' Vindows 10
System
Programming

Part 2

Windows 10 System Programming, Part 2

Pavel Yosifovich
This book is available at https://leanpub.com/windows10systemprogrammingpart2

This version was published on 2025-10-19

Leanpub
This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations

to get reader feedback, pivot until you have the right book and build traction once you do.

© 2020 - 2025 Pavel Yosifovich

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Introduction
Who Should Read This Book e
What You Should Know to Use ThisBook
Sample Code L

Chapter 13: Working With Memory
Memory APIs L e
The VirtualAlloc* Functions

Decommitting / Releasing Memory
Reserving and Committing Memory L o
The Micro Excel Application
Working Sets e
The Working Sets Application L
Heaps
Private Heaps
Heap Types o o o o
Heap Debugging Features
The C/C++Runtime e
The Local/Global APIs
Other Heap Functions i
Other VirtualPFunctions
Memory Protection
Locking MEMOTY o ot
Memory Block Information L
Memory Hint Functions
Writing and Reading to/from Other Processes
LargePages
Address Windowing Extensions
NUMA . .
The VirtualAlloc2 Function it
SUMMATY . . . o L o o e e e e e e e e e e e

Chapter 14: Memory Mapped Files
Introduction e e
Mapping Files L o

The filehist Application

_ e e

TR B B B R B R R W W W W W W W W WD NN DN DN NN

[e We o)

CONTENTS

Sharing Memory 6
Sharing Memory with File Backing 6
The Micro Excel