

Xamarin.Forms快速入門
Xamarin.Forms Quick Start

Vulcan Lee

這本書的網址是 http://leanpub.com/xamarin-forms-quick-start

此版本發布於 2020-01-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean

Publishing process. Lean Publishing is the act of publishing an in-progress ebook

using lightweight tools and many iterations to get reader feedback, pivot until you

have the right book and build traction once you do.

© 2019 - 2020 Vulcan Lee (李進興)

http://leanpub.com/xamarin-forms-quick-start
http://leanpub.com/
http://leanpub.com/manifesto

Contents

前言 . i

關於本書 . iii

這本書能提供什麼 . iii

誰適合閱讀這本書 . v

如何使用本書 . vi

意見回饋 . vi

I 開發前的安裝、設定準備工作 1

1. 安裝前的準備工作 . 3

1.1 確認作業系統版本 . 3

1.2 確認硬體 BIOS有啟用虛擬化功能 . 6

1.2.1 停用 Hyper-V . 7

1.3 啟用 UWP開發人員模式 . 15

1.4 準備一台macOS的電腦主機 . 19

2. Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 20

2.1 在Windows作業系統電腦上安裝 Visual Studio 2019 20

2.2 在Mac作業系統電腦開發工具之安裝與設定 33

2.2.1 安裝 Xcode開發人員工具 . 34

2.2.2 安裝 Visual Studio for Mac . 43

2.2.3 在Mac上啟用遠端登入 . 53

CONTENTS

3. Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 56

3.1 更新 Android SDK . 56

3.2 安裝與啟動 Google Android原生模擬器 . 67

3.3 測試與確認開發環境可以進行 Xamarin.Forms專案開發 75

3.3.1 測試可以建立 Xamarin.Forms專案 75

3.3.2 建置與執行 Android專案 . 80

3.3.3 建置與執行 iOS專案 . 83

3.3.4 建置與執行 UWP專案 . 92

3.4 結論 . 93

II Xamarin.Forms開發方式與基本概念 94

4. 使用 C#程式語言來直接開發 Xamarin.Forms App 97

4.1 建立一個 Xamarin.Forms方案 . 97

4.2 了解 Xamarin.Forms方案的結構 . 98

4.2.1 了解 Xamarin.Android專案的結構與運作方式104

4.2.2 Xamarin.Android的專案進入點 .106

4.2.3 了解 Xamarin.iOS專案的結構與運作方式107

4.2.4 Xamarin.iOS的專案進入點 .108

4.2.5 了解 Xamarin.UWP專案的結構與運作方式110

4.2.6 UWP的專案進入點 .111

4.2.7 了解 Xamarin.Forms專案的結構與運作方式114

4.3 開始僅使用 C#程式碼來設計兩數相加的遊戲118

4.3.1 建立一個新遊戲頁面類別 .119

4.3.2 讓新增類別繼承 ContentPage .120

4.3.3 設計該遊戲頁面 .121

4.3.4 變更 Xamarin.Forms應用程式的起始頁面128

5. 使用 XAML標記宣告語言來開發 Xamarin.Forms App131

5.1 建立一個 Xamarin.Forms方案 .133

CONTENTS

5.2 了解 XAML檔案的運作方式 .134

5.3 了解如何在 Code Behind程式碼來存取 XAML文件中的項目142

5.4 使用 XAML設計兩數相加的遊戲畫面 .145

5.4.1 建立一個新遊戲 XAML頁面 .146

5.4.2 設計該遊戲頁面的 XAML文件內容147

5.4.3 變更 Xamarin.Forms應用程式的起始頁面155

5.5 App.xaml的應用 .158

版權頁 .164

前言
Xamarin.Forms為一個可以針對不同平台上的行動裝置，如：Android, iOS, UWP，協助
開發者進行跨平台應用程式；Xamarin.Forms是一套視覺介面工具組 UI Toolkit，透過宣
告式的標記語言 XAML來宣告與定義應用程式的每個頁面要出現的內容，而關於應用程式
需要執行的各類商業邏輯部分，我們則需要使用 C#程式語言在 .NET平台上的運作。

我們知道在進行行動裝置應用程式開發的時候，需要進行該應用程式的各種畫面 UI 與
商業邏輯程式碼的開發與設計，以往我們要進行開發出一套跨平台的應用程式，應用程
式開發者需要精通各 App平台提供的專屬 SDK工具，透過 SDK工具提供的使用者介面
設計工具，來進行這些應用程式的頁面要顯示的內容的開發，因此，同樣一個頁面，應
用程式開發者需要先使用 Android SDK的使用者介面設計工具設計這些頁面畫面，接著
又需要使用 iOS SDK的使用者介面設計工具再設計一次同樣的頁面畫面。我們可以看到
Xamarin.Forms帶來的好處那就是，，而是只需要定義一組 XAML宣告檔案，就已經完成
了關於行動應用程式的使用者視覺介面的設計，因為同樣的 XAML宣告檔案在不同行動作
業系統平台下執行時候，會使用原生 SDK提供的原生使用者介面。

另外一個好處，那就是對於使用原生 SDK工具來進行動應用程式的開發者而言，必須學
習每個平台原生 SDK指定的專屬程式語言，如：Java, Objective-C, Swift，同樣的，對於
同樣的商業邏輯需求，開發者需要使用 Android SDK的 Java程式語言來設計一次，接者，
需要使用 iOS SDK的 Objective-C / Swift語言再進行設計一次，這樣對於想要進行開發出
可以在不同行動作業系統平台下的開發者而言，這是一個極為嚴峻的挑戰，因為開發者需
要精通這些程式語言，並且也會面臨產生更多錯誤的機會；現在，在 Xamarin.Forms開
發環境之下，我們僅需要使用 C#程式語言，便可以設計出可以在每個平台下執行的程式
碼，而且，絕大多數比例的程式碼，統計上會有高於 80%以上的程式碼，我們都僅需要
撰寫一次，並且同時在不同平台下執行，只有很少比例的程式碼，因為需要呼叫原生平台

前言 ii

SDK專屬的 API，才需要使用 C#程式語言，在每個平台下額外撰寫呼叫特定 API的程式
碼。

因此，當您決定採用 Xamarin.Forms來進行跨平台行動應用程式開發的首選之後，您可
以享受到使用一套宣告式的標記語言 XAML來設計使用者介面 UI與只需撰寫一次 C#程
式碼，就已經完成了可以同時在 Android, iOS, UWP平台下可以執行的行動應用程式。

對於想要採用 Xamarin.Forms開發工具來進行跨平台行動應用程式開發的開發者而言，
相信可以在 .NET環境下執行 C#程式語言的使用與應用上不會很陌生，可是絕大部分的
.NET開發者，若本身沒有接觸或者使用過 WPF / UWP專案開發，面對對於 XAML這個
宣告式的標記語言會感到相當的陌生與恐懼，另外，在本書撰寫的這個時間點，Visual

Studio 尚未提供如同 WPF 開發環境中的友善 XAML 開發與設計操作介面，想要學習
XAML宣告式的標記語言的開發者，必須面對如同 XML文件中的各種眾多，繁雜的標籤
Tag與不同的屬性。

作者從事多年 Xamarin.Forms專案開發與教學工作，有鑑於絕大多數 Xamarin.Forms新
手，對於如何使用 Xamarin.Forms開發工具進行專案開發與如何使用 Xamarin.Forms提
供的各種新開發技術，存在著各種疑惑與不之如著手學習，因此，著手撰寫這本書籍。

關於本書
這是一本帶領 Xamarin.Forms新手開發者，可以透過書中介紹的各種知識、開發技能，
配合練習專案實作，快速地學會使用 Xamarin.Forms這個 UI Toolkit來進行跨平台的行
動應用裝置之應用程式開發工作。

這本書能提供什麼

在這本書裡面，將會提供 16章的內容，分別是

• 開發前的安裝、設定準備工作 (共有三章)

對於 Xamarin.Forms 開發新手，第一個學習卡關將會是如何安裝與設定一個可以
進行 Xamarin.Forms的開發環境；在這個部分將會詳細說明如何安裝與設定 Visual

Studio 2019，使其可以順利的進行 Xamarin.Forms的開發工作。
• 使用 C#程式語言來直接開發 Xamarin.Forms App

說明如何僅使用 C#程式語言，就可以開發出 Xamarin.Forms的應用程式的開發過
程。

• 使用 XAML標記宣告語言來開發 Xamarin.Forms App

說明使用 XAML宣告標記語言來進行頁面畫面的內容宣告，相關的商業邏輯則是使
用程式碼後置 Code Behind的方式來開發。

• 資料綁定 Data Binding

資料綁定 Data Binding是在 Xamarin.Forms開發上，最為重要的技術，對於資料綁
定的類型共有三種，這裡將會針對一般資料物件類型的綁定設計方式來說明如何使
用。

關於本書 iv

• 更多資料綁定的用法
這裡將會繼續介紹更多關於資料綁定的不同使用方式。

• 數值轉換器 Value Converter

對於資料綁定的設計方法下，數值轉換器的應用扮演者相當重要的角色，透過設計不
同的數值轉換器類別可以設計出許多可重複使用的商業邏輯，並且輕鬆地將不同型別
的綁定目標與綁定來源屬性串接在一起。

• 命令綁定 Command Binding

命令綁定是資料綁定的第二種類型，透過命令綁定可以不再需要使用以往需要透過事
件訂閱的設計方式，與在程式碼後置區塊來進行相關商業邏輯的程式碼設計工作，全
部都轉移到綁定來源的類別物件上。

• 事件轉命令行為 Event to Command Behavior

Xamarin.Forms並不是所有的檢視項目都有提供可綁定的命令屬性，但是一定會有
提供事件觸發的設計方式，在這裡將會使用 Xamarin.Forms 的一個核心技術行為
Behaviors，將需要訂閱的事件與命令綁定在一起，這使得當事件被觸發的時候，可
以執行所綁定的命令內的委派方法。

• 手勢操作 Gesture Recognizer

在 Xamarin.Forms內提供可以與使用者互動的項目不多，按鈕是其中一個，不過，
Xamarin.Forms提供了手勢辨識器功能，可以在讓何檢視項目上，宣告不同的手勢
操作行為，當發生了這個手勢操作行為，將會觸發所指定的命令，例如，得知使用者
點選了一個圖片 UI控制項。

• MVVM Model-View-ViewModel設計模式
Xamarin.Forms可以搭配 MVVM的設計模式，讓 UI視覺設計與呈現邏輯程式碼與
商業邏輯程式碼分隔開來，這樣可以有助於程式開發流程、進行單元測試，因為，這
解除了視覺控制項與程式碼之間的緊密耦合關係。

• 內建導航服務
開發行動應用程式最為重要的設計工作，那就是能夠在不同的頁面之間進行切換，在
這裡會先進行 Xamarin.Forms預設提供的導航服務功能進行介紹，並且了解到更多
設計上的問題，可能需要進一步的解決。

關於本書 v

• 導航服務之封裝設計
為了要解決 Xamarin.Forms預設的導航服務的不足，已經可以在檢視模型中進行各
種頁面導航操作，在這裡將會設計一個延伸導航服務類別，解決相關問題，讓開發過
程更加的順暢。

• 相依服務 Dependency Service

Xamarin.Forms 是個 UI 開發工具，它把 UI 設計抽象化了，並且可以讓使用
Xamarin.Forms 設計的 UI 畫面可以在不同平台下來顯示出來，可是，當需要某
些功能一定需要透過原生 SDK API才能夠運作的需求，並且取得原生 SDK API的執
行結果，這個時候就可以透過 Xamarin.Forms提供的相依服務來滿足這樣的工作。

• 訊息中心MessagingCenter

訊息中心是一種 發行-訂閱模式，其中對於發行者這個角色可以在不知道任何訂閱者
的情況下傳送訊息。同樣地，訂閱者也可以在不知道任何發行者的情況下訂閱特定訊
息。透過這樣的特行，可以讓 Xamarin.Forms的程式順利地執行原生平台下的 SDK

API。

誰適合閱讀這本書

本書適合想要學會如何使用 Xamarin.Forms工具來開發出跨平台的行動應用程式的開發
者，這裡將會介紹各種 Xamarin.Forms核心與應用開發技術與技巧，並且帶領大家了解
到進階的開發技能，如：檢視模型定位器，延伸導航服務等。透過學習這些開發技術，將
會有助於進行各種 Xamarin.Forms應用程式開發能力的提升。

不過，讀者本身應該要具備 .NET / C# 的開發經驗與程式寫作技能，並且要有使用過
Visual Studio 2019開發經驗。

這本書的範例專案將會是在Windows 10作業系統下，使用 Visual Studio 2019開發工具
開發出來的，由於使用 Xamarin.Forms開發出來的專案可以在 Android / iOS / UWP平
台下執行，若想要體驗開發出來的專案且在 iOS模擬器環境下執行效果，讀者需要額外

關於本書 vi

準備一台Mac電腦，並且在這台電腦上需要安裝 Xcode與 Visual Studio for Mac開發工
具。

如何使用本書

在書中每個章節都設計了一個練習專案，透過逐步說明的方式來帶領讀者來了解到
Xamarin.Forms專案是如何進行開發的，了解到為什麼需要使用這樣的開發方式與和其
他設計方式差異。

本書中的所有講解範例專案都會放在 Github上，您可以透過 Github的 Xamarin-Forms-

Quick-Start1 來取得這些講解範例專案，並且鼓勵大家可以到這個 Xamarin-Forms-

Quick-Start Repository2 頁面，在螢幕的右上方，點選 Start按鈕給予鼓勵，如同下圖箭
頭所指向地方。

意見回饋

對於在學習 Xamarin.Forms 開發上，有任何的疑問與問題，可以到 Facebook

Xamarin.Forms @ Taiwan3 社團與其他 Xamarin.Forms開發者進行討論。

也建議加入 Facebook Xamarin 實驗室4 粉絲團，作者會經常在這裡貼出各種
Xamarin.Forms的開發新資訊。

若您對於 Github範例專案有任何問題，可以在這個 Github Repository Xamarin-Forms-

Quick-Start5 上，建立一個 Issue，作者將會在這上面與您做討論。
1https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
2https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
3https://www.facebook.com/groups/XamarinFormstw
4https://www.facebook.com/vulcanlabtw/
5https://github.com/vulcanlee/Xamarin-Forms-Quick-Start

https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://www.facebook.com/groups/XamarinFormstw
https://www.facebook.com/vulcanlabtw/
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start
https://www.facebook.com/groups/XamarinFormstw
https://www.facebook.com/vulcanlabtw/
https://github.com/vulcanlee/Xamarin-Forms-Quick-Start

I開發前的安裝、設定準備工作

特別注意事項
根據作者本身從事多年的 Xamarin.Forms 開發教學經驗，絕大多數的
Xamarin.Forms 開發新手，在開始進行 Visual Studio for Xamarin 開發工具的
安裝與設定過程中，就會遇到許多問題，尤其會在某些地方卡關，造成還沒開始
學習 Xamarin.Forms的開發技術，光是建立專案與在不同作業系統平台下執行專
案，都無法正常操作。因此，若您是第一次接觸 Xamarin.Forms的讀者，建議您
參考本章內容，逐步進行 Visual Studio for Xamarin開發工具的相關安裝與設定
工作。

在這裡先進行 Xamarin開發環境的安裝與設定，總共分成 3部分來說明

對於要使用 Xamarin.Forms 跨平台開發工具來進行行動裝置應用程式開發，首先要先
進行 Xamarin 開發環境的安裝與設定，在這裡將會分成 4 部分來說明，而這裡將會
使用 Visual Studio 2019 社群版本作為安裝過程的說明。在此將會假設開發者主要在
Windows作業系統下使用 Visual Studio 2019 for Windows來進行開發、設計、建置、
除錯 Xamarin.Forms的專案，而Mac電腦上的 Visaul Studio 2019 for Mac其存在的目
的只是要能夠產生出 Xamarin.iOS的專案檔案而已，通常，是不會使用 Visual Studio for

Mac來進行 Xamarin.Forms開發作業。

• 安裝前的準備工作

2

這裡將會說明當準備要進行安裝 Visual Studio 2019 for Xamarin.Forms開發環境之
前，需要確認與準備工作有那些，這裡的內容相當重要，因為，若電腦環境一旦規格
不符合需求，整個安裝與設定過程，將會產生問題，也會造成某些功能無法使用。

• Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定
在這裡，將會帶領大家，一步一步地在 Windows 作業系統下進行 Visual Studio

2019開發工具的安裝，並且在 Visual Studio 2019安裝完成之後，接下來該如何進
行 Xamarin開發環境的設定。另外，也會說明在 Mac電腦上要如何安裝 Xcode與
Visual Studio 2019 for Mac這兩個開發工具。

• 安裝 Android使用的模擬器與確認開發環境可以進行 Xamarin.Forms專案開發
透過這裡的說明，可以進行安裝設定 Google Android 原生模擬器，方便進行
Android應用程式的開發與測試，當然，要使用哪種類型的模擬器，可以依照開發者
的喜好來決定。
最後，這也是最為重要的，在安裝與設定工作都完成之後，需要開始進行檢查與確認
電腦環境是否可以真的進行 Xamarin跨平台應用程式的開發，因此，一定要依據這
裡說明內容，逐一進行檢測，確認開發環境都正確無誤並且可以運作正常。

1.安裝前的準備工作
在進行 Visual Studio 2019開發工具安裝之前，請務必要進行底下說明的各個檢查與準
備工作，否則，在進行安裝 Visual Studio 2019與 Xamarin開發工具的時候，可能會發
生莫名的異常問題。

這裡需要的工作有

• 確認作業系統版本
• 確認硬體 BIOS有啟用虛擬化功能
• 停用 Hyper-V和Windows Hypervisor平台服務
• 啟用 UWP開發人員模式
• 準備一台macOS的電腦主機

