

With thanks to E. A. Chavis, a true friend and
shining wit. Your feedback made this better.

This is (largely) a work of non-fiction. Despite that, some
names, characters, places, and incidents are either the
product of the author’s imagination, or are used ficticiously.
Any resemblance to actual persons—living, dead, or in
superposition—is entirely coincidental.

The number of mistakes contained here is not zero, for which
I take full responsibility. The Haskell bits are probably closest
to correct, because at least they were typechecked. Read the
rest at your own risk.

Copyright ©2020 Mitchell Vitez. All rights reserved. All lefts
outgoing. Ups and downs still undecided.

Cover design by Mitchell Vitez. Photoshop on canvas, 2020.

Compliments and cheery witticisms may be directed to
mitchell@vitez.me. Likewise for well-reasoned disagreement.
Scathing and unreasonable critiques may be directed to
nobody@example.com

Published via leanpub.com, whose services I heartily
recommend

The author may be most easily located via vitez.me

Write-protected.
Save anyway?

Essays on Programming, Mathematics,
and Attempting to Understand the World

Mitchell Vitez

Preface

I have long been the kind of person who figured I’d probably
write a book. . .someday. I sure read enough of them. How
hard can it be?

Well, it turns out to be quite the endeavor just to write a
bunch of words.

I began writing in earnest on January 1, 2019. For the first
fifty days of that year, I wrote an essay every day, with many
of them breaking the 1000 word mark. Back then, I felt that I
was a little tired of being read-only, and thought it was time
to write. I’m not quite so tired anymore.

This book is structured as a collection of essays, with fairly
wide-ranging topics. Many of the essays are about
programmingish or mathy subjects, especially functional
programming and Haskell. This is because Haskell’s maybe
the only topic I’m anywhere close to having even a smidge of
expertise about. If you’re not into that kind of thing, maybe
it’ll spark some intrigue? But of course, feel free to breeze
through. I won’t be able to stop you.

The essays with topics straying farther from that core tend to
be weaker, admittedly, but I had tons of fun thinking about
the ideas involved. There’s even a chapter dedicated to “Weird
Thoughts”, which probably contains the most bad arguments
per capita, but also some of the most intriguing ideas. I have
not gone through and updated the arguments since the time I
first made them, so a few may be outdated.

I tend to write about technical (or at least vaguely
technical-ish) topics in a very informal, hand-wavy style. I
use the word “things” a lot, when I just need some handy

6

abstraction for an arbitrary referent. The writing is not
anywhere close to a textbook’s veracity, but instead is much
more conversational. I of course encourage the reader to do
their own research, especially about anything unfamilar or
that I seem especially hand-wavy about. Forming the correct
conclusion is, in all cases, left as an exercise for the reader.

People sometimes say a great book exists to fill a niche. This
book doesn’t really fill a strong niche, so maybe it will never
be a great book. I’m okay with that. As long as I give you
something to think about, and you enjoy yourself, I think
we’ll get along just fine.

Contents

Preface . 5

Contents 7

1 Computer Science 8
Infinite Recursive Permutation Generators 9
Deconstructing Hadamard Gates 12
The Map Puzzle . 22
The Erlang C Formula . 24
Dead Simple Password Safety 26
The CAP Theorem Misconception 29
Malevolent Ackermann . 31

2 Software Craftsmanship 33
Nullity, Exceptionality, and Optionality 34
A Mental Model of the Python REPL, for Beginners . . . 40
A Few Simple Python Reductions 50
Null IN PostgreSQL . 58
How Python Dictionaries Work 61

3 Programming Projects 68
LSTM XOR . 69
A Curation Algorithm . 74
Slacktivity . 79
Concatenative Programming 90
Magic Square Generation 95
Real World Character Recognition 102
Building an AST for Lua in Haskell 109

7

8

Elm Everywhere . 115

4 Functional Programming in Haskell 122
A Beginner’s Guide to the Ways Haskell Helps Us

Avoid Errors . 123
Type-Enforced Exponential Trees 133
Basics of Probability Monads 140
Sum Types Are Better Than Others 144
Encoding Free Groups . 146
A Few ghci Tips . 149
Parity Clarity . 151
Roman Numerals in Haskell 157
Building Lenses . 159
Composing Coercions . 179

5 More on Functional Programming 184
Currying and Macros . 185
The Only Runtime Error I’ve Ever Seen In Elm 187
Idris Auto-Implementations 189
OCaml’s Categorical Origins 191
Maybe vs. Dec . 196

6 Weird Thoughts 200
Sentience Decidability Programs 201
Lerping and Slerping . 203
The Badness of Death . 205
Alien-Worthy Human Humor 210
My Superintelligence Can Beat Up Your

Superintelligence . 212
The Supreme Cleverness of Mario Kart’s Mirror Mode . 215
Why Volleying Is Allowed In Tennis But Not In Ping-Pong218

