similarly “safe”. If the property in question has
any non-null’ish, non-function value in it, like
true or "Hello", the (42) call part will be
invoked and yet throw a JS exception. So in other
words, this form is unfortunately masquerading
as more “safe” than it actually is, and should thus
be avoided in essentially all circumstances. If a
property value can ever not be a function, do a
more fullsome check for its function’ness before
trying to invoke it. Don’t pretend that ?.(is
doing that for you, or future readers/maintainers
of your code (including your future self!) will
likely regret it.

28

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 29

Accessing Properties On Non-Objects

This may sound counter-intuitive, but you can generally
access properties/methods from values that aren’t themselves
objects:

fave = 42;
fave; /] 42
fave.toString(); /] 42"

Here, fave holds a primitive 42 number value. So how can
we do . toString to access a property from it, and then () to
invoke the function held in that property?

This is a tremendously more indepth topic than we’ll get into
in this book; see book 4, “Types & Grammar”, of this series for
more. However, as a quick glimpse: if you perform a property
access (. or [..])against a non-object, non-null’ish value,
JS will by default (temporarily!) coerce the value into an
object-wrapped representation, allowing the property access
against that implicitly instantiated object.

This process is typically called “boxing”, as in putting a value
inside a “box” (object container).

So in the above snippet, just for the moment that . toString
is being accessed on the 42 value,]S will box this value into
a Number object, and then perform the property access.

Note that null and undefined can be object-ified, by calling
Object(null) / Object(undefined). However, JS does not
automatically box these null’ish values, so property access
against them will fail (as discussed earlier in the “Conditional
Property Access” section).

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 30

o NOTE

Boxing has a counterpart: unboxing. For example,
the JS engine will take an object wrapper — like a
Number object wrapped around 42 — created with
Number (42) or Object(42) — and unwrap it to
retrieve the underlying primitive 42, whenever a
mathematical operation (like x or -) encounters
such an object. Unboxing behavior is way out of
scope for our discussion, but is covered fully in
the aforementioned “Types & Grammar” title.

Assigning Properties

Whether a property is defined at the time of object literal
definition, or added later, the assignment of a property value
is done with the = operator, as any other normal assignment
would be:

myObj.favoriteNumber = 123;

If the favoriteNumber property doesn’t already exist, that
statement will create a new property of that name and assign
its value. But if it already exists, that statement will re-assign
its value.

WARNING

An = assignment to a property may fail (silently
or throwing an exception), or it may not di-
rectly assign the value but instead invoke a setter
function that performs some operation(s). More
details on these behaviors in the next chapter.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 31

It’s also possible to assign one or more properties at once —
assuming the source properties (name and value pairs) are
in another object — using the Object.assign(..) (added in
ES6) method:

// shallow copy all (owned and enumerable) properties
// from “myObj" dinto “anotherObj’
Object.assign(anotherObj,myObj);

Object.assign(
/*target=x/anotherObj,
/*sourcel=x/{

someProp: "some value'",
anotherProp: 1001,
})

/*source2=x/{
yetAnotherProp: false

)

Object.assign(..) takes the first object as target, and
the second (and optionally subsequent) object(s) as source(s).
Copying is done in the same manner as described earlier in
the “Object Spread” section.

Deleting Properties

Once a property is defined on an object, the only way to
remove it is with the delete operator:

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 32

anotherObj = {
counter: 123

+s
anotherObj.counter; // 123
delete anotherObj.counter;

anotherObj.counter; // undefined

Contrary to common misconception, the JS delete operator
does not directly do any deallocation/freeing up of memory,
through garbage collection (GC). The only thing it does is
remove a property from an object. If the value in the property
was a reference (to another object/etc), and there are no
other surviving references to that value once the property is
removed, that value would likely then be eligible for removal
in a future sweep of the GC.

Calling delete on anything other than an object property is
a misuse of the delete operator, and will either fail silently
(in non-strict mode) or throw an exception (in strict mode).

Deleting a property from an object is distinct from assigning
it a value like undefined or null. A property assigned
undefined, either initially or later, is still present on the
object, and might still be revealed when enumerating the
contents

Determining Container Contents

You can determine an object’s contents in a variety of ways.
To ask an object if it has a specific property:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 33

myObj = {
favoriteNumber: 42,
coolFact: "the first person convicted of speeding was\
going 8 mph",
beardLength: undefined,
nicknames: ["getify", "ydkjs"]

}s
"favoriteNumber" in myObj; // true
myObj.hasOwnProperty("coolFact"); // true

myObj.hasOwnProperty("beardLength"); // true

myObj.nicknames = undefined;
myObj .hasOwnProperty('"nicknames"); // true

delete myObj.nicknames;
myObj .hasOwnProperty('"nicknames"); // false

There is an important difference between how the in operator
and the hasOwnProperty(..) method behave. The in oper-
ator will check not only the target object specitied, but if not
found there, it will also consult the object’s [[Prototype]]

chain (covered in the next chapter). By contrast, hasOwnProp-
erty(..) only consults the target object.

If you're paying close attention, you may have noticed that
myObj appears to have a method property called hasOwnProp-
erty(..) on it, even though we didn’t define such. That’s
because hasOwnProperty(..) is defined as a built-in on
Object.prototype, which by default is “inherited by” all
normal objects. There is risk inherent to accessing such an
“inherited” method, though. Again, more on prototypes in the
next chapter.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 34

Better Existence Check

ES2022 (almost official at time of writing) has already settled
on a new feature, Object.hasOwn(..). It does essentially
the same thing as hasOwnProperty(..), but it’s invoked as
a static helper external to the object value instead of via the
object’s [[Prototype]], making it safer and more consistent
in usage:

// instead of:
myObj .hasOwnProperty ("favoriteNumber")

// we should now prefer:
Object.hasOwn(myObj,"favoriteNumber")

Even though (at time of writing) this feature is just now
emerging in JS, there are polyfills that make this API avail-
able in your programs even when running in a previous JS
environment that doesn’t yet have the feature defined. For
example, a quick stand-in polyfill sketch:

// simple polyfill sketch for "Object.hasOwn(..)"
if (!Object.hasOwn) {
Object.hasOwn = function hasOwn(obj,propName) {
return Object.prototype.hasOwnProperty.call(obj,p\
ropName) ;
}s
}

Including a polyfill patch such as that in your program means
you can safely start using Object.hasOwn(..) for property
existence checks no matter whether a JS environment has
Object.hasOwn(..) built in yet or not.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 35

Listing All Container Contents

We already discussed the Object.entries(..) API earlier,
which tells us what properties an object has (as long as they’re
enumerable — more in the next chapter).

There’s a variety of other mechanisms available, as well.
Object.keys(..) gives us list of the enumerable property
names (aka, keys) in an object - names only, no values;
Object.values(..) instead gives us list of all values held
in enumerable properties.

But what if we wanted to get all the keys in an object
(enumerable or not)? Object.getOwnPropertyNames(..)
seems to do what we want, in that it’s like Object.keys(..)
but also returns non-enumerable property names. However,
this list will not include any Symbol property names,
as those are treated as special locations on the object.
Object.getOwnPropertySymbols(..) returns all of an
object’s Symbol properties. So if you concatenate both of
those lists together, you’d have all the direct (owned) contents
of an object.

Yet as we’'ve implied several times already, and will cover
in full detail in the next chapter, an object can also “inherit”
contents from its [[Prototype]] chain. These are not consid-
ered owned contents, so they won’t show up in any of these
lists.

Recall that the in operator will potentially traverse the entire
chain looking for the existence of a property. Similarly, a
for..inloop will traverse the chain and list any enumerable
(owned or inherited) properties. But there’s no built-in API
that will traverse the whole chain and return a list of the
combined set of both owned and inherited contents.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 36

Temporary Containers

Using a container to hold multiple values is sometimes just a
temporary transport mechanism, such as when you want to
pass multiple values to a function via a single argument, or
when you want a function to return multiple values:

function formatValues({ one, two, three }) {
// the actual object passed in as an
// argument is not accessible, since
// we destructured it into three
// separate variables

one = one.toUpperCase();
two T-=${two}--";
three = three.substring(0,5);

// this object 1is only to transport
// all three values in a single

// return statement

return { one, two, three };

// destructuring the return value from
// the function, because that returned
// object is just a temporary container
// to transport us multiple values
const { one, two, three } =

// this object argument is a temporary
// transport for multiple input values
formatValues ({

one: "Kyle",

two: "Simpson",

three: "getify"

You Don’t Know JS Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 37

1)

one; // "KYLE"
two; // "--Simpson--"
three; // "getif"

The object literal passed into formatValues(..) is immedi-
ately parameter destructured, so inside the function we only
deal with three separate variables (one, two, and three). The
object literal returned from the function is also immediately
destructured, so again we only deal with three separate vari-
ables (one, two, three).

This snippet illustrates the idiom/pattern that an object is
sometimes just a temporary transport container rather than
a meaningful value in and of itself.

Containers Are Collections Of
Properties

The most common usage of objects is as containers for multi-
ple values. We create and manage property container objects
by:

« defining properties (named locations), either at object
creation time or later

- assigning values, either at object creation time or later

« accessing values later, using the location names (prop-
erty names)

« deleting properties via delete

« determining container contents with in, hasOwnProp-
erty(..) / hasOwn(..), Object.entries(..) / Ob-
ject.keys(..), etc

You Don’t Know]S Yet: The Unbooks

Chapter 1: Object Foundations (Objects & Classes) 38

But there’s a lot more to objects than just static collections
of property names and values. In the next chapter, we’ll dive
under the hood to look at how they actually work.

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 39

Chapter 2: How Objects
Work (Objects &
Classes)

Objects are not just containers for multiple values, though
clearly that’s the context for most interactions with objects.

To fully understand the object mechanism in JS, and get
the most out of using objects in our programs, we need to
look more closely at a number of characteristics of objects
(and their properties) which can affect their behavior when
interacting with them.

These characteristics that define the underlying behavior of
objects are collectively referred to in formal terms as the
“metaobject protocol” (MOP)?. The MOP is useful not only for
understanding how objects will behave, but also for overrid-
ing the default behaviors of objects to bend the language to
fit our program’s needs more fully.

Property Descriptors

Each property on an object is internally described by what’s
known as a “property descriptor”. This is, itself, an object (aka,
“metaobject”) with several properties (aka “attributes”) on it,
dictating how the target property behaves.

*“Metaobject”, Wikipedia; https://en.wikipedia.org/wiki/Metaobject ; Accessed July
2022.

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 40

We can retrieve a property descriptor for any existing prop-
erty using Object.getOwnPropertyDescriptor(..) (ES5):

myObj = {
favoriteNumber: 42,
isDeveloper: true,
firstName: "Kyle"
s

Object.getOwnPropertyDescriptor (myObj,"favoriteNumber");
/1A

// value: 42,

// enumerable: true,
// writable: true,

// configurable: true
/1l }

We can even use such a descriptor to define a new property
on an object, using Object.defineProperty(..) (ES5):

anotherObj = {};

Object.defineProperty(anotherObj,"fave", {
value: 42,

enumerable: true, // default if omitted
writable: true, // default if omitted
configurable: true // default if omitted
1)
anotherObj.fave; /] 42

If an existing property has not already been marked as
non-configurable (with configurable: false in its
descriptor), it can always be re-defined/overwritten using
Object.defineProperty(..).

You Don’t Know JS Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 41

WARNING

A number of earlier sections in this chapter re-
fer to “copying” or “duplicating” properties. One
might assume such copying/duplication would be
at the property descriptor level. However, none of
those operations actually work that way; they all
do simple = style access and assignment, which
has the effect of ignoring any nuances in how the
underlying descriptor for a property is defined.

Though it seems far less common out in the wild, we can
even define multiple properties at once, each with their own
descriptor:

anotherObj = {};

Object.defineProperties(another0Obj,{
"fave": {
// a property descriptor
1,

"superFave": {
// another property descriptor

35
It’s not very common to see this usage, because it’s rarer

that you need to specifically control the definition of multiple
properties. But it may be useful in some cases.

Accessor Properties

A property descriptor usually defines a value property, as
shown above. However, a special kind of property, known as

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 42

an “accessor property” (aka, a getter/setter), can be defined.
For these a property like this, its descriptor does not define a
fixed value property, but would instead look something like
this:

{

get() { .. 3, // function to invoke when retrievin\
g the value

set(v) { .. 1}, // function to invoke when assigning\
the value

// .. enumerable, etc

A getter looks like a property access (obj.prop), but under
the covers it invokes the get () method as defined; it’s sort
of like if you had called obj.prop(). A setter looks like a
property assignment (obj.prop = value), but it invokes the
set(..) method as defined; it’s sort of like if you had called
obj.prop(value).

Let’s illustrate a getter/setter accessor property:

anotherObj = {};

Object.defineProperty(anotherObj,"fave", {

get() { console.log("Getting 'fave' value!"); return \
1235 1,

set(v) { console.log(Ignoring ${v} assignment.'); }

1)
anotherObj.fave;
// Getting 'fave' value!

// 123

anotherObj.fave = 42;

You Don’t Know JS Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 43

// Ignoring 42 assignment.

anotherObj.fave;
// Getting 'fave' value!
// 123

Enumerable, Writable, Configurable

Besides value or get() / set(..), the other 3 attributes of a
property descriptor are (as shown above):

e enumerable
« writable
« configurable

The enumerable attribute controls whether the property will
appear in various enumerations of object properties, such as
Object.keys(..), Object.entries(..), for..in loops,
and the copying that occurs with the ... object spread and
Object.assign(..). Most properties should be left enumer-
able, but you can mark certain special properties on an object
as non-enumerable if they shouldn’t be iterated/copied.

The writable attribute controls whether a value assignment
(via =) is allowed. To make a property “read only”, define it
with writable: false. However, as long as the property
is still configurable, Object.defineProperty(..) can still
change the value by setting value differently.

The configurable attribute controls whether a
property’s descriptor can be re-defined/overwritten. A
property that’s configurable: false is locked to its
definition, and any further attempts to change it with

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 44

Object.defineProperty(..) will fail. A non-configurable
property can still be assigned new values (via =), as long as
writable: true is still set on the property’s descriptor.

Object Sub-Types

There are a variety of specialized sub-types of objects in JS.
But by far, the two most common ones you’ll interact with
are arrays and functions.

NOTE

By “sub-type”, we mean the notion of a derived
type that has inherited the behaviors from a par-
ent type but then specialized or extended those
behaviors. In other words, values of these sub-
types are fully objects, but are also more than just
objects.

Arrays

Arrays are objects that are specifically intended to be nu-
merically indexed, rather than using string named property
locations. They are still objects, so a named property like
favoriteNumber is legal. But it’s greatly frowned upon to
mix named properties into numerically indexed arrays.

Arrays are preferably defined with literal syntax (similar to
objects), but with the [..] square brackets rather than {
.} curly brackets:

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 45
myList = [23, 42, 109];

JS allows any mixture of value types in arrays, including
objects, other arrays, functions, etc. As you’re likely already
aware, arrays are “zero-indexed”, meaning the first element
in the array is at the index 0, not 1:

myList = [23, 42, 109];

myList[0]; // 23
myList[1]; /] 42

Recall that any string property name on an object that “looks
like” an integer - is able to be validly coerced to a numeric
integer — will actually be treated like an integer property (aka,
integer index). The same goes for arrays. You should always
use 42 as an integer index (aka, property name), but if you use
the string "42", JS will assume you meant that as an integer
and do that for you.

// "2" works as an integer index here, but it's not advis\
ed
myList["2"]; // 109

One exception to the “no named properties on arrays” rule is
that all arrays automatically expose a length property, which
is automatically kept updated with the “length” of the array.

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 46

myList = [23, 42, 109];
myList.length; // 3

// "push" another value onto the end of the 1list
myList.push("Hello");

mylList.length; /] 4

WARNING

Many JS developers incorrectly believe that ar-
ray length is basically a getter (see “Accessor
Properties” earlier in this chapter), but it’s not.
The offshoot is that these developers feel like it’s
“expensive” to access this property — as if JS has to
on-the-fly recompute the length — and will thus
do things like capture/store the length of an array
before doing a non-mutating loop over it. This
used to be “best practice” from a performance per-
spective. But for at least 10 years now, that’s actu-
ally been an anti-pattern, because the JS engine is
more efficient at managing the length property
than our JS code is at trying to “outsmart” the
engine to avoid invoking something we think is
a getter. It’s more efficient to let the JS engine do
its job, and just access the property whenever and
however often it’s needed.

Empty Slots

JS arrays also have a really unfortunate “flaw” in their design,
referred to as “empty slots”. If you assign an index of an array

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 47

more than one position beyond the current end of the array,
JS will leave the in between slots “empty” rather than auto-
assigning them to undefined as you might expect:

myList = [23, 42, 109];

myList.length; // 3

myList[14] = "Hello";

myList.length; // 15

myList; // [23, 42, 109, empty x 11,\
"Hello"]

// looks 1like a real slot with a

// real ‘undefined® value 1in 1it,

// but beware, it's a trick!

myList[9]; // undefined

You might wonder why empty slots are so bad? One reason:
there are APIs in JS, like array’s map (. .), where empty slots
are surprisingly skipped over! Never, ever intentionally create
empty slots in your arrays. This in undebateably one of JS’s
“bad parts”.

Functions

I don’t have much specifically to say about functions here,
other than to point out that they are also sub-object-types.
This means that in addition to being executable, they can also
have named properties added to or accessed from them.

Functions have two pre-defined properties you may find
yourself interacting with, specifically for meta-programming
purposes:

You Don’t Know JS Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 48

function help(optl,opt2,...remainingOpts) {

/] ..
}
help.name; // "help"
help.length; /] 2

The length of a function is the count of its explicitly defined
parameters, up to but not including a parameter that either
has a default value defined (e.g., param = 42) or a “rest
parameter” (e.g., . . .remainingOpts).