1.1確認作業系統版本

以下說明內容將會使用的 Windows 10專業版本作業系統，原則上，建議您使用當前最
新的Windows 10作業系統的最新版本來安裝，若電腦不是這個版本，請使用Windows

Update進行更新到組建版本。

欲檢查您的Windows 10作業系統版本，請點選左下角的視窗圖示，接著點選左下方的設
定齒輪圖示，或者點選右下方通知圖示，選取齒輪圖示的設定按鈕

安裝前的準備工作 4

使用開始圖示來開啟Windows設定視窗

使用通知設定視窗來開啟Windows設定視窗

當進入到設定視窗之後，點選上方的系統圖示

安裝前的準備工作 5

在Windows設定窗內開啟系統功能視窗

緊接著在左邊的最下方選項，點選關於項目，就會看到視窗右邊出現的內容，請在視窗右
邊區域，使用滑鼠往下捲動，就會查看到Windows規格區域，確認您使用作業系統版本
至少為Windows 10專業版與組件 1903

安裝前的準備工作 6

Windows Setting設定

1.2確認硬體 BIOS有啟用虛擬化功能

因為絕大多數的 Android模擬器都會使用虛擬化技術，因此，，Windows電腦 CPU需要
具備支援虛擬化的功能，若想要啟用電腦支援虛擬化功能，請確認 CPU有支援此一功能，
並且從 BIOS啟用此功能。這個影片 how to enable hyper-v machine in BIOS1 將會展示
如何設定 BIOS 可以使用虛擬化的功能。若電腦 BIOS 上沒有啟動此功能 Intel Virtual

Technology或者電腦的 BIOS根本就沒有這項設定，建議使用實體手機來進行 Android
1https://www.youtube.com/watch?v=EGnv6zyLj-o

https://www.youtube.com/watch?v=EGnv6zyLj-o
https://www.youtube.com/watch?v=EGnv6zyLj-o

安裝前的準備工作 7

專案的開發與設計。

特別注意事項
原則上不同的虛擬化產品是無法混合一起使用的，例如 Hyper-V2 無法與其他的虛
擬化產品 Intel HAXM3 或 VMware4 等等，共同使用，您只能夠選擇其一來使用。

在這篇文章中將不會採用 Hyper-V虛擬化技術，而會採用 Intel HAXM虛擬化技
術，對於 Android模擬器部分，將會使用 [Android Emulator]這個模擬器軟體。

1.2.1停用 Hyper-V

若想要使用 Intel HAXM虛擬化技術，進而直接使用 Android原生地 x86模擬器，需要
先將這台電腦上的 Hyper-V和 Windows Hypervisor平台這兩項功能移除與停用；在這
台電腦中，已經有安裝這兩個服務，所以需要先進行移除，若電腦中並沒有安裝這兩個服
務，可以直接進行下一個步驟。

• 首先，依據上面的操作步驟，開啟 Windows設定視窗 (請點選左下角的視窗圖示，
接著點選左下方的設定齒輪圖示，或者點選右下方通知圖示，接著選取齒輪圖示的設
定按鈕)

2https://docs.microsoft.com/zh-tw/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
3https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
4https://www.vmware.com/tw.html

https://docs.microsoft.com/zh-tw/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://www.vmware.com/tw.html
https://docs.microsoft.com/zh-tw/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://www.vmware.com/tw.html

安裝前的準備工作 8

Windows設定視窗

• 點選應用程式項目，將會出現下圖應用程式與功能視窗畫面

安裝前的準備工作 9

應用程式與功能視窗

• 在應用程式畫面右方，點選相關設定的程式和功能項目

安裝前的準備工作 10

程式和功能視窗

• 當程式和功能視窗開啟之後，點選該視窗左方的開啟或關閉Windows功能

安裝前的準備工作 11

Windows功能之設定視窗

• 現在，將會看到 [Windows 功能] 視窗出現在電腦上，請在下方的清單項目，找到
Hyper-V與Windows Hypervisor Platform這兩個選項，請記得要取消勾選這兩
個項目與其子項目，完成後請點選確定按鈕。

安裝前的準備工作 12

取消選擇安裝 Hyper-V的所有功能

安裝前的準備工作 13

取消選擇安裝與啟用Windows Hypervisor Platform

• 現在，Windows將會開始安裝這兩個功能，請點選確定按鈕。

安裝前的準備工作 14

Windows正在進行套用變更

• 當這兩個Windows功能移除這兩個服務之後，需要重新啟動作業系統，請點選立即
重新啟動按鈕。

安裝前的準備工作 15

Windows已完成要求的變更

1.3啟用 UWP開發人員模式

若想要使用 Xamarin.Forms建立出可以同時在 Android / iOS / UWP系統下執行的跨平
台 App，就需要參考底下的步驟，先進行 UWP開發人員模式的啟用

• 首先，還是一樣需要進入到 Windows設定 (請點選左下角的視窗圖示，接著點選左
下方的設定齒輪圖示，或者點選右下方通知圖示，接著選取齒輪圖示的設定按鈕)

安裝前的準備工作 16

Windows Setting設定

• 請點選更新與安全性選項，並且點選更新與安全性視窗左方的開發人員專用選項

安裝前的準備工作 17

開發人員專用設定視窗

• 請點選右方內容的開發人員模式選項，現在顯示出使用開發人員功能對話窗，並且說
明：開啟開發人員模式 (包括安裝及執行不是來自於Microsoft Store的應用程式)可
能造成您裝置與個人資料的安全性風險或危害您的裝置。開啟開發人員模式？請點選
是按鈕。

安裝前的準備工作 18

開啟開發人員模式

• 若開發人員模式已經開啟之後，可以看到如同下圖畫面，在開發人員模式選下的下
方，會顯示出：已安裝「開發人員模式」套件，現已啟用適用於桌面的遠端工具訊
息。

安裝前的準備工作 19

已安裝「開發人員模式」套件

1.4準備一台macOS的電腦主機

由於 Apple 公司的規定，當要進行 iOS 應用程式開發的時候，必須要透過一台有安裝
macOS的蘋果硬體電腦來進行，因此，對於想要產生與進行 iOS應用程式除錯的開發者，
就需要準備一台macOS電腦主機。

對於這台macOS電腦，強烈建議要將作業系統升級到最新版本，以便符合 Xcode開發工
具的安裝要求，除了會安裝 Xcode到這台電腦上，也會進行安裝 Visual Studio 2019 for

Mac工具。

2. Windows電腦與Mac電腦上的 Visual

Studio 2019安裝與相關相關設定
現在，需要在Windows主機與Mac主機上來進行開發工具的安裝與設定。

這裡需要的工作有

• 在Windows作業系統電腦上安裝 Visual Studio 2019

• 在Mac作業系統電腦開發工具之安裝與設定

2.1在Windows作業系統電腦上安裝 Visual Studio 2019

若您已經完成 Visual Studio 2019安裝前的準備工作，現在需要開始進行 Visual Studio

2019的安裝作業。

在這裡將會使用 Visual Studio 2019 Community 版本作為安裝說明，不過，任何一種
Visual Studio 2019 的版本，皆可以進行 Xamarin Cross-Platform 跨平台專案的開發，
關於 Visual Studio 2019的不同版本的比較，可以參考比較 Visual Studio 2019 IDE1

更多關於 Visual Studio 2019的安裝，可以參考安裝 Visual Studio 20192
1https://www.visualstudio.com/zh-hant/vs/compare/
2https://docs.microsoft.com/zh-tw/visualstudio/install/install-visual-studio

https://www.visualstudio.com/zh-hant/vs/compare/
https://docs.microsoft.com/zh-tw/visualstudio/install/install-visual-studio
https://www.visualstudio.com/zh-hant/vs/compare/
https://docs.microsoft.com/zh-tw/visualstudio/install/install-visual-studio

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 21

• 請用瀏覽器打開 Visual Studio 2019安裝下載網頁3

Visual Studio 2019安裝下載網頁

• 找到 Visual Studio 2019下方的社群項目，點選其下方的免費下載按鈕，點選這個按
鈕連結，當安裝檔案下載完成後，請點選執行按鈕，開始進行 Visual Studio 2019社
群版本的安裝；當安裝程式下載完成之後，請點選螢幕下方的執行按鈕，開始進行
Visual Studo 2019社群版的安裝 (如同下面節圖所示)。

3https://www.visualstudio.com/zh-hant/downloads

https://www.visualstudio.com/zh-hant/downloads
https://www.visualstudio.com/zh-hant/downloads

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 22

Visual Studio 2019安裝程式下載完成

• 此時，螢幕會出現使用者帳戶控制對話窗，此對話窗詢問：您是否要允許此 App變
更您的裝置？這個時候，請點選是按鈕。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 23

使用者帳戶控制對話窗

• 現在，看到的對話窗是 Visual Studio Installer，請在該對話窗右下方，點擊繼續按
鈕。如此，Visual Studio Install安裝程式，便會開始下載最新的安裝程式檔案到您
的電腦。

Visual Studio Installer開始安裝前的確認對話窗

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 24

• 將會看到 Visual Studio Community 2019 - 16.0.0安裝程式啟動了。

16.0.0是作者寫這篇文章的時候，最新 Visual Studio Community的版本編
號，原則上，您每次進行 Visual Studio 2019安裝作業的時候，您將會使用
最新的 Visual Studio 2019 Installer來安裝到最新的版本，因此，您將需要
比 16.0.0更新的版本編號出現在您的電腦畫面中。

正在安裝 Visual Studio Community 2019 - 16.0.0視窗

• 請在工作負載標籤頁次中，至少需要勾選底下項目，才能夠完成 Xamarin開發工具
的安裝
– 通用Windows開發平台
– 使用 .NET進行行動開發
當您勾選這兩個工作負載項目之後，在 Visual Studio Community 2019 Installer視
窗的最右方，將會出現準備要安裝的相關元件清單說明

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 25

勾選要安裝通用Windows開發平台工作負載

勾選要安裝使用 .NET進行行動開發工作負載

• 請點選個別元件標籤頁次，您將會看到底下的個別元件已經被勾選了

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 26

Visual Studio 2019 Installer個別元件

安裝不同的 Visual Studio 2019版本，可能會看到不通的套件選項項目內容

– .NET

* .NET Framework 4.5目標套件
* .NET Framework 4.6.1目標套件
* .NET Framework 4.6.1 SDK

* .NET Framework 4.7.2 SDK

* .NET Framework 4.7.2目標套件
* .NET Native

* .NET可攜式程式庫目標套件
– Code工具

* (無)

– SDK、程式庫和架構
* Android SDK安裝程式 (API層級 27)

* OpenJDK (Microsoft散發)

* TypeScript 3.3 SDK

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 27

* Windows 10 SDK (10.0.17763.0)

– 偵錯和測試
* .NET分析工具
* JavaScript診斷

– 模擬器
* (無)

– 程式碼工具
* Developer Analytics Tools

* NuGet套件管理員
– 編譯器、建置工具與執行階段

* (無)

– 編譯器、建置工具和執行階段
* C#與 Visual Basic Roslyn編譯程式
* MSBuild

– 遊戲開發套件
* 影像與 3D模型編輯器

– 開發活動
* C#與 Visual Basic

* F#語言支援
* JavaScript與 TypeScript語言支援
* Xamarin

* Xamarin Remoted Simulator

– 雲端、資料庫和伺服器
* SQL Server的 CLR資料類型

• 為了要讓 Xamarin開發環境可以正常運作與符合日常開發需求，所以，請依照底下
清單，比對您電腦上的個別元件勾選項目，確認底下的項目都已經有勾選到 (額外需
要安裝的項目將會以粗體文字標示)。
– .NET

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 28

* .NET Framework 4.5目標套件
* .NET Framework 4.6.1目標套件
* .NET Framework 4.6.1 SDK

* .NET Framework 4.7.2 SDK

* .NET Framework 4.7.2目標套件
* .NET Native

* .NET可攜式程式庫目標套件
– Code工具

* Visual Studio的 GitHub擴充功能
– SDK、程式庫和架構

* Android SDK安裝程式 (API層級 25)(可用於以 C++進行行動裝置開發的本機
安裝)

* Android SDK安裝程式 (API層級 27)

* OpenJDK (Microsoft散發)

* TypeScript 3.3 SDK

* USB裝置連線
* Windows 10 SDK (10.0.17763.0)

– 偵錯和測試
* .NET分析工具
* JavaScript診斷

– 模擬器
* Google Android Emulator (API層級 25) (本機安裝)

* Intel Hardware Accelerated Execute Manager (HAXM) (本機安裝)

– 程式碼工具
* Developer Analytics Tools

* Git for Windows

* NuGet套件管理員
* PreEmptive Protection - DotFuscator

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 29

– 編譯器、建置工具與執行階段
* (無)

– 編譯器、建置工具和執行階段
* C#與 Visual Basic Roslyn編譯程式
* MSBuild

– 遊戲開發套件
* 影像與 3D模型編輯器

– 開發活動
* C#與 Visual Basic

* F#語言支援
* JavaScript與 TypeScript語言支援
* Xamarin

* Xamarin Remoted Simulator

– 雲端、資料庫和伺服器
* SQL Server的 CLR資料類型

Visual Studio 2019 Installer安裝詳細資料

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 30

• 若確認無誤，請點選 Visual Studio Community 2019 Installer程式畫面右下角的安
裝按鈕，開始進行 Visual Studio Community 2019的程式安裝。
根據 Visual Studio Installer的預估，這樣的安裝過程，大約需要用到 34.68 GB的磁
碟空間。

Visual Studio 2019 Installer

• 當安裝作業完成之後，將會看到如下圖的畫面，您可以選擇登入功能，或者點選不是
現在，以後再說，在這裡點選後者，也就是點選不是現在，以後再說。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 31

Visual Studio 2019登入畫面

• 現在需要設定開發設定條件，請在開發設定下拉選單中，選擇 Visual C#，完成後，
點選啟動 Visual Studio按鈕。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 32

Visual Studio 2019開發設定與主題佈景

• 底下螢幕截圖是 Visual Studio 2019啟動後的畫面

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 33

Visual Studio 2019第一次啟動畫面

2.2在Mac作業系統電腦開發工具之安裝與設定

現在，要來開始進行安裝 Xamarin.iOS需要用到的開發工具，在這裡所有的操作過程，
將會採用一台全新新安裝的macOS系統，來進行執行過程步驟的解說說明。

在這裡的macOS將會是Mojave 10.14.3版本，想要知道這台Mac電腦的作業系統版本，
可以從位於畫面左上角落的「蘋果」選單中，選擇「關於這台Mac」，就可以查看的到。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 34

macOS Mojave版本資訊

2.2.1安裝 Xcode開發人員工具

Xcode提供建置 iOS應用程式所需要用到的 SDK & IDE，因此，要在 Mac電腦上能夠開
發出 iOS應用程式，就一定需要安裝這套開發工具。

• 打開 App Store圖示
• 在左上方搜尋文字輸入盒，輸入 Xcode

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 35

搜尋 Xcode這個關鍵字

• 當按下 Enter按鍵之後，就會在第一個項目看到了 Xcode這個 iOS開發工具必備的
軟體

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 36

搜尋出 Xcode開發工具

• 點選 Xcode這個項目，此時將會顯示 Xcode這個開發人員工具的介紹內容，請點選
該頁面右上方的下載圖示，以便進行下載與安裝這個軟體。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 37

開始下載與安裝 Xcode

• 現在，為了要能夠從 App Store下載這個 Xcode軟體，此時，請在螢幕最上方的對
話窗內，輸入您的 Apple ID與密碼，完成後，請點選 [好]按鈕。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 38

輸入 Apple ID和密碼

此時，剛剛點選的下載圖示

準備要下載的按鈕圖示

將會變成底下截圖，顯示出現在正在下載的進度，因此，在此需要等候 Xcode這個
開發人員工具下載完成，畢竟，這的軟體檔案大小也是很大的，需要花些時間來下
載。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 39

正在進行下載的按鈕圖示

• 當下載完成之後，在該視窗的右上方將會看到 [打開]按鈕，請點選這個 [打開]按鈕。

下載完成後的按鈕圖示

• 現在，將會看到 Xcode 已經啟動了，並且顯示一個 [Xcode and iOS SDK License

Aggreement]對話窗，這裡需要您同意接受 Xcode的使用授權，因此，請點選該對
話窗右下方的 [Agree]按鈕

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 40

接受 Xcode開發工具使用授權

• 此時，需要輸入這台系統的管理這帳號與密碼，以便進行 Xcode需要處理的工作，
因此，當輸入完成使用者名稱與密碼之後，請點選該對話窗右下方的 [好]按鈕。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 41

輸入安裝檔案到電腦上的帳號與密碼

• 現在，等候 Xcode安裝相關元件到系統上

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 42

正在進行安裝 Xcode軟體

• 當看到底下的畫面出現之後，那就表示在這台Mac電腦上的 Xcode開發人員工具已
經安裝好了。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 43

Xcode安裝完成的畫面

2.2.2安裝 Visual Studio for Mac

Visual Studio for Mac可以讓開發人員在這個 Mac電腦上直接開發 Xamarin & ASP.NET

Core 類型的專案，另外一個重要的功能那就是提供與 Windows 作業系統上的 Visual

Studio 2019相關建置 iOS專案的能力。

• 現在，請打開 Safai應用程式，搜尋 Visual Studio for Mac，將會看到第一個搜尋結
果 [Visual Studio for Mac | Visual Studio]，請打開這個頁面

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 44

搜尋 Visual Studio for Mac產品

• 在這裡，請點選左上方的 [下載 Visual Studio for Mac]下載按鈕，開始下載這個安
裝工具。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 45

Visual Studio for Mac官方網頁來下載安裝軟體

• 當安裝軟體下載完成之後，請在 [下載完成]找到這個項目，並且打開這個檔案。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 46

