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Chapter 1: Windows Internals
Overview

This chapters describes the most important concepts in the internal workings of Windows. Some of
the topics will be described in greater detail later in the book, where it’s closely related to the topic
at hand. Make sure you understand the concepts in this chapter, as these make the foundations upon
any driver and even user mode low-level code, is built.

In this chapter:

« Processes

« Virtual Memory

« Threads

+ System Services

« System Architecture
- Handles and Objects

Processes

A process is a containment and management object that represents a running instance of a program.
The term “process runs” which is used fairly often, is inaccurate. Processes don’t run — processes
manage. Threads are the ones that execute code and technically run. From a high-level perspective,
a process owns the following:

« An executable program, which contains the initial code and data used to execute code within
the process.

« A private virtual address space, used for allocating memory for whatever purposes the code
within the process needs it.

« A primary token, which is an object that stores the default security context of the process,
used by threads executing code within the process (unless a thread assumes a different token
by using impersonation).

« A private handle table to executive objects, such as events, semaphores and files.
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« One or more threads of execution. A normal user mode process is created with one thread
(executing the classic main/WinMain function). A user mode process without threads is mostly
useless and under normal circumstances will be destroyed by the kernel.

These elements of a process are depicted in figure 1-1.

Virtual Address Descriptors
Process VAD // VAD // VAD /

Handle Table B
Object
Executable R Executive
Image (File) Object
Token

Thread

A J

Thread >—- Thread

Figure 1-1: Important ingredients of a process

A process is uniquely identified by its Process ID, which remains unique as long as the kernel process
object exists. Once it’s destroyed, the same ID may be reused for new processes. It’s important to
realize that the executable file itself is not a unique identifier of a process. For example, there may be
five instances of notepad. exe running at the same time. Each process has its own address space, its
own threads, its own handle table, its own unique process ID, etc. All those five processes are using
the same image file (notepad.exe) as their initial code and data. Figure 1-2 shows a screen shot of
Task Manager’s Details tab showing five instances of Notepad.exe, each with its own attributes.

(C)2019 Pavel Yosifovich
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Figure 1-2: Five instances of notepad

Virtual Memory

Every process has its own virtual, private, linear address space. This address space starts out empty
(or close to empty, since the executable image and NtD11.D11 are the first to be mapped, followed
by more subsystem DLLs). Once execution of the main (first) thread begins, memory is likely to
be allocated, more DLLs loaded, etc. This address space is private, which means other processes
cannot access it directly. The address space range starts at zero (although technically the first 64KB
of address cannot be allocated or used in any way), and goes all the way to a maximum which
depends on the process “bitness” (32 or 64 bit) and the operating system “bitness” as follows:

« For 32-bit processes on 32-bit Windows systems, the process address space size is 2 GB by
default.

« For 32-bit processes on 32-bit Windows systems that use the increase user address space setting,
that process address space size can be as large as 3 GB (depending on the exact setting). To get
the extended address space range, the executable from which the process was created must have
been marked with the LARGEADDRESSAWARE linker flag in its header. If it was not, it would still
be limited to 2 GB.

« For 64-bit processes (on a 64-bit Windows system, naturally), the address space size is 8 TB
(Windows 8 and earlier) or 128 TB (Windows 8.1 and later).

« For 32-bit processes on a 64-bit Windows system, the address space size is 4 GB if the executable
image is linked with the LARGEADDRESSAWARE flag. Otherwise, the size remains at 2 GB.

(C)2019 Pavel Yosifovich
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o The requirement of the LARGEADDRESSAWARE flag stems from the fact that a 2 GB address
range requires 31 bits only, leaving the most significant bit (MSB) free for application use. Specifying
this flag indicates that the program is not using bit 31 for anything and so setting that bit to 1 (which
would happen for addresses larger than 2 GB) is not an issue.

Each process has its own address space, which makes any process address relative, rather than
absolute. For example, when trying to determine what lies in address 0x20000, the address itself
is not enough; the process to which this address relates to must be specified.

The memory itself is called virtual, which means there is an indirect relationship between an address
range and the exact location where it’s found in physical memory (RAM). A buffer within a process
may be mapped to physical memory, or it may temporarily reside in a file (such as a page file). The
term virtual refers to the fact that from an execution perspective, there is no need to know if the
memory about to be accessed is in RAM or not; if the memory is indeed mapped to RAM, the CPU
will access the data directly. If not, the CPU will raise a page fault exception that will cause the
memory manager’s page fault handler to fetch the data from the appropriate file, copy it to RAM,
make the required changes in the page table entries that map the buffer, and instruct the CPU to try
again. Figure 1-3 shows this mapping from virtual to physical memory for two processes.