Avoid Setting Function-Object Properties

You should avoid assigning properties on function objects. If
you’re looking to store extra information associated with a
function, use a separate Map (. .) (or WeakMap (. .)) with the
function object as the key, and the extra information as the
value.

extraInfo = new Map();
extralInfo.set(help,"this is some 1important information");
// later:

extraInfo.get(help); // "this is some important informa\
tion"

Object Characteristics

In addition to defining behaviors for specific properties, cer-
tain behaviors are configurable across the whole object:

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 49

« extensible
« sealed
« frozen

Extensible

Extensibility refers to whether an object can have new proper-
ties defined/added to it. By default, all objects are extensible,
but you can change shut off extensibility for an object:

myObj = {
favoriteNumber: 42
}s
myObj.firstName = "Kyle"; // works fine

Object.preventExtensions(myObj);

myObj.nicknames = ["getify", "ydkjs"]; // fails
myObj.favoriteNumber = 123; // works fine

In non-strict-mode, an assignment that creates a new property
will silently fail, whereas in strict mode an exception will be
thrown.

Sealed

// TODO

Frozen

// TODO

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 50

Extending The MOP

As mentioned at the start of this chapter, objects in JS behave
according to a set of rules referred to as the Metaobject
Protocol (MOP)’. Now that we understand more fully how
objects work by default, we want to turn our attention to
how we can hook into some of these default behaviors and
override/customize them.

// TODO

[[Prototype]] Chain

One of the most important, but least obvious, characteristics
of an object (part of the MOP) is referred to as its “proto-
type chain”; the official JS specification notation is [[Proto-
type]]. Make sure not to confuse this [[Prototype]] with a
public property named prototype. Despite the naming, these
are distinct concepts.

The [[Prototype]] is an internal linkage that an object gets
by default when its created, pointing to another object. This
linkage is a hidden, often subtle characteristic of an object, but
it has profound impacts on how interactions with the object
will play out. It’s referred to as a “chain” because one object
links to another, which in turn links to another, ... and so on.
There is an end or fop to this chain, where the linkage stops
and there’s no further to go. More on that shortly.

We already saw several implications of [[Prototype]]
linkage in Chapter 1. For example, by default, all objects

**Metaobject”, Wikipedia; https://en.wikipedia.org/wiki/Metaobject ; Accessed July
2022.

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 51

are [[Prototype]]-linked to the built-in object named
Object.prototype.

WARNING

That Object.prototype name itself can be con-
fusing, since it uses a property called prototype.
How are [[Prototype]] and prototype re-
lated!? Put such questions/confusion on pause for
a bit, as we’ll come back an explain the differ-
ences between [[Prototype]] and prototype
later in this chapter. For the moment, just assume
the presence of this important but weirdly named
built-in object, Object.prototype.

Let’s consider some code:

myObj = {
favoriteNumber: 42

+s

That should look familiar from Chapter 1. But what you don’t
see in this code is that the object there was automatically
linked (via its internal [[Prototype]]) to that automatically
built-in, but weirdly named, Object.prototype object.

When we do things like:

myObj.toString(); // "[object\
Object]"

myObj .hasOwnProperty (" favoriteNumber'"); // true

We’re taking advantage of this internal [[Prototype]] link-
age, without really realizing it. Since myObj does not have

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 52

toString or hasOwnProperty properties defined on it, those
property accesses actually end up DELEGATING the access
to continue its lookup along the [[Prototype]] chain.

Since myObj is [[Prototype]]-linked to the object named
Object.prototype, the lookup for toString and hasOwn-
Property properties continues on that object; and indeed,
these methods are found there!

The ability for myObj.toString to access the toString
property even though it doesn’t actually have it, is commonly
referred to as “inheritance”, or more specifically, “prototypal
inheritance”. The toString and hasOwnProperty properties,
along with many others, are said to be “inherited properties”
on myObj.

NOTE

I have a lot of frustrations with the usage of
the word “inheritance” here — it should be called
“delegation™ — but that’s what most people refer
to it as, so we’ll begrudgingly comply and use that
same terminology for now (albeit under protest,
with “ quotes). T'll save my objections for an
appendix of this book.

Object.prototype has several built-in properties and meth-
ods, all of which are “inherited” by any object that is [[Proto-
type]]-linked, either directly or indirectly through another
object’s linkage, to Object.prototype.

Some common “inherited” properties from
Object.prototype include:

e constructor

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 53

e __proto__

e toString()

e valueOf ()

e hasOwnProperty(..)
* isPrototypeOf(..)

Recall hasOwnProperty (. .), which we saw earlier gives us a
boolean check for whether a certain property (by string name)
is owned by an object:

myObj = {
favoriteNumber: 42

+s

myObj .hasOwnProperty ("favoriteNumber"); // true

It’s always been considered somewhat unfortunate (semantic
organization, naming conflicts, etc) that such an important
utility as hasOwnProperty (..) was included on the Object
[[Prototype]] chain as an instance method, instead of
being defined as a static utility.

As of ES2022, JS has finally added the static version of this
utility: Object.hasOwn(..).

myObj = {
favoriteNumber: 42
}s
Object.hasOwn(myObj,"favoriteNumber"); // true

This form is now considered the more preferable and ro-
bust option, and the instance method (hasOwnProperty (..))
form should now generally be avoided.

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 54

Somewhat unfortunately and inconsistently, there’s not (yet,
as of time of writing) corresponding static utilities, like Ob-
ject.isPrototype(..) (instead of the instance method is-
PrototypeOf(..)). But at least Object.hasOwn(..) exists,
so that’s progress.

Creating An Object With A Different
[[Prototype]]

By default, any object you create in your programs will
be [[Prototype]]-linked to that Object.prototype object.
However, you can create an object with a different linkage
like this:

myObj = Object.create(differentObj);

The Object.create(..) method takes its first argument
as the value to set for the newly created object’s [[Proto-

typel]].

One downside to this approach is that you aren’t using the {

.} literal syntax, so you don’t initially define any contents
for myobj. You typically then have to define properties one-
by-one, using =.

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 55

o NOTE
The second, optional argument to

Object.create(..) is — like the second
argument to Object.defineProperties(..)
as discussed earlier — an object with properties
that hold descriptors to initially define the new
object with. In practice out in the wild, this
form is rarely used, likely because it’s more
awkward to specify full descriptors instead of
just name/value pairs. But it may come in handy
in some limited cases.

Alternately, but less preferably, you can use the { .. } literal
syntax along with a special (and strange looking!) property:

myObj = {
__proto__: differentObj,

// .. the rest of the object definition
}s

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 56

WARNING

The strange looking __proto__ property has
been in some JS engines for more than 20 years,
but was only standardized in JS as of ES6 (in 2015).
Even still, it was added in Appendix B of the spec-
ification®, which lists features that TC39 begrudg-
ingly includes because they exist popularly in
various browser-based JS engines and therefore
are a de-facto reality even if they didn’t originate
with TC39. This feature is thus “guaranteed” by
the spec to exist in all conforming browser-based
JS engines, but is not necessarily guaranteed to
work in other independent JS engines. Node.js
uses the JS engine (v8) from the Chrome browser,
so Node.js gets __proto__ by default/accident.
Be careful when using __proto__ to be aware
of all the JS engine environments your code will
run in.

Whether you use Object.create(..) or __proto__,the cre-
ated object in question will usually be [[Prototype]]-linked
to a different object than the default Object.prototype.

Empty [[Prototype]] Linkage

We mentioned above that the [[Prototype]] chain has to
stop somewhere, so as to have lookups not continue forever.
Object.prototype is typically the top/end of every [[Pro-
totype]] chain, as its own [[Prototype]] is null, and
therefore there’s nowhere else to continue looking.

““Appendix B: Additional ECMAScript Features for Web Browsers”, ECMAScript
2022 Language Specification; https://262.ecma-international.org/13.0/#sec-additional-
ecmascript-features-for-web-browsers ; Accessed July 2022

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 57

However, you can also define objects with their own null
value for [[Prototype]], such as:

emptyObj = Object.create(null);
// or: emptyObj = { __proto__: null }

emptyObj.toString; // undefined

It can be quite useful to create an object with no [[Pro-
totype]] linkage to Object.prototype. For example, as
mentioned in Chapter 1, the in and for..1n constructs will
consult the [[Prototype]] chain for inherited properties.
But this may be undesirable, as you may not want something
like "toString" in myObj to resolve successfully.

Moreover, an object with an empty [[Prototype]] is safe
from any accidental “inheritance” collision between its own
property names and the ones it “inherits” from elsewhere.
These types of (useful!) objects are sometimes referred to in
popular parlance as “dictionary objects”.

[[Prototype]] VS prototype

Notice that public property name prototype in the name/lo-
cation of this special object, Object.prototype? What’s that
all about?

Object is the Object (. .) function; by default, all functions
(which are themselves objects!) have such a prototype prop-
erty on them, pointing at an object.

Any here’s where the name conflict between [[Prototype]]
and prototype really bites us. The prototype property on
a function doesn’t define any linkage that the function itself

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 58

experiences. Indeed, functions (as objects) have their own
internal [[Prototype]] linkage somewhere else — more on
that in a second.

Rather, the prototype property on a function refers to an
object that should be linked TO by any other object that is
created when calling that function with the new keyword:

myObj = {};

// s basically the same as:
myObj = new Object();

Since the { .. } object literal syntax is essentially the same
as a new Object() call, the built-in object named/located at
Object.prototype is used as the internal [[Prototype]]
value for the new object we create and name myObj.

Phew! Talk about a topic made significantly more confusing
just because of the name overlap between [[Prototype]]
and prototype!

But where do functions themselves (as objects!) link to, [[Pro-
totype]] wise? They link to Function.prototype, yet an-
other built-in object, located at the prototype property on
the Function(..) function.

In other words, you can think of functions themselves as
having been “created” by a new Function(..) call, and then
[[Prototype]]-linked to the Function.prototype object.
This object contains properties/methods all functions “inherit”
by default, such as toString() (to string serialize the source
code of a function) and call(..) / apply(..) / bind(..)
(we’ll explain these later in this book).

You Don’t Know]S Yet: The Unbooks

Chapter 2: How Objects Work (Objects & Classes) 59

Objects Behavior

Properties on objects are internally defined and controlled
by a “descriptor” metaobject, which includes attributes such
as value (the property’s present value) and enumerable
(a boolean controlling whether the property is included in
enumerable-only listings of properties/property names).

The way object and their properties work in JS is referred to as
the “metaobject protocol” (MOP)®. We can control the precise
behavior of properties via Object.defineProperty(..),
as well as object-wide behaviors with Object. freeze(..).
But even more powerfully, we can hook into and override
certain default behaviors on objects using special pre-defined
Symbols.

Prototypes are internal linkages between objects that allow
property or method access against one object — if the proper-
ty/method requested is absent — to be handled by “delegating”
that access lookup to another object. When the delegation
involves a method, the context for the method to run in is
shared from the initial object to the target object via the this
keyword.

>“Metaobject”, Wikipedia; https://en.wikipedia.org/wiki/Metaobject ; Accessed July
2022.

You Don’t Know]S Yet: The Unbooks

Types & Grammar
(Unbook 4)

Chapter 1: Primitive Values (Types & Grammar) 61

Chapter 1: Primitive
Values (Types &
Grammar)

In Chapter 1 of the “Objects & Classes” book of this series,
we confronted the common misconception that “everything
in JS is an object”. We now circle back to that topic, and again
dispel that myth.

Here, we’ll look at the core value types of JS, specifically the
non-object types called primitives.

Value Types

JS doesn’t apply types to variables or properties — what I call,
“container types” — but rather, values themselves have types —
what I call, “value types”.

The language provides seven built-in, primitive (non-object)
value types:

e undefined
e null

» boolean

e number

®“4.4.5 primitive value”, ECMAScript 2022 Language Specification;
https://tc39.es/ecma262/#sec-primitive-value ; Accessed August 2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 62

e bigint
» symbol
e string

These value-types define collections of one or more concrete
values, each with a set of shared behaviors for all values of
each type.

Type-Of

Any value’s value-type can be inspected via the typeof
operator, which always returns a string value representing
the underlying JS value-type:

typeof true; // "boolean"
typeof 42; // "number"
typeof 42n; // "bigint"

typeof Symbol("42"); // "symbol"

The typeof operator, when used against a variable instead of
avalue, is reporting the value-type of the value in the variable:

greeting = "Hello";
typeof greeting; // "string"

JS variables themselves don’t have types. They hold any
arbitrary value, which itself has a value-type.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 63

Non-objects?

What specifically makes the 7 primitive value types distinct
from the object value types (and sub-types)? Why shouldn’t
we just consider them all as essentially objects under the
covers?

Consider:

myName = "Kyle";
myName.nickname = "getify";

console. log(myName.nickname) ; // undefined

This snippet appears to silently fail to add a nickname prop-
erty to a primitive string. Taken at face value, that might
imply that primitives are really just objects under the covers,
as many have (wrongly) asserted over the years.

WARNING

One might explain that silent failure as an ex-
ample of auto-boxing (see “Automatic Objects”
in Chapter 3), where the primitive is implicitly
converted to a String instance wrapper object
while attempting to assign the property, and then
this internal object is thrown away after the
statement completes. In fact, I said exactly that
in the first edition of this book. But I was wrong;
oops!

Something deeper is at play, as we see in this version of the
previous snippet:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 64

"use strict";
myName = "Kyle";

myName.nickname = "getify";
// TypeError: Cannot create property 'nickname'
// on string 'Kyle'

Interesting! In strict-mode, JS enforces a restriction that dis-
allows setting a new property on a primitive value, as if
implicitly promoting it to a new object.

By contrast, in non-strict mode, JS allows the violation to go
unmentioned. So why? Because strict-mode was added to the
language in ES5.1 (2011), more than 15 years in, and such a
change would have broken existing programs had it not been
defined as sensitive to the new strict-mode declaration.

So what can we conclude about the distinction between
primitives and objects? Primitives are values that are not
allowed to have properties; only objects are allowed such.

TIP

This particular distinction seems to be con-
tradicted by expressions like "hello".length;
even in strict-mode, it returns the expected value
5. So it certainly seems like the string has a
length property! But, as just previously men-
tioned, the correct explanation is auto-boxing;
we’ll cover the topic in “Automatic Objects” in
Chapter 3.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 65

Empty Values

The null and undefined types both typically represent an
emptiness or absence of value.

Unfortunately, the null value-type has an unexpected
typeof result. Instead of "null", we see:

typeof null; // "object"

No, that doesn’t mean that null is somehow a special kind of
object. It’s just a legacy of early days of JS, which cannot be
changed because of how much code out in the wild it would

break.

The undefined type is reported both for explicit undefined
values and any place where a seemingly missing value is
encountered:

typeof undefined; // "undefined"
var whatever;

typeof whatever; // "undefined"
typeof nonExistent; // "undefined"

whatever = {};
typeof whatever.missingProp; // "undefined"

whatever = [];
typeof whatever[10]; // "undefined"

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 66

o The typeof nonExistent expression is refer-

ring to an undeclared variable nonExistent.
Normally, accessing an undeclared variable ref-
erence would cause an exception, but the typeof
operator is afforded the special ability to safely
access even non-existent identifiers and calmly
return "undefined" instead of throwing an ex-
ception.

However, each respective “empty” type has exactly one value,
of the same name. So nul1 is the only value in the nul1 value-
type, and undefined is the only value in the undefined
value-type.

Null'ish

Semantically, null and undefined types both represent gen-
eral emptiness, or absence of another affirmative, meaningful
value.

NOTE

JS operations which behave the same whether
null or undefined is encountered, are referred
to as “null’ish” (or “nullish”). T guess “unde-
fined’ish” would look/sound too weird!

For a lot of JS, especially the code developers write, these two
nullish values are interchangeable; the decision to intention-
ally use/assign null or undefined in any given scenario is
situation dependent and left up to the developer.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 67

JS provides a number of capabilities for helping treat the two
nullish values as indistinguishable.

For example, the == (coercive-equality comparison) operator
specifically treats null and undefined as coercively equal to
each other, but to no other values in the language. As such, a

. == null check is safe to perform if you want to check if
a value is specifically either null or undefined:

if (greeting == null) {
// greeting is nullish/empty
}

Another (recent) addition to JS is the ?? (nullish-coalescing)
operator:

who = myName ?? "User";

// equivalent to:
who = (myName != null) ? myName : "User'";

As the ternary equivalent illustrates, ?? checks to see if
myName is non-nullish, and if so, returns its value. Otherwise,
it returns the other operand (here, "User").

Along with 27, JS also added the ?. (nullish conditional-
chaining) operator:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 68

record = {
shippingAddress: {
street: "123 JS Lane",
city: "Browserville",
state: "XY"

}s

console.log(record?.shippingAddress?.street);
// 123 3JS Lane

console.log(record?.billingAddress?.street);
// undefined

The ?. operator checks the value immediately preceding (to
the left) value, and if it’s nullish, the operator stops and
returns an undefined value. Otherwise, it performs the .
property access against that value and continues with the
expression.

Just to be clear: record?. is saying, “check record for nullish
before . property access”. Additionally, billingAddress?.
is saying, “check billingAddress for nullish before . prop-
erty access’.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 69

A WARNING

Some]S developers believe that the newer 2. is
superior to ., and should thus almost always
be used instead of .. I believe that’s an unwise
perspective. First of all, it’s adding extra visual
clutter, which should only be done if you’re
getting benefit from it. Secondly, you should be
aware of, and planning for, the emptiness of
some value, to justify using ?.. If you always
expect a non-nullish value to be present in some
expression, using ?. to access a property on it
is not only unnecessary/wasteful, but also could
potentially hide future bugs where your assump-
tion of value-presence had failed but ?. covered
it up. As with most features in JS, use . where
it’s most appropriate, and use ?. where it’s most
appropriate. Never substitute one when the other
is more appropriate.