打開並執行下載完成的安裝檔案

• 當這個檔案載入並且執行完成之後，將會出現如同底下畫面，請點選下載按鈕圖示，
開始安裝 Viusl Studio for Mac

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 47

啟動 Visual Studio for Mac安裝程式

• 現在出現一個對話窗，顯示 [「Install Visual Studio for Mac」是一個從 Internet下
載的 App，確定要打開嗎？]，請點選該對話窗右下方的 [打開]按鈕

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 48

確認要開啟

• 此時，Visual Studio for Mac的安裝程式啟動起來了，並且顯一個對話窗，請點選該
對話窗右下方的 [繼續]按鈕

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 49

• 當出現如下圖，詢問希望安裝那些內容的時候，使用預設安裝選項即可，而最後一個
選項 [Xamarin Workbooks]，原則上大部分的人都不會使用到這個工具。因此，請
點選該對話窗右下方的 [安裝]按鈕。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 50

要安裝 Visual Studio for Mac的元件

• 現在，您將會看到安裝程式正在進行下載檔案，不過，此時，將會出現一個對話窗，
要求您輸入這台系統的管理者帳號與密碼，以便安裝 Visual Studio for Mac這個軟
體，所以，請輸入使用者名稱與密碼之後，點選該對話窗右下方的 [好]按鈕。從這
個對話窗的右下方將會看到 [macOS可能會多次需要系統密碼]這樣的文字，而在此
次安裝過程中，這個對話窗將會出現 2次。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 51

授權 Visual Studio for Mac安裝檔案到Mac電腦上

• 當整個安裝過程完成之後，會出現底下視窗，請點選右下角的略過按鈕。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 52

Visual Studio for Mac安裝完成畫面

• 現在 Visual Studio for Mac程式將會啟動起來，並且顯示在螢幕上。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 53

Visual Studio for Mac安裝完成畫面

2.2.3在Mac上啟用遠端登入

若想要在 Visual Studio 2019 for Windows環境中，建立 Xamarin.iOS的專案與進行除
錯，就需要先在Mac電腦上啟用遠端登入，請在Mac開啟 [系統偏好設定]

系統偏好設定圖示

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 54

接著點選 [共享]圖示，開啟 [共享]視窗

Mac電腦的共享設定圖示

在 [共享]視窗內，最左邊的 [服務]清單中找到的 [遠端登入]項目，請勾選這個項目，另
外，也需要確認右下方的允許下列使用者存取中，要存取這台Mac電腦的帳號是否有被選
取。

Windows電腦與Mac電腦上的 Visual Studio 2019安裝與相關相關設定 55

在共享對話窗中，啟用遠端登入

3. Visual Studio 2019安裝後的相關設定
與確認開發環境可以使用

當啟動完成 Visual Studio 2019之後，需要開始進行 Android SDK的設定與更新作業，
確認相關機碼是否有正確產生出來。

在這個階段將會進行底下的相關設定

• 更新 Android SDK

• 安裝與啟動 Google Android原生模擬器

3.1更新 Android SDK

養成時常確保您的 Android SDK有更新到最新版本的好習慣，需要進行 Android SDK的
設定與更新，確保 Xamarin.Android專案可以正常順利的建置與執行 Android App。更
多關於 Android SDK的說明，可以參考設定 Xamarin.Android的 Android SDK1

• 開啟 Visual Studio 2019程式
• 點選啟動後的視窗右下方的不使用程式碼繼續連結
• 請在 Visual Studio程式中，點選功能表工具 > Android > Android SDK管理員
1https://docs.microsoft.com/zh-tw/xamarin/android/get-started/installation/android-sdk?tabs=vswin

https://docs.microsoft.com/zh-tw/xamarin/android/get-started/installation/android-sdk?tabs=vswin
https://docs.microsoft.com/zh-tw/xamarin/android/get-started/installation/android-sdk?tabs=vswin

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 57

啟動 Android SDK管理員

• 若有出現下方的使用者帳戶控制對話窗，請點選是按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 58

Visual Studio Emulator for Android

• 當 Android SDK及工具視窗出現之後，請先點選工具標籤頁次，此時，您會發現到
Android SDK Platform-Tools的版本是 25.0.5，並且在該項目的狀態欄位，該視窗
的左下方，顯示的是有更新可用。

• 先點選左下角的 2項可用的更新按鈕，當出現了檢閱更新對話窗的時候，只要選取
Android SDK Platform-Tools這個項目要進行更新，接著，點選安裝更新按鈕。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 59

檢閱更新對話窗

• 若成功安裝完成後，現在，只剩下 1個可用更新了，接著點選左下角的 1項可用的
更新按鈕，當出現了檢閱更新對話窗的時候，選取 Android SDK Platform 27這個項
目要進行更新，接著，點選安裝更新按鈕。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 60

檢閱更新對話窗

• 接下來，還是在工具標籤頁次，展開 Android SDK Build Tools 節點，取消勾選
Android SDK Build-Tools 25.0.3，並且勾選 Android SDK Build-Tools 27.0.3

展開額外節點，勾選 Android Support Repository與 Google USB Driver兩個選項，
最後，點選右下方套用變更按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 61

勾選 Android SDK Build-Tools 27.0.3

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 62

勾選 Android Support Repository

• 出現接受授權對話窗後，直接點選接受按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 63

接受授權對話窗

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 64

Android SDK及工具

• 然後，在工具標籤頁次，勾選 Android Emulator，並且安裝起來。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 65

安裝 Android Emulator

• 現在要來設定平台標籤頁次，請點選標籤頁次
在平台標籤頁次中，會有每個 Android SDK API的版本項目，請依序展開您有興趣
的 Android SDK API版本，只需要勾選這個項目內的 Android SDK Platform X (X為
該 SDK API版本編號)，其他的項目可以不用安裝。
在這個安裝過程中，將只會選擇 Android SDK Platform 28 (9.0) / 8.1 / 7.1 / 6.0裡面
的 Android SDK Platform X項目。
設定完成後，請點選右下角的套用變更按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 66

Android SDK及工具的平台

• 當接受授權對話窗出現之後，請點選右下角的接受按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 67

接受授權對話窗

• 安裝完成之後，就可以把 Android SDK及工具視窗關閉

3.2安裝與啟動 Google Android原生模擬器

在 Xamarin開發工具下，可以選擇使用 Visual Studio內建的 Visual Studio for Android

Emulator模擬器與 Google Android原生模擬器這兩個模擬器的其中一個，當然，也可
以選擇其他類型的 Android模擬器，不過，對於無法在電腦上執行模擬器的情境下，是
可以選擇使用實體裝置來進行開發和測試；不過，前面提到的兩者差異在於前者比較不耗

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 68

用 CPU資源，但是，卻沒有預設安裝 Google Play Server，這對於有些開發應用上會比
較麻煩，因為這些應用程式需要裝置上有運行 Google Play Server。

由於這裡將會使用 Google Android原生模擬器與搭配 Intel HAXM虛擬化技術，所以在
安裝 Visual Studio 2019的過程中，將會都安裝起來了，現在可以直接來使用與設定這個
模擬器。

• 開啟 Visual Studio 2019程式
• 點選啟動後的視窗右下方的不使用程式碼繼續連結
• 請在 Visual Studio程式中，點選功能表工具 > Android > Android Device Manager

• 接著會出現使用者帳戶控制對話窗，請點選是按鈕

使用者帳戶控制對話窗

• 當 Android Device Manager視窗出現後，請在第一個項目 VisualStudio_android-

25_x86_phone，使用滑鼠右擊這個項目，接著選擇編輯選項

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 69

修改 Android Device Manager的模擬器項目

• 此時會出現一個新的對話視窗，顯示這個模擬器之相關設定內容

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 70

VisualStudio_android-25_x86_phone對話窗

• 請點選左下方的基本設備下拉選單，選擇 Nexus 6項目，現在將會看到一個警告對
話窗，請點選更改和重置按鈕

更改基本設備將重置所有屬性

• 在 VisualStudio_android-25_x86_phone對話窗的左下方，勾選 Google Play Store

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 71

選項，最後點選該對話視窗右下方的保存按鈕。

VisualStudio_android-25_x86_phone對話窗

• 當出現接受授權對話窗，請點選接受按鈕。

若沒有出現這個對話窗，可以跳過，繼續下一個設定動作

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 72

接受授權對話窗

• 當模擬器下載完成之後，請點選啟動按鈕。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 73

模擬器下載完成

• 接著會出現未安裝模擬器程式實用工具對話窗，請點選是按鈕。

未安裝模擬器程式實用工具對話窗

• 當接受授權對話窗出現之後，請點選右下角的接受按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 74

接受授權對話窗

• 當 Android Emulator軟體安裝完成之後，請重新點選啟動按鈕
• 現在可以開始使用 Google Android所提供的模擬器，該模擬器中已經預設安裝了
Google Paly服務應用程式

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 75

Google Android所提供的模擬器成功啟動

3.3測試與確認開發環境可以進行 Xamarin.Forms專案開發

您必須要確實進行這些檢查與測試工作，確保您的 Xamarin.Forms開發環境可以正常運
作。

• 測試可以建立 Xamarin.Forms專案
• 建置與執行 Android專案
• 建置與執行 iOS專案
• 建置與執行 UWP專案

3.3.1測試可以建立 Xamarin.Forms專案

• 請在開啟 Visual Studio 2019程式

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 76

Visual Studio 2019啟動對話窗

• 點選右下方的建立新的專案按鈕
• 當建立新專案對話窗出現的時候，在中間上方的搜尋文字輸入盒內，請輸入 Xamarin

這個關鍵字，如此，就會在右方顯示出與 Xamarin相關的各種專案樣板可供選擇。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 77

Visual Studio 2019建立新專案對話窗

• 請選擇行動應用程式 (Xamarin.Forms)這個專案樣版後，點選右下方的下一步按鈕
• 此時，將會顯示出設定新的專案對話窗，請在專案名稱欄位中，輸入這個跨平台專案
的名稱，在此是輸入MyApp

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 78

Visual Studio 2019設定新的專案對話窗

• 請點選右下方建立按鈕，就可以建立此一 Xamarin.Forms的專案
• 現在將會顯示出 New Cross Platform App - MyApp這個對話窗，讓開發者選擇一個
合適的專案樣板來開始進行專案開發
在此，請在選取範本區域，點選空白這個選項
接著，在下方平台的區域，勾選三個平台，也就是 Android / iOS / Windows (UWP)

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 79

Visual Studio 2019 New Cross Platform App - MyApp對話窗

• Visaul Studio 2019現在將會開始建立這個 Xamarin.Forms的方案，完成後，該方
案內將會有四個專案，分別是：Xamarin.Forms核心專案、Xamarin.Android原生
專案、Xamarin.iOS原生專案與Windows UWP原生專案。

• 從 Visual Studio 2019方案總管中，可以看到總共有四個專案產生出來

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 80

Xamarin.Forms專案

3.3.2建置與執行 Android專案

• 當 Xamarin.Forms專案建立完成後，請使用滑鼠右擊 Android專案
選擇設定為起始專案

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 81

在方案總管中設定預設起始專案

• 此時，您會在 Visual Studio 2019中間上方區域，看到啟動專案已經設定為 Android

專案，並且也會看到可以執行的 Android模擬器選項清單項目，選擇一個想要執行
的模擬器項目。
請點選有綠色三角形的模擬器項目，開始建置與在這個模擬器上來執行

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 82

執行 Android專案

• 由於第一次進行專案建置，需要下載許多 NuGet套件，因此，需要花費一些時間，
請耐心等候一下，底下是成功執行完成的畫面

Xamarin.Forms的 Android專案成功執行結果

• 停止這個 Android專案的執行 (點選工具列上的紅色正方形按鈕)

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 83

3.3.3建置與執行 iOS專案

• 滑鼠右擊 iOS專案
選擇設定為起始專案

• 建議顯示 iOS工具列
請點選功能表 [檢視] > [工具列]，請勾選 [iOS]這個功能表項目

顯示 iOS輔助工具列圖示

現在，可以在 Visual Studio 2019最上方的工具列中，看到 iOS使用的相關工具圖示

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 84

Pair to Mac圖示

• 點選上方圖片中，紅色箭頭指向的圖示，[Pair to Mac - Disconnected]

當然，這個操作也是可以從功能表中點選 [工具] > [iOS] > [與Mac配對]

從功能表中來啟用與Mac配對功能

• 現在與Mac配對對話窗將會出現
然而，Visual Studio將會搜尋網路上是否有可以遠端存取的 Mac電腦，若有存在的
話，該台Mac電腦就會出現在清單中

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 85

自動掃描網路並且是有開啟遠端存取的Mac電腦

• 在 Select a Mac清單內，找到您的 Mac電腦，並且使用滑鼠雙擊這個項目，此時，
將會出現 [連線到Mac]對話窗，請在這個對話窗中，輸入遠端登入Mac電腦的使用
者名稱與密碼，完成後，點選 [Login]按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 86

輸入要遠端登入到Mac電腦的使用者帳號與密碼

不過，在這裡強烈建議在 Visual Studio的 [輸出]視窗中，切換 [顯示輸出來源]清單
項目成為 [Xamarin]，因為，接下來要對遠端Mac電腦進行各種登入、更新等動作，
都可以在這裡看到相關日誌訊息，最重要的是，當您無法連線到遠端的 Mac電腦或
著覺得連線速度有些緩慢，便可以從這些輸出日誌內容，找到真正發生的原因。

Windows電腦與Mac電腦存取的日誌

像是底下的為一個登入 Mac電腦失敗的情境，在這裡顯示出 嘗試存取通訊端被拒絕，

因為存取權限不足錯誤訊息，此時，可以從 Visual Studio輸出視窗中，看到更加詳細
的資訊。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 87

Checking host configuration for connecting to '李進興的MacBook Air'...
Checking SSH configuration...
正在檢查可用的磁碟空間...
正在檢查Mono安裝...
正在檢查 Xamarin iOS安裝...
Checking host configuration for connecting to '李進興的MacBook Air'...
Host '李進興的MacBook Air' is configured correctly
Starting connection to '李進興的MacBook Air'...
Starting connection to '李進興的MacBook Air'...
Starting disconnection from李進興的MacBook Air...
Starting disconnection from李進興的MacBook Air...
The connection to '李進興的MacBook Air' has been finished
Couldn't connect to李進興的MacBook Air. Please try again.

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 88

與Mac電腦連線失敗範例

• 當與遠端 Mac電腦連線成功之後，工具列上的 [Pair to Mac]圖示將會變成綠色螢
幕，而且在 [與Mac配對]對話窗中，剛剛連線的Mac電腦項目的右方，也會出現一
個已經連線的圖示，也就是說，現在可以開始建置與執行 iOS的專案了。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 89

與Mac電腦連線成功的畫面

• 請點選功能表的 [工具] > [選項]，當選項對話窗顯示之後，請在左邊清單，展開
[Xamarin]節點，找到 [iOS設定]項目，請確認右方的 [遠端 Simulator到Windwos]

選項要有勾選，最後點選右下方的 [確定]按鈕

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 90

啟用遠端 Simulator到Windwos

• 請在 Visual Studio 2019最上方的工具列中，找到 [方案平台]下拉選項，請在這裡
選擇 [iPhoneSimulator]這個選項，此時，右方下拉選項就會顯示出遠端 Mac電腦
中的各式模擬器清單，選擇一個適合您的模擬器項目，接著點選該項目的綠色按鈕，
開始建置與執行 iOS專案。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 91

切換使用 iOS模擬器來進行除錯

• 底下將會是成功執行 iOS專案的畫面，也就是說，當要模擬器來進行 iOS專案執行
或除錯的時候，iOS模擬器將會直接顯示在Windows電腦中，如此，就不需要在進
行開發過程，同時關注兩個系統螢幕上出現的內容了。

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 92

Xamarin.Forms的 iOS專案成功執行結果

• 停止 iOS專案的執行

3.3.4建置與執行 UWP專案

• 使用滑鼠右擊 UWP專案
選擇設定為起始專案

• 點選 Visual Studio 2019最上方工具列綠色三角形的本機電腦
底下將會是成功執行 UWP專案的畫面

Visual Studio 2019安裝後的相關設定與確認開發環境可以使用 93

Xamarin.Forms的 UWP專案成功執行結果

• 停止 UWP專案的執行

3.4結論

若您的 Visual Studio 2019可以成功建立 Xamarin.Forms專案，可以建置在 Android /

iOS / UWP平台下執行，那麼，恭喜您，您的 Visual Studio 2019開發環境，已經可以正
常進行 Xamarin.Forms跨平台專案開發了

II Xamarin.Forms開發方式與基
本概念

在這個部分，將會首先說明在使用 Xamarin.Forms UI工具集 Toolkit來進行跨平台專案
開發的時候，可有三種方式來選擇，分別是：

1. 完全使用 C#程式語言來進行頁面 UI與該 App的商業運作邏輯部分
2. 使用 Xamarin.Forms內建的相關開發技術與使用標記語言 XAML來描述每個頁面的

UI會顯示的內容，對於商業邏輯部分將會使用 C#程式語言搭配 Code Behind的開
發方式，另外，還會搭配資料綁定 Data Binding的技術，當然，也可以自行設計支
援MVVM設計模式的相關 API

3. 則是使用已經設計好的 MVVM開發框架，無須自己再來設計這些 MVVM會用到的
API，例如：Prims等。

95

何謂 Xamarin.Forms

由於每個行動裝置開發平台，對於 UI 設計上與整個執行生命週期運作方式
都不盡相同，而且都需要使用原生 SDK API 規範來進行開發，例如，採用
Xamarin.Android與 Xamarin.iOS的開發方式，就是使用這樣的開發過程。

所以，Xamarin.Forms就將行動應用程式開發的 UI設計上的需求進行抽象化，開
發者可以透過 Xamarin.Forms所提供的各種抽象化 UI控制項元件的 API來進行
各種行動應用程式的畫面設計，一旦專案建置完成之後，就可以在 Android , iOS ,