(C)2019 Pavel Yosifovich
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Physical Memory | |

Process A Process B

Figure 1-3: virtual memory mapping

The unit of memory management is called a page. Every attribute related to memory is always at a
page’s granularity, such as its protection. The size of a page is determined by CPU type (and on some
processors, may be configurable), and in any case the memory manager must follow suit. Normal
(sometimes called small) page size is 4 KB on all Windows supported architectures.

o Apart from the normal (small) page size, Windows also supports large pages. The size of a
large page is 2 MB (x86/x64/ARM64) and 4 MB (ARM). This is based using the Page Directory Entry
(PDE) to map the large page without using a page table. This results in quicker translation, but most
importantly better use the Translation Lookaside Buffer (TLB) — a cache of recently translated pages
maintained by the CPU. In the case of a large page, a single TLB entry is able to map significantly
more memory than a small page. The downside of large pages is the need to have the memory
contiguous in RAM, which can fail if memory is tight or very fragmented. Also, large pages are
always non-pageable and must be protected with read/write access only. Huge pages of 1 GB in size
are supported on Windows 10 and Server 2016 and later. These are used automatically with large
pages if an allocation is at least 1 GB in size and that page can be located as contiguous in RAM.

(C)2019 Pavel Yosifovich
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Page States

Each page in virtual memory can be in one of three states:

« Free — the page is not allocated in any way; there is nothing there. Any attempt to access that
page would cause an access violation exception. Most pages in a newly created process are free.

« Committed - the reverse of free; an allocated page that can be accessed successfully sans
protection attributes (for example, writing to a read only page causes an access violation).
Committed pages are usually mapped to RAM or to a file (such as a page file).

« Reserved — the page is not committed, but the address range is reserved for possible future
commitment. From the CPU’s perspective, it’s the same as Free — any access attempt raises
an access violation exception. However, new allocation attempts using the VirtualAlloc
function (or NtAllocateVirtualMemory, the related native API) that does not specify a
specific address would not allocate in the reserved region. A classic example of using reserved
memory to maintain contiguous virtual address space while conserving memory is described
later in this chapter in the section “Thread Stacks”.

System Memory

The lower part of the address space is for processes’ use. While a certain thread is executing, its parent
process address space is visible from address zero to the upper limit as described in the previous
section. The operating system, however, must also reside somewhere — and that somewhere is the
upper address range that’s supported on the system, as follows:

« On 32-bit systems running without the increase user virtual address space setting, the oper-
ating system resides in the upper 2 GB of virtual address space, from address 0x8000000 to
OxFFFFFFFF.

« On 32-bit systems configured with the increase user virtual address space setting, the operating
system resides in the address space left. For example, if the system is configured with 3 GB
user address space per process (the maximum), the OS takes the upper 1 GB (from address
0xC0ORVVO to OxFFFFFFFF). The entity that suffers mostly from this address space reduction
is the file system cache.

« On 64-bit systems on Windows 8, Server 2012 and earlier, the OS takes the upper 8 TB of virtual
address space.

« On 64-bit systems on Windows 8.1, Server 2012 R2 and later, the OS takes the upper 128 TB of
virtual address space.

System space is not process-relative — after all, it’s the same “system”, the same kernel, the same
drivers that service every process on the system (the exception is some system memory that is on
a per-session basis but is not important for this discussion). It follows that any address in system
space is absolute rather than relative, since it “looks” the same from every process context. Of course,
actual access from user mode into system space results in an access violation exception.

(C)2019 Pavel Yosifovich
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System space is where the kernel itself, the Hardware Abstraction Layer (HAL) and kernel drivers
reside once loaded. Thus, kernel drivers are automatically protected from direct user mode access.
It also means they have a potentially system-wide impact. For example, if a kernel driver leaks
memory, that memory will not be freed even after the driver unloads. User mode processes, on the
other hand, can never leak anything beyond their life time. The kernel is responsible for closing and
freeing everything private to a dead process (all handles are closed and all private memory is freed).

Threads

The actual entities that execute code are threads. A Thread is contained within a process, using the
resources exposed by the process to do work (such as virtual memory and handles to kernel objects).
The most important information a thread owns is the following:

« Current access mode, either user or kernel.

Execution context, including processor registers and execution state.

+ One or two stacks, used for local variable allocations and call management.

« Thread Local Storage (TLS) array, which provides a way to store thread-private data with
uniform access semantics.

« Base priority and a current (dynamic) priority.

« Processor affinity, indicating on which processors the thread is allowed to run on.

The most common states a thread can be in are:

« Running — currently executing code on a (logical) processor.

« Ready - waiting to be scheduled for execution because all relevant processors are busy or
unavailable.