There’s also a somewhat strange ?. [form of the operator, not

2 [, for when you need to use [..] style access instead of .
access:
record?.["shipping" + "Address"]?.state; /] XY

Yet another variation, referred to as “optional-call”, is ?. (, and
is used when conditionally calling a function if the value is
non-nullish:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 70

// instead of:
// if (someFunc) someFunc(42);

//
// or:

// someFunc && someFunc(42);

someFunc?. (42);

The 2. (operator seems like it is checking to see if some-
Func(..) is a valid function that can be called. But it’s not!
It’s only checking to make sure the value is non-nullish before
trying to invoke it. If it’s some other non-nullish but also non-
function value type, the execution attempt will still fail with
a TypeError exception.

A WARNING

Because of that gotcha, I strongly dislike this oper-
ator form, and caution anyone against ever using
it. I think it’s a poorly conceived feature that does
more harm (to JS itself, and to programs) than
good. There’s very few]S features I would go so
far as to say, “never use it.” But this is one of the
truly bad parts of the language, in my opinion.

Distinct’ish

It’s important to keep in mind that null and undefined are
actually distinct types, and thus null can be noticeably differ-
ent from undefined. You can, carefully, construct programs
that mostly treat them as indistinguishable. But that requires
care and discipline by the developer. From JS’s perspective,
they’re more often distinct.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 71

There are cases where null and undefined will trigger
different behavior by the language, which is important to keep
in mind. We won’t cover all the cases exhaustively here, but
here’s on example:

function greet(msg = "Hello") {
console.log(msg);

}

greet(); // Hello

greet(undefined) ; // Hello

greet("Hi"); // Hi

greet(null); // null

The = .. clause on a parameter is referred to as the “param-

eter default”. It only kicks in and assigns its default value to
the parameter if the argument in that position is missing, or
is exactly the undefined value. If you pass nul1, that clause
doesn’t trigger, and null is thus assigned to the parameter.

There’s no right or wrong way to use null or undefined in
a program. So the takeaway is: be careful when choosing one
value or the other. And if you’re using them interchangeably,
be extra careful.

Boolean Values

The boolean type contains two values: false and true.

In the “old days”, programming languages would, by conven-
tion, use 0 to mean false and 1 to mean true. So you can
think of the boolean type, and the keywords false and true,
as a semantic convenience sugar on top of the © and 1 values:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 72

// isLoggedIn = 1;
isLoggedIn = true;

isComplete = 0
// isComplete

| e

false;

Boolean values are how all decision making happens in a JS
program:

if (isLoggedIn) {
// do something
}

while (!isComplete) {
// keep going
3

The ! operator negates/flips a boolean value to the other one:
false becomes true, and true becomes false.

String Values

The string type contains any value which is a collection of
one or more characters, delimited (surrounding on either side)
by quote characters:

myName = "Kyle";
JS does not distinguish a single character as a different type

as some languages do; "a" is a string just like "abc" is.

Strings can be delimited by double-quotes ("), single-quotes
("), or back-ticks (). The ending delimiter must always match
the starting delimiter.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 73

Strings have an intrinsic length which corresponds to how
many code-points — actually, code-units, more on that in a bit
— they contain.

myName = "Kyle";

myName. length; /] 4

This does not necessarily correspond to the number of visible
characters present between the start and end delimiters (aka,
the string literal). It can sometimes be a little confusing to
keep straight the difference between a string literal and the
underlying string value, so pay close attention.

NOTE

We'll cover length computation of strings in de-
tail, in Chapter 2.

JS Character Encodings

What type of character encoding does JS use for string char-
acters?

You’ve probably heard of “Unicode” and perhaps even “UTF-
8” (8-bit) or “UTF-16” (16-bit). If you’re like me (before doing
the research it took to write this text), you might have just
hand-waved and decided that’s all you need to know about
character encodings in JS strings.

But... it’s not. Not even close.

It turns out, you need to understand how a variety of aspects
of Unicode work, and even to consider concepts from UCS-2

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 74

(2-byte Universal Character Set), which is similar to UTF-16,
but not quite the same. ’

Unicode defines all the “characters” we can represent univer-
sally in computer programs, by assigning a specific number to
each, called code-points. These numbers range from 0 all the
way up to a maximum of 1114111 (10FFFF in hexadecimal).

The standard notation for Unicode characters is U+ followed
by 4-6 hexadecimal characters. For example, the B (heart
symbol) is code-point 10084 (2764 in hexadecimal), and is
thus notated with U+2764.

The first group of 65,535 code points in Unicode is called the
BMP (Basic Multilingual Plane). These can all be represented
with 16 bits (2 bytes). When representing Unicode characters
from the BMP, it’s fairly straightforward, as they can fit
neatly into single UTF-16 JS characters.

All the rest of the code points are grouped into 16 so called
“supplemental planes” or “astral planes”. These code-points
require more than 16 bits to represent — 21 bits to be exact — so
when representing extended/supplemental characters above
the BMP, JS actually stores these code-points as a pairing
of two adjacent 16-bit code units, called surrogate halves (or
surrogate pairs).

For example, the Unicode code point 127878 (hexadecimal
1F386) is B (fireworks symbol). JS stores this in a string
value as two surrogate-halve code units: U+D83C and U+DF86.
Keep in mind that these two parts of the whole character do
not standalone; they’re only valid/meaningful when paired
immediately adjacent to each other.

"“JavaScript’s internal character encoding: UCS-2 or UTF-16?"; Mathias Bynens;
January 20 2012; https://mathiasbynens.be/notes/javascript-encoding ; Accessed July
2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 75

This has implications on the length of strings, because a single
visible character like the ® fireworks symbol, when in a JS
string, is a counted as 2 characters for the purposes of the
string length!

We’'ll revisit Unicode characters in a bit, and then cover the
challenges of computing string length in Chapter 2.

Escape Sequences

If " or ' are used to delimit a string literal, the contents are
only parsed for character-escape sequences: \ followed by one
or more characters that JS recognizes and parses with special
meaning. Any other characters in a string that don’t parse
as escape-sequences (single-character or multi-character), are
inserted as-is into the string value.

For single-character escape sequences, the following charac-
ters are recognized aftera \: b, f,n, r, t,v, 0, ', ", and \. For
example, \n means new-line, \ t means tab, etc.

If a \ is followed by any other character (except x and u
- explained below), like for example \k, that sequence is
interpreted as the \ being an unnecessary escape, which is
thus dropped, leaving just the literal character itself (k).

To include a " in the middle of a "-delimited string literal,
use the \" escape sequence. Similarly, if you're including a
' character in the middle of a '-delimited string literal, use
the \' escape sequence. By contrast, a ' does not need to be
escaped inside a "-delimited string, nor vice versa.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 76

myTitle = "Kyle Simpson (aka, \"getify\"), former O0'Reill\
y author";

console. log(myTitle);
// Kyle Simpson (aka, "getify"), former O'Reilly author

In text, forward slash / is most common. But occasionally,
you need a backward slash \. To include a literal \ backslash
character without it performing as the start of a character-
escape sequence, use the \\ (double backslashes).

So, then... what would \\\ (three backslashes) in a string
parse as? The first two \’s would be a \\ escape sequence,
thereby inserting just a single \ character in the string value,
and the remaining \ would just escape whatever character
comes immediately after it.

One place backslashes show up commonly is in Windows file
paths, which use the \ separator instead of the / separator
used in linux/unix style paths:

windowsFontsPath =
"C:\\Windows\\Fonts\\";

console. log(windowsFontsPath);
// C:\Windows\Fonts\"

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 77

P TIP
What about four backslashes \\\\ in a string

literal? Well, that’s just two \\ escape sequences
next to each other, so it results in two adja-
cent backslashes (\\) in the underlying string
value. You might recognize there’s an odd/even
rule pattern at play. You should thus be able

to deciper any odd (\\\\\, \\\\\\\\\, etc) or
evenn (\\\\\\, \\\\\\\\\\, etc) number of back-

slashes in a string literal.

Line Continuation

The \ character followed by an actual new-line character (not
just literal n) is a special case, and it creates what’s called a
line-continuation:

greeting = "Hello \
Friends!";

console. log(greeting);
// Hello Friends!

As you can see, the new-line at the end of the greeting
= line is immediately preceded by a \, which allows this
string literal to continue onto the subsequent line. Without
the escaping \ before it, a new-line — the actual new-line,
not the \n character escape sequence — appearing in a " or
' delimited string literal would actually produce a JS syntax
parsing error.

Because the end-of-line \ turns the new-line character into a
line continuation, the new-line character is omitted from the
string, as shown by the console.log(..) output.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 78

NOTE

This line-continuation feature is often referred to
as “multi-line strings”, but I think that’s a confus-
ing label. As you can see, the string value itself
doesn’t have multiple lines, it only was defined
across multiple lines via the line continuations.
A multi-line string would actually have multiple
lines in the underlying value. We'll revisit this
topic later in this chapter when we cover Tem-
plate Literals.

Multi-Character Escapes

Multi-character escape sequences may be hexadecimal or
Unicode sequences.

Hexadecimal escape sequences are used to encode any of the
base ASCII characters (codes 0-255), and look like \ x followed
by exactly two hexadecimal characters (0-9 and a-f / A-F —
case insensitive). For example, A9 or a9 are decimal value 169,
which corresponds to:

copyright = "\xA9"; // or "\xa9"

console.log(copyright); // ©

For any normal character that can be typed on a keyboard,
such as "a", it’s usually most readable to just specify the lit-
eral character, as opposed to a more obfuscated hexadecimal
representation:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 79

"a" === "\x61"; // true

Unicode In Strings

Unicode escape sequences alone can encode any of the char-
acters from the Unicode BMP. They look like \u followed by
exactly four hexadecimal characters.

For example, the escape-sequence \uGOA9 (or \u00a9) Ccor-
responds to that same © symbol, while \u263A (or \u263a)
corresponds to the Unicode character with code-point 9786:
X (smiley face symbol).

When any character-escape sequence (regardless of length) is
recognized, the single character it represents is inserted into
the string, rather than the original separate characters. So, in
the string "\u263A", there’s only one (smiley) character, not
six individual characters.

But as explained earlier, many Unicode code-points are well
above 65535. For example, 1F4A9 (or 1f4a9) is decimal code-
point 128169, which corresponds to the funny ® (pile-of-poo)
symbol.

But \ulF4A9 wouldn’t work to include this character in
a string, since it would be parsed as the Unicode escape
sequence \ulF4A, followed by a literal 9 character. To address
this limitation, a variation of Unicode escape sequences was
introduced to allow an arbitrary number of hexadecimal
characters after the \u, by surrounding them with { .. }
curly braces:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 80

myReaction = "\u{1F4A9}";

console. log(myReaction);

/] B

Recall the earlier discussion of extended (non-BMP) Unicode
characters and surrogate halves? The same R could also be
defined with two explicit code-units, that form a surrogate
pair:

myReaction = "\uD83D\uDCA9";

console. log(myReaction);

/] B

All three representations of this same character are stored
internally by JS identically, and are indistinguishable:

"R" === "\u{lF4A9}"; // true
"\u{1F4A9}" === "\uD83D\uDCA9"; // true

Even though JS doesn’t care which way such a character is
represented in your program, consider the readability differ-
ences carefully when authoring your code.

0 Even though ® looks like a single character, its in-

ternal representation affects things like the length
computation of a string with that character in
it. We’ll cover length computation of strings in
Chapter 2.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 81

Unicode Normalization

Another wrinkle in Unicode string handling is that even
certain single BMP characters can be represented in different
ways.

For example, the "é" character can either be represented as
itself (code-point 233, aka \xe9 or \u@oe9 or \u{e9}), or as
the combination of two code-points: the "e" character (code-
point 101, aka \x65, \u0065, \u{65}) and the combining tilde
(code-point 769, aka \u0301, \u{301}).

Consider:

eTildel = "é";
eTilde2 = "\uG0e9";

eTilde3 = "\uB0O65\u0301";

console.log(eTildel); /] é
console. log(eTilde2); /] é
console.log(eTilde3); /] é

The string literal assigned to eTilde3 in this snippet stores
the accent mark as a separate combining mark symbol. Like
surrogate pairs, a combining mark only makes sense in con-
nection with the symbol it’s adjacent to (usually after).

The rendering of the Unicode symbol should be the same
regardless, but how the "é" character is internally stored
affects things like length computation of the containing
string, as well as equality and relational comparison (more
on these in Chapter 2):

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 82

eTildel.length; /] 2
eTilde2.length; // 1
eTilde3.length; /] 2
eTildel === eTilde2; /] false
eTildel === eTilde3; // true

One particular challenge is that you may copy-paste a string
with an "é" character visible in it, and that character you
copied may have been in the composed or decomposed form.
But there’s no visual way to tell, and yet the underlying string
value in the literal will be different:

nen === ngn; // false!!

This internal representation difference can be quite challeng-
ing if not carefully planned for. Fortunately, JS provides a
normalize(..) utility method on strings to help:

eTildel = "é";

eTilde2 = "\u{e9}";

eTilde3 = "\u{65}\u{301}";
eTildel.normalize("NFC") === eTilde2;
eTilde2.normalize("NFD") === eTilde3;

The "NFC" normalization mode combines adjacent code-
points into the composed code-point (if possible), whereas
the "NFD" normalization mode splits a single code-point into
its decomposed code-points (if possible).

And there can actually be more than two individual decom-
posed code-points that make up a single composed code-point
— for example, a single character could have several diacritical
marks applied to it.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 83

When dealing with Unicode strings that will be compared,
sorted, or length analyzed, it’s very important to keep Uni-
code normalization in mind, and use it where necessary.

Unicode Grapheme Clusters

A final complication of Unicode string handling is the support
for clustering of multiple adjacent code-points into a single
visually distinct symbol, referred to as a grapheme (or a
grapheme cluster).

An example would be a family emoji such as "RRRER", which
is actually made up of 7 code-points that all cluster/group
together into a single visual symbol.

Consider:

familyEmoji = "\u{1f469}\u{200d}\u{1f469}\u{200d}\u{1f466\
F\u{200d}\u{1f4663}";

familyEmoji; // ERRE

This emoji is not a single registered Unicode code-point, and
as such, there’s no normalization that can be performed to
compose these 7 separate code-points into a single entity. The
visual rendering logic for such composite symbols is quite
complex, well beyond what most of JS developers want to
embed into our programs. Libraries do exist for handling
some of this logic, but they’re often large and still don’t
necessarily cover all of the nuances/variations.

Unlike surrogate pairs and combining marks, the symbols in
grapheme clusters can in fact act as standalone characters, but
have the special combining behavior when placed adjacent to
each other.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 84

This kind of complexity significantly affects length computa-
tions, comparison, sorting, and many other common string-
oriented operations.

Template Literals

I mentioned earlier that strings can alternately be delimited
with *.." back-ticks:

myName = “Kyle ;

All the same rules for character encodings, character escape
sequences, and lengths apply to these types of strings.

However, the contents of these template (string) literals are
additionally parsed for a special delimiter sequence ${ .. 1,
which marks an expression to evaluate and interpolate into
the string value at that location:

myName = “Kyle ;
greeting = "Hello, ${myName}!";

console. log(greeting); // Hello, Kyle!

Everything between the { .. } in such a template literal
is an arbitrary JS expression. It can be simple variables like
myName, or complex]S programs, or anything in between
(even another template literal expression!).

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 85

TIP

This feature is commonly called “template liter-
als” or “template strings”, but I think that’s con-
fusing. “Template” usually means, in program-
ming contexts, a reusable set of text that can
be re-evaluated with different data. For example,
template engines for pages, email templates for
newsletter campaigns, etc. This JS feature is not
re-usable. It’s a literal, and it produces a single,
immediate value (usually a string). You can put
such a value in a function, and call the function
multiple times. But then the function is acting
as the template, not the the literal itself. I prefer
instead to refer to this feature as interpolated
literals, or the funny, short-hand: interpoliterals.
I just think that name is more accurately descrip-
tive.

Template literals also have an interesting different behavior
with respect to new-lines, compared to classic " or ' delim-
ited strings. Recall that for those strings, a line-continuation
required a \ at the end of each line, right before a new-line.
Not so, with template literals!

myPoem = °

Roses are red
Violets are blue
C3P0's a funny robot
and so R2.;

console.log(myPoem) ;

/1l

// Roses are red
// Violets are blue

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 86

// C3P0O's a funny robot
// and so R2.

Line-continuations with template literals do not require escap-
ing. However, that means the new-line is part of the string,
even the first new-line above. In other words, myPoem above
holds a truly multi-line string, as shown. However, if you \
escape the end of any line in a template literal, the new-line
will be omitted, just like with non-template literal strings.

Template literals usually result in a string value, but not
always. A form of template literal that may look kind of
strange is called a tagged template literal:

price = formatCurrency The cost is: ${totalCost} ;

Here, formatCurrency is a tag applied to the template literal
value, which actually invokes formatCurrency(..) as a
function, passing it the string literals and interpolated expres-
sions parsed from the value. This function can then assemble
those in any way it sees fit — such as formatting a number
value as currency in the current locale — and return whatever
value, string or otherwise, that it wants.

So tagged template literals are not always strings; they can
be any value. But untagged template literals will always be
strings.

Some JS developers believe that untagged template literal
strings are best to use for all strings, even if not using
any expression interpolation or multiple lines. I disagree. I
think they should only be used when interpolating (or multi-
line’ing).

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 87

P The principle I always apply in making such de-

terminations: use the closest-matched, and least
capable, feature/tool, for any task.

Moreover, there are a few places where .. " style strings are
disallowed. For example, the "use strict" pragma cannot
use back-ticks, or the pragma will be silently ignored (and
thus the program accidentally runs in non-strict mode). Also,
this style of strings cannot be used in quoted property names
of object literals, destruturing patterns, or in the ES Module
import .. from .. module-specifier clause.

My take: use *.." delimited strings where allowed, but only
when interpolation/multi-line is needed; and keep using ". . "
or '..' delimited strings for everything else.