UWP平台下來進行執行，此時，Xamarin.Forms的 UI工具集 Toolkit將會轉換這
些使用抽象 UI設計 API，成為使用當時執行平台的原生 SDK API並且來顯示出這
些 UI控制項在螢幕上。這樣 Xamarin.Forms達成了僅需要設計一個 UI畫面的設
計工作，就可以在不同行動裝置平台下執行的跨平台開發工具了。

關於MVVM設計模式
在本書中，將會先針對前兩者進行說明，對於第三種，使用市面上開發好的
MVVM開發框架來進行開發出 Xamarin.Forms的應用程式，稍後將會進行介紹，
不過，建議可以採用市面已經存在的許多 MVVM開發框架來使用，有興趣的人，
可以到作者部落格2 看到更多關於如何使用 Prism開發框架，使用 MVVM設計模
式開發出來的 Xamarin.Forms設計過程。

為了讓讀者可以知道這兩種 Xamarin.Forms 的設計過程、開發方式與整個
Xamarin.Forms 方案架構，因此，將會帶領大家來設計一個遊戲，那就是設計一個
手機 App，該 App將會自動產生兩個數值，請使用者輸入這兩個數值相加後的結果；若
答對的話，將會顯示答對的提示訊息，否則，將會顯示出答錯的提示訊息。底下的示意圖
片將會是準備要來開發的 App畫面。

2https://mylabtw.blogspot.com/

https://mylabtw.blogspot.com/
https://mylabtw.blogspot.com/

96

關於開發練習專案
為了要能夠讓讀者快速了解與學會這些 Xamarin.Forms開發技術，每個主題都會
使用一個範例專案來進行說明如何使用這些技術進行開發，因此，建議讀者跟著文
章中的開發步驟，逐步進行開發練習，以便達到最大學習成效。

兩數相加的遊戲設計示意圖

4.使用 C#程式語言來直接開發
Xamarin.Forms App

在這個章節，先來說明如何僅使用 C#程式語言，就可以設計出一個 Xamarin.Forms的
跨平台 App。

4.1建立一個 Xamarin.Forms方案

• 請啟動 Visual Studio 2019

• 在啟動後的對話窗內，選擇右下方的 [建立新的專案]選項
• 當顯示出 [建立新專案]對話窗，請在中間上方的文字輸入盒內，輸入 Xamarin這個
關鍵字

• 此時將會在中間清單區域，找到 [行動應用程式 (Xamarin.Forms)]這個選項，請點選
這個項目

• 在 [設定新的專案]對話窗內，請在專案名稱欄位內，輸入 FirstCS

• 請點選右下方的 [建立]按鈕
• 現在將會跳出一個 [New Cross Platform App - FirstCS]對話窗
• 請選擇選取範本區域內的 [空白]項目
• 在下方的 [平台] 區域，請記得勾選 Android , iOS , Windows (UWP) 這三個檢查盒
Checkbox

• 點選右下方的 [OK]按鈕
• 開始建立 Xamarin.Forms開發方案

使用 C#程式語言來直接開發 Xamarin.Forms App 98

4.2了解 Xamarin.Forms方案的結構

現在，Visual Studio 2019正在進行 Xamarin.Forms跨平台方案的產生工作，當這個方
案產生完成之後，將會看到這樣的方案結構出現在 Visual Studio 2019的 [方案總管]視窗
內，其結果如下面螢幕截圖。

從上面畫面可以看的出來，當 Visual Studio 2019建立一個 Xamarin.Forms解決方案的
時候，將會產生出四個專案，這些專案的意義如下所說明

• FirstCS

這個專案是一個 .NET Standard 2.0 為基礎的類別庫，通常稱這個專案為
Xamarin.Forms 的核心 Core 專案，或者稱為共用核心專案。在這個專案內將可
以存取 Xamarin.Forms所提供的 UI與相關 API。
另外，將會在這裡撰寫整個應用程式的商業邏輯程式碼，簡單的來說，那就是對於一
個跨平台專案開發過程中，將會在這個專案內設計不同平台都會使用到的共同 UI與

使用 C#程式語言來直接開發 Xamarin.Forms App 99

商業邏輯程式碼，如此，對於相同的設計內容，就僅需要設計一次，並且可以提供給
Android , iOS , UWP專案內來存取，達到最大共享程度。
Xamarin.Forms這個工具對於 UI設計部分，是將每個平台都會有提供的 UI進行抽
象化，讓程式設計師可以在 Xamarin.Fomrs 核心專案內使用這些 Xamarin.Forms

提供的 UI API來進行設計；一旦專案要在如 Android平台下執行的時候，就會自動
轉換使用 Android平台下提供的 UI元件來顯示在裝置畫面上，若專案要 iOS平台下
運行，當然就會自動採用 iOS平台下的 UI元件顯示在螢幕上。
當然，每個平台下的 UI 使用方式與呼叫方法都不盡相同，這樣的問題對於採用
Xamarin.Forms UI Toolkit工具集來進行開發的專案是不會有問題的，因為，這些複
雜的轉換工作都會有 Xamarin.Forms工具來解決。
至於非 UI的商業邏輯部分，當然是要回歸到 .NET平台所提供的解決方案，那就是
這些商業邏輯的需求，都可以透過 C#程式碼來完成，講的白話些，那就是原先在
.NET開發框架下，是如何呼叫遠端 Web API、存取檔案、進行 JSON序列與反序列
化、圖片檔案的放大與縮小等等，還是使用相同的程式碼與相同的 C#程式語言來進
行設計；更美的的是，只要這些商業邏輯程式碼是採用 .NET Standard類別庫所開
發出來的，就可以直接在 Xamarin.Forms專案中來參考與呼叫，無須任何轉換。
通常在進行跨平台專案開發的時候，大約會有 80%∼95%的程式碼是每個平台都會
用到的，剩下的部分就需要在個別的專案下進行設計，因為，所要執行的相關工作是
需要使用到每個平台下才會提供的 API。這些專屬平台下的 API呼叫包括了：訊息推
播、裝置感應器與資源的存取等等，這些 API不論是在使用方式，類別名稱，方法名
稱與參數型別和數量，設定與呼叫方式，都完全不相同，因此，需要在每個平台下個
別進行設計。不過，許多這樣的功能都已經開發成為 NuGet套件，因此，只需要安
裝這些 NuGet套件，就可以在 Xamarin.Forms核心專案內使用這些套件類別庫提供
的 API進行呼叫，就可以存取與使用到原生平台下的各種資源了。

• FirstCS.Android

這是個使用 Xamarin.Android開發框架所建立的專案，通稱為 Android原生專案，
透過這個專案可以產生出一個可在 Android平台下執行的 App，當然，在這個專案
內所撰寫的任何程式碼，都可以呼叫各種 Android SDK所提供的 API。在這個專案下

使用 C#程式語言來直接開發 Xamarin.Forms App 100

的相關 Android系統開發的設定、參數設定、系統運作方式等等，完全與 Android

原生 SDK相同，唯一的不同點那就是只有使用的程式語言是採用 .NET C#；因此，
當想要針對 Android專案進行相關擴充與設計的時候，這些可以使用的功能都會記
載在 Android原生 SDK上。
這個專案也是一個 Android App 啟動的時候，第一要執行程式碼，也就是在
MainActivity.cs檔案內的 MainActivity這個類別，通稱為 Android專案的程式進入
點。
由於在建置一個 Xamarin.Forms for Android專案的時候，會需要用到 Android原
生 SDK的開發環境，因此，這台開發電腦上還是需要把相關 Android SDK會用到的
檔案與套件都安裝與設定好。

• FirstCS.iOS

這是個使用 Xamarin.iOS開發框架所建立的專案，通稱為 iOS原生專案，透過這個
專案可以產生出一個可在 iOS平台下執行的 App，當然，在這個專案內所撰寫的任
何程式碼，都可以呼叫各種 iOS SDK所提供的 API。在這個專案下的相關 iOS系統開
發的設定、參數設定、系統運作方式等等，完全與 iOS原生 SDK相同，唯一的不同
點那就是只有使用的程式語言是採用 .NET C#；因此，當想要針對 iOS專案進行相關
擴充與設計的時候，這些可以使用的功能都會記載在 iOS原生 SDK上。
這個專案也是一個 iOS App 啟動的時候，第一要執行程式碼，也就是在
AppDelegate.cs 檔案內的 AppDelegate 這個類別，通稱為 iOS 專案的程式進入
點。
不過，要特別注意的是，當在進行 iOS App開發的時候，需要一台 Mac電腦，這台
電腦上要安裝 Xcode與 Visual Studio 2019 for Mac；另外，若想要針對在 iPhone

實體手機上進行開發除錯的時候，那就需要另外在準備一個蘋果開發者帳號，而且需
要經過一些設定工作，才能夠在實體裝置上進行開發與除錯，否則，就僅能夠使用
iOS SDK所提供的 iOS Simulator模擬器來進行開發和除錯了。

• FirstCS.UWP

這是個使用 UWP開發框架所建立的專案，通稱為 UWP原生專案，這裡並沒有任何
Xamarin.UWP這樣的開發框架存在，而就是直接使用微軟提供的 UWP SDK，透過

使用 C#程式語言來直接開發 Xamarin.Forms App 101

這個專案可以產生出一個可在 UWP平台下執行的 App，當然，在這個專案內所撰寫
的任何程式碼，都可以呼叫各種 UWP SDK所提供的 API。在這個專案下的相關 UWP

系統開發的設定、參數設定、系統運作方式等等，完全與 UWP原生 SDK相同，唯
一的不同點那就是只有使用的程式語言是採用 .NET C#；因此，當想要針對 UWP專
案進行相關擴充與設計的時候，這些可以使用的功能都會記載在 UWP原生 SDK上。
這個專案也是一個 UWP App 啟動的時候，第一要執行程式碼，也就是在
App.xaml.cs檔案內的 App這個類別，通稱為 UWP專案的程式進入點。

所以對於所產生的 Xamarin.Forms方案內的四個專案，將會存在如下圖的關係。

Xamarin.Forms方案內的專案關係

在上圖的每個區塊，都有兩行文字標示，第一行文字表示該專案所使用的開發框架

使用 C#程式語言來直接開發 Xamarin.Forms App 102

Framework的名稱，而下方的文字則是這個剛剛建立起來的練習專案名稱。

也就是說，對於 Android 類型的 App，將會由 FirstCS.Android 這個可以完全使用
Android原生 SDK的專案與 FirstCS這個僅能夠使用 Xamarin.Forms提供的相關 API的
專案所產生出來的兩個組件 Assembly檔案所組成；並且，由於 FirstCS.Android這個專
案需要參考 FirstCS專案，因此，在這個 FirstCS.Android，Android原生專案，除了可
以呼叫與使用任何 Android原生 SDK提供的 API，也可以存取 FirstCS專案內的相關型別
與程式碼。

反過來說，對於 FirstCS專案而言，在這個專案內就僅能夠呼叫 Xamarin.Forms所提供
的 API，無法呼叫任何 Android原生 SDK內的 API；當然，若想要這麼做，是可以使用
之後就會介紹的相依服務 Dependency Service 與訊息中心 MessageingCenter 這兩個
Xamarin.Forms內建的功能來完成。

而且最為重要的是，整開發整個跨平台 App 的時候，開發者幾乎所有的時間都會在
FirstCS這個專案內來進行程式碼的設計，也就是要進行使用者畫面與商業邏輯的設計；
對於前者將會使用這個 FirstCS專案內安裝的 Xamarin.Forms NuGet套件所提供的相關
抽象 UI API，就可以設計出跨平台的 UI App，對於商業邏輯部分，直接使用 .NET C#程
式語言提供的技術即可。

所以當要產生出 iOS類型的 App，就需要透過 FirstCS.iOS這個專案與 FirstCS專案所建
置出來的兩個組件，就可以在 iOS裝置性來執行；同樣的，對於 Windows UWP類型的
App，也是使用同樣的規則，透過 FirstCS.UWP 專案與 FirstCS 專案建置出來的兩個組
件，就可以在Windows UWP平台下電腦與裝置來運行了。

使用 C#程式語言來直接開發 Xamarin.Forms App 103

Xamarin.Forms的套件
Xamarin.Forms UI Toolkit 工具集，其實就是一個 NuGet 套件1，也就是說，想
要在當前的專案內要進行 Xamarin.Forms 需求的開發，就僅需要加入這個
Xamarin.Forms NuGet 套件即可，如此，就可以開始使用 Xamarin.Forms 所提
供的相關 API，進行跨平台的設計。

也就是說，若要更新 Xamarin.Forms 到新版本，僅需要更新所有專案內的
Xamarin.Forms這個 NuGet套件到最新版本即可。

共用商業邏輯程式碼與螢幕 UI控制項
對於一個行動裝置 App而言，其實需要進行兩大類型需求的開發設計，那就是該
App螢幕畫面 UI/UX的設計、以及相關商業邏輯的需求設計。每個平台所用到的
API方法與名稱和用法、UI控制項的名稱與用法皆完全不相同，若在進行跨平台
App開發的時候，需要針對 Android平台與 iOS平台下的螢幕畫面逐一特別進行
設計，將會是個很浪費開發成本的工作。

畢竟對於一個跨平台 App 而言，不論在哪個平台下運行，其實，都應該要呈現
出同樣的 UI 控制項與文字內容才對，而不是要逐一特別在每個平台下都重複設
計一次相同的 UI 畫面，Xamarin.Forms UI Toolkit 工具集就是用來解決這個問
題，App開發者僅需要使用 Xamarin.Fomrs所提供的 API，就可以設計出同時在
Android / iOS / UWP平台下的 UI畫面，而且最重要的是，這些工作僅僅需要做一
次即可，便可以將這些需求與 Android / iOS / UWP的專案來共用，對於商業邏輯
部分，直接使用 .NET C#程式語言提供的技術即可。

因此，Xamarin.Forms的解決方案就是要解決共用商業邏輯程式碼與螢幕 UI控制
項的問題，讓開發者無須專注在不同行動裝置平台，專心使用 Xamarin.Forms所
提供的 API，就可以設計出跨平台的 App了。

1https://www.nuget.org/packages/Xamarin.Forms/

https://www.nuget.org/packages/Xamarin.Forms/
https://www.nuget.org/packages/Xamarin.Forms/

使用 C#程式語言來直接開發 Xamarin.Forms App 104

4.2.1了解 Xamarin.Android專案的結構與運作方式

首先先來了解 Xamarin.Android的專案結構，當展開 Xamarin.Android專案之後，將會
呈現如下圖的畫面。

Xamarin.Android專案結構

請先展開 Properties節點，將會看到 AndroidManifest.xml檔案，這個檔案是用來設定
Android原生專案的使用權限與相關設定的地方，這是一個 XML資料格式的檔案，不過，
在 Xamarin.Android 開發框架下，許多用使用 XML 來進行宣告的設定工作，可以透過

使用 C#程式語言來直接開發 Xamarin.Forms App 105

C# Attribute屬性宣告的方式就可以直接完成設定工作，不需要自行使用 XML語法來修
改這個 AndroidManifest.xml檔案，因為，在建置 Xamarin.Android專案的時候，將會
自動產生出相對應的 XML設定宣告內容。

對於 App中會使用到的本機圖片檔案資源，將會使用 Resources目錄下的 drawable目
錄來儲存這些圖片檔案，從上面的螢幕截圖可以看到預設是沒有這個 drawable這個目
錄，因此，可以將要顯示在該 App上的圖片檔案，透過檔案總管拖拉到這個 drawable目
錄下即可。

圖片檔案資源
在使用 Xamarin.Forms 開發跨平台 App 的時候，對於 App 中會使用到的圖片
檔案資源，需要分別將這些圖片檔案拖拉到每個原生專案內的指定目錄下，而
且對於同一個圖片資源，其檔案名稱最好是具有同樣的檔案名稱；另外，對
於 Xamarin.Android 專案而言，這個 drawable 目錄是標示圖片檔案資源的根
目錄，例如，若有個圖片檔案名稱為 MyImage.png 存在於 drawable 目錄下，
在 Xamarin.Forms 專案內若想要參考這個圖片資源，僅需要標示這個圖片檔案
名稱即可 (這裡是使用 XAML 的標記語言來宣告一個圖片控制項的用法 <Image

Source="MyImage.png">)。

當然，在不同的原生專案平台下，圖片儲存的位置是不相同的，而且這些圖片一定
需要存放在每個原生專案平台下 (為了要能夠使用自動放大倍率選取功能)，不需要
將這些圖片檔案放置到 Xamarin.Forms專案內。

對於非圖片類型的檔案，例如：文字檔案、聲音檔案、影片檔案、資料庫檔案等等，將需
要把這些檔案存放到 Assets目錄下。

對於 Xamarin.Android原生專案內的檔案結構與使用方式，都與使用 Android原生 SDK

開發用法相同。

使用 C#程式語言來直接開發 Xamarin.Forms App 106

4.2.2 Xamarin.Android的專案進入點

最後來了解 Xamarin.Android專案是如何運行的，一旦一個 Xamarin.Android專案啟動
之後，將會依照 Android原生 SDK的規範，使用 MainActivity這個類別開始來執行，底
下是這個檔案的程式碼。

 MainActivity.cs

namespace FirstCS.Droid
{
[Activity(Label = "FirstCS", Icon = "@mipmap/icon", Theme = "@style/MainTheme", \

MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges\
.Orientation)]
public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompa\

tActivity
{
protected override void OnCreate(Bundle savedInstanceState)
{
TabLayoutResource = Resource.Layout.Tabbar;
ToolbarResource = Resource.Layout.Toolbar;

base.OnCreate(savedInstanceState);

Xamarin.Essentials.Platform.Init(this, savedInstanceState);
global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
LoadApplication(new App());

}
public override void OnRequestPermissionsResult(int requestCode, string[] pe\

rmissions, [GeneratedEnum] Android.Content.PM.Permission[] grantResults)
{
Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, perm\

issions, grantResults);

base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

}
}

使用 C#程式語言來直接開發 Xamarin.Forms App 107

在這個MainActivity類別內，有覆寫 override一個OnCreate方法，這個方法將會是 An-

droid專案一開始執行的地方，其中這個敘述 global::Xamarin.Forms.Forms.Init(this,

savedInstanceState);會是開始進行 Xamarin.Forms套件的初始化運作的程式碼呼叫，
接者將會產生一個 App 類別執行個體 (這個 App 類別是宣告在 Xamarin.Forms 專案內
的一個類別，等下會看到這個類別的介紹)，使用敘述 LoadApplication(new App());將
整個執行控制權轉交到 Xamarin.Forms專案內，也就是說，之後運行的程式碼都將會在
Xamarin.Forms專案內來進行。

4.2.3了解 Xamarin.iOS專案的結構與運作方式

接著來查看 Xamarin.iOS的原生專案結構，當展開 Xamarin.iOS專案之後，將會呈現如
下圖的畫面。

對於 Xamarin.iOS原生專案內的檔案結構與使用方式，都與使用 iOS原生 SDK開發用法
相同。

使用 C#程式語言來直接開發 Xamarin.Forms App 108

Xamarin.iOS專案結構

在 Xamarin.iOS專案下的 info.plist (這個檔案稱為 Information Proerties List資訊屬性
清單)，其性質有點像是 Xamarin.Android專案內的 AndroidManifest.xml檔案，他們都
是使用 XML語言來進行宣告相關設定；另外，對於 Entitlements.plist檔案，也是用於設
定這個 iOS專案相關行為的一個設定檔案。

對於 Xamarin.iOS專案下要用到的相關圖片檔案、文字檔案、、聲音檔案、影片檔案、資
料庫檔案等等，將需要把這些檔案存放到 Resources目錄下即可，而且這個目錄將會圖
片檔案的根目錄。

4.2.4 Xamarin.iOS的專案進入點

最後來了解 Xamarin.iOS專案是如何運行的，一旦一個 Xamarin.iOS專案啟動之後，將
會依照 iOS原生 SDK的規範，使用 AppDelegate這個類別開始來執行，底下是這個檔案
的程式碼。

使用 C#程式語言來直接開發 Xamarin.Forms App 109

AppDelegate.cs

namespace FirstCS.iOS
{
// The UIApplicationDelegate for the application. This class is responsible for \

launching the
// User Interface of the application, as well as listening (and optionally respo\

nding) to
// application events from iOS.
[Register("AppDelegate")]
public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.FormsAppli\

cationDelegate
{
//
// This method is invoked when the application has loaded and is ready to ru\

n. In this
// method you should instantiate the window, load the UI into it and then ma\

ke the window
// visible.
//
// You have 17 seconds to return from this method, or iOS will terminate you\

r application.
//
public override bool FinishedLaunching(UIApplication app, NSDictionary optio\

ns)
{
global::Xamarin.Forms.Forms.Init();
LoadApplication(new App());

return base.FinishedLaunching(app, options);
}

}
}

在這個 AppDelegate類別內，有覆寫 override一個 FinishedLaunching方法，這個方法
將會是 iOS專案一開始執行的地方，其中這個敘述 global::Xamarin.Forms.Forms.Init();

會是開始進行 Xamarin.Forms套件的初始化運作的程式碼呼叫，接者將會產生一個 App

使用 C#程式語言來直接開發 Xamarin.Forms App 110

類別執行個體 (這個 App 類別是宣告在 Xamarin.Forms 專案內的一個類別，等下會看
到這個類別的介紹)，使用敘述 LoadApplication(new App());將整個執行控制權轉交到
Xamarin.Forms專案內，也就是說，之後運行的程式碼都將會在 Xamarin.Forms專案內
來進行。

4.2.5了解 Xamarin.UWP專案的結構與運作方式

現在來了解 UWP的原生專案結構，當展開 UWP專案之後，將會呈現如下圖的畫面。

對於 UWP原生專案內的檔案結構與使用方式，都與使用 UWP原生 SDK開發用法相同。

UWP專案結構

對 於 UWP 專 案， 相 關 專 案 行 為 與 授 權 權 限 的 宣 告 與 設 定， 將 會 在 Pack-

age.appxmanifest檔案中進行設定。

在 UWP專案下的圖片檔案或者其他檔案資源，如同一般 .NET專案開發一樣，可以自行

使用 C#程式語言來直接開發 Xamarin.Forms App 111

建立一個目錄，將這些檔案放置在任何方案資料夾內，不過，通常將會把相關 UWP專案
會用到的相關檔案存放到 Assets目錄下。

4.2.6 UWP的專案進入點

最後來了解 UWP專案是如何運行的，一旦一個 UWP專案啟動之後，將會依照 UWP原
生 SDK的規範，使用 App這個類別 (這裡的 App類別將會宣告 UWP專案內的一個類別，
這與剛剛提到的 Xamarin.Forms內的 App類別是不同的)開始來執行，底下是這個檔案
的程式碼。

App.xaml.cs

namespace FirstCS.UWP
{
/// <summary>
/// Provides application-specific behavior to supplement the default Application\

class.
/// </summary>
sealed partial class App : Application
{
/// <summary>
/// Initializes the singleton application object. This is the first line of\

authored code
/// executed, and as such is the logical equivalent of main() or WinMain().
/// </summary>
public App()
{
this.InitializeComponent();
this.Suspending += OnSuspending;

}

/// <summary>
/// Invoked when the application is launched normally by the end user. Othe\

r entry points
/// will be used such as when the application is launched to open a specific\

使用 C#程式語言來直接開發 Xamarin.Forms App 112

file.
/// </summary>
/// <param name="e">Details about the launch request and process.</param>
protected override void OnLaunched(LaunchActivatedEventArgs e)
{

Frame rootFrame = Window.Current.Content as Frame;

// Do not repeat app initialization when the Window already has content,
// just ensure that the window is active
if (rootFrame == null)
{
// Create a Frame to act as the navigation context and navigate to t\

he first page
rootFrame = new Frame();

rootFrame.NavigationFailed += OnNavigationFailed;

Xamarin.Forms.Forms.Init(e);

if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
{
//TODO: Load state from previously suspended application

}

// Place the frame in the current Window
Window.Current.Content = rootFrame;

}

if (rootFrame.Content == null)
{
// When the navigation stack isn't restored navigate to the first pa\

ge,
// configuring the new page by passing required information as a nav\

igation
// parameter
rootFrame.Navigate(typeof(MainPage), e.Arguments);

}
// Ensure the current window is active
Window.Current.Activate();

}

使用 C#程式語言來直接開發 Xamarin.Forms App 113

/// <summary>
/// Invoked when Navigation to a certain page fails
/// </summary>
/// <param name="sender">The Frame which failed navigation</param>
/// <param name="e">Details about the navigation failure</param>
void OnNavigationFailed(object sender, NavigationFailedEventArgs e)
{
throw new Exception("Failed to load Page " + e.SourcePageType.FullName);

}

/// <summary>
/// Invoked when application execution is being suspended. Application stat\

e is saved
/// without knowing whether the application will be terminated or resumed wi\

th the contents
/// of memory still intact.
/// </summary>
/// <param name="sender">The source of the suspend request.</param>
/// <param name="e">Details about the suspend request.</param>
private void OnSuspending(object sender, SuspendingEventArgs e)
{
var deferral = e.SuspendingOperation.GetDeferral();
//TODO: Save application state and stop any background activity
deferral.Complete();

}
}

}

想要看到上述程式進入點的程式碼，請在 UWP專案內找到 App.xaml這個檔案節點，點
選該檔案名稱前面的三角形，展開這個節點，如此便會看到這個 App.xaml.cs節點，使用
滑鼠雙擊這個 App.xaml.cs節點名稱，就會看到上述的程式碼。

在這個 App 類別內，有覆寫 override 一個 OnLaunched 方法，這個方法將會是 UWP

專案一開始執行的地方，其中這個敘述 Xamarin.Forms.Forms.Init(e); 會是開始進行
Xamarin.Forms套件的初始化運作的程式碼呼叫。

接者請打開 MainPage.xaml.cs這個檔案節點 (請找到 UWP專案內的 MainPage.xaml檔

使用 C#程式語言來直接開發 Xamarin.Forms App 114

案節點，點選該節點前面的三角形圖示，就會看到這個 MainPage.xaml.cs檔案節點了)，
此時，該MainPage.xaml.cs的程式碼如下所示

MainPage.xaml.cs

namespace FirstCS.UWP
{
public sealed partial class MainPage
{
public MainPage()
{
this.InitializeComponent();

LoadApplication(new FirstCS.App());
}

}
}

在 MainPage.xaml.cs的 MainPage類別的建構函式內，將會產生一個 App類別執行個
體 (這個 App類別是宣告在 Xamarin.Forms專案內的一個類別，為了避免與 UWP專案
內的 App 類別相衝突，所以特別在 App 類別名稱前面加上了 FirstCS 命名空間來做區
隔，等下會看到這個類別的介紹)，使用敘述 LoadApplication(new FirstCS.App());將
整個執行控制權轉交到 Xamarin.Forms專案內，也就是說，之後運行的程式碼都將會在
Xamarin.Forms專案內來進行。

4.2.7了解 Xamarin.Forms專案的結構與運作方式

最後來看看 Xamarin.Forms的共用專案 (也就是 Android , iOS , UWP專案都會參考到的
專案)結構，當展開 Xamarin.Android專案之後，將會呈現如下圖的畫面。

使用 C#程式語言來直接開發 Xamarin.Forms App 115

Xamarin.Forms專案結構

對於上面觀察到的三個原生專案 Android , iOS , UWP，將會歸納這三個專案的執行途徑

• Android執行過程
MainActivity類別 > OnCreate方法 >建立 Xamarin.Forms專案內的 App執行個體
>呼叫 LoadApplication方法，將執行權限交由 Xamarin.Forms的 App類別的執行
個體物件

• iOS

AppDelegate類別 > FinishedLaunching方法 >建立 Xamarin.Forms專案內的 App

執行個體 >呼叫 LoadApplication方法，將執行權限交由 Xamarin.Forms的 App類
別的執行個體物件

• UWP

UWP 專案內的 App 類別 > MainPage 類別 > MainPage 建構函式 > 建立
Xamarin.Forms 專案內的 App 執行個體 > 呼叫 LoadApplication 方法，將執行
權限交由 Xamarin.Forms的 App類別的執行個體物件

現在可以來觀察在 Xamarin.Forms 核心專案內的 App 類別，這個類別是定義
在 App.xaml 這個 XAML 檔案內，在這個檔案節點，點選三角形圖示，就會看到
App.xaml.cs這個節點，請打開這個節點，將會看到底下的程式碼

使用 C#程式語言來直接開發 Xamarin.Forms App 116

Xamarin.Forms核心專案內的 App.xaml.cs

namespace FirstCS
{
public partial class App : Application
{
public App()
{
InitializeComponent();

MainPage = new MainPage();
}

protected override void OnStart()
{
// Handle when your app starts

}

protected override void OnSleep()
{
// Handle when your app sleeps

}

protected override void OnResume()
{
// Handle when your app resumes

}
}

}

對於 App.xaml 這個 XAML 檔案，將可以用來宣告整個 Xamarin.Forms 應用程式全域
使用的 XAML資源 Resource與樣式 Style，這裡將會使用 XAML標記語言來進行設計。
而 App.xaml.cs 則是這個 XAML 檔案的 Code Behind 程式碼，在這裡的建構函式程式
碼將指定整個 Xamarin.Forms App 所要顯示的第一個頁面，從這裡可以從 C# 敘述
MainPage = new MainPage();看出來，這個 Xamarin.Forms App第一個要顯示的頁面將
會是MainPage這個頁面物件。

使用 C#程式語言來直接開發 Xamarin.Forms App 117

對於這個 Xamarin.Forms 的 App 類別，除了擁有 MainPage 這個屬性，可以用來指定
整個應用程式會看到的第一個頁面，該類別也提供了 Xamarin.Forms 應用程式的生命
週期管理上的相關事件，例如 OnStart() , OnSleep() ,OnResume()這三個方法，將會於
Xamarin.Forms應用程式啟動時候、進入到背景模式 (也就是螢幕看不到這個應用程式的
情境)、從背景模式回到前景模式下，將會觸發這些方法，當然，程式設計師便可以在這
些方法內進行更多的應用程式控制方面的設計工作。

最後，這個應用程式將會顯示出MainPage這個頁面，底下將會是這個應用程式執行的結
果畫面

使用 C#程式語言來直接開發 Xamarin.Forms App 118

預設 Xamarin.Forms專案樣板執行結果

4.3開始僅使用 C#程式碼來設計兩數相加的遊戲

現在來體驗如何僅單純使用 C#程式碼，就可以完成一個 Xamarin.Forms頁面的設計，
而且這個頁面將會於應用程式啟動的時候，顯示出一個具有兩數相加的遊戲功能應用程
式。

使用 C#程式語言來直接開發 Xamarin.Forms App 119

4.3.1建立一個新遊戲頁面類別

• 請滑鼠右擊 FirstCS核心專案
• 從彈出功能表中，點選 [加入] > [類別]選項
• 現在將會看到 [新增項目 - FirstCS]這個對話窗出現
• 確認中間清單中已經選擇了 [類別]這個項目
• 請在下方 [名稱]欄位中，輸入 QuestionPage

• 點選右下方的 [新增]按鈕，新增這個類別檔案項目

在 Xamarin.Forms核心專案內新增一個類別檔案

使用 C#程式語言來直接開發 Xamarin.Forms App 120

4.3.2讓新增類別繼承 ContentPage

若你對於微軟的 GUI類型的應用程式有開發經驗，則相信對於底下的程式碼作法將不會
很陌生

對於剛剛建立產生的 QuestionPage類別，請使用底下程式碼進行修正

QuestionPage.cs

public class QuestionPage : ContentPage
{
}

何謂內容頁面 ContentPage

在 Xamarin.Forms中，內容頁面將會佔據整個螢幕，並且可以在這個內容頁面內
透過不同的版面配置 Layout與各種視覺控制項目，讓使用者可以看到所要顯示的
各種內容

首先請將這裡類別前面加上 public存取修飾詞，接著在這裡將會讓 QuestionPage繼承
Xamarin.Forms提供的 ContentPage，這是因為若想要在 Xamarin.Forms設計一個新頁
面，需要繼承 ContentPage這個類別，該類別提供了許多功能可以讓程式設計師在這個
頁面內加入許多的版面配置 Layout與 UI控制項，如此，就會在裝置螢幕上顯示出相關畫
面內容。

現在，這個 QuestionPage已經具備了可以開始加入更多版面配置與 UI控制項的能力了。

使用 C#程式語言來直接開發 Xamarin.Forms App 121

4.3.3設計該遊戲頁面

在這個遊戲頁面中，將會用到 4個文字控制項 (Label)、1個文字輸入盒 (Entry)、與兩個
按鈕 (Button)，所以，請在該類別內加入這些欄位宣告與定義。

• 文字控制項 Label

在 Xamarin.Forms中，若想要在螢幕上顯示文字字串內容，需要透過 Label這個 UI

控制項，透過這個控制項的 Text屬性來指定要顯示文字內容，這樣就可以顯示在裝
置螢幕上了；當然，該控制項還提供了許多其他功能屬性可以使用，例如：可以指定
字體大小、字體顏色、背景顏色等等。

• 文字輸入盒 Entry

當想要讓這個應用程式使用者可以輸入相關資訊到這個應用程式內，可以使用文字輸
入盒 Entry這個 UI控制項，使用者可以點選這個控制項，並且使用軟體鍵盤來輸入
相關的文字資訊；當然，該控制項也供了許多其他功能屬性可以使用，例如：可以指
定字體大小、字體顏色、背景顏色等等，另外，還可以使用 Keyboard這個屬性來指
定當時輸入所要顯示的鍵盤模式，由於在這裡要使用者輸入兩個整數相加的結果，因
此，將會指定當使用點選這個控制項之後，將會顯示數值模式的軟體鍵盤在裝置螢幕
上。

• 按鈕 Button

按鈕在行動裝置應用程式開發中，是個相當重要的 UI控制項，它可以讓使用點選這
個控制項，而按鈕 Button UI控制項將會提供一個點選事件可以用來訂閱當使用者點
選這個按鈕的時候，可以觸發、執行這個訂閱事件的委派方法；在這個遊戲中，將會
提供兩個按鈕，第一個按鈕將會讓應用程式重新產生一個新的數值相加的題目，而第
二個按鈕將會是用來檢查使用者輸入的答案是否正確，若使用者輸入的答案不正確，
將會在螢幕上顯示出答錯了文字內容，若使用者答對的話，將會顯示答對了文字內
容，這個文字內容將會使用 Label文字控制項來顯示在螢幕上，並且將會設定這個文
字以橘色、字體 30大小的狀態顯示在螢幕上。

使用 C#程式語言來直接開發 Xamarin.Forms App 122

QuestionPage.cs

int value1 = 0;
int value2 = 0;

Label lbValue1 = new Label();
Label lbValue2 = new Label();
Label lbQuestion = new Label();
Entry entAnswer = new Entry();
Button btnReQuestion = new Button();
Button btnSubmit = new Button();
Label lbMessage = new Label();

在這裡也宣告了兩個整數欄位，分別是 value1 , value2，這兩個欄位將會儲存此次猜謎題
目的兩個相加的數值。

對於這個遊戲，將會使用底下的 CreateQuestion方法，來產生出相關題目，而產生出來
的題目，將會儲存來 value1 , value2這兩個欄位內。

QuestionPage.cs

使用 C#程式語言來直接開發 Xamarin.Forms App 123

void CreateQuestion()
{
Random random = new Random();
value1 = random.Next(10, 99);
value2 = random.Next(10, 99);

lbValue1.Text = $"{value1}";
lbValue2.Text = $"{value2}";

lbQuestion.Text = $"請問 {value1} + {value2} =多少?";
lbMessage.Text = "";