 Waiting — waiting for some event to occur before proceeding. Once the event occurs, the thread
goes to the Ready state.

Figure 1-4 shows the state diagram for these states. The numbers in parenthesis indicate the state
numbers, as can be viewed by tools such as Performance Monitor. Note that the Ready state has
a sibling state called Deferred Ready, which is similar, and really exists to minimize some internal
locking.

(C)2019 Pavel Yosifovich
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Figure 1-4: Common thread states

Thread Stacks

Each thread has a stack it uses while executing, used for local variables, parameter passing to
functions (in some cases) and where return addresses are stored prior to function calls. A thread
has at least one stack residing in system (kernel) space, and it’s pretty small (default is 12 KB on
32-bit systems and 24 KB on 64-bit systems). A user mode thread has a second stack in its process
user space address range and is considerably larger (by default can grow to 1 MB). An example with
three user mode threads and their stacks is shown in figure 1-5. In the figure, threads 1 and 2 are in
process A and thread 3 is in process B.

The kernel stack always resides in RAM while the thread is in the Running or Ready states. The
reason for this is subtle and will be discussed later in this chapter. The user mode stack, on the other
hand, may be paged out, just like any user mode memory.

The user mode stack is handled differently than the kernel mode stack, in terms of its size. It starts
out with a small amount of memory committed (could be as small as a single page), with the rest
of the stack address space as reserved memory, meaning it’s not allocated in any way. The idea is
to be able to grow the stack in case the thread’s code needs to use more stack space. To make this
work, the next page (sometimes more than one) right after the committed part is marked with a
special protection called PAGE_GUARD - this is a guard page. If the thread needs more stack space
it would write to the guard page which would throw an exception that is handled by the memory
manager. The memory manager then removes the guard protection and commits the page and marks
the next page as a guard page. This way, the stack grows as needed and the entire stack memory is
not committed upfront. Figure 1-6 shows the way a user mode’s thread stack looks like.

(C)2019 Pavel Yosifovich
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Figure 1-5: User mode threads and their stacks
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Figure 1-6: Thread’s stack in user space

The sizes of a thread’s user mode stack are determined as follows:

>_

User mode
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« The executable image has a stack commit and reserved values in its Portable Executable (PE)
header. These are taken as defaults if a thread does not specify alternative values.

« When a thread is created with CreateThread (and similar functions), the caller can specify
its requires stack size, either the upfront committed size or the reserved size (but not both),
depending on a flag provided to the function; specifying zero goes with the default according
the above bullet.

o Curiously enough, the function CreateThread and CreateRemoteThread(Ex) only allow
specifying a single value for the stack size and can be the committed or the reserved size, but not
both. The native (undocumented) function, NtCreateThreadEx allows specifying both values.

System Services (a.k.a. System Calls)

Applications need to perform various operations that are not purely computational, such as allocat-
ing memory, opening files, creating threads, etc. These operations can only be ultimately performed
by code running in kernel mode. So how would user-mode code be able to perform such operations?
Let’s take a classic example: a user running a Notepad process uses the File menu to request opening
a file. Notepad’s code responds by calling the CreateFile documented Windows API function.
CreateFile is documented as implemented in kernel32.D11, one of the Windows subsystem
DLLs. This function still runs in user mode, so there is no way it can directly open a file. After
some error checking, it calls NtCreateFile, a function implemented in NTDLL .d11, a foundational
DLL that implements the API known as the “Native API”, and is in fact the lowest layer of code
which is still in user mode. This (officially undocumented) APT is the one that makes the transition
to kernel mode. Before the actual transition, it puts a number, called system service number, into a
CPU register (EAX on Intel/AMD architectures). Then it issues a special CPU instruction (syscall
on x64 or sysenter on x86) that makes the actual transition to kernel mode while jumping to a
predefined routine called the system service dispatcher.

The system service dispatcher, in turn, uses the value in that EAX register as an index into a System
Service Dispatch Table (SSDT). Using this table, the code jumps to the system service (system call)
itself. For our Notepad example, the SSDT entry would point to the I/O manager’s NtCreateFile
function. Notice the function has the same name as the one in NTDLL .d11 and in fact has the same
arguments as well. Once the system service is complete, the thread returns to user mode to execute
the instruction following sysenter/syscall. This sequence of events is depicted in figure 1-7.

