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Preface

I have long been the kind of person who figured I’d probably
write a book. . .someday. I sure read enough of them. How
hard can it be?

Well, it turns out to be quite the endeavor just to write a
bunch of words.

I began writing in earnest on January 1, 2019. For the first
fifty days of that year, I wrote an essay every day, with many
of them breaking the 1000 word mark. Back then, I felt that I
was a little tired of being read-only, and thought it was time
to write. I’m not quite so tired anymore.

This book is structured as a collection of essays, with fairly
wide-ranging topics. Many of the essays are about
programmingish or mathy subjects, especially functional
programming and Haskell. This is because Haskell’s maybe
the only topic I’m anywhere close to having even a smidge of
expertise about. If you’re not into that kind of thing, maybe
it’ll spark some intrigue? But of course, feel free to breeze
through. I won’t be able to stop you.

The essays with topics straying farther from that core tend to
be weaker, admittedly, but I had tons of fun thinking about
the ideas involved. There’s even a chapter dedicated to “Weird
Thoughts”, which probably contains the most bad arguments
per capita, but also some of the most intriguing ideas. I have
not gone through and updated the arguments since the time I
first made them, so a few may be outdated.

I tend to write about technical (or at least vaguely
technical-ish) topics in a very informal, hand-wavy style. I
use the word “things” a lot, when I just need some handy
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abstraction for an arbitrary referent. The writing is not
anywhere close to a textbook’s veracity, but instead is much
more conversational. I of course encourage the reader to do
their own research, especially about anything unfamilar or
that I seem especially hand-wavy about. Forming the correct
conclusion is, in all cases, left as an exercise for the reader.

People sometimes say a great book exists to fill a niche. This
book doesn’t really fill a strong niche, so maybe it will never
be a great book. I’m okay with that. As long as I give you
something to think about, and you enjoy yourself, I think
we’ll get along just fine.
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Infinite Recursive Permutation Generators

Consider the following ten lines of code:

def gen_perms(s, n=1):

if n < 1:

yield ''

for prefix in gen_perms(s, n-1):

for c in s:

yield prefix + c

gen_perms(s, n+1)

for perm in gen_perms('abcdefghijklmnopqrstuvwxyz'):

print(perm)

In a nutshell, this prints out every possible permutation of
letters of the alphabet, in “spreadsheet column name” order
(a, b, c. . . , aa, ab, ac. . . , aaa, aab, aac. . . ). Every dictionary word.
Every great speech. Entire (unpunctuated) works of
Shakespeare.

For now, we’ll ignore a few basic improvements. This could
easily be generalized to work with more than just strings. The
runtime isn’t too great either since we’re doing a bunch of
recalculation. Memoization and choosing better data types
would fix these, but let’s focus on the aesthetic qualities of
this code, and on how it actually works.

Starting with the easy bit. Assume we have an infinite
permutation generator called gen_perms that takes a string
and gives back all the possible permutations of that string
based on the order the characters were passed in. In that case,
this loop will run through those infinite permutations and
print out each one:
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for perm in gen_perms('abcdefghijklmnopqrstuvwxyz'):

print(perm)

Let’s get into the real meat of it though. gen_perms takes a
string s, and a parameter n. You can think of n as the length of
the permutations currently being generated.

def gen_perms(s, n=1):

The body of the function has three parts. First of all, if n is less
than one, we want to give back an empty string. This is our
recursive base case, and should be pretty straightforward.

if n < 1:

yield ''

Glossing over the tricky middle bit for a second, here’s the
third part of the function body. Just like we need a base case
for termination, if we want infinite generation we need an
ever-growing case. Here, we just call gen_perms with the next
largest permutation length so it can compute all of those for
us. This will keep growing as n reaches ever higher towards
infinity.

gen_perms(s, n+1)

Here’s the fun stuff. First, we inductively assume that
gen_perms works for n-1. That should generate all the
permutations of length n− 1 for us, and we’ll iterate over
each of them as prefix. Because a prefix is of length n− 1, and
we want to generate a permutation of length n, all we need to
do is add a single character to prefix. These single characters
have an obvious source: each character in s, in order.
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Eventually, with all the possible prefixes having all the
possible characters in s appended to them, we manage to
come up with all the possible permutations of length n.

for prefix in gen_perms(s, n-1):

for c in s:

yield prefix + c

This code manages to combine several fairly tricky
topics—recursion, infinity, permutations, generators—into
one short sample, which I think makes it a super fun example
to work with. For bonus points, try writing the memoized
version, or a version that works with sets instead of strs!



This is a preview. The full book is available at
leanpub.com/writeprotected


	Preface
	Contents
	Computer Science
	Infinite Recursive Permutation Generators