}

CreateQuestion 方法內將會使用 Random 類別，隨機產生出兩個數值，接著將會把
這兩個數值分別使用 lbValue1.Text 與 lbValue2.Text 這兩個屬性，設定到這兩個文字
控制項內，這樣，在螢幕上就會看到此次產生問題的兩個整數值；另外，將會利用
lbQuestion.Text這個控制項，顯示出一段文字，讓使用這清楚的知道這個遊戲詢問的問
題是什麼？最後，會把 lbMessage.Text這個文字控制項的文字屬性值設定為空字串，也
就是把使用者是否回答題目正確與否的文字訊息暫時清除掉。

現在，將會需要建立一個 QuestionPage建構函式，因為將會需要在這個建構函式內設定
這個頁面上所有顯示的 UI控制項的位置與順序，以滿足這個遊戲畫面的設計

QuestionPage.cs的建構函式

使用 C#程式語言來直接開發 Xamarin.Forms App 124

CreateQuestion();

lbValue1.FontSize = 20;
lbValue1.TextColor = Color.Blue;
lbValue2.FontSize = 20;
lbValue2.TextColor = Color.Blue;

lbQuestion.FontSize = 20;
lbQuestion.TextColor = Color.Red;
lbQuestion.Text = $"請問 {value1} + {value2} =多少?";

entAnswer.Keyboard = Keyboard.Numeric;

lbMessage.FontSize = 30;
lbMessage.TextColor = Color.Orange;

在這個建構函式一開始將會呼叫 CreateQuestion()，以便產生出新的遊戲問題題目，接
著將會需要分別設定這些文字控制項 Label與文字輸入盒 Entry控制項要顯示在螢幕上的
控制屬性，這裡將會設定要顯示文字的大小與顏色，另外，針對文字輸入盒 UI控制項，
將會使用 entAnswer.Keyboard = Keyboard.Numeric這個敘述來設定該文字輸入盒 UI控
制項，需要使用數值類型的鍵盤，來讓使用者輸入內容。

該建構函式接下來將會需要進行按鈕控制項的相關設計工作，程式碼如下所示：

QuestionPage.cs的建構函式

使用 C#程式語言來直接開發 Xamarin.Forms App 125

btnReQuestion.Text = "產生問題";
btnReQuestion.Clicked += (s, e) =>
{
CreateQuestion();

};

btnSubmit.Text = "提交";
btnSubmit.Clicked += (s, e) =>
{
int sum = int.Parse(entAnswer.Text);
if ((value1 + value2) == sum)
{
lbMessage.Text = "答對了";

}
else
{
lbMessage.Text = "答錯了";

}
};

在此先使用 btnReQuestion.Text 來設定重新產生題目的按鈕上面的名稱，接著使用
btnReQuestion.Clicked事件來訂閱一個 Lambda匿名委派方法，在這個委派方法內將會
呼叫 CreateQuestion()方法，如此，就會產生出新的題目，而因為 value1與 value2這
兩個數值也有所變動，因此，螢幕上也會顯示出這個新題目的相關提示文字。

對於使用者要確認是否答對題目的按鈕，將會使用 btnSubmit.Text 這個屬性來設定該
按鈕的顯示文字，只要使用這點選了這個按鈕，將會觸發這裡 btnSubmit.Clicked所訂
閱的委派事件，也就是這裡所指定 Lambda匿名委派方法；在該委派方法將會首先透過
entAnswer.Text屬性取得使用者輸入的答案內容，並且將其轉換成為一個整數 (在這裡將
為了要簡化說明整個遊戲應用程式的開發與設計過程，將沒有做相關例外情況的檢查，例
如，使用者沒有輸入任何答案或者輸入的內容不是一個整數這樣的情況，因此，若使用者
沒有輸入任何答案或者輸入不是整數的文字，將會造成這個應用程式崩潰，造成 App閃
退的現象)。

當取得使用者輸入的答案，就會與原先題目，也就是 value1 + value2的結果進行比對，

使用 C#程式語言來直接開發 Xamarin.Forms App 126

看看是否得到相同的數值，若兩者不相同，將會設定 lbMessage.Text為答錯了這樣的文
字內容，此時，螢幕上也會產生顯示出這個文字；當然，當使用者回答是正確的答案，螢
幕上將會出現答對了這樣的文字。

相關的商業處理邏輯已經都開發與設計完成了，現在就需要針對螢幕畫面上要顯示那些
UI控制項以及在顯示在那些位置和順序來進行設計，這裡將會使用底下的程式碼來完成。

QuestionPage.cs的建構函式

Content = new StackLayout
{
Children = {
new Label { Text = "數值1", FontSize=14 },
lbValue1,
new Label { Text = "數值2", FontSize=14 },
lbValue2,
new Label { Text = "問題", FontSize=14 },
lbQuestion,
new Label { Text = "答案", FontSize=14 },
entAnswer,
new StackLayout
{
Orientation = StackOrientation.Horizontal,
Children = {
btnReQuestion,
btnSubmit

}
},
lbMessage

}
};

對於要在 ContentPage這個內容頁面上顯示畫面，其 ContentPage有個屬性 Content可
以使用，只要將相關的 UI控制項設定到這個 Content (內容屬性)，就會在螢幕上顯示出

使用 C#程式語言來直接開發 Xamarin.Forms App 127

這個控制項；不過，對於 Content這個屬性，僅能夠指定一個 UI控制項，因此，在此需
要把多個 UI控制項設定到一個版面配置檢視 (Layout View)內。

在 Xamarin.Forms內共提供三種類型的使用者顯示內容，第一種是頁面 Page (這裡會有
內容頁面、導航頁面、導航抽屜頁面、旋轉木馬頁面等等)，第二個是版面配置 Layout

(常用的版面配置有格子版面配置 Grid、推疊版面配置 StackLayout、捲動式版面配是
ScrollView等等)，第三種則是豐富的 UI控制項 (文字標籤、文字輸入盒、多行文字輸入
盒、按鈕、矩形區塊、日期選取器、時間選取器等等)。

在此，將會使用一個 StackLayout這個版面配置，將要顯示的 UI控制項放到這個版面配
置的 Children屬性內，這樣，這些控制項將會使用預設垂直排列的方式來顯示在螢幕上；
而對於要顯示的兩個按鈕，在這裡將會另外建立一個 StackLayout版面配置物件，指定
StackLayout.Orientation屬性值為 StackOrientation.Horizontal，表示等下要加入到這
個推疊版面配置內的兩個按鈕，將會採用水平的方式來排列並顯示到螢幕上。

將過這樣的設計，若想要馬上執行這個專案，請使用底下的方式：

• 在標號1位置，其為 [方案組態]，請點選為 [Debug]

• 在標號2 位置，其為 [起始專案]，請選擇使用 [FirstCS.Android] 項目，要使用
Android平台來進行執行與測試

• 在標號3位置，其為可用的 Android模擬器或者實體裝置，選擇想要執行的設備
• 最後，點選標號 3前方的綠色按鈕，就可以使用 Android平台的方式，來執行這個
Xamarin.Forms專案

Visual Studio 2019工具列面板 -執行 Xamarin.Forms專案

使用 C#程式語言來直接開發 Xamarin.Forms App 128

當然，很不幸的，整個模擬器畫面將不會出現剛剛所設計的畫面內容，那麼，問題到底出
現在哪裡呢？

4.3.4變更 Xamarin.Forms應用程式的起始頁面

還記得在最前面介紹 Xamarin.Forms 核心專案內的 App.xaml.cs 檔案的時候，在這個
App類別內的建構函式內，其中有段 C#敘述 MainPage = new MainPage();，這裡是要
用來指定當 Xamarin.Forms應用程式啟動的時候，第一個要顯示的頁面物件。

由於在這裡設計了一個 QuestionPage類別物件，這將會是這個 Xamarin.Forms應用程
式所要顯示出來的第一個頁面，也是剛剛所設計的遊戲頁面。

  App.xaml.cs

public partial class App : Application
{
public App()
{
InitializeComponent();

MainPage = new QuestionPage();
}
...

}

因此，請在 App類別的建構還是內，將 MainPage變更成為 QuestionPage這個頁面類
別名稱。

現在，請重新執行這個專案

使用 C#程式語言來直接開發 Xamarin.Forms App 129

當應用程式一啟動之後，將會顯示如左上圖的畫面，其中數值1 / 數值2 的藍色數值，
將會隨機產生出來的，這裡所看到的畫面就是剛剛使用 C# 程式語言所設計出來的
QuestionPage類別所設計的結果。弱點選答案的文字輸入盒欄位，將會出現如右上圖的
畫面，此時螢幕上將會顯示出軟體鍵盤，而且這個鍵盤是使用數值模式的鍵盤，方便使用
者直接輸入兩數相加的結果數值到 App內。

使用 C#程式語言來直接開發 Xamarin.Forms App 130

現在可以在文字輸入盒輸入 131這個答案值，接著點選下方的提交按鈕，這樣，在按鈕
的下方將會出現答對了這個文字內容；接著來輸入一個錯誤的答案，在這裡輸入 111這
個數值，接著點選提交按鈕，因為答案不正確，所以，將會在螢幕上看到答錯了這個文字
內容。

5.使用 XAML標記宣告語言來開發
Xamarin.Forms App

在上一章已經說明如何僅透過 C# 程式碼來進行 Xamarin.Forms 的專案開發，也了
解到整個 App 是如何從原生專案到 Xamarin.Forms 核心專案的運作流程，然而，在
Xamarin.Forms UI工具集中提供了另外一個相當好用的工具，那就是 XAML；XAML是
eXtensible Application Markup Language延伸應用程式標記語言的縮寫，其讓開發人員
可以在 Xamarin.Forms應用程式中使用標記定義使用者介面，而不是使用程式碼，這樣
設計方式的好處就如何在設計網頁畫面的時候，會使用 HTML標記語言來進行網頁畫面
的設計，而相關的商業邏輯將會使用 JavaScript程式語言來進行設計。

下圖表達了當使用 XAML宣告標記語言與程式碼後置 Code Behind關係

使用 XAML標記宣告語言來開發 Xamarin.Forms App 132

XAML與程式碼後置 Code Behind

當在使用 XAML進行應用程式頁面畫面的時候，僅需要使用 XAML來宣告該頁面要使用
的 UI控制項和需要放在那些版面配置內，一旦透過 XAML來描述出該頁面要顯示的內
容，因為其呈現出一個階層關係架構，可以很容易地了解未來在實際裝置上要呈現出來的
樣貌，而且十分容易針對所顯示出來螢幕畫面內容進行除錯；而在 XAML標記語言中是無
法使用相關程式設計邏輯處理功能，所以，XAML將是很單純的扮演著在該頁面上該顯示
出哪些使用者控制項的宣告角色，這比起單純僅使用 C#程式語言來開發 Xamarin.Forms

應用程式，可以說大幅提升整體的開發速度、效能與品質；這就像是若要開發出一個網頁
方面的應用程式，若僅是單純使用 JavaScript不使用 HTML來進行設計，這樣的設計過
程將會比較不靈活而且不易除錯。

若想要在程式碼後置區塊的 C# 程式碼來存取畫面上的 UI 控制項，可以透過延伸標記
x:Name語法來建立一個類別欄位變數，透過這個欄位變數就可以設定這個視覺控制項的
相關屬性與設定其表現行為。

使用 XAML標記宣告語言來開發 Xamarin.Forms App 133

XAML的好處
XAML是個宣告式的標記語言，可以用來宣告螢幕上要顯示的各種內容與控制項，
這可以讓 UI設計與程式邏輯設計切割開來，提升整體應用程式的開發效能與品質

XAML 特別適合搭配熱門的 MVVM Model-View-ViewModel 模型-檢視-檢視模型應用程
式架構使用：XAML會定義透過以 XAML為基礎的資料系結連結至 ViewModel程式碼的
View，關於這個部分將會於後面的章節進行介紹。

因此，在這裡將僅會使用 XAML這個標記宣告語言來進行相同兩數相加的遊戲畫面設計，
而相關的遊戲運作商業邏輯，將會採用傳統的 Windows Forms的 Code Behind程式碼
後置的設計方式來使用 C#程式語言進行設計這些商業邏輯。

5.1建立一個 Xamarin.Forms方案

首先要先來建立一個使用 XAML方式來設計的 Xamarin.Forms專案

• 請啟動 Visual Studio 2019

• 在啟動後的對話窗內，選擇右下方的 [建立新的專案]選項
• 當顯示出 [建立新專案]對話窗，請在中間上方的文字輸入盒內，輸入 Xamarin這個
關鍵字

• 此時將會在中間清單區域，找到 [行動應用程式 (Xamarin.Forms)]這個選項，請點選
這個項目

• 在 [設定新的專案]對話窗內，請在專案名稱欄位內，輸入 FirstXAML

• 請點選右下方的 [建立]按鈕
• 現在將會跳出一個 [New Cross Platform App - FirstXAML]對話窗
• 請選擇選取範本區域內的 [空白]項目
• 在下方的 [平台] 區域，請記得勾選 Android , iOS , Windows (UWP) 這三個檢查盒
Checkbox

使用 XAML標記宣告語言來開發 Xamarin.Forms App 134

• 點選右下方的 [OK]按鈕
• 開始建立 Xamarin.Forms開發方案

5.2了解 XAML檔案的運作方式

在這個建立好的 Xamarin.Forms方案，對於 Xamarin.Forms使用的核心專案已經預設
建立起一個 MainPage.xaml這個檔案，因此，對於專案將不再建立一個新的 XAML頁面
檔案，將沿用MainPage.xaml這個檔案。

首先先不要急於開始進行任何相關的設計工作，先來檢視這個 XAML 檔案與其 Code

Behind檔案的內容，首先，使用滑鼠雙擊核心專案內的 MainPage.xaml這個檔案節點，
此時 Visual Studio 2019將會顯示這個 XAML內容，其 XAML標記語言的內容如下。

在 XAML 檔案內，其本身就是一個 XML 語法格式，也就是說，要遵守 XML 的使用規
範；每個 XAML檔案必須僅能夠指定的根標籤 (Root Tag)或者說根項目 (Root Element)，
通常來說，需要指定一個 Xamarin.Forms 中提供的頁面項目，例如：ContentPage 內
容頁面、MasterDetailPage 抽屜頁面、NavigationPage 導航頁面、TabbedPage 多標
籤頁面、CarouselPage 旋轉木馬頁面；當然，也有可能指定 ContnetView 來指定這個
XAML檔案為一個使用者控制項或者是 DataTemplate用來宣告要顯示的檢視樣板。在
Xamarin.Forms的每個 XAML檔案，絕大多數都是一個 ContentPage內容頁面，因為需
要設計這個 App在螢幕上出現的 UI內容。

在 XAML檔案的第一行是一個 XML的宣告，通常會出現在 XML文件的第一行。接下來則
是指定這個 XAML檔案要宣告的第一個根項目，在這個看到了使用了 <ContentPage ...>

這樣的標籤來宣告這個 XAML檔案的根項目為一個內容頁面，在這個標籤內使用許多屬性
來進行設定這個內容頁面的各種狀態，這就像是在使用 C#程式語言來建立一個型別的執
行個體，接著使用該型別提供各種屬性來進行設定該執行個體的狀態相同的操作過程。

第一個屬性為 xmlns這個屬性值是用來宣告這個 XAML檔案內預設使用的命空間，在這個
xmlns之後要指定一個URI，在這裡使用的是 "http://xamarin.com/schemas/2014/forms"

使用 XAML標記宣告語言來開發 Xamarin.Forms App 135

來指定這個 XAML文件可以使用各種標籤與支援的功能；這裡的 URI僅是一個文字來標
明 XAML文件的版本，並不一定需要存在於網路上會有這個網頁存在，因此，同樣使用
XAML標記宣告語言的開發框架 WPF / UWP，他們所使用的 URI則會有不同的內容。這
樣的宣告需要在 XAML文件中的根項目來宣告，否則會有問題。

第二個屬性使用 xmlns:x，這裡是指定一個新增加的自訂的命名空間，而這裡將會指向
XAML提供的內建標記延伸 (Markup Extension)功能，例如：可以在底下的 XAML文件
中，在某些標籤內使用 x:Name=" 名稱"的方式來指定 Code Behind要存取的變數名稱。
這樣的作法將會將是宣告這個 XAML文件，可以使用 x這個前置詞 Prefix來指向這個新
建立的命名空間，使用這個命名空間所提供的相關功能。

第三個屬性宣告一個前置詞 d的命名空間，xmlns:d，而第四個屬性使用了前置詞mc的
命名空間，xmlns:mc，這兩個新增加的命名空間通常使用到的機會不大，前者將會用於
設計時期可以使用的相關功能，後者將是標記相容性語言功能。

接下來的 mc:Ignorable="d"指定 XAML處理器 XML可以忽略標記檔案中所遇到的命名空
間前置詞，在這裡指定了 d這個命名空間，也就是在建置時期，將會忽略掉該 XAML文
件中所有遇到 d命名空間的宣告。

原則上，剛剛所提到的內容是每個新建立的 XAML文件檔案在根項目上都會出現的宣告內
容，開發者並不需要特別去深入瞭解這些功能，也可以輕鬆地使用 XAML文件宣告每個
App頁面要顯示的各種 UI內容。

最後一個是 x:Class="FirstXAML.MainPage" ，這裡使用到 x: 這個剛剛宣告的新增命名
空間，也就是指向 XAML 的延伸功能之命名空間內的 Class 屬性，這是用來指定 Code

Behind程式碼後置之部分類別 (Partial Class)關係，這個部分會在等下看到 Code Behind

程式碼後置的內容之後，就會更佳的清楚。

然而在進行 XAML文件設計這些螢幕上要出現 UI的時候，往往需要參考一些自己開發
的類別或者像是數值轉換器甚至自己設計的其他 XAML 文件，甚至要參考所安裝的第
三方套件內的 XAML 項目，這個時候，就需要在這個地方來自行增加額外的命名空間

使用 XAML標記宣告語言來開發 Xamarin.Forms App 136

與指定一個新的前置詞 Prefix，如此，透過新產生的命名空間就可以參考與使用這些非
Xamarin.Forms預設提供的功能與 API了。

了解完根項目中的相關屬性設定，接下來要來看到這個內容頁面內的其他 UI 宣告，在
XAML中，透過使用不同的標籤/項目的宣告，將會形成一個階層式的關係，也就是說標
籤可以擁有一個或者一個以上的子標籤 (是否可以擁有多個子標籤，要看當時的標籤是否
有支援這樣的功能)，但是，每個標籤僅能夠指向一個父標籤。

從上一章的內容可以了解到，對於 ContentPage內容頁面僅能有指定一個標籤，而且要
使用 Content屬性來設定，可是從上面的 XAML宣告卻看不到這個 Content屬性存在；
而且，對於 StackLayout堆疊版面配置 (對於版面配置這樣的 XAML項目而言，可以是為
一個容器，通常一個版面配置 Layout內可以指定多個 XAML標籤，根據版面配置的名稱
不同，而會採用不同的方式來進行配置該版面配置內的 XAML標籤要如何顯示在螢幕上，
這包括了排列方式、顯示位置、自動計算要使用螢幕的空間大小，這些部分都會由 XAML

系統自行計算出來，Xamarin.Forms程式設計師不需要特別去了這些運作方式)，將會使
用 Children這個屬性來將其指定的多個 XAML項目 (也許是 UI控制項或者是版面配置項
目)採用水平排列或者垂直排列的方式來顯示在螢幕上；可是，在上面的 XAML文件上，
卻也看不到任何 Children這個屬性的宣告。

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.MainPage">

<ContentPage.Content>
<StackLayout>
<StackLayout.Children>
<!-- Place new controls here -->
<Label Text="Welcome to Xamarin.Forms!"

HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

使用 XAML標記宣告語言來開發 Xamarin.Forms App 137

</StackLayout.Children>
</StackLayout>

</ContentPage.Content>

</ContentPage>

其實，不論是 ContentPage的 Content屬性，或者是 StackLayout的 Children屬性，通
稱為是種 Content Property內容屬性，對於 XAML中的內容屬性，在進行使用 XAML語
言宣告的時候，是可以省略不寫的，也不會造成編譯與執行上的錯誤；因此，若要特別
標示出這兩個內容屬性來進行 XAML 文件宣告，將會如上面 XAML 文件的寫法。這裡
使用的 ContentPage.Content與 StackLayout.Children這樣的用法，在 XAML中稱之為
Property Element屬性項目用法，通常若要宣告一個屬性的內容，在 XAML中僅能夠使
用字串方式來進行宣告，然而，當要指定一個複雜的物件或者組合物件到一個項目的屬性
內的時候，就需要使用屬性項目這樣的用法。

在這裡可以看到額外新增了兩個 ContentPage.Content與 StackLayout.Children內容屬
性，來宣告這兩個屬性所擁有的子項目是甚麼？

內容屬性 Content Property

當看到的內容屬性名稱為 Content，則表示僅能夠指定一個標籤到這個 Content

屬性內，不過，當看到內容屬性的名稱為 Children的時候，則表示可以指定一個
以上的標籤到這個屬性內；若想要在 Content內容屬性指定多的 XAML項目時候，
可以指定一個版面配置標籤到這個 Content內容屬性內，並且將多個 XAML屬性
加入到這個版面配置內的內容屬性內。

接下來請在 MainPage.xaml這個節點前面找的三角形圖示，使用滑鼠點擊這個三角形圖
示，現在，可以在方案總管視窗內看到MainPage.xaml.cs這個檔案節點，使用滑鼠雙擊
這個節點，就可以看到這個 MainPage.xaml.cs程式碼內容，而這個 MainPage.xaml.cs

就是大家所稱作的 Code Behind。

使用 XAML標記宣告語言來開發 Xamarin.Forms App 138

展開MainPage.xaml節點，就會看到 Code Behind檔案

 MainPage.xaml.cs

namespace FirstXAML
{
// Learn more about making custom code visible in the Xamarin.Forms previewer
// by visiting https://aka.ms/xamarinforms-previewer
[DesignTimeVisible(false)]
public partial class MainPage : ContentPage
{
public MainPage()
{
InitializeComponent();

}
}

}

這個MainPage.xaml.cs檔案，這是稱作為程式碼後置的地方，由於 XAML這個文件檔案
僅能夠宣告整個裝置螢幕要顯示出哪些 UI控制項，並無法在 XAML文件內撰寫任何程式
碼來進行相關商業邏輯的設計 (所以，在這裡才會稱作在 XAML進行設計的過程，是要宣
告各種 XAML項目，而不是要設計相關具有邏輯處理的程式碼)，所以，對於每個 XAML

頁面將會提供一個 [頁面名稱.xaml.cs]的節點，可以在這裡撰寫相關 C#的程式碼。

使用 XAML標記宣告語言來開發 Xamarin.Forms App 139

在這個 Main頁面的 Code Behind程式碼後置的原始碼中，可以看到這個 MainPage是
繼承了 ContentPage內容頁面這個類別，並且這個類別也是一個部分類別；這也就表示
了這個 MainPage類別將會有一個同樣宣告為 partial class MainPage的程式碼出現在
這個專案內，在編譯時期的時候，就會將這兩個同名類別組合成為一個 MainPage類別，
可是，你無法在 Visual Studio方案總管內很容易地找到這個檔案在哪裡。

另外，這個 MainPage 類別也會有一個建構函式，而且裡面將會呼叫 InitializeCompo-

nent()這個方法，可是，在上面的類別定義中，也看不到這個方法定義在哪裡。

請勿移除或者註解 InitializeComponent()這個方
法呼叫
當在程式碼後置區塊看到這個頁面類別的建構函式內的 InitializeComponent()方
法，請不要把它註解或者移除掉，否則，將會造成這個頁面無法正常運作。

現在，請先建置 Xamarin.Forms這個核心專案，也就是 FirstXAML

使用 XAML標記宣告語言來開發 Xamarin.Forms App 140

找到MainPage.xaml的編譯器產生的程式碼

建置完成之後，請在方案總管上點選 [顯示所有檔案] 的圖示，顯示核心專案建置後所
產生的所有檔案內容，請展開這些資料夾 [obj] > [Debug] > [netstandard2.0]，將會在
這個資料夾內看到一個 [MainPage.xaml.g.cs] 節點，這個檔案是由編譯器在建置過程
中產生出來的，也就是每個 XAML 文件檔案，都會產生出一個這個檔案；請打開這個
[MainPage.xaml.g.cs]檔案。

 MainPage.xaml.g.cs

使用 XAML標記宣告語言來開發 Xamarin.Forms App 141

//--
// <auto-generated>
// 這段程式碼是由工具產生的。
// 執行階段版本:4.0.30319.42000
//
// 對這個檔案所做的變更可能會造成錯誤的行為，而且如果重新產生程式碼，
// 變更將會遺失。
// </auto-generated>
//--

[assembly: global::Xamarin.Forms.Xaml.XamlResourceIdAttribute("FirstXAML.MainPage.xa\
ml", "MainPage.xaml", typeof(global::FirstXAML.MainPage))]

namespace FirstXAML {

[global::Xamarin.Forms.Xaml.XamlFilePathAttribute("MainPage.xaml")]
public partial class MainPage : global::Xamarin.Forms.ContentPage {

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private void InitializeComponent() {
global::Xamarin.Forms.Xaml.Extensions.LoadFromXaml(this, typeof(MainPage\

));
}

}
}

從這個由編譯器產生的 C# 檔案中，看到了另外一個 partial class MainPage 的部分
類別定義，也看到了 InitializeComponent()方法定義，這裡就可以解決剛剛產生的疑
惑，原來 InitializeComponent() 方法是由編譯器自動產生的，在這個方法內將會呼叫
global::Xamarin.Forms.Xaml.Extensions.LoadFromXaml 方法，將剛剛宣告的 XAML 文
件讀取出來。

對於這個編譯器產生的MainPage部分類別，可以從最上方的註解內容看到，這個檔案的
內容不要去修改它，去修改這些內容是沒有用的，因為每次建置專案的時候，這個檔案都
會重新產生一次，若對這個檔案修改任何程式碼，只要開始重建，這些修改後的程式碼

使用 XAML標記宣告語言來開發 Xamarin.Forms App 142

將會不見了。另外，LoadFromXaml方法會讀取 XAML文件，針對該文件中的所有標籤，
例如：<ContentPage> , <StackLayout> , <Label>，都會建立一個 CLR的執行個體，這
些執行個體產生之後，會根據 XAML文件中各個屬性的宣告，進行這些執行個體的 .NET

屬性設定，這些過程就像是前一章中自行使用 C#程式碼來設計頁面內容的程式碼相同。

不過，要如何存取 XAML 文件中的標籤執行個體，例如，想要設定文字標籤 Label 的
Text屬性內容，或者設定該文字標籤的顏色與字體大小需求，這個時候就需要使用到 x:

前置詞 Prefix所提供的 XAML標記延伸擴充功能。

XAML與編譯器
編譯器會產生相關程式碼，讓 XAML宣告式標記語言檔案可以正常運作，所以，
不要去修改編譯器產生的任何程式碼。

5.3了解如何在 Code Behind程式碼來存取 XAML文件中的
項目

要了要能夠讓程式碼後置的 C# 可以存取 XAML 中的相關項目 Element，請再度打開
MainPage.xaml文件檔案，在 Label標籤內加入 x:Name="lbl"這個 XAML標記延伸屬性
宣告，一旦使用 x:Name這個標記延伸屬性指定一個識別名稱，在程式碼後置的地方就可
以使用 C#程式碼來存取這個 lbl指向的 Label項目，進行呼叫該 Label類別內的方法與
存取 Label類別內的屬性。

 MainPage.xaml

使用 XAML標記宣告語言來開發 Xamarin.Forms App 143

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.MainPage">

<ContentPage.Content>
<StackLayout>
<StackLayout.Children>
<!-- Place new controls here -->
<Label Text="Welcome to Xamarin.Forms!"

x:Name="lbl"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

</StackLayout.Children>
</StackLayout>

</ContentPage.Content>

</ContentPage>

請再度打開 MainPage.xaml.cs 檔案，在這個 MainPage 建構函式內，使用 lbl.Text

= " 使用程式碼後置設定文字標籤內容"; 敘述來設定該文字標籤要顯示的內容與使用
lbl.FontSize = 20; 與 lbl.TextColor = Color.Red; 兩個敘述來指定該文字標籤的狀
態，也就是設定該文字標籤的屬性值。

 MainPage.xaml.cs

使用 XAML標記宣告語言來開發 Xamarin.Forms App 144

public partial class MainPage : ContentPage
{
public MainPage()
{
InitializeComponent();

lbl.Text = "使用程式碼後置設定文字標籤內容";
lbl.FontSize = 20;
lbl.TextColor = Color.Red;

}
}

C#的建構函式
在 C#程式語言中，建構函式將會扮演著將這個類別產生的執行個體進行各種成員
的初始化工作。

為什麼現在可以從取這個 XAML文件中的文字標籤項目了呢？請重新建置這個 FirstXAML

核心專案，接著請展開這些資料夾 [obj] > [Debug] > [netstandard2.0]，同樣的將這個
資料夾內的 [MainPage.xaml.g.cs]節點再度打開來查看。

 MainPage.xaml.g.cs

使用 XAML標記宣告語言來開發 Xamarin.Forms App 145

[global::Xamarin.Forms.Xaml.XamlFilePathAttribute("MainPage.xaml")]
public partial class MainPage : global::Xamarin.Forms.ContentPage {

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tas\
ks.XamlG", "2.0.0.0")]
private global::Xamarin.Forms.Label lbl;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tas\
ks.XamlG", "2.0.0.0")]
private void InitializeComponent() {
global::Xamarin.Forms.Xaml.Extensions.LoadFromXaml(this, typeof(MainPage));
lbl = global::Xamarin.Forms.NameScopeExtensions.FindByName<global::Xamarin.F\

orms.Label>(this, "lbl");
}

}

現在看到這個 MainPage.xaml.g.cs檔案內的程式碼與之前所看到有所不同，這裡宣告了
一個 MainPage類別欄位，使用 private global::Xamarin.Forms.Label lbl;敘述來宣
告，並且透過了 global::Xamarin.Forms.NameScopeExtensions.FindByName<global::Xamarin.Forms.Label>(this,

"lbl");方法找出該 XAML文件中的有使用 x:Name標記延伸宣告識別名稱為 lbl的項目，
並且將該文字標籤執行個體物件設定到 lbl這個類別欄位上。由於在這個編譯器產生的類
別使用的是 C#部分類別來進行設計，因此，在這編譯器產生的MainPage部分類別所宣
告的任何欄位，都可以在該 XAML頁面本身提供的程式碼後置的 MainPage部分類別中
來使用，因為，最終他們會編譯成為同一個MainPage類別。

5.4使用 XAML設計兩數相加的遊戲畫面

現在，終於要開始使用 XAML文件來設計出上一章同樣功能與畫面內容的兩數相加的遊
戲，不過在此將會使用 XAML文件與程式碼後置來完成，而不是全部都使用 C#程式碼來
逐一產生每個類別的執行個體這樣的設定工作。

使用 XAML標記宣告語言來開發 Xamarin.Forms App 146

5.4.1建立一個新遊戲 XAML頁面

• 請滑鼠右擊 FirstXAML核心專案
• 從彈出功能表中，點選 [加入] > [新增項目]選項
• 現在將會看到 [新增項目 - FirstXAML]這個對話窗出現
• 在對話窗左方點選 [Xamarin.Forms]清單選項
• 確認中間清單中已經選擇了 [內容頁面]這個項目

請注意不要選擇 [內容項目 C#]這個選項，否則，將會產生一個 C#類別檔
案，而沒有 XAML文件檔案

• 請在下方 [名稱]欄位中，輸入 QuestionPage

• 點選右下方的 [新增]按鈕，新增這個類別檔案項目

使用 XAML標記宣告語言來開發 Xamarin.Forms App 147

建立一個新的 XAML內容頁面

5.4.2設計該遊戲頁面的 XAML文件內容

現在可以開始來使用 XAML文件來進行這個遊戲頁面的設計，請打開QuesionPage.xaml

這個文件檔案，輸入底下的 XAML標記宣告內容。

 

使用 XAML標記宣告語言來開發 Xamarin.Forms App 148

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.QuestionPage">

<StackLayout>
<Label/>
<Label/>
<Label/>
<Label/>
<Label/>
<Label/>
<Label/>
<Entry/>
<StackLayout
Orientation="Horizontal">
<Button/>
<Button/>

</StackLayout>
<Label/>

</StackLayout>

</ContentPage>

在這裡會先把這個頁面會使用到的相關 XAML項目輸入在這個QuestionPage.xaml XAML

文件檔案內，並且會使用適當的版面配置檢視 Layout View (可以視為一個 XAML項目的
容器 Container)來進行這個版面配置容器裡面的 XAML檢視的排列與自動計算要顯示的
位置。另外，也針對兩個按鈕使用一個具有水平排列的 StackLayout堆疊版面配置，依照
需要來顯示這兩個按鈕。

由於使用 XAML文件來進行整體的 App的設計，因此，可以完全透過 XAML文件來宣告
這些要顯示在螢幕上的各種 XAML項目，在這個時候完全不需要考量到任何的商業邏輯運
算或者使用任何 C#程式語言，對於各種商業邏輯部分，將會等下針對需要使用程式碼後
置來控制的 XAML項目，使用 x:Name=" 識別名稱"這個標記延伸語法來標示在相對應的

使用 XAML標記宣告語言來開發 Xamarin.Forms App 149

XAML項目上，這樣就可以程式碼後置中使用 C#程式語言來存取這些 XAML控制項。

現在，把剛剛設計好的 XAML 文件，針對每個 XAML 項目加入適當的屬性宣告以及
x:Name=" 識別名稱"這個標記延伸語法。

  QuestionPage.xaml

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.QuestionPage">

<StackLayout>
<Label
FontSize="14"
Text="數值1"/>

<Label
x:Name="lbValue1"
FontSize="20"
TextColor="Blue"/>

<Label
FontSize="14"
Text="數值2"/>

<Label
x:Name="lbValue2"
FontSize="20"
TextColor="Blue"/>

<Label
FontSize="14"
Text="問題"/>

<Label
x:Name="lbQuestion"
FontSize="20"
TextColor="Red"/>

<Label
FontSize="14"

使用 XAML標記宣告語言來開發 Xamarin.Forms App 150

Text="答案"/>
<Entry
x:Name="entAnswer"
Keyboard="Numeric"/>

<StackLayout
Orientation="Horizontal">
<Button
x:Name="btnReQuestion"
Text="產生問題"/>

<Button
x:Name="btnSubmit"
Text="提交"/>

</StackLayout>
<Label
x:Name="lbMessage"
FontSize="30"
TextColor="Orange"/>

</StackLayout>

</ContentPage>

經過把一開始設計的 XAML 文件進行加入相關屬性設定，例如在 Entry 項目中，使用
Keyboard來設定這個文字輸入盒要使用與顯示的軟體鍵盤樣式、在不同的文字標籤內使
用 FontSize與 TextColor屬性來宣告這個文字標籤要顯示的文字顏色與字體大小；對外，
對於 Button這兩個按鈕，其相對應的點擊觸發事件，可以宣告在 XAML文件內，也可以
使用程式碼後置來使用 C#程式語言來進行綁定、訂閱事件的工作。對於需要在程式碼後
置區域來存取的 XAML項目，也使用 x:Name這個標記延伸語法，標示在整個 XAML文
件適當的標籤上了。