(C)2019 Pavel Yosifovich
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Figure 1-7: System service function call flow

General System Architecture

Figure 1-8 shows the general architecture of Windows, comprising of user mode and kernel mode

components.
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Figure 1-8: Windows system architecture

Here’s a quick rundown of the named boxes appearing in figure 1-8:

« User processes

These are normal processes based on image files, executing on the system, such as instances of
Notepad.exe, cmd.exe, explorer.exe and so on.
« Subsystem DLLs

Subsystem DLLs are dynamic link libraries (DLLs) that implement the API of a subsystem. A
subsystem is a certain view of the capabilities exposed by the kernel. Technically, starting from
Windows 8.1, there is only a single subsystem — the Windows Subsystem. The subsystem DLLs
include well-known files, such as kernel32.dll, user32.dll, gdi32.dll, advapi32.dll, combase.dll
and many others. These include mostly the officially documented API of Windows.
NTDLL.DLL

A system-wide DLL, implementing the Windows native API. This is the lowest layer of code
which is still in user mode. Its most important role is to make the transition to kernel mode
for system call invocation. NTDLL also implements the Heap Manager, the Image Loader and
some part of the user mode thread pool.

Service Processes

Service processes are normal Windows processes that communicate with the Service Control
Manager (SCM, implemented in services.exe) and allow some control over their lifetime. The
SCM can start, stop, pause, resume and send other messages to services. Services typically
execute under one of the special Windows accounts — local system, network service or local
service.

(C)2019 Pavel Yosifovich
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« Executive

The Executive is the upper layer of NtOskrnl.exe (the “kernel”). It hosts most of the code that is
in kernel mode. It includes mostly the various “managers”: Object Manager, Memory Manager,
I/O Manager, Plug & Play Manager, Power Manager, Configuration Manager, etc. It’s by far
larger than the lower Kernel layer.

« Kernel

The Kernel layer implements the most fundamental and time sensitive parts of kernel mode OS
code. This includes thread scheduling, interrupt and exception dispatching and implementation
of various kernel primitives such as mutex and semaphore. Some of the kernel code is written
in CPU-specific machine language for efficiency and for getting direct access to CPU-specific
details.

 Device Drivers

Device drivers are loadable kernel modules. Their code executes in kernel mode and so has the
full power of the kernel. This book is dedicated to writing certain types of kernel drivers.
« Win32k.sys

The “kernel mode component of the Windows subsystem”. Essentially this is a kernel module
(driver) that handles the user interface part of Windows and the classic Graphics Device Inter-
face (GDI) APIs. This means that all windowing operations (CreateWindowEx, GetMessage,
PostMessage, etc.) is handles by this component. The rest of the system has little-to-none
knowledge of Ul

« Hardware Abstraction Layer (HAL)

The HAL is an abstraction later over the hardware closest to the CPU. It allows device drivers to
use APIs that do not require detailed and specific knowledge of things like Interrupt Controller
or DMA controller. Naturally, this layer is mostly useful for device drivers written to handle
hardware devices.

+ System Processes

System processes is an umbrella term used to describe processes that are typically “just there”,
doing their thing where normally these processes are not communicated with directly. They are
important nonetheless, and some in fact, critical to the system’s well-being. Terminating some
of them is fatal and causes a system crash. Some of the system processes are native processes,
meaning they use the native API only (the API implemented by NTDLL). Example system
processes include Smss . exe, Lsass.exe, Winlogon.exe, Services.exe and others.

« Subsystem Process

The Windows subsystem process, running the image Csrss. exe, can be viewed as a helper to
the kernel for managing processes running under the Windows system. It is a critical process,
meaning if killed, the system would crash. There is normally one Csrss.exe instance per
session, so on a standard system two instances would exist — one for session 0 and one for the
logged-on user session (typically 1). Although Csrss.exe is the “manager” of the Windows
subsystem (the only one left these days), its importance goes beyond just this role.

» Hyper-V Hypervisor

(C)2019 Pavel Yosifovich
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The Hyper-V hypervisor exists on Windows 10 and server 2016 systems if they support
Virtualization Based Security (VBS). VBS provides an extra layer of security, where the actual
machine is in fact a virtual machine controlled by Hyper-V. VBS is beyond the scope of this
book. For more information, check out the Windows Internals book.

o Windows 10 version 1607 introduced the Windows Subsystem for Linux (WSL). Although
this may look like yet another subsystem, like the old POSIX and OS/2 subsystems supported by
Windows, it is not quite like that at all. The old subsystems were able to execute POSIX and OS/2 apps
if theses were compiled on a Windows compiler. WSL, on the other hand, has no such requirement.
Existing executables from Linux (stored in ELF format) can be run as-is on Windows, without any
recompilation.

To make something like this work, a new process type was created — the Pico process together with
a Pico provider. Briefly, a Pico process is an empty address space (minimal process) that is used for
WSL processes, where every system call (Linux system call) must be intercepted and translated to
the Windows system call(s) equivalent using that Pico provider (a device driver). There is a true
Linux (the user-mode part) installed on the Windows machine.

(C)2019 Pavel Yosifovich
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