Number Values

The number type contains any numeric value (whole number
or decimal), such as -42 or 3.1415926. These values are
represented by the JS engine as 64-bit, IEEE-754 double-
precision binary floating-point values. ®

JS numbers are always decimals; whole numbers (aka “inte-
gers”) are not stored in a different/special way. An “integer”
stored as a number value merely has nothing non-zero as its
fraction portion; 42 is thus indistinguishable in JS from 42.0
and 42.000000.

We can use Number.isInteger(..) todetermineifanumber
value has any non-zero fraction or not:

S“TEEE-754"; https://en.wikipedia.org/wiki/IEEE_754 ; Accessed July 2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 88

Number.isInteger(42); // true
Number.isInteger(42.0); // true
Number.isInteger (42.000000); // true

Number.isInteger (42.0000001); // false

Parsing vs Coercion

If a string value holds numeric-looking contents, you may
need to convert from that string value to a number, for
mathematical operation purposes.

However, it’s very important to distinguish between parsing-
conversion and coercive-conversion.

We can parse-convert with JS’s built-in parseInt(..) or
parseFloat(..) utilities:

someNumericText = "123.456";
parseInt(someNumericText,10); // 123
parseFloat(someNumericText); // 123.456
parseInt("42",10) === parseFloat("42"); // true
parseInt("512px"); // 512

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 89

NOTE

Parsing is only relevant for string values, as it’s
a character-by-character (left-to-right) operation.
It doesn’t make sense to parse the contents of a
boolean, nor to parse the contents of a number or
a null; there’s nothing to parse. If you pass any-
thing other than a string value to parseInt(..)
/ parseFloat(..), those utilities first convert
that value to a string and then try to parse it.
That’s almost certainly problematic (leading to
bugs) or wasteful — parseInt(42) is silly, and
parseInt(42.3) is an abuse of parseInt(..)
to do the job of Math.floor(..).

Parsing pulls out numeric-looking characters from the string
value, and puts them into a number value, stopping once
it encounters a character that’s non-numeric (e.g., not -, .
or 0-9). If parsing fails on the first character, both utilities
return the special NaN value (see “Invalid Number” below),
indicating the operation was invalid and failed.

When parseInt(..) encountersthe . in "123.456", it stops,
using just the 123 in the resulting number value. parse-
Float(..) by contrast accepts this . character, and keeps
right on parsing a float with any decimal digits after the .

The parseInt(..) utility specifically, takes as an optional —
but actually, rather necessary — second argument, radix: the
numeric base to assume for interpreting the string characters
for the number (range 2 - 36). 10 is for standard base-10
numbers, 2 is for binary, 8 is for octal, and 16 is for hex-
adecimal. Any other unusual radix, like 23, assumes digits in
order, 0 - 9 followed by the a - z (case insensitive) character
ordination. If the specified radix is outside the 2 - 36 range,

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 90

parseInt(..) fails as invalid and returns the NaN value.

If radix is omitted, the behavior of parseInt(..) is rather
nuanced and confusing, in that it attempts to make a best-
guess for a radix, based on what it sees in the first character.
This historically has lead to lots of subtle bugs, so never rely
on the default auto-guessing; always specify an explicit radix
(like 10 in the calls above).

parseFloat(..) always parses with a radix of 10, so no
second argument is accepted.

A WARNING

One surprising difference between
parseInt(..) and parseFloat(..) is that
parseInt(..) will not fully parse scientific
notation (e.g., "1.23e+5"), instead stopping at
the . as it’s not valid for integers; in fact, even
"le+5" stops at the "e". parseFloat(..) on
the other hand fully parses scientific notation as
expected.

In contrast to parsing-conversion, coercive-conversion is an
all-or-nothing sort of operation. Either the entire contents
of the string are recognized as numeric (integer or floating-
point), or the whole conversion fails (resulting in NaN - again,
see “Invalid Number” later in this chapter).

Coercive-conversion can be done explicitly with the Num-
ber(..) function (no new keyword) or with the unary +
operator in front of the value:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 91

someNumericText = "123.456";

Number (someNumericText) ; // 123.456
+someNumericText; // 123.456
Number ("512px") ; // NaN
+"512px"; // NaN

Other Numeric Representations

In addition to defining numbers using traditional base-10 nu-
merals (0-9), JS supports defining whole-number-only num-
ber literals in three other bases: binary (base-2), octal (base-8),
and hexadecimal (base-16).

// binary

myAge = 0b101010;

myAge; /] 42
// octal

myAge = 0052;

myAge; /] 42

// hexadecimal
myAge = 0x2a;
myAge; /] 42

As you can see, the prefixes 0b (binary), 6o (octal), and 0x
(hexadecimal) signal defining numbers in the different bases,
but decimals are not allowed on these numeric literals.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 92

NOTE

JS syntax allows 0B, 00, and 0X prefixes as well.
However, please don’t ever use those uppercase
prefix forms. I think any sensible person would
agree: 00 is much easier to confuse at a glance
than 0o (which is, itself, a bit visually ambiguous
at a glance). Always stick to the lowercase prefix
forms!

It’s important to realize that you're not defining a different
number, just using a different form to produce the same
underlying numeric value.

By default, JS represents the underlying numeric value in
output/string fashion with standard base-10 form. However,
number values have a built-in toString(..) method that
produces a string representation in any specified base/radix
(as with parseInt(..), in the range 2 - 36):

myAge = 42;

myAge.toString(2); // "101010"
myAge.toString(8); // "52"
myAge.toString(16); // "2a"
myAge.toString(23); // "1ij"
myAge.toString(36); // "ie"

You can round-trip any arbitrary-radix string representation
back into a number using parseInt(..), with the appropri-
ate radix:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 93

myAge = 42;

parseInt(myAge.toString("23"),23); /] 42

Another allowed form for specifying number literals is using
scientific notation:

myAge = 4.2E1; // or 4.2el or 4.2e+l

myAge; /] 42

4.2E1 (or 4.2el) means, 4.2 * (10 *x 1) (10 to the 1
power). The exponent can optionally have a sign + or -. If
the sign is omitted, it’s assumed to be +. A negative exponent
makes the number smaller (moves the decimal leftward)
rather than larger (moving the decimal rightward):

4.2E-3; // 0.0042

This scientific notation form is especially useful for readabil-
ity when specifying larger powers of 10:

someBigPower0fl0 = 1000000000;
/] vs:
someBigPower0fl10 = 1e9;

By default, JS will represent (e.g., as string values, etc) either
very large or very small numbers — specifically, if the values
require more than 21 digits of precision - using this same
scientific notation:

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 94

ratherBigNumber = 123 **x 11;
ratherBigNumber.toString(); // "9.748913698143826e+22"

prettySmallNumber = 123 x* -11;
prettySmallNumber.toString(); // "1.0257553107587752e-2\
3"

Numbers with smaller absolute values (closer to 0) than these
thresholds can still be forced into scientific notation form (as
strings):

plainBoringNumber = 42;

plainBoringNumber.toExponential(); // "4.2e+1"
plainBoringNumber.toExponential(0); /] "de+1"
plainBoringNumber.toExponential(4); // "4.2000e+1"

The optional argument to toExponential(..) specifies the
number of decimal digits to include in the string representa-
tion.

Another readability affordance for specifying numeric literals
in code is the ability to insert _ as a digit separator wherever
its convenient/meaningful to do so. For example:

someBigPower0fl0 = 1_000_000_000;
totalCostInPennies = 123_45; // vs 12_345

The decision to use 12345 (no separator), 12_345 (like
“12,345”), or 123_45 (like “123.45”) is entirely up to the author
of the code; JS ignores the separators. But depending on the
context, 123_45 could be more semantically meaningful
(readability wise) than the more traditional three-digit-
grouping-from-the-right-separated-with-commas style
mimicked with 12_345.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 95

IEEE-754 Bitwise Binary Representations

[EEE-754° is a technical standard for binary representation
of decimal numbers. It’s widely used by most computer
programming languages, including JS, Python, Ruby;, etc.

I'm not going to cover it exhaustively, but I think a brief
primer on how numbers work in languages like JS is more
than warranted, given how few programmers have any fa-
miliarity with it.

In 64-bit IEEE-754 — so called “double-precision”, because
originally IEEE-754 used to be 32-bit, and now it’s double
that! — the 64 bits are divided into three sections: 52 bits
for the number’s base value (aka, “fraction”, “mantissa”, or
“significand”), 11 bits for the exponent to raise 2 to before
multiplying, and 1 bit for the sign of the ultimate value.

0 Since only 52 of the 64 bits are actually used to

represent the base value, number doesn’t actually
have 2764 values in it. According to the spec-
ification for the number type®, the number of
values is precisely 2464 - 2453 + 3, or about
18 quintillion, split about evenly between positive
and negative numbers.

These bits are arranged left-to-right, as so (S = Sign Bit, E =
Exponent Bit, M = Mantissa Bit):

*“IEEE-754"; https://en.wikipedia.org/wiki/IEEE_754 ; Accessed July 2022

19“6.1.6.1 The Number Type”, ECMAScript 2022 Language Specification;
https://262.ecma-international.org/13.0/#sec-ecmascript-language-types-number-type ;
Accessed August 2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 96

SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

So, the number 42 (or 42.000000) would be represented by
these bits:

/] 42:
01000000010001010000000000000000
000OOOOOOOOOOOOOONOOOOOOOOEEEEOOO

The sign bit is 0, meaning the number is positive (1 means
negative).

The 11-bit exponent is binary 10000000100, which in base-
10 is 1028. But in IEEE-754, this value is interpreted as being
stored unsigned with an “exponent bias” of 1023, meaning
that we’re shifting up the exponent range from -1022:1023
to 1:2046 (where 0 and 2047 are reserved for special repre-
sentations). So, take 1028 and subtract the bias 1623, which
gives an effective exponent of 5. We raise 2 to that value (245),
giving 32.

NOTE

If the subtracting 1023 from the exponent value
gives a negative (e.g., -3), that’s still interpreted
as 2’s exponent; raising 2 to negative numbers
just produces smaller and smaller values.

The remaining 52 bits give us the base value 01010000.. .,
interpreted as binary decimal 1.0101000. . . (with all trailing
zeros). Converting that to base-10, we get 1.3125000.. ..
Finally, then multiply that by 32 already computed from the
exponent. The result: 42.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 97

As you might be able to tell now, this IEEE-754 number
representation standard is called “floating point” because the
decimal point “floats” back-and-forth along the bits, depend-
ing on the specified exponent value.

The number 42.0000001, which is only different from
42.000000 by just 0.0000001, would be represented by
these bits:

// 42.0000001:
01000000010001010000000000000000
00000000110101101011111110010101

Notice how the previous bit pattern and this one differ
by quite a few bits in the trailing positions! The binary
decimal fraction containing all those extra 1 bits
(1.910100000000. . .01011111110010101) converts to
base-10 as 1.31250000312500003652, which multiplied by
32 gives us exactly 42.0000001.

We'll revisit more details about floating-point (im)precision
in Chapter 2. But now you understand a bit more about how
IEEE-754 works!

Number Limits

As might be evident now that you’ve seen how IEEE-754
works, the 52 bits of the number’s base must be shared,
representing both the whole number portion (if any) as well
as the decimal portion (if any), of the intended number
value. Essentially, the larger the whole number portion to be
represented, the less bits are available for the decimal portion,
and vice versa.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 98

The largest value that can accurately be stored in the number
type is exposed as Number .MAX_VALUE:

Number .MAX_VALUE; // 1.7976931348623157e+308

You might expect that value to be a decimal value, given
the representation. But on closer inspection, 1.79E308 is
(approximately) 241024 - 1. That seems much more like it
should be an integer, right? We can verify:

Number.isInteger (Number.MAX_VALUE) ; // true

But what happens if you go above the max value?

Number .MAX_VALUE === (Number .MAX_VALUE + 1);

// true -- oops!

Number .MAX_VALUE === (Number.MAX_VALUE + 10000000);
// true

So, is Number .MAX_VALUE actually the largest value repre-
sentable in JS? It’s certainly the largest finite number value.

IEEE-754 defines a special infinite value, which JS exposes as
Infinity; there’s also a -Infinity at the far other end of
the number line. Values can be tested to see if they are finite
or infinite:

Number.isFinite(Number .MAX_VALUE); // true

Number.isFinite(Infinity); /] false
Number.isFinite(-Infinity); // false

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 99

You can’t ever count upwards (with + 1) from Number .MAX_-
VALUE to Infinity, no matter how long you let the program
run, because the + 1 operation isn’t actually incrementing
beyond the top Number .MAX_VALUE value.

However, JS arithmetic operations (+, *, and even /) can
definitely overflow the number type on the top-end, in which
case Infinity is the result:

Number .MAX_VALUE + 1E291; // 1.7976931348623157\
e+308

Number.MAX_VALUE + 1E292; // Infinity

Number .MAX_VALUE * 1.0000000001; // Infinity

1 / 1E-308; // 1le+308

1 / 1E-309; // Infinity

J The reverse is not true: an arithmetic operation

on an infinite value will never produce a finite
value.

Going from the very large to the very, very small — actually,
closest to zero, which is not the same thing as going very,
very negative! — the smallest absolute decimal value you
could theoretically store in the number type would be 22~
1022 (remember the IEEE-754 exponent range?), or around
2E-308. However, JS engines are allowed by the specification
to vary in their internal representations for this lower limit.
Whatever the engine’s effective lower limit is, it’ll be exposed
as Number .MIN_VALUE:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 100

Number .MIN_VALUE; // 5e-324 <-- usually!

Most JS engines seem to have a minimum representable value
around 5E-324 (about 24-1074). Depending on the engine
and/or platform, a different value may be exposed. Be careful
about any program logic that relies on such implementation-
dependent values.

Safe Integer Limits

Since Number.MAX_VALUE is an integer, you might assume
that it’s the largest integer in the language. But that’s not
really accurate.

The largest integer you can accurately store in the num-
ber type is 2453 - 1, or 9007199254740991, which is way
smaller than Number .MAX_VALUE (about 271024 - 1). This
special safer value is exposed as Number .MAX_SAFE_INTEGER:

maxInt = Number .MAX_SAFE_INTEGER;

maxInt; // 9007199254740991
maxInt + 1; // 9007199254740992
maxInt + 2; // 9007199254740992

We’ve seen that integers larger than 9007199254740991 can
show up. However, those larger integers are not “safe”, in
that the precision/accuracy start to break down when you do
operations with them. As shown above, the maxInt + 1 and
maxInt + 2 expressions both errantly give the same result,
illustrating the hazard when exceeding the Number.MAX_-
SAFE_INTEGER limit.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 101

But what’s the smallest safe integer?

Depending on how you interpret “smallest”, you could either
answer 0 or... Number .MIN_SAFE_INTEGER:

Number .MIN_SAFE_INTEGER; // —9007199254740991

And JS provides a utility to determine if a value is an integer
in this safe range (-2253 + 1-2A53 - 1):

Number.isSafeInteger (2 ** 53); /] false
Number.isSafeInteger(2 *x 53 - 1); // true

Double Zeros

It may surprise you to learn that JS has two zeros: 0, and -0
(negative zero). But what on earth is a “negative zero™ '* A
mathematician would surely balk at such a notion.

This isn’t just a funny JS quirk; it’s mandated by the IEEE-
754" specification. All floating point numbers are signed,
including zero. And though JS does kind of hide the existence
of -0, it’s entirely possible to produce it and to detect it:

*“Signed Zero”, Wikipedia; https://en.wikipedia.org/wiki/Signed_zero ; Accessed
August 2022
*“TEEE-7547; https://en.wikipedia.org/wiki/IEEE_754 ; Accessed July 2022

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 102

function isNegZero(v) {
return v == 0 && (1 / v) == -Infinity;

regZero = 0 / 1;
negZero = 0 / -1;

regZero === negZero; // true -- oops!
Object.is(-0,regZero); // false -- phew!
Object.is(-0,negZero); // true
isNegZero(regZero); // false
isNegZero(negZero); // true

You may wonder why we’d ever need such a thing as -o.
It can be useful when using numbers to represent both the
magnitude of movement (speed) of some item (like a game
character or an animation) and also its direction (e.g., negative
= left, positive = right).

Without having a signed zero value, you couldn’t tell which
direction such an item was pointing at the moment it came to
rest.

0 NOTE
While JS defines a signed zero in the number

type, there is no corresponding signed zero in the
bigint number type. As such, -0n is just inter-
preted as On, and the two are indistinguishable.

Invalid Number

Mathematical operations can sometimes produce an invalid
result. For example:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 103
42 / "Kyle"; // NaN

It’s probably obvious, but if you try to divide a number by a
string, that’s an invalid mathematical operation.

Another type of invalid numeric operation is trying to coer-
cively-convert a non-numeric resembling value to a number.
As discussed earlier, we can do so with either the Number (. .)
function or the unary + operator:

myAge = Number("just a number'");
myAge ; // NaN

+undefined; // NaN

All such invalid operations (mathematical or coercive/nu-
meric) produce the special number value called NaN.

The historical root of “NaN” (from the IEEE-754" specifi-
cation) is as an acronym for “Not a Number”. Technically,
there are about 9 quadrillion values in the 64-bit IEEE-754
number space designated as “NaN”, but JS treats all of them
indistinguishably as the single NaN value.

Unfortunately, that not a number meaning produces confu-
sion, since NaN is absolutely a number.

P“TEEE-754"; https://en.wikipedia.org/wiki/IEEE_754 ; Accessed July 2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 104

P Why is NaN a number?!? Think of the oppo-

site: what if a mathematical/numeric operation,
like + or /, produced a non-number value (like
null, undefined, etc)? Wouldn’t that be really
strange and unexpected? What if they threw ex-
ceptions, so that you had to try. .catch all your
math? The only sensible behavior is, numeric/-
mathematical operations should always produce
a number, even if that value is invalid because it
came from an invalid operation.