現在，先來建置這個 FirstXAML專案，看看由編譯器產生的 QuestionPage頁面的部分類
別程式碼，有些甚麼變化；請在建置完成之後，找到 QuestionPage.xaml.g.cs這個檔案
並且打開旯

  QuestionPage.xaml.g.cs

使用 XAML標記宣告語言來開發 Xamarin.Forms App 151

namespace FirstXAML {

[global::Xamarin.Forms.Xaml.XamlFilePathAttribute("QuestionPage.xaml")]
public partial class QuestionPage : global::Xamarin.Forms.ContentPage {

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Label lbValue1;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Label lbValue2;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Label lbQuestion;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Entry entAnswer;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Button btnReQuestion;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Button btnSubmit;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private global::Xamarin.Forms.Label lbMessage;

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build\
.Tasks.XamlG", "2.0.0.0")]

private void InitializeComponent() {
global::Xamarin.Forms.Xaml.Extensions.LoadFromXaml(this, typeof(Question\

Page));
lbValue1 = global::Xamarin.Forms.NameScopeExtensions.FindByName<global::\

Xamarin.Forms.Label>(this, "lbValue1");
lbValue2 = global::Xamarin.Forms.NameScopeExtensions.FindByName<global::\

Xamarin.Forms.Label>(this, "lbValue2");

使用 XAML標記宣告語言來開發 Xamarin.Forms App 152

lbQuestion = global::Xamarin.Forms.NameScopeExtensions.FindByName<global\
::Xamarin.Forms.Label>(this, "lbQuestion");

entAnswer = global::Xamarin.Forms.NameScopeExtensions.FindByName<global:\
:Xamarin.Forms.Entry>(this, "entAnswer");

btnReQuestion = global::Xamarin.Forms.NameScopeExtensions.FindByName<glo\
bal::Xamarin.Forms.Button>(this, "btnReQuestion");

btnSubmit = global::Xamarin.Forms.NameScopeExtensions.FindByName<global:\
:Xamarin.Forms.Button>(this, "btnSubmit");

lbMessage = global::Xamarin.Forms.NameScopeExtensions.FindByName<global:\
:Xamarin.Forms.Label>(this, "lbMessage");

}
}

}

在這個 QuestionPage.xaml.g.cs檔案內，將會看到更多的私有欄位的宣告，這是因為在
這個 QuestionPage.xaml的 XAML文件中，使用了很多的 x:Name標記延伸宣告。

現在請打開這個 QuestionPage.xaml.cs 頁面的程式碼後置檔案，先加入一個
CreateQuestion方法到這個 QuestionPage類別內

  QuestionPage.xaml.cs

void CreateQuestion()
{
Random random = new Random();
value1 = random.Next(10, 99);
value2 = random.Next(10, 99);

lbValue1.Text = $"{value1}";
lbValue2.Text = $"{value2}";

lbQuestion.Text = $"請問 {value1} + {value2} =多少?";
lbMessage.Text = "";

}

使用 XAML標記宣告語言來開發 Xamarin.Forms App 153

這個 CreateQuestion 方法與上一章單純使用 C# 程式語言來直接開發 Xamarin.Forms

App所設計的程式碼完全相同，這是因為在這個 XAML文件中所宣告的相關 XAML控制
項的 x:Name識別名稱，都與前一章所使用的變數名稱相同。

接著要來完成這個遊戲的其他商業邏輯設計程式碼，完成後的結果如下所示：

  QuestionPage.xaml.cs

public partial class QuestionPage : ContentPage
{
int value1 = 0;
int value2 = 0;

public QuestionPage()
{
InitializeComponent();
CreateQuestion();
btnReQuestion.Clicked += (s, e) =>
{
CreateQuestion();

};
btnSubmit.Clicked += (s, e) =>
{
int sum = int.Parse(entAnswer.Text);
if ((value1 + value2) == sum)
{
lbMessage.Text = "答對了";

}
else
{
lbMessage.Text = "答錯了";

}
};

}

void CreateQuestion()
{ ... }

}

使用 XAML標記宣告語言來開發 Xamarin.Forms App 154

首先，同樣的要宣告兩個欄位 value1, value2用來記錄此次出的題目的兩個要相加的數
值內容，接著，要在建構函式內先執行 CreateQuestion()方法，建立新的猜謎題目內容，
接著，要進行兩個按鈕物件的 Clicked事件的綁定設計，這裡使用 Lambda匿名委派方法
來設計當按鈕按下之後，所要觸發與執行的程式碼，這裡的兩個按鈕的觸發執行程式碼，
將會與前一章所設計的兩個按鈕程式碼邏輯相同。

將過這樣的設計，若想要馬上執行這個專案，請使用底下的方式：

• 在標號1位置，其為 [方案組態]，請點選為 [Debug]

• 在標號2 位置，其為 [起始專案]，請選擇使用 [FirstXAML.Android] 項目，要使用
Android平台來進行執行與測試

• 在標號3位置，其為可用的 Android模擬器或者實體裝置，選擇想要執行的設備
• 最後，點選標號 3前方的綠色按鈕，就可以使用 Android平台的方式，來執行這個
Xamarin.Forms專案

Visual Studio 2019工具列面板 -執行 Xamarin.Forms專案

當然，很不幸的，整個模擬器畫面將不會出現剛剛所設計的畫面內容，而會顯示出底下的
畫面

使用 XAML標記宣告語言來開發 Xamarin.Forms App 155

執行結果的畫面

這個顯示來的畫面將會剛剛設計在 MainPage.xaml這個 XAML文件上與其程式碼後置所
執行出來的結果。

5.4.3變更 Xamarin.Forms應用程式的起始頁面

回想一下想要指定 Xamarin.Forms 第一個出現的頁面，是要修正哪個地方法，現在
需要指定 Xamarin.Forms 程式一啟動之後，需要先顯示 QuestionPage 這個頁面，所

使用 XAML標記宣告語言來開發 Xamarin.Forms App 156

以，請在 Xamarin.Forms 核心專案內的 App.xaml.cs 檔案，在這個 App 類別內的建構
函式內，其中有段 C#敘述 MainPage = new MainPage();，將其修正為 MainPage = new

QuestionPage();這樣的敘述就可以解決此問題了。

現在，請重新執行這個專案

當應用程式一啟動之後，將會顯示如左上圖的畫面，其中數值1 / 數值2 的藍色數值，
將會隨機產生出來的，這裡所看到的畫面就是剛剛使用 C# 程式語言所設計出來的
QuestionPage類別所設計的結果。弱點選答案的文字輸入盒欄位，將會出現如右上圖的
畫面，此時螢幕上將會顯示出軟體鍵盤，而且這個鍵盤是使用數值模式的鍵盤，方便使用

使用 XAML標記宣告語言來開發 Xamarin.Forms App 157

者直接輸入兩數相加的結果數值到 App內。

現在可以在文字輸入盒輸入 64這個答案值，接著點選下方的提交按鈕，這樣，在按鈕的
下方將會出現答對了這個文字內容；接著來輸入一個錯誤的答案，在這裡輸入 67這個數
值，接著點選提交按鈕，因為答案不正確，所以，將會在螢幕上看到答錯了這個文字內
容。

使用 XAML標記宣告語言來開發 Xamarin.Forms App 158

5.5 App.xaml的應用

在使用 XAML標記宣告語言來進行 Xamarin.Forms應用程式開發的時候，可以適度將
UI 部分獨立在 XAML 文件檔案中來進行宣告，而因為 XAML 這個語言中並沒有任何的
邏輯處理的程式碼可以來開發與設計，因此，就僅是很單純的做整個螢幕的 UI 宣告而
已，對於該頁面上的商業處理邏輯，在這一章中將會使用每個 XAML頁面都會有的 Code

Behind程式碼後置的機制來進行設計，在這裡就可以使用平常習慣撰寫的 C#程式語言
來解決這些商業邏輯上的相關需求。

然而當需要在程式碼後置的 C#程式碼來存取 XAML頁面上的 UI項目的時候，就可以透
過 XAML中提供的 x:Name標記延伸功能，設定一個識別名稱，編譯器就會在這個頁面
類別中產生一個欄位變數，如此，C#程式碼就可以透過這個欄位變數來控制要如何顯示
這個 UI控制項了。

而在 XAML文件中宣告的相關項目，最終在建置階段，編譯器把每個 XAML項目 Element

都產生出一個 .NET執行個體出來，該執行個體所宣告的型別，就是該 XAML項目的名
稱，而這些 XAML檢視相關型別，都可以在 Xamarin.Forms的 NuGet套件中找到。

最後，來看看當使用 XAML來進行跨平台 App設計的時候，另外一個好處。根據這章使
用 XAML 所設計出來的遊戲 App 中，在 QuestionPage.xaml 文件檔案內，都會在不同
UI控制項來設定不同的屬性，這樣可以讓整個 App呈現出多樣性的樣貌，可是，好像許
多的屬性設定似乎都有重複的宣告，讓整個 XAML文件檔案呈現出比較複雜的文件內容。

在 XAML這個生態內，可以使用樣式 Style來集中管理相似 XAML項目的屬性設定，只要
符合條件的 XAML項目，這些 XAML項目將會直接套用這裡事先宣告好的相關屬性設定，
如此，將會大幅簡化了 XAML文件設計，而且當有要進行變更的時候，也可以在樣式宣告
區段直接變更，如此，整個應用程式有用到這樣式的頁面，都會自動套用該樣式宣告的新
屬性設定值。

那麼，對於整個 Xamarin.Forms系統都會用到的樣式 Style是要宣告在哪裡呢？這當然需

使用 XAML標記宣告語言來開發 Xamarin.Forms App 159

要宣告在 Xamarin.Forms應用程式的進入點 Entry Point，而這個進入點就是 App.xaml

這個檔案，所以，請打開 FirstXAML這個核心專案內的 App.xaml檔案，將會呈現如下面
的 XAML文件。

  App.xaml

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.App">

<Application.Resources>

</Application.Resources>
</Application>

在這個 App.xaml檔案中可以看的出來，其根項目 Root Element為 Application這個標
籤，而且這裡有使用到開放的 <Application.Resources></Application.Resources>屬性
項目 Property Element標籤，不過，該屬性項目的是沒有任何宣告內容，這是因為這個
地方是將是要提供 Xamarin.Forms開發者來進行宣告相關樣式、資源的地方，而且，只
要是在這裡進行宣告的 XAML項目，整個 Xamarin.Forms應用程式，不論是哪個頁面，
都可以存取的到。

現在，請先依照底下的內容，在 <Application.Resources></Application.Resources>屬
性項目區段內，完成四個樣式 Style的宣告。

  App.xaml

使用 XAML標記宣告語言來開發 Xamarin.Forms App 160

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.App">

<Application.Resources>
<ResourceDictionary>
<Style TargetType="Label">
<Setter Property="FontSize" Value="14"/>

</Style>
<Style x:Key="QuestionLabel" TargetType="Label">
<Setter Property="FontSize" Value="20"/>
<Setter Property="TextColor" Value="Blue"/>

</Style>
<Style x:Key="QuestionTitleLabel" TargetType="Label">
<Setter Property="FontSize" Value="20"/>
<Setter Property="TextColor" Value="Red"/>

</Style>
<Style x:Key="MessageLabel" TargetType="Label">
<Setter Property="FontSize" Value="30"/>
<Setter Property="TextColor" Value="Orange"/>

</Style>
</ResourceDictionary>

</Application.Resources>
</Application>

在 Xamarin.Forms內可以使用 <Style>這個標籤來宣告樣式，而樣式共有兩種類型，一
種是隱含樣式 Implicit Styles，另外一種是明確樣式 Explicit Styles。在進行樣式宣告的時
候，若沒有使用到這個 x:Key標記延伸語法來宣告的鍵值 (這個鍵值將會於其他頁面中，
可以透過這個鍵值來參考到這個樣式的宣告內容)，則這樣的樣式宣告則屬於明確樣式，
反之，若在宣告樣式的時候有使用到 x:Key標記延伸語法的時候，這樣的樣式則屬於隱含
樣式。

不論隱含樣式或者明確樣式，都需要使用 TargetType這個屬性值來指定這個樣式可以套
用在哪種 XAML項目上，在上面的 App.xaml內容中，使用了 TargetType="Label"這樣

使用 XAML標記宣告語言來開發 Xamarin.Forms App 161

的屬性宣告，表示這些樣式僅能夠套用在屬於 Label文字標籤的項目上。

在每個樣式中，可以使用 <Setter Property="FontSize" Value="20"/>這樣的語法來設
定這個 XAML項目中的某個屬性，其屬性值要設定為多少？以這個範例中，若該樣式被套
用的話，則該文字標籤將的字體大小將會設定為 20。

所以，只要是以明確樣式 (沒有使用到 x:Key 標記延伸語法) 對特定 XAML 項目 (使用
TargetType來指定要套用的項目)進行宣告，只要是在該應用程式內的任何頁面內，有宣
告使用這個 XAML項目，此時該 XAML項目的屬性預設值將會是該明確樣式中所宣告的
屬性值；然而，若想要讓某個 XAML項目來套用特定的隱含樣式 (沒有使用到 x:Key標記
延伸語法)，則需要該隱含樣式內的 x:Key設定值。

現在，將 QuestionPage.xaml文件檔案打開

  QuestionPage.xaml

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
x:Class="FirstXAML.QuestionPage">

<StackLayout>
<Label
Text="數值1"/>

<Label
x:Name="lbValue1"
Style="{StaticResource QuestionLabel}"/>

<Label
Text="數值2"/>

<Label
x:Name="lbValue2"
Style="{StaticResource QuestionLabel}"/>

使用 XAML標記宣告語言來開發 Xamarin.Forms App 162

<Label
Text="問題"/>

<Label
x:Name="lbQuestion"
Style="{StaticResource QuestionTitleLabel}"/>

<Label
Text="答案"/>

<Entry
x:Name="entAnswer"
Keyboard="Numeric"/>

<StackLayout
Orientation="Horizontal">
<Button
x:Name="btnReQuestion"
Text="產生問題"/>

<Button
x:Name="btnSubmit"
Text="提交"/>

</StackLayout>
<Label
x:Name="lbMessage"
Style="{StaticResource MessageLabel}"/>

</StackLayout>

</ContentPage>

請將 Label標籤中移除掉已經在樣式內宣告的屬性設定內容，這樣是不是整個 XAML文件
已經清爽多了呢？對於需要使用隱含樣式來指定某個特定樣式來設定這個項目的預設屬性
值，可以使用該 XAML項目的 Style這個屬性名稱來宣告。

例如，對於 x:Name="lbMessage"這個文字標籤，將會使用這樣的語法 Style="{StaticResource

MessageLabel}"來宣告這個文字標籤，要套用MessageLabel這個隱含樣式宣告的內容，
而MessageLabel樣式宣告那些屬性，可以在 App.xaml這個 XAML文件檔案中找的到。

現在，可以再度執行這個專案，將會發現所顯示的遊戲畫面，每個文字標籤的文字大小、
顏色，都與沒有套用樣式前都是相同的，若下次要調整某個文字標籤大小或者顏色，僅需

使用 XAML標記宣告語言來開發 Xamarin.Forms App 163

要在 App.xaml內找到相關樣式宣告，直接修改該樣式宣告內容，這樣，整個 XAML項目
顯示的結果就會全部以最新狀態來顯示。

版權頁
Xamarin.Forms快速上手: Xamarin開發系列叢書

檔案格式：EPUB3、PDF、MOBI

版本： 1.0
日期： 2019.11

作者： Vulcan Lee李進興

版權所有，請勿非法複製、散佈。

	書籍目錄
	前言
	關於本書
	這本書能提供什麼
	誰適合閱讀這本書
	如何使用本書
	意見回饋

	I 開發前的安裝、設定準備工作
	安裝前的準備工作
	確認作業系統版本
	確認硬體 BIOS 有啟用虛擬化功能
	停用 Hyper-V

	啟用 UWP 開發人員模式
	準備一台 macOS 的電腦主機

	Windows 電腦與 Mac 電腦上的 Visual Studio 2019 安裝與相關相關設定
	在 Windows 作業系統電腦上安裝 Visual Studio 2019
	在 Mac 作業系統電腦開發工具之安裝與設定
	安裝 Xcode 開發人員工具
	安裝 Visual Studio for Mac
	在 Mac 上啟用遠端登入

	Visual Studio 2019 安裝後的相關設定與確認開發環境可以使用
	更新 Android SDK
	安裝與啟動 Google Android 原生模擬器
	測試與確認開發環境可以進行 Xamarin.Forms 專案開發
	測試可以建立 Xamarin.Forms 專案
	建置與執行 Android 專案
	建置與執行 iOS 專案
	建置與執行 UWP 專案

	結論

	II Xamarin.Forms 開發方式與基本概念
	使用 C# 程式語言來直接開發 Xamarin.Forms App
	建立一個 Xamarin.Forms 方案
	了解 Xamarin.Forms 方案的結構
	了解 Xamarin.Android 專案的結構與運作方式
	Xamarin.Android 的專案進入點
	了解 Xamarin.iOS 專案的結構與運作方式
	Xamarin.iOS 的專案進入點
	了解 Xamarin.UWP 專案的結構與運作方式
	UWP 的專案進入點
	了解 Xamarin.Forms 專案的結構與運作方式

	開始僅使用 C# 程式碼來設計兩數相加的遊戲
	建立一個新遊戲頁面類別
	讓新增類別繼承 ContentPage
	設計該遊戲頁面
	變更 Xamarin.Forms 應用程式的起始頁面

	使用 XAML 標記宣告語言來開發 Xamarin.Forms App
	建立一個 Xamarin.Forms 方案
	了解 XAML 檔案的運作方式
	了解如何在 Code Behind 程式碼來存取 XAML 文件中的項目
	使用 XAML 設計兩數相加的遊戲畫面
	建立一個新遊戲 XAML 頁面
	設計該遊戲頁面的 XAML 文件內容
	變更 Xamarin.Forms 應用程式的起始頁面

	App.xaml 的應用

	版權頁