7 Music 221
Giant Steps, Tiny Steps . 222
The Rise of Dark Downtempo 225
The Incredible Joys of Amateur Music-Making 227
MuseNet . 229

9

8 Pure Math 231
Braid Isotopy . 232
Invertible Bitmatrices . 235
Manifesting Manifolds . 239
Morphisms . 242
The Chebyshev’s Inequality Proof of the Weak Law of

Large Numbers . 245
Hidden Recursion . 248

9 Applied Math, Physics, and Modeling 253
Delta Functions and Mixture Models 254
Guessing a Function . 256
A Polarizing Intuition . 263
Topological Data Analysis 265
A Sense of Relativity . 271
Black-Scholes Under Duress 273
Dice Roll Likelihoods . 277

10 Achieving Goals 279
Don’t Forget Training . 280
Shirking Imaginary Duties 283
Achieving Anything Easy 285
The Inner Game . 287
The Ingeniousness of Genuineness 290
Fear of Repackaging . 292
You Have to be Willing to Lose 294
Understanding Understanding 297
Start Predicting Everything 300
Freezing, Flattening, Rasterization, and Rendering . . . 302
Novelty Minus Novelty . 305

11 Incentivization 307
Incentives are a Hell of a Drug 308
Incentives at Scale . 313
Existing Effortlessly . 315
The Ins and Ins of Economics 317

10

12 Culture 321
Hype and Hatred . 322
In Praise of Intricate Writing 325
Agape . 328
Human Heroes . 330
Video Game Setpieces . 332
The Siren Song of Meta-Altruism 336
Cultural Affordances . 339

13 Values and Meaning 341
Interpreting the Value of Money 342
Wows Per Dollar . 345
Time Value of Everything 347
Forgetful Functors and Lossy Language 349
Things We Criticize . 353

14 Language and Logic 356
Flip It Around . 357
Hyperintrospection . 372
Most People . 375
Life and Other Fuzzies . 377
Thought Molding . 379
Semi-Conserved Quantities 381

15 Wrap-up 384
Epilogue . 385

Computer Science

11

Chapter 1. Computer Science 12

Infinite Recursive Permutation Generators

Consider the following ten lines of code:

def gen_perms(s, n=1):

if n < 1:

yield ''

for prefix in gen_perms(s, n-1):

for c in s:

yield prefix + c

gen_perms(s, n+1)

for perm in gen_perms('abcdefghijklmnopqrstuvwxyz'):

print(perm)

In a nutshell, this prints out every possible permutation of
letters of the alphabet, in “spreadsheet column name” order
(a, b, c. . . , aa, ab, ac. . . , aaa, aab, aac. . .). Every dictionary word.
Every great speech. Entire (unpunctuated) works of
Shakespeare.

For now, we’ll ignore a few basic improvements. This could
easily be generalized to work with more than just strings. The
runtime isn’t too great either since we’re doing a bunch of
recalculation. Memoization and choosing better data types
would fix these, but let’s focus on the aesthetic qualities of
this code, and on how it actually works.

Starting with the easy bit. Assume we have an infinite
permutation generator called gen_perms that takes a string
and gives back all the possible permutations of that string
based on the order the characters were passed in. In that case,
this loop will run through those infinite permutations and
print out each one:

Chapter 1. Computer Science 13

for perm in gen_perms('abcdefghijklmnopqrstuvwxyz'):

print(perm)

Let’s get into the real meat of it though. gen_perms takes a
string s, and a parameter n. You can think of n as the length of
the permutations currently being generated.

def gen_perms(s, n=1):

The body of the function has three parts. First of all, if n is less
than one, we want to give back an empty string. This is our
recursive base case, and should be pretty straightforward.

if n < 1:

yield ''

Glossing over the tricky middle bit for a second, here’s the
third part of the function body. Just like we need a base case
for termination, if we want infinite generation we need an
ever-growing case. Here, we just call gen_perms with the next
largest permutation length so it can compute all of those for
us. This will keep growing as n reaches ever higher towards
infinity.

gen_perms(s, n+1)

Here’s the fun stuff. First, we inductively assume that
gen_perms works for n-1. That should generate all the
permutations of length n− 1 for us, and we’ll iterate over
each of them as prefix. Because a prefix is of length n− 1, and
we want to generate a permutation of length n, all we need to
do is add a single character to prefix. These single characters
have an obvious source: each character in s, in order.

Chapter 1. Computer Science 14

Eventually, with all the possible prefixes having all the
possible characters in s appended to them, we manage to
come up with all the possible permutations of length n.

for prefix in gen_perms(s, n-1):

for c in s:

yield prefix + c

This code manages to combine several fairly tricky
topics—recursion, infinity, permutations, generators—into
one short sample, which I think makes it a super fun example
to work with. For bonus points, try writing the memoized
version, or a version that works with sets instead of strs!

This is a preview. The full book is available at
leanpub.com/writeprotected

	Preface
	Contents
	Computer Science
	Infinite Recursive Permutation Generators