To avoid such confusion, I strongly prefer to define “NaN” as
any of the following instead:

« “iNvalid Number”

« “Not actual Number”

+ “Not available Number”
« “Not applicable Number”

NaN is a special value in]S, in that it’s the only value in the
language that lacks the identity property — it’s never equal to
itself.

NaN === NaN; // false

So unfortunately, the === operator cannot check a value to
see if it’s NaN. But there are some ways to do so:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 105

politicianIQ = "nothing" / Infinity;

Number.isNaN(politicianIQ); // true
Object.is(NaN,politicianIQ); // true
[NaN].dincludes(politicianIQ); // true

Here’s a fact of virtually all JS programs, whether you realize
it or not: NaN happens. Seriously, almost all programs that do
any math or numeric conversions are subject to NaN showing

up.

If you're not properly checking for NaN in your programs
where you do math or numeric conversions, I can say with
some degree of certainty: you probably have a number bug
in your program somewhere, and it just hasn’t bitten you yet
(that you know of!).

WARNING

JS originally provided a global function called
isNaN(..) for NaN checking, but it unfor-
tunately has a long-standing coercion bug.
isNaN("Kyle") returns true, even though the
string value "Kyle" is most definitely not the NaN
value. This is because the global isNaN(. .) func-
tion forces any non-number argument to coerce
to a number first, before checking for NaN. Coerc-
ing "Kyle" to a number produces NaN, so now the
function sees a NaN and returns true! This buggy
global isNaN(..) still exists in JS, but should
never be used. When NaN checking, always use
Number.isNaN(..), Object.is(..), etc.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 106

Biginteger Values

As the maximum safe integer in JS numbers is
9007199254740991 (see above), such a relatively low
limit can present a problem if a JS program needs to perform
larger integer math, or even just hold values like 64-bit
integer IDs (e.g., Twitter Tweet IDs).

For that reason, JS provides the alternate bigint type (Big-
Integer), which can store arbitrarily large (theoretically not
limited, except by finite machine memory and/or JS imple-
mentation) integers.

To distinguish a bigint from a whole (integer) number value,
which would otherwise both look the same (42), JS requires
an n suffix on bigint values:

myAge = 42n; // this is a bigint, not a number
myKidsAge = 11; // this dis a number, not a bigint

Let’s illustrate the upper un-boundedness of bigint:

Number .MAX_SAFE_INTEGER; // 9007199254740991
Number .MAX_SAFE_INTEGER + 2; // 9007199254740992 -- oo\
ps!

myBigInt = 9007199254740991n;

myBigInt + 2n; // 9007199254740993n -- p\
hew!

myBigInt %% 2n; // 8112963841460666368139)\
0495662081n

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 107

As you can see, the bigint value-type is able to do precise
arithmetic above the integer limit of the number value-type.

A WARNING

Notice that the + operator required .. + 2n in-
stead of just .. + 2? You cannot mix number
and bigint value-types in the same expression.
This restriction is annoying, but it protects your
program from invalid mathematical operations
that would give non-obvious unexpected results.

A bigint value can also be created with the BigInt(..)
function; for example, to convert a whole (integer) number
value to a bigint:

myAge = 42n;
inc = 1;
myAge += BigInt(inc);

myAge; // 43n

WARNING

Though it may seem counter-intuitive to some
readers, BigInt(..) is always called without the
new keyword. If new is used, an exception will be
thrown.

That’s definitely one of the most common usages of the
BigInt(..) function: to convert numbers to bigints, for
mathematical operation purposes.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 108

But it’s not that uncommon to represent large integer values
as strings, especially if those values are coming to the JS en-
vironment from other language environments, or via certain
exchange formats, which themselves do not support bigint-
style values.

As such, BigInt(..) is useful to coerce those string values
to bigints:

myBigInt = BigInt("12345678901234567890");

myBigInt; // 12345678901234567890n

Unlike parseInt(..), if any character in the string is non-
numeric (0-9 digits or -), including . or even a trailing n
suffix character, an exception will be thrown. In other words,
BigInt(..) is an all-or-nothing coercion-conversion, not a
parsing-conversion.

NOTE

I think it’s absurd that BigInt(..) won’t accept
the trailing n character while string coercing (and
thus effectively ignore it). I lobbied vehemently
for that behavior, in the TC39 process, but was
ultimately denied. In my opinion, it’s now a tiny
little gotcha wart on JS, but a wart nonetheless.

Symbol Values

The symbo1 type contains special opaque values called “sym-
bols”. These values can only be created by the Symbol(..)
function:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 109

secret = Symbol("my secret");

WARNING

Just as with BigInt(..), the Symbol(..) func-
tion must be called without the new keyword.

The "my secret" string passed into the Symbol(..) func-
tion call is not the symbol value itself, even though it seems
that way. It’s merely an optional descriptive label, used only
for debugging purposes for the benefit of the developer.

The underlying value returned from Symbol(. .) is a special
kind of value that resists the program/developer inspecting
anything about its underlying representation. That’s what I
mean by “opaque”.

0 NOTE
You could think of symbols as if they are mono-

tonically incrementing integer numbers — indeed,
that’s similar to how at least some]S engines
implement them. But the JS engine will never ex-
pose any representation of a symbol’s underlying
value in any way that you or the program can see.

Symbols are guaranteed by the JS engine to be unique (only
within the program itself), and are unguessable. In other
words, a duplicate symbol value can never be created in a
program.

You might be wondering at this point what symbols are used
for?

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 110

One typical usage is as “special” values that the developer
distinguishes from any other values that could accidentally
collide. For example:

EMPTY = Symbol("not set yet'");
myNickname = EMPTY;

// later:

if (myNickname == EMPTY) {
/] ..

Here, I've defined a special EMPTY value and initialized myN-
ickname to it. Later, I check to see if it’s still that special
value, and then perform some action if so. I might not want to
have used null or undefined for such purposes, as another
developer might be able to pass in one of those common built-
in values. EMPTY by contrast here is a unique, unguessable
value that only I've defined and have control over and access
to.

Perhaps even more commonly, symbols are often used as
special (meta-) properties on objects:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 111

myInfo = {
name: "Kyle Simpson'",
nickname: "getify",
age: 42

s

// later:
PRIVATE_ID = Symbol("private unique ID, don't touch!");

myInfo[PRIVATE_ID] = generateID();

It’s important to note that symbol properties are still publicly
visible on any object; they’re not actually private. But they’re
treated as special and set-apart from the normal collection of
object properties. It’s similar to if [had done instead:

Object.defineProperty(myInfo,"__private_id_dont_touch",{
value: generateID(),
enumerable: false,

b

By convention only, most developers know that if a property
name is prefixed with _ (or even more so, __!), that means
it’s “pseudo-private” and to leave it alone unless they’re really
supposed to access it.

Symbols basically serve the same use-case, but a bit more
ergonomically than the prefixing approach.

Well-Known Symbols (WKS)

JS pre-defines a set of symbols, referred to as well-known sym-
bols (WKS), that represent certain special meta-programming
hooks on objects. These symbols are stored as static properties
on the Symbo1l function object. For example:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 112

myInfo = {

/] ..
+s
String(myInfo); // [object Object]
myInfo[Symbol.toStringTag] = "my-info";
String(myInfo); // [object my-info]

Symbol.toStringTag is a well-known symbol for accessing
and overriding the default string representation of a plain
object ("[object Object]"), replacing the "Object" part
with a different value (e.g., "my-info").

See the “Objects & Classes” book of this series for more infor-
mation about Well-Known Symbols and metaprogramming.

Global Symbol Registry

Often, you want to keep symbol values private, such as inside
a module scope. But occasionally, you want to expose them
so they’re accessible globally throughout all the files in a JS
program.

Instead of just attaching them as global variables (i.e., proper-
ties on the globalThis object), JS provides an alternate global
namespace to register symbols in:

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 113

// retrieve if already registered,
// otherwise register
PRIVATE_ID = Symbol.for("private-id");

// elsewhere:

privateIDKey = Symbol.keyFor (PRIVATE_ID);
privateIDKey; // "private-id"

// elsewhere:

// retrieve symbol from registry undeer
// specified key
privateIDSymbol = Symbol.for(privateIDKey);

The value passed to Symbol.for(..) is not the same as
passed to Symbol(..). Symbol.for(..) expects a unique
key for the symbol to be registered under in the global registry,
whereas Symbol(..) optionally accepts a descriptive label
(not necessarily unique).

If the registry doesn’t have a symbol under that specified
key, a new symbol (with no descriptive label) is created and
automatically registered there. Otherwise, Symbol. for(..)
returns whatever previously registered symbol is under that
key.

Going in the opposite direction, if you have the symbol value
itself, and want to retrieve the key it’s registered under, Sym-
bol.keyFor (..) takes the symbol itself as input, and returns
the key (if any). That’s useful in case it’s more convenient to
pass around the key string value than the symbol itself.

You Don’t Know JS Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 114

Object or Primitive?

Unlike other primitives like 42, where you can create multiple
copies of the same value, symbols do act more like specific
object references in that they’re always completely unique
(for purposes of value assignment and equality comparison).
The specification also categorizes the Symbol() function
under the “Fundamental Objects” section, calling the function
a “constructor”, and even defining its prototype property.

However, as mentioned earlier, new cannot be used with
Symbol(..); this is similar to the BigInt() “constructor”.
We clearly know bigint values are primitives, so symbol
values seem to be of the same kind.

And in the specification’s “Terms and Definitions”, it lists sym-
bol as a primitive value. '* Moreover, the values themselves
are used in JS programs as primitives rather than objects. For
example, symbols are primarily used as keys in objects — we
know objects cannot use other object values as keys! — along
with strings, which are also primitives.

As mentioned earlier, some]S engines even internally imple-
ment symbols as unique, monotonically incrementing inte-
gers (primitives!).

Finally, as explained at the top of this chapter, we know
primitive values are not allowed to have properties set on
them, but are auto-boxed (see “Automatic Objects” in Chapter
3) internally to the corresponding object-wrapper type to
facilitate property/method access. Symbols follow all these
exact behaviors, the same as all the other primitives.

All this considered, I think symbols are much more like

445 primitive value”, ECMAScript 2022 Language Specification;
https://tc39.es/ecma262/#sec-primitive-value ; Accessed August 2022

You Don’t Know]S Yet: The Unbooks

Chapter 1: Primitive Values (Types & Grammar) 115

primitives than objects, so that’s how I present them in this

book.

Primitives Are Built-In Types

We’ve now dug deeply into the seven primitive (non-object)
value types that JS provides automatically built-in.

Before we move on to discussing JS’s built-in object value
type, we want to take a closer look at the kinds of behaviors
we can expect from JS values. We’ll do so in-depth, in the next
chapter.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 116

Chapter 2: Primitive
Behaviors (Types &
Grammar)

So far, we've explored seven built-in primitive value types in
JS:null, undefined, boolean, string, number, bigint, and
symbo'l.

Chapter 1 was quite a lot to take in, much more involved than
I bet most readers expected. If you’re still catching your breath
after reading all that, don’t worry about taking a bit of a break
before continuing on here!

Once you're clear headed and ready to move on, let’s dig
into certain behaviors implied by value types for all their
respective values. We’ll take a careful and closer look at all
of these various behaviors.

Primitive Immutability

All primitive values are immutable, meaning nothing in a JS
program can reach into the contents of the value and modify
it in any way.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 117

myAge = 42;
// later:
myAge = 43;

The myAge = 43 statement doesn’t change the value. It reas-
signs a different value 43 to myAge, completely replacing the
previous value of 42.

New values are also created through various operations, but
again these do not modify the original value:

42 + 1; // 43

"Hello" + "I"; // "Hello!"

The values 43 and "Hello ! " are new, distinct values from the
previous 42 and "Hello" values, respectively.

Even a string value, which looks like merely an array of
characters — and array contents are typically mutable — is
immutable:

greeting = "Hello.";
greeting[5] = "I";

console.log(greeting); // Hello.

WARNING

In non-strict mode, assigning to a read-only
property (like greeting[5] = ..) silently fails.
In strict-mode, the disallowed assignment will
throw an exception.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 118

The nature of primitive values being immutable is not affected
in any way by how the variable or object property holding the
value is declared. For example, whether const, let, or var
are used to declare the greeting variable above, the string
value it holds is immutable.

const doesn’t create immutable values, it declares variables
that cannot be reassigned (aka, immutable assignments) — see
the “Scope & Closures” title of this series for more informa-
tion.

A property on an object may be marked as read-only — with
the writable: false descriptor attribute, as discussed in
the “Objects & Classes” title of this series. But that still has
no affect on the nature of the value, only on preventing the
reassignment of the property.

Primitives With Properties?

Additionally, properties cannot be added to any primitive
values:

greeting = "Hello.";
greeting.isRendered = true;

greeting.isRendered; // undefined

This snippet looks like it’s adding a property isRendered to
the value in greeting, but this assignment silently fails (even
in strict-mode).

Property access is not allowed in any way on nullish primitive
values null and undefined. But properties can be accessed

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 119

on all other primitive values - yes, that sounds counter-
intuitive.

For example, all string values have a read-only length prop-
erty:

greeting = "Hello.";

greeting.length; /] 6

length can not be set, but it can be accesses, and it exposes the
number of code-units stored in the value (see “JS Character
Encodings” in Chapter 1), which often means the number of
characters in the string.

e Sort of. For most standard characters, that’s true;

one character is one code-point, which is one
code-unit. However, as explained in Chapter 1,
extended Unicode characters above code-point
65535 will be stored as two code-units (surrogate
halves). Thus, for each such character, length
will include 2 in its count, even though the char-
acter visually prints as one symbol.

Non-nullish primitive values also have a couple of standard
built-in methods that can be accessed:

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 120

greeting = "Hello.";

greeting.toString(); // "Hello." <-- redundant
greeting.valueOf(); // "Hello."

Additionally, most of the primitive value-types define their
own methods with specific behaviors inherent to that type.
We’ll cover these later in this chapter.

NOTE

As already briefly mentioned in Chapter 1, tech-
nically, these sorts of property/method accesses
on primitive values are facilitated by an implicit
coercive behavior called auto-boxing. We’ll cover
this in detail in “Automatic Objects” in Chapter
3.

Primitive Assignments

Any assignment of a primitive value from one variable/con-
tainer to another is a value-copy:

myAge = 42;

yourAge = myAge; // assigned by value-copy
myAge; // 42

yourAge; /] 42

Here, the myAge and yourAge variables each have their own
copy of the number value 42.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 121

o NOTE
Inside the JS engine, it may be the case that

only one 42 value exists in memory, and the
engine points both myAge and yourAge variables
at the shared value. Since primitive values are
immutable, there’s no danger in a JS engine doing
so. But what’s important to us as JS developers
is, in our programs, myAge and yourAge act as
if they have their own copy of that value, rather
than sharing it.

If we later reassign myAge to 43 (when I have a birthday), it
doesn’t affect the 42 that’s still assigned to yourAge:

myAge++; // sort of like: myAge = myAge + 1
myAge; // 43
yourAge; // 42 <-- unchanged

String Behaviors

String values have a number of specific behaviors that every
JS developer should be aware of.

String Character Access

Though strings are not actually arrays, JS allows [..]
array-style access of a character at a numeric (0-based) index:

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 122

greeting = "Hello!";

greetingl[4]; // "o"

If the value/expression between the [..] doesn’t resolve
to a number, the value will be implicitly coerced to its
whole/integer numeric representation (if possible).

greeting["4"]; // "o"

If the value/expression resolves to a number outside the
integer range of 0 - length - 1 (or NaN), or if it’s not a
number value-type, the access will instead be treated as a
property access with the string equivalent property name. If
the property access thus fails, the result is undefined.

NOTE

We’ll cover coercion in-depth later in the book.

Character Iteration

Strings are not arrays, but they certainly mimic arrays closely
in many ways. One such behavior is that, like arrays, strings
are iterables. This means that the characters (code-units) of a
string can be iterated individually:

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar)

myName = "Kyle";

for (let char of myName) {
console.log(char);

}

/1
/7
/1l
/1l

o —~ < X

chars = [...myName];

chars;

// [IIKH,

Values, such as strings and arrays, are iterables (via ..

llyll, H'Lll’ Hell :l

123

*

for..of, and Array.from(..)), if they expose an iterator-
producing method at the special symbol property location
Symbol.iterator (see “Well-Known Symbols” in Chapter

1):

myName = "Kyle";

it = myName[Symbol.

it.next();
it.next();
it.next();
it.next();
it.next();

/7
/7

/7
/7

{ value:
{ value:
// { value:
{ value:
{ value:

iterator]();

IIKII

II'LII

Ilell,
undefined,

, done:
llyll,
, done:

done:

done:

false
false
false
false }

done: true }

[

o The specifics of the iterator protocol, including

the fact that the { value:
shows done: false, are covered in detail in the
“Sync & Async” title of this series.

llell

.} result still

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 124

Length Computation

As mentioned in Chapter 1, string values have a length
property that automatically exposes the length of the string;
this property can only be accessed; attempts to set it are
silently ignored.

The reported length value somewhat corresponds to the
number of characters in the string (actually, code-units), but
as we saw in Chapter 1, it’'s more complex when Unicode
characters are involved.

Most people visually distinguish symbols as separate charac-
ters; this notion of an independent visual symbol is referred to
as a grapheme, or a grapheme cluster. So when counting the
“length” of a string, we typically mean that we’re counting
the number of graphemes.

But that’s not how the computer deals with characters.

In JS, each character is a code-unit (16 bits), with a code-
point value at or below 65535. The length property of a
string always counts the number of code-units in the string
value, not code-points. A code-unit might represent a single
character by itself, or it may be part of a surrogate pair, or
it may be combined with an adjacent combining symbol, or
part of a grapheme cluster. As such, length doesn’t match
the typical notion of counting visual characters/graphemes.

To get closer to an expected/intuitive grapheme length for
a string, the string value first needs to be normalized with
normalize("NFC") (see “Normalizing Unicode” in Chapter
1) to produce any composed code-units (where possible), in
case any characters were originally stored decomposed as
separate code-units.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 125

For example:

favoriteItem = "teléfono";
favoriteItem.length; // 9 ——- uh oh!

favoriteItem = favoriteItem.normalize("NFC");
favoriteItem.length; // 8 —-— phew!

Unfortunately, as we saw in Chapter 1, we'll still have the
possibility of characters of code-point greater the 65535,
and thus needing a surrogate pair to be represented. Such
characters will count double in the length:

// "E" === "\u260E"

oldTelephone = "R";

oldTelephone.length; // 1

/] "R" === "\u{1lF4F1}" === "\uD83D\uDCF1"
cellphone = "H";

cellphone.length; // 2 —-- oops!

So what do we do?

One fix is to use character iteration (via ... operator) as we
saw in the previous section, since it automatically returns
each combined character from a surrogate pair:

cellphone = "H";
cellphone.length; // 2 -- oops!
[...cellphone].length; // 1 -- phew!

But, unfortunately, grapheme clusters (as explained in
Chapter 1) throw yet another wrench into a string’s length
computation. For example, if we take the thumbs down
emoji ("\u{1F44E}" and add to it the skin-tone modifier for
medium-dark skin ("\u{1F3FE}"), we get:

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 126

// "RR" = "\u{lF44E}\u{1F3FE}"
thumbsDown = "RK'";

thumbsDown. length; // 4 —-- oops!
[...thumbsDown].length; // 2 —-- oops!

As you can see, these are two distinct code-points (not a
surrogate pair) that, by virtue of their ordering and adjacency,
cause the computer’s Unicode rendering to draw the thumbs-
down symbol but with a darker skin tone than its default. The
computed string length is thus 2.

It would take replicating most of a platform’s complex Uni-
code rendering logic to be able to recognize such clusters of
code-points as a single “character” for length-counting sake.
There are libraries that purport to do so, but they’re not
necessarily perfect, and they come at a hefty cost in terms
of extra code.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 127

NOTE

As a Twitter user, you might expect to be able to
put 280 thumbs-down emojis into a single tweet,
since it looks like a single character. Twitter
counts the "R" (default thumbs-down), the "RR"
(medium-dark-skintone thumbs-down), and even
the "RRRR" (family emoji grapheme cluster) all as
2 characters each, even though their respective
string lengths (from JS’s perspective) are 2, 4,
and 7; thus, you can only fit half the number
of emojis (140 instead of 280) in a tweet. In
fact, Twitter implemented this change in 2018
to specifically level the counting of all Unicode
characters, at 2 characters per symbol. ** That was
a welcomed change for Twitter users, especially
those who want to use emoji characters that
are most representative of intended gender, skin-
tone, etc. Still, it is curious that Twitter chose to
count all Unicode/emoji symbols as 2 characters
each, instead of the more intuitive 1 character
(grapheme) each.

Counting the length of a string to match our human intuitions
is a remarkably challenging task, perhaps more of an art than
a science. We can get acceptable approximations in many
cases, but there’s plenty of other cases that may confound our
programs.

156

New update to the Twitter-Text library: Emoji character count”; Andy Piper; Oct
2018; https://twittercommunity.com/t/new-update-to-the-twitter-text-library-emoji-
character-count/114607 ; Accessed July 2022

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 128

Internationalization (i18n) and
Localization (110n)

To serve the growing need for JS programs to operate as
expected in any international language/culture context, the
ECMAScript committee also publishes the ECMAScript Inter-
nationalization API. *¢

A]S program defaults to a locale/language according to
the environment running the program (web browser page,
Node instance, etc). The in-effect locale affects sorting (and
value comparisons), formatting, and several other assumed
behaviors. Such altered behaviors are perhaps a bit more
obvious with strings, but they can also be seen with numbers
(and dates!).

But string characters also can have language/locale informa-
tion embedded in them, which takes precedence over the envi-
ronment default. If the string character is ambiguous/shared
in terms of its language/locale (such as "a"), the default
environment setting is used.

Depending on the contents of the string, it may be inter-
preted as being ordered from left-to-right (LTR) or right-to-
left (RTL). As such, many of the string methods we’ll cover
later use logical descriptors in their names, like “start”, “end”,
“begin”, “end”, and “last”, rather than directional terms like
“left” and “right”.

For example, Hebrew and Arabic are both common RTL
languages:

'*ECMAScript 2022 Internationalization API Specification; https://402.ecma-interna-
tional.org/9.0/ ; Accessed August 2022

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 129

hebrewHello = "\u{5e9}\u{5dc}\u{5d5}\u{5dd}";

console.log(hebrewHello); // RRRK

Notice that the first listed character in the string literal
("\u{5e9}") is actually the right-most character when the
string is rendered?

Even though Hebrew is an RTL language, you don’t actually
type the characters in the string literal in reversed (RTL) order
the way they should be rendered. You enter the characters in
logical order, where position © is the first character, position 1
is the second character, etc. The rendering layer is where RTL
characters are reversed to be shown in their correct order.

That also means that if you access hebrewHello[0] (or
hebrewHello.charAt(0)) — to get the character as position
0 — you get "R" because that’s logically the first character of
the string, not "R" (logically the last character of the string).
Index-positional access follows the logical position, not the
rendered position.

Here’s the same example in another RTL language, Arabic:

arabicHello = "\u{631}\u{62d}\u{628}\u{627}";
console. log(arabicHello); // REKX

console.log(arabicHello[0]); // B

JS programs can force a specific language/locale, using vari-
ous Intl APIs such as Intl.Collator: 7

7“Int].Collator”, MDN; https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Collator ; Accessed August
2022

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 130

germanStringSorter = new Intl.Collator("de");
listOfGermanWords = [/*x .. */];

germanStringSorter.compare("Hallo","Welt");
// -1 (or negative number)

// examples adapted from MDN:
/]

germanStringSorter.compare("z","z");
// 1 (or positive number)

caseFirstSorter = new Intl.Collator("de",{ caseFirst: "up\

per", 1);
caseFirstSorter.compare("z","z");
// -1 (or negative number)

Multiple-word ~ strings can be segmented using
Intl.Segmenter: '

arabicHelloWorld = "\u{645}\u{631}\u{62d}\u{628}\u{627} \
\u{628F\u{627}\u{644}\u{639}\u{627}\u{644}\u{645}";

console.log(arabicHelloWorld); // RERNK KRXKXKEX

arabicSegmenter = new Intl.Segmenter("ar",{ granularity: \
"word" 1});

for (
let { segment: word, isWordLike } of
arabicSegmenter.segment(arabicHelloWorld)

) 1
if (disWordLike) {

18«

Intl.Segmenter”, MDN; https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Segmenter ; Accessed August
2022

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 131

console.log(word) ;

}
// ERRRER
RRERRE/ /

o NOTE
The segment(..) method (from instances

of Intl.Segmenter) returns a standard JS
iterator, which the for. .of loop here consumes.
More on iteration protocols in the “Sync &
Async” title of this series.

String Comparison

String values can be compared (for both equality and rela-
tional ordering) to other string values, using various built-in
operators. It’s important to keep in mind that such compar-
isons are sensitive to the actual string contents, including es-
pecially the underlying code-points from non-BPM Unicode
characters.

Both equality and relational comparison are case-sensitive,
for any characters where uppercase and lowercase are well-
defined. To make case-insensitive comparisons, normalize the
casing of both values first (with toUpperCase() or toLower-
Case()).

String Equality

The === and == operators (along with their negated counter-
parts !== and !=, respectively) are the most common way

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 132

equality comparisons are made for primitive values, including
string values:

"my name" === "my n\x6lme"; /] true
"my name" !== String.raw my n\x6lme’; // true
The === operator" — often referred to as “strict equality” —

first checks to see if the types match, and if not, returns
false right away. If the types match, then it checks to see
if the values are the same; for strings, this is a per-code-unit
comparison, from start to end.

Despite the “strict” naming, there are nuances to === (such as
-0 and NaN handling), but we’ll cover those later.

Coercive Equality

By contrast, the == operator®® — often referred to as “loose
equality” — performs coercive equality: if the value-types of
the two operands do not match, == first coerces one or both
operands until the value-types do match, and then it hands
off the comparison internally to ===.

Coercion is an extremely important topic - it’s an inherent
part of the JS types system, one of the language’s 3 pillars —
but we’re only going to briefly introduce it here in this chapter,
and revisit it in detail later.

1947216 IsStrictlyEqual(x,y)”, ECMAScript 2022 Language Specification;
https://262.ecma-international.org/13.0/#sec-isstrictlyequal ; Accessed August 2022

20%7.2.15 IsLooselyEqual(x,y)”, ECMAScript 2022 Language Specification;
https://262.ecma-international.org/13.0/#sec-islooselyequal ; Accessed August 2022

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 133

o You may have heard the oft-quoted, but neverthe-

less inaccurate, explanation that the difference
between == and === is that == compares the
values while == compares both the values and the
types. Not true, and you can read the spec your-
self to verify — both isStrictlyEqual(..) and
isLooselyEqual(..) specification algorithms
are linked as footnotes in the preceding para-
graphs. To summarize, though: both == and ===
are aware of and sensitive to the types of the
operands. If the operand types are the same, both
operators do literally the exact same thing; if the
types differ, == forces coercion until the types
match, whereas === returns false immediately.

It’s extremely common for developers to assert that the ==
operator is confusing and too hard to use without surprises
(thus the near universal preference for ===). I think that’s
totally bogus, and in fact, JS developers should be defaulting
to == (and avoiding === if possible). But we need a lot more
discussion to back such a controversial statement; hold onto
your objections until we revisit it later.

For now, to gain some intuition about the coercive nature
of ==, the most illuminating observation is that if the types
don’t match, == prefers numeric comparison. That means it
will attempt to convert both operands to numbers, and then
perform the equality check (the same as ===).

So, as it relates to our present discussion, actual string equality
can only be checked if both operands are already strings:

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 134

// actual string equality check (via === dinternally):
42" == 42" /] true

== does not really perform string equality checks itself. If the
operand value-types are both strings, == just hands off the
comparison to ===. If they’re not both strings, the coercive
steps in == will reduce the comparison matching to numeric
instead of string:

// numeric (not string!) equality check:
42 == "42"; // true

We'll cover numeric equality later in this chapter.

Really Strict Equality

In addition to == and ===, JS provides the Object.is(..)
utility, which returns true if both arguments are exactly
identical, and false otherwise (no exceptions or nuances):

Object.is("42",42); // false
Object.is("42","\x34\x32"); // true

Since === adds a = onto the end of == to make it more strict in
behavior, I kind of half-joke that the Object.is(..) utility
is like a ==== (a fourth = added) operator, for the really-truly-
strict-no-exceptions kind of equality checking!

That said, === (and == by virtue of its internal delegation
to ===) are extremely predictable, with no weird exceptions,
when it comes to comparing two actually-already-string val-
ues. I strongly recommend using == for such checks (or ===),
and reserve Object.is(..) for the corner cases (which are
numeric).

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 135

String Relational Comparisons

In addition to equality checks between strings, JS supports
relational comparisons between primitive values, like strings:
<, <=, >, and >=.

The < (less-than) and > (greater-than) operations compare two
string values lexicographically — like you would sort words in
a dictionary — and should thus be fairly self explanatory:

"hello" < "world"; // true

NOTE

As mentioned earlier, the running JS program
has a default locale, and these operators compare
according to that locale.

Like ==, the < and > operators are numerically coercive. Any
non-number values are coerced to numbers. So the only way
to do a relational comparison with strings is to ensure both
operands are already string values.

Perhaps somewhat surprisingly, the < and > have no strict-
comparison equivalent, the way === avoids the coercion of
==. These operators are always coercive (when the types don’t
match), and there’s no way in JS to avoid that.

So what happens when both values are numeric-looking
strings?

lllooll < llllll; // tl"ue

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 136

Numerically, of course, 100 should not be less than 11.

But relational comparisons between two strings use the lexi-
cographic ordering. So the second "0" character (in "100") is
less than the second "1" (in "11"), and thus "100" would be
sorted in a dictionary before "11". The relational operators
only coerce to numbers if the operand types are not already
strings.

The <= (less-than-or-equal) and >= (greater-than-or-equal)
operators are effectively a shorthand for a compound check.

"hello" <= "hello"; // true
("hello" < "hello") || ("hello" == "hello"); // true
"hello" >= "hello"; // true
("hello™ > "hello") || ("hello" == "hello"); // true

NOTE

Here’s an interesting bit of specification nuance:
JS doesn’t actually define the underlying greater-
than (for >) or greater-than-or-equal (for >=) op-
erations. Instead, it defines them by reversing the
arguments to their less-than complement coun-
terparts. So x > vy is treated by JS essentially as y
<= x, and x >= vy is treated by JS essentially as
y < x.S0]S only needs to specify how < and ==
work, and thus gets > and >= for free!

Locale-Aware Relational Comparisons

AsImentioned a moment ago, the relational operators assume
and use the current in-effect locale. However, it can some-

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 137

times be useful to force a specific locale for comparisons (such
as when sorting a list of strings).

JS provides the method localCompare(..) on]S strings for
this purpose:

"hello".localeCompare("world");
// -1 (or negative number)

"world".localeCompare("hello","en");
// 1 (or positive number)

"hello".localeCompare("hello","en",{ dignorePunctuation:

rue });

/] 0

// examples from MDN:

//

// in German, & sorts before z
"a".localeCompare("z","de");

// -1 (or negative number) // a negative value

// in Swedish, a sorts after z
"a".localeCompare("z","sv");
// 1 (or positive number)

The optional second and third arguments to
localeCompare(..) control which locale to use, via
the Intl.Collator API["INTLCollatorApi], as covered
earlier.

You might use localeCompare(..) when sorting an array of
strings:

You Don’t Know JS Yet: The Unbooks

t\

Chapter 2: Primitive Behaviors (Types & Grammar) 138

studentNames = [
"Lisa",
lle'Lell ,
"Jason"

13

// Array::sort() mutates the array in place
studentNames.sort(function alphabetizeNames(namel,name2){
return namel.localeCompare(name2);

B

studentNames;
/] ["Jason", "Kyle", "Lisa"]

But as discussed earlier, a more straightforward way (and
slightly more performant when sorting many strings) is using
Intl.Collator directly:

studentNames = [
n L-i Sa" ,
lle'Lell ,
"Jason"

15
nameSorter = new Intl.Collator("en");

// Array::sort() mutates the array in place
studentNames.sort(nameSorter.compare);

studentNames;
// ["3Jason", "Kyle'", "Lisa"]

String Concatenation

Two or more string values can be concatenated (combined)
into a new string value, using the + operator:

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 139

greeting = "Hello, " + "Kyle!";

greeting; // Hello, Kyle!

The + operator will act as a string concatenation if either of
the two operands (values on left or right sides of the operator)
are already a string (even an empty string "").

If one operand is a string and the other is not, the one that’s
not a string will be coerced to its string representation for the
purposes of the concatenation:

userCount = 7;
status = "There are " + userCount + " users online";

status; // There are 7 users online

String concatenation of this sort is essentially interpolation
of data into the string, which is the main purpose of template
literals (see Chapter 1). So the following code will have the
same outcome but is generally considered to be the more
preferred approach:

userCount = 7;
status = ‘There are ${userCount} users online’;

status; // There are 7 users online

Other options for string concatenation include
"one".concat("two","three") and ["one", "two",
"three"].join(""), but these kinds of approaches are
only preferable when the number of strings to concatenate is

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 140

dependent on runtime conditions/computation. If the string
has a fixed/known set of content, as above, template literals
are the better option.

String Value Methods

String values provide a whole slew of additional string-spe-
cific methods (as properties):

« charAt(..):produces a new string value at the numeric
index, similar to [..]; unlike [..], the result is
always a string, either the character at position 0 (if a
valid number outside the indices range), or the empty
string "" (if missing/invalid index)

« at(..) is similar to charAt(..), but negative indices
count backwards from the end of the string

« charCodeAt(..): returns the numeric code-unit (see
“JS Character Encodings” in Chapter 1) at the specified
index

 codePointAt(..): returns the whole code-point start-
ing at the specified index; if a surrogate pair is found
there, the whole character (code-point) s returned

« substr(..) / substring(..) / slice(..): produces
a new string value that represents a range of characters
from the original string; these differ in how the range’s
start/end indices are specified or determined

« toUpperCase(): produces a new string value that’s all
uppercase characters

 toLowerCase(): produces a new string value that’s all
lowercase characters

» toLocaleUpperCase() / toLocalelLowerCase(): uses
locale mappings for uppercase or lowercase operations

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 141

« concat(..): produces a new string value that’s the
concatenation of the original string and all of the string
value arguments passed in

 indexOf(..): searches for a string value argument in
the original string, optionally starting from the position
specified in the second argument; returns the 0-based
index position if found, or -1 if not found

e lastIndex0f(..):like index0f(..) but, from the end
of the string (right in LTR locales, left in RTL locales)

e includes(..): similar to index0f(..) but returns a
boolean result

« search(..):similarto index0f(..) but with a regular-
expression matching as specified

e trimStart() / trimend() / trim(): produces a new
string value with whitespace trimmed from the start of
the string (left in LTR locales, right in RTL locales), or
the end of the string (right in LTR locales, left in RTL
locales), or both

« repeat(..): produces a new string with the original
string value repeated the specified number of times

« split(..): produces an array of string values as split
at the specified string or regular-expression boundaries

« padStart(..) / padEnd(..): produces a new string
value with padding (default “ “ whitespace, but can be
overridden) applied to either the start (left in LTR locales,
right in RTL locales) or the end (right in LTR locales), left
in RTL locales), so that the final string result is at least
of a specified length

e startsWith(..) / endsWith(..): checks either the
start (left in LTR locales, right in RTL locales) or the end
(right in LTR locales) of the original string for the string
value argument; returns a boolean result

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 142

« match(..) /matchAll(..): returns an array-like regu-
lar-expression matching result against the original string

« replace(..): returns a new string with a replacement
from the original string, of one or more matching occur-
rences of the specified regular-expression match

« normalize(..): produces a new string with Unicode
normalization (see “Unicode Normalization” in Chapter
1) having been performed on the contents

+ localCompare(..):function that compares two strings
according to the current locale (useful for sorting); re-
turns a negative number (usually -1 but not guaranteed)
if the original string value is comes before the argument
string value lexicographically, a positive number (usu-
ally 1 but not guaranteed) if the original string value
comes after the argument string value lexicographically,
and o if the two strings are identical

» anchor (), big(), blink(), bold(), fixed(), font-
color (), fontsize(), italics(), link(), small(),
strike(), sub(), and sup(): historically, these were
useful in generating HTML string snippets; they’re now
deprecated and should be avoided

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 143

WARNING

Many of the methods described above rely on
position indices. As mentioned earlier in the
“Length Computation” section, these positions
are dependent on the internal contents of the
string value, which means that if an extended
Unicode character is present and takes up two
code-unit slots, that will count as two index posi-
tions instead of one. Failing to account for decom-
posed code-units, surrogate pairs, and grapheme
cluseters is a common source of bugs in JS string
handling.

These string methods can all be called directly on a literal
value, or on a variable/property that’s holding a string value.
When applicable, they produce a new string value rather
than modifying the existing string value (since strings are
immutable):

"all these letters".toUpperCase(); // ALL THESE LETT\
ERS

greeting = "Hello!";
greeting.repeat(2); // Hello!Hello!
greeting; // Hello!

Static string Helpers

The following string utility functions are provided directly
on the String object, rather than as methods on individual
string values:

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 144

o String.fromCharCode(..)/String.fromCodePoint(..):
produce a string from one or more arguments
representing the code-units (fromCharcCode(..))
or whole code-points (fromCodePoint(..))

« String.raw(..): a default template-tag function that
allows interpolation on a template literal but prevents
character escape sequences from being parsed, so they
remain in their raw individual input characters from the
literal

Moreover, most values (especially primitives) can be explicitly
coerced to their string equivalent by passing them to the
String(..) function (no new keyword). For example:

String(true); // "true"
String(42); /] 42"
String(Infinity); // "Infinity"
String(undefined) ; // "undefined"

We'll cover much more detail about such type coercions in a
later chapter.

Number Behaviors

Numbers are used for a variety of tasks in our programs, but
mostly for mathematical computations. Pay close attention
to how JS numbers behave, to ensure the outcomes are as
expected.

Floating Point Imprecision

We need to revisit our discussion of IEEE-754 from Chapter 1.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 145

One of the classic gotchas of any IEEE-754 number system in
any programming language — NOT UNIQUELY JS! - is that
not all operations and values can fit neatly into the IEEE-754
representations.

The most common illustration is:

point3a = 0.1 + 0.2;
point3b = 0.3;

point3a; // 0.30000000000000004
point3b; // 0.3
point3a === point3b; // false <-- oops!

The operation 0.1 + 0.2 ends up creating floating-
point error (drift), where the value stored is actually
0.30000000000000004.

The respective bit representations are:

// ©.30000000000000004
00111111110100110011001100110011
00110011001100110011001100110100

// 0.3
001111111101001100110011060110011
001100110011001100110011060110011

If you look closely at those bit patterns, only the last 2 bits
differ, from 00 to 11. But that’s enough for those two numbers
to be unequal!

Again, just to reinforce: this behavior is NOT IN ANY WAY
unique to JS. This is exactly how any IEEE-754 conforming
programming language will work in the same scenario. As

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 146

I asserted above, the majority of all programming languages
use IEEE-754, and thus they will all suffer this same fate.

The temptation to make fun of JSfor0.1 + 0.2 !== 0.31is
strong, I know. But here it’s completely bogus.

o Pretty much all programmers need to be aware

of IEEE-754 and make sure they are careful about
these kinds of gotchas. It’s somewhat amazing, in
a disappointing way, how few of them have any
idea how IEEE-754 works. If you’ve taken your
time reading and understanding these concepts
so far, you’re now in that rare tiny percentage
who actually put in the effort to understand the
numbers in their programs!

Epsilon Threshold

A common piece of advice to work around such floating-point
imprecision uses this very small number value defined by JS:

Number .EPSILON; // 2.220446049250313e-16

Epsilon is the smallest difference JS can represent between
1 and the next value greater than 1. While this value is
technically implementation/platform dependent, it’s gener-
ally about 2.2E-16, or 27-52.

To those not paying close enough attention to the details
here — including my past self! - it’s generally assumed that
any skew in floating point precision from a single operation
should never be greater than Number.EPSILON. Thus, in

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 147

theory, we can use Number . EPSILON as a very small tolerance
value to ensure number equality comparisons are safe:

function safeNumberEquals(a,b) {
return Math.abs(a - b) < Number.EPSILON;

point3a = 0.1 + 0.2}
point3b = 0.3;

// are these safely "equal"?
safeNumberEquals(point3a,point3b); // true

WARNING:

In the first edition “Types & Grammar” book, I
indeed recommended exactly this approach. I was
wrong. I should have researched the topic more
closely.

But, it turns out, this approach isn’t safe at all:

point3a = 10.1 + 0.2;
point3b = 10.3;

safeNumberEquals (point3a,point3b); // false :(

Well... that’s a bummer!

Unfortunately, Number.EPSILON only works as a “safely
equal” error threshold for certain small numbers/operations,
and in other cases, it’s far too small, and yields false negatives.

You could scale Number . EPSILON by some factor to produce a
larger threshold that avoids false negatives but still filters out
all the floating point skew in your program. But what factor

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 148

to use is entirely a manual judgement call based on what
magnitude of values, and operations on them, your program
will entail. There’s no automatic way to compute a reliable,
universal threshold.

Unless you really know what you’re doing, you should just
not use this Number .EPSILON threshold approach at all.

p TIP
If you’d like to read more details and solid advice

on this topic, I highly recommend reading this
post. ** But if we can’t use Number.EPSILON to
avoid the perils of floating-point skew, what do
we do? If you can avoid floating-point altogether
by scaling all your numbers up so they’re all
whole number integers (or bigints) while per-
forming math, do so. Only deal with decimal
values when you have to output/represent a final
value after all the math is done. If that’s not
possible/practical, use an arbitrary precision dec-
imal emulation library and avoid number values
entirely. Or do your math in another external
programming environment that’s not based on
IEEE-754.

Numeric Comparison

Like strings, number values can be compared (for both equal-
ity and relational ordering) using the same operators.

*“PLEASE don’t follow the code recipe in the accepted answer”, Stack Overflow;
Daniel Scott; July 2019; https://stackoverflow.com/a/56967003/228852 ; Accessed August
2022

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 149

Remember that no matter what form the number value takes
when being specified as a literal (base-10, octal, hexadecimal,
exponential, etc), the underlying value stored is what will be
compared. Also keep in mind the floating point imprecision
issues discussed in the previous section, as the comparisons
will be sensitive to the exact binary contents.

Numeric Equality

Just like strings, equality comparisons for numbers use either

the == / === operators or Object.is(..). Also recall that
if the types of both operands are the same, == performs
identically to ===.

42 == 42; // true

42 === 42; // true

42 == 43; // false

42 === 43; /] false
Object.is(42,42); // true

Object.is(42,43); // false

For == coercive equality (when the operand types don’t
match), if either operand is not a string value, == prefers a

numeric equality check (meaning both operands are coerced
to numbers).

// numeric (not string!) comparison
42 == "42"; /] true

In this snippet, the coercive equality coerces "42" to 42, not
vice versa (42 to "42"). Once both types are number, then

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 150

their values are compared for exact equality, the same as ===
would.

Recall that JS doesn’t distinguish between values like 42,
42.0, and 42.000000; under the covers, they’re all the same.
Unsurpisingly, the == and === equality checks verify that:

42 == 42.0; // true
42.0 == 42.00000; // true
42.00 === 42.000; // true

The intuition you likely have is, if two numbers are literally
the same, they’re equal. And that’s how JS interprets it. But
0.3 is not literally the same as the result of 0.1 + 0.2,
because (as we saw earlier), the latter produces an underlying
value that’s very close to 0.3, but is not exactly identical.

What’s interesting is, the two values are so close that their
difference is less than the Number.EPSILON threshold, so JS
can’t actually represent that difference accurately.

You might then think, at least informally, that such JS num-
bers should be “equal”, since the difference between them is
too small to represent. But notice: JS can represent that there
is a difference, which is why you see that 4 at the very end
of the decimal when JS evaluates 0.1 + 0.2. And you could
type out the number literal 0.00000000000000004 (aka, 4e-
17), being that difference between 0.3 and 0.1 + 0.2.

What JS cannot do, with its IEEE-754 floating point numbers,
is represent a number that small in an accurate enough way
that operations on it produce expected results. It’s too small
to be fully and properly represented in the number type JS
provides.

So 0.1 + 0.2 == 0.3 resolves to false, because there’s
a difference between the two values, even though JS can’t

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 151

accurately represent or do anything with a value as small as
that difference.

Also like we saw with strings, the ! = (coercive not-equal) and
| == (strict-not-equal) operators work with numbers. x != vy
is basically ! (x == y), and x !== vy is basically ! (x ===
y).

There are two frustrating exceptions in numeric equality
(whether you use == or ===):

NaN === NaN; // false -- ugh!
-0 === 0; // true -- ugh!

NaN is never equal to itself (even with ===), and -0 is always
equal to 0 (even with ===). It sometimes surprises folks that
even === has these two exceptions in it.

However, the Object.is(..) equality check has neither of
these exceptions, so for equality comparisons with NaN and
-0, avoid the == / === operators and use Object.is(..) —or
for NaN specifically, Number.isNaN(..).

Numeric Relational Comparisons

Just like with string values, the JS relational operators (<, <=,
>, and >=) operate with numbers. The < (less-than) and >
(greater-than) operations should be fairly self explanatory:

41 < 42; // true

0.1 + 0.2 > 0.3; // true (ugh, IEEE-754)

Remember: just like ==, the < and > operators are also coercive,
meaning that any non-number values are coerced to numbers

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 152

— unless both operands are already strings, as we saw earlier.
There are no strict relational comparison operators.

If you’re doing relational comparisons between numbers, the
only way to avoid coercion is to ensure that the comparisons
always have two numbers. Otherwise, these operators will do
coercive relational comparisons similar to how == performs
coercive equality comparisons.

Mathematical Operators

Aslasserted earlier, the main reason to have numbers in a pro-
gramming language is to perform mathematical operations
with them. So let’s talk about how we do so.

The basic arithmetic operators are + (addition), - (subtrac-
tion), * (multiplication), and / (division). Also available are
the operators *x (exponentiation) and % (modulo, aka division
remainder). There are also +=, -=, =, /=, xx=, and %= forms
of the operators, which additionally assign the result back to
the left operand — must be a valid assignment target like a
variable or property.

e NOTE
As we’ve already seen, the + operator is over-

loaded to work with both numbers and strings.
When one or both operands is a string, the re-
sult is a string concatenation (including coercing
either operand to a string if necessary). But if
neither operand is a string, the result is a numeric
addition, as expected.

All these mathematical operators are binary, meaning they
expect two value operands, one on either side of the operator;

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 153

they all expect the operands to be number values. If either or
both operands are non-numbers, the non-number operand(s)
is/are coerced to numbers to perform the operation. We’'ll
cover coercion in detail in a later chapter.

Consider:

40 + 2; /] 42

44 - 2; /] 42

21 * 2; /] 42

84 /[2; /] 42

7 ox% 2 /] 49

49 % 2; /] 1

40 + "2"; // "402" (string concatenation)

44 — """, // 42 (because "2" 1ds coerced to \
2)

21 % "2", // 42 (..ditto..)

84 [2", // 42 (..ditto..)

N7 k% MM // 49 (both operands are coerced \
to numbers)

n4gm g moms // 1 (..ditto..)

The + and - operators also come in a unary form, meaning
they only have one operand; again, the operand is expected
to be a number, and coerced to a number if not:

+42; /] 42
-42; /] -42
+1421; /] 42
_||42l|; // _42

You might have noticed that -42 looks like it’s just a “negative
forty-two” numeric literal. That’s not quite right. A nuance of

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 154

JS syntax is that it doesn’t recognize negative numeric literals.
Instead, JS treats this as a positive numeric literal 42 that’s
preceded, and negated, by the unary - operator in front of it.

Somewhat surprisingly, then:

-42; /] —42
- 423 /] —42
42; /] —42

As you can see, whitespace (and even new lines) are allowed
between the - unary operator and its operand; actually, this
is true of all operators and operands.

Increment and Decrement

There are two other unary numeric operators: ++ (increment)
and -- decrement. They both perform their respective opera-
tion and then reassign the result to the operand — must be a
valid assignment target like a variable or property.

You may sort of think of ++ as equivalent to += 1, and -- as
equivalent to -= 1:

myAge = 42;

myAge++;
myAge; // 43

numberOfHeadHairs--;

However, these are special operators in that they can appear
in a postfix (after the operand) position, as above, or in a prefix
(before the operand) position:

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 155

myAge = 42;

+tmyAge;
myAge; // 43

-—-numberofHeadHa1irs;

It may seem peculiar that prefix and postfix positions seem to
give the same result (incrementing or decrementing) in such
examples. The difference is subtle, and isn’t related to the final
reassigned result. We’ll revisit these particular operators in a
later chapter to dig into the positional differences.

Bitwise Operators

JS provides several bitwise operators to perform bit-level
operations on number values.

However, these bit operations are not performed against
the packed bit-pattern of IEEE-754 numbers (see Chapter 1).
Instead, the operand number is first converted to a 32-bit
signed integer, the bit operation is performed, and then the
result is converted back into an IEEE-754 number.

Keep in mind, just like any other primitive operators, these
just compute new values, not actually modifying a value in
place.

« & (bitwise AND): Performs an AND operation with
each corresponding bit from the two operands; 42 & 36
=== 32 (i.e., 0b00...101010 & 0bOO...100100 ===
0b00..100000)

« | (bitwise OR): Performs an OR operation with each
corresponding bit from the two operands; 42 | 36

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 156

=== 46 (i.e., 0b00O...101010 | 0bOO...100100 ===
0b00...101110)

A (bitwise XOR): Performs an XOR (eXclusive-OR)
operation with each corresponding bit from the two

operands; 42 A 36 === 14 (i.e., 0b00...101010 A
0b00...100100 === 0b0O...001110)

~ (bitwise NOT): Performs a NOT operation against
the bits of a single operand; ~42 === -43 (ie,
~0b00...101010 === Obll...010101); using 2’s

complement, the signed integer has the first bit set
to 1 meaning negative, and the rest of the bits (when
tlipped back, according to 2’s complement, which is 1’s
complement bit flipping and then adding 1) would be
43 (0b10...101011); the equivalent of ~ in decimal
number arithmetic is ~x === -(x + 1), SO ~42 ===
-43

<< (left shift): Performs a left-shift of the bits of the
left operand by the count of bits specified by the right
operand; 42 << 3 == 336 (i.e.,, 0b00...101010 << 3
=== 0b00...101010000)

>> (right shift): Performs a sign-propagating right-shift
of the bits of the left operand by the count of bits speci-
tied by the right operand, discarding the bits that fall off
the right side; whatever the leftmost bit is (0, or 1 is neg-
ative) is copied in as bits on the left (thereby preserving
the sign of the original value in the result); 42 >> 3 ===
5 (i.e.,, 0b00..101010 >> 3 === 0b0O...000101)
>>> (zero-fill right shift, aka unsigned right shift):
Performs the same right-shift as >>, but o fills on the
bits shifted in from the left side instead of copying the
leftmost bit (thereby ignoring the sign of the original
value in the result); 42 >>> 3 === 5 but -43 >>>
3 === 536870906 (i.e., Obll...010101 >>> 3 ===

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 157

0b00O1...111010)

¢ &=, |=, <<=, >>=, and >>>= (bitwise operators with
assignment): Performs the corresponding bitwise oper-
ation, but then assigns the result to the left operand
(which must be a valid assignment target, like a variable
or property, not just a literal value); note that ~= is
missing from the list, because there is no such “binary
negate with assignment” operator

In all honesty, bitwise operations are not very common in JS.
But you may sometimes see a statement like:

myGPA = 3.54;

myGPA | 0 // 3

Since the bitwise operators act only on 32-bit integers, the
| © operation truncates (i.e., Math.trunc(..)) any decimal
value, leaving only the integer.

WARNING

A common misconception is that | 0 is like floor
(i.e., Math.floor(..)). The result of | © agrees
with Math. floor(..) on positive numbers, but
differs on negative numbers, because by stan-
dard definition, floor is an operation that rounds-
down towards -Infinity. | © merely discards
the decimal bits, which is in fact truncation.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 158

Number Value Methods

Number values provide the following methods (as properties)
for number-specific operations:

+ toExponential(..): produces a string representation
of the number using scientific notation (e.g., "4.2e+1")

« toFixed(..): produces a non-scientific-notation string
representation of the number with the specified number
of decimal places (rounding or zero-padding as neces-
sary)

 toPrecision(..): like toFixed(..), except it applies
the numeric argument as the number of significant digits
(i.e., precision) including both the whole number and
decimal places if any

+ toLocaleString(..):produces a string representation
of the number according to the current locale

myAge = 42;

myAge.toExponential(3); // "4.200e+1"

One particular nuance of JS syntax is that . can be ambigu-
ous when dealing with number literals and property/method
access.

If a . comes immediately (no whitespace) after a numeric
literal digit, and there’s not already a . decimal in the number
value, the . is assumed to be a starting the decimal portion
of the number. But if the position of the . is unambiguously
not part of the numeric literal, then it’s always treated as a
property access.

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 159

42 .toExponential(3); /] "4.200e+1"

Here, the whitespace disambiguates the ., designating it as a
property/method access. It’s perhaps more common/preferred
to use (..) instead of whitespace for such disambiguation:

(42) .toExponential(3); // "4.200e+1"

An unusual-looking effect of this JS parsing grammar rule:

42..toExponential(3); /] "4.200e+1"

So called the “double-dot” idiom, the first . in this expression
is a decimal, and thus the second . is unambiguously not a
decimal, but rather a property/method access.

Also, notice there’s no digits after the first .; it’s perfectly legal
syntax to leave a trailing . on a numeric literal:

myAge = 41. + 1.;

myAge; /] 42

Values of bigint type cannot have decimals, so the parsing
is unambiguous that a . after a literal (with the trailing n) is

always a property access:

42n.toString(); /] 42

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 160

Static Nnumber Properties

« Number.EPSILON: The smallest value possible between
1 and the next highest number

« Number.NaN: The same as the global NaN symbol, the
special invalid number

o Number .MIN_SAFE_INTEGER / Number.MAX_SAFE_-
INTEGER: The positive and negative integers with the
largest absolute value (furthest from 0)

e Number .MIN_VALUE / Number.MAX_VALUE: The mini-
mum (positive value closest to 0) and the maximum
(positive value furthest from 0) representable by the
number type

o Number .NEGATIVE_INFINITY /Number .POSITIVE_IN-
FINITY: Same as global -Infinity and Infinity, the
values that represent the largest (non-finite) values fur-
thest from 0

Static number Helpers

 Number.isFinite(..): returns a boolean indicating if
the value is finite — a number that’s not NaN, nor one of
the two infinities

« Number.isInteger(..)/Number.isSafeInteger(..):
both return booleans indicating if the value is a whole
number with no decimal places, and if it’s within the
safe range for integers (-2453 + 1-2A53 - 1)

 Number.isNaN(..): The bug-fixed version of the global
isNaN(..) utility, which identifies if the argument
provided is the special NaN value

e Number.parseFloat(..) / Number.parseInt(..):
utilities to parse string values for numeric digits, left-to-

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 161

right, until the end of the string or the first non-float
(or non-integer) character is encountered

Static math Namespace

Since the main usage of number values is for performing
mathematical operations, JS includes many standard mathe-
matical constants and operation utilities on the Math names-
pace.

There’s a bunch of these, so I'll omit listing every single one.
But here’s a few for illustration purposes:

Math.PI; // 3.141592653589793

// absolute value
Math.abs(-32.6); // 32.6

// rounding
Math.round(-32.6); // -33

// min/max selection
Math.min(100,Math.max(0,42)); /] 42

Unlike Number, which is also the Number (..) function (for
number coercion), Math is just an object that holds these
properties and static function utilities; it cannot be called as a
function.

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 162

WARNING

One peculiar member of the Math namespace is
Math.random(), for producing a random float-
ing point value between 0 and 1.0. It’s unusual
to consider random number generation — a task
that’s inherently stateful/side-effect’ing — as a
mathematical operation. It’s also long been a foot-
gun security-wise, as the pseudo-random number
generator (PRNG) that JS uses is not secure (can
be predicted) from a cryptography perspective.
The web platform stepped in several years ago
with the safer crypto.getRandomvValues(..)
API (based on a better PRNG), which fills a typed-
array with random bits that can be interpreted as
one or more integers (of type-specified maximum
magnitude). Using Math. random() is universally
discouraged now.

Bigints and Numbers Don’t Mix

As we covered in Chapter 1, values of number type and
bigint type cannot mix in the same operations. That can trip
you up even if you're doing a simple increment of the value
(like in a loop):

You Don’t Know]S Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 163

myAge = 42n;

myAge + 1; // TypeError thrown!
myAge += 1; // TypeError thrown!
myAge + 1n; // 43n

myAge += 1n; // 43n

myAge++;

myAge; // 44n

As such, if you're using both number and bigint values in
your programs, you'll need to manually coerce one value-type
to the other somewhat regularly. The BigInt(..) function
(no new keyword) can coerce a number value to bigint. Vice
versa, to go the other direction from bigint to number, use
the Number (. .) function (again, no new keyword):

BigInt(42); // 42n
Number (42n); /] 42

Keep in mind though: coercing between these types has some
risk:

BigInt(4.2); // RangeError thrown!
BigInt(NaN) ; // RangeError thrown!
BigInt(Infinity); // RangeError thrown!
Number (2n *x 1024n); // Infinity

Primitives Are Foundational

Over the last two chapters, we’ve dug deep into how primitive
values behave in JS. I bet more than a few readers were, like

You Don’t Know JS Yet: The Unbooks

Chapter 2: Primitive Behaviors (Types & Grammar) 164

me, ready to skip over these topics. But now, hopefully, you
see the importance of understanding these concepts.

The story doesn’t end here, though. Far from it! In the next
chapter, we’ll turn our attention to understanding JS’s object
types (objects, arrays, etc).

You Don’t Know]S Yet: The Unbooks

Sync & Async
(Unbook 5)

Chapter 1: Lost Book (Sync & Async) 166

Chapter 1: Lost Book
(Sync & Async)

The biggest question a reader may be wondering is: what
happened to this book? Why did it get canceled or never fully
written?

I’ll just address that head on:

I decided to cancel writing this book (in full, at least) due to
the significant shifts in the frontend development industry,
and developers becoming heavily reliant on frameworks for
nearly all applications.

The Plan

The goal of this book series has been to uncover and distill the
core parts of the JS language, and any patterns built directly
on top of those mechanisms, for managing different tasks in
the application and data lifecycle. In the first edition of this
book (“Async & Performance”), we talked extensively about
how the (new, at the time) generators feature provided a ca-
pable meta-programming layer to approximate the (proposed,
at the time) “async await” pattern for synchronous-looking
asynchronous flow control.

In the ensuing years since that book was written,
async..await landed as a feature in JS, and has now
become the de facto standard for how developers manage

You Don’t Know]S Yet: The Unbooks

Chapter 1: Lost Book (Sync & Async) 167

flow control with promises over their asynchronous tasks (as
opposed to promise chains).

Certainly, this second edition book would have re-visited
generators. But we no longer need them to approximate
async..await, so we could have focused on different reasons
for generators to be useful — and indeed, there are many
powerful uses of them.

Moreover, we now have “async generators” in JS, which are
like mashing up both the generator-iterator protocol and the
async-await protocol into a single function type, which let’s
us produce, essentially, streams of asynchronous data.

This book was planning to cover all the (exciting, to me!) syn-
chronous and asynchronous iteration and data management
patterns that flow from such mechanisms. I also planned to
cover observables (which have recently landed in the browser,
not as part of the JS specification but part of the web platform),
and even signals (which are progressing, at time of writing,
towards inclusion in JS).

So... with all those good and meaty details, you may even
more be wondering, why didn’t this book warrant being
written?

The Reality

Unfortunately, the majority of you will never actually do
much with any of these mechanisms, at least not at the level
of interacting with them as JS features. That’s because the
frameworks you use for your applications all have their own
flavor and style of abstractions they present you, for your
code to utilize.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Lost Book (Sync & Async) 168

One of the greatest frustrations I used to encounter when
teaching about core JS topics was essentially, “this pattern is
great, but how can I use it in React?” And the horrible answer
I usually had to give was: “You don’t””

The only people who really are going to use these low level
direct JS features? Framework (and library) authors. Anyone
else using their tools? They will use whatever abstractions
those tools provide. To some extent, that was always true of
JS. But it’s so much more true today in 2025 (time of writing)
than it was when I first started these JS books (1st edition)
way back in 2014.

And as if that isn’t enough of a barrier, the advent of Al has
even more accelerated the trend. More and more developers
are using code that is partially or mostly generated by Al, and
those LLMs are almost always going to spit out code that’s
centered around the popular libraries and frameworks.

So bottom line: I don’t want to write a whole book where the
only real audience of the material are the relatively few folks
who make the frameworks and libraries, but where the vast
majority of folks will be frustrated that they can’t really make
practical use of what they read about.

I think such a book would really be disingenuous and wasteful
of readers’ time. I care far too much about you, dear reader,
than to subject you to that.

That said...

I do however feel like there’s a little more juice we could
squeeze out of this. So... in the next chapter, 'm going to
briefly cover some of these topics, mostly just as quick glances,
perhaps piquing curiosity and sparking ideas for readers.

You Don’t Know]S Yet: The Unbooks

Chapter 1: Lost Book (Sync & Async) 169

Just so you're aware, this book, this content you’re presently
reading, is not found anywhere else publicly, online. It’s
exclusive, right here!

You Don’t Know JS Yet: The Unbooks

Second Edition
Thank Yous

The following 371 Kickstarter backers generously backed the
campaign to write/publish the four remaining books of the
second edition. Without their faithful and patient support,
these books would not have happened.

I am deeply grateful to each of you!

Marc at Frontend Masters, Bassim, Tasos Tsournos,
Lauren Clark, Simon, Appgrader, Marcos S., Noah
Rodenbeek, Lichtjaeger, Jon Miller, Anil, Greg
Gerard, Frank Deberle, Davide Bonifacio, Brandon
Leichty, Rowdy Rabouw, Gaspar Radu, Sukumar
Vaddi, Gordon, jakecodes, Leo Furze-Waddock,
Nick de Jong, D. Vinci, Brian Vogel, Gareth loot,
Simon Taylor, Chris O’Brien, Nayana Davis,
Mark Kramer, Sunil Samuel, @nestor.j.g, Ryan
McDaniel, Mert Even, Haim Yulzari, Josh Marks,
Chiril Sarajiu, Barnabas Jovanovics, LynchyC,
Yahya Jideh, Chris Weber, Dan Cortes, Johnny
Tordgeman, Ky Lee, Brian Wisti, Steven Marrocco,
Thomas Randolph, Petri Lindholm, John Cole,

github, @denysmarkov, Jacob Scherber, Pierre-
Yves Lebrun, mcekiera, Matthew Wasbrough,
Génicot Jean-Baptiste, Adam Zajac, Lenny
Erlesand, Samuel Gustafsson, Hunter Jansen,
Theo Armour, Nate Hargitt, Anon, Github repo,
cawel, mpelikan, @farisaziz12, Ojars, Camilo
Segura, Sean Seagren, Michael Vendivel, Evan,
Eric Schwertfeger, Gene Garbutt, Elena Rogleva,
Fiona Cheung, Anton Levholm, Lorenzo Bersano,
Ando NARY, Ruben Krbashyan, Anonymous
please, @jcubic, Bhavin Dave, A. Hitchcock,
HornOchse, Yaniv Wainer, Zach, Raul Pineda,
Rohan Gupta, Karthik, Kapil, Ricardo Trejos,
InvisibleLuis, BruceRobertson, Neil Lupton, Chris
Schweda, Luca Mezzalira, antonio molinari,
David Pinezich, Jon Barson, Nick Kaufmann,
Just Andrew, Rock Kayode Winner, @omari12,
Page Han, Aurélien Bottazini, Michael, Petr
Siegl, Ilya Sarantsev, Alfredo Delgado, aharvard,
Jannaee, Aaron McBride, Toma, epmatsw, Igor
“kibertoad” Savin, Christian Rackerseder, NC
Patro, Kevin, Brian Holt, Brian Ashenfelter,
Selina Chang, cwavedave, Alex Grant, Craig
Robertson, Eduardo Sanz Martin, oieduardorabelo,
Esteban Massuh, tedhexaflow, Gershon
Gerchikov, Harika Yedidi, Brad Dougherty,
Nitin, Leo Balter, Syed Ahmad, Kaz de Groot,
Pinnemouche Studio, Jerome Amos, Dan Poynor,
John Liu, @thedavefulton, Madeline Bernard,
Ikigai42, Antonio Chillaron, Sachin, Prakasam
Venkatachalam, jmarti705, Mihailo23, Mihailo
Pantovic, Magloire, samrudh, Mykenzie Rogers,
Len, Lyza Danger Gardner, Ryan, Roman, Radojica

171

You Don’t Know]S Yet: The Unbooks

Radivojevic, Gabrien Symons, Ryan Parker,
Andrés, Merlin, rushabh_badani, notacouch, Anna
Borja, Steve Albers, Marc at Frontend Masters,
Bala Vemula, @chrismcdonald84, stern9, Janne
Hellsten, Alexandre Madurell, Tanner Hodges, Joe
Chellman, Joachim Kliemann, Stefano Frasson
Pianizzola, Sergey Kochergan, Spiridonov Dmitriy,
IonutBihari, Alexandru Olteanu, Javi, Marlee
Peters, @vadocondes1, Gerardo Leal, Albert
Sebastian, Atish Raina, Andreas Gebhardt, David
Deren, Maksym Gerashchenko, Alexandru, Matt
Peck, William Lacroix, Pavlo, Jon, Brett Walker,
losif Psychas, Ferran Buireu, crs1138, Emiliano
anichini, Max Koretskyi, Sander Elias, Michael
Romanov, Barkdczi David, Daw-Chih Liou, Dale
Caffull, Amanda Dillon, Mike, Justin Hefko,
Muhammad Ali Shah, Ketan Srivastav, redeemefy,
Stefan Trivun¢i¢, Manuel Juan Fosela Aguila,
Dragan Majstorovi¢, Harsha C G, Himanshu, Luke,
Sai Ponnada, Mark Franco, David Whittaker, Dr.
Teresa Vasquez, lan Wright, Lora Rusinouskaya,
Petar, Harish, Mairead, shimon simo moyal,
Sunny Puri, Makcum Kouanos, Alex Georoceanu,
Nicolas Carreras, damijanc, zach.dev, Coati, Brian
Whitton, Denis Ciccale, Piotr Seefeld, Chase
Hagwood, Amritha K, Kootag Mnvaidng, Trey
Aughenbaugh, J David Eisenberg, Paul Thaden,
Corina S, Chris Dhanaraj, Nahid Hossain, Justin
McCullough, Arseny, Mark Trostler, Lucy Barker,
Maaz Syed Adeeb, mcginkel, Derick Rodriguez,
Helen Tsui, Rus Ustyugov, Vassilis Mastorostergios,
Ryan Ewing, Rob Huelga, jinujj, ultimateoverload,
Chaos, Andy Howell (spacebeers), Archana,

172

You Don’t Know]S Yet: The Unbooks

AG Grid, theblang, Coyotiv School of Software
Engineering, Ayush Rajniwal, Manish Bhatt, Shea
Leslein, Jordan Chipman, jg0x42, Arvind Kumar,
Eduardo Grigolo, Peter Svegrup, Jakub Kotula,
William Richardson, Jonah and Ali, nicciwill,
Lauren Hodges, Travis Sauer, Alexandros,
Abhas, Kirankumar Ambati, Gopalakrishnan,
Mika Rehman, Sreeram Sama, Shubhamsatyam
Verma, Heejae Chang, Andrico karoulla, Niek
Heezemans, Stanislav Horacek, Luis Ibanbhi,
Jasmine Wang, Yunier, Brian Barrow, Matteo
Hertel, Aleksandar Milicevic, achung89, kushavi,
Ahmed Fouad, Venkat Kaluva, Ian Wotkun,
Andreas Nasman, ivan-siachoque, Paul Gain,
Santhosh R, Gustavo Morales, ScottAwseome,
Fredrik Thorkildsen, Manvel, holleB, James
Sullivan, Adam KaZmierczak, carlottosson, Alvee,
Alex Reardon, Olie Chan, Fredrik S, Brett.Buskirk,
Rui Sereno, Nathan Strong, lostdesign, ppseprus,
James, anthonybsd, Alena Charnova, Kevin
K, @codingthirty, Tim Davis, Jonathan Yee,
Christa, Fabian Merchan, Nathanael McDaniel,
Dave N, Brian Chirgwin, Abdulrahman (Abdu)
Assabri, rmeja, Jan Vaclavek, Phillip Hogan,
Adhithya Rajagopalan (xadhix), Jason Humphrey,
Antoinette Smith, Elliot Redhead, zokocx, John
Sims, Michalis Garganourakis, Adarsh Konchady,
Anton Oleg Dobrovolskyy, George Tharakan, syd,
Ryan D., Iris Nathan, Srishti Gupta, Miguel Rivero,
@saileshraghavan, Yojan, @bgollum, Junyts, Like
Ezugworie, Vsh13, LocalPCGuy, DMGabriel, Juan
Tincho, William Greenlaw, atisbacsi, cris ryan tan,
Jonathan Clifron, Daniel Dolich, Praj, Caisman,

173

You Don’t Know]S Yet: The Unbooks

174

Michatl, Mark C, 3xpedia
A special thanks to:

« A. Hitchcock

« Alexandru

« Appgrader

« Coyotiv School of Software Engineering
« Gaspar Radu

« JTonutBihari
 jmarti705

« John Liu

« Syed Ahmad

» Travis Sauer

« William Greenlaw

All of you are fantastic!

You Don’t Know]S Yet: The Unbooks

	Table of Contents
	Preface
	Objects & Classes (Unbook 3)
	Chapter 1: Object Foundations (Objects & Classes)
	About This Book
	Objects As Containers
	Defining Properties
	Accessing Properties
	Assigning Properties
	Deleting Properties
	Determining Container Contents
	Temporary Containers
	Containers Are Collections Of Properties

	Chapter 2: How Objects Work (Objects & Classes)
	Property Descriptors
	Object Sub-Types
	Object Characteristics
	Extending The MOP
	[[Prototype]] Chain
	Objects Behavior

	Types & Grammar (Unbook 4)
	Chapter 1: Primitive Values (Types & Grammar)
	Value Types
	Empty Values
	Boolean Values
	String Values
	Number Values
	BigInteger Values
	Symbol Values
	Primitives Are Built-In Types

	Chapter 2: Primitive Behaviors (Types & Grammar)
	Primitive Immutability
	Primitive Assignments
	String Behaviors
	Number Behaviors
	Primitives Are Foundational

	Sync & Async (Unbook 5)
	Chapter 1: Lost Book (Sync & Async)
	The Plan
	The Reality
	That said…

	Second Edition Thank Yous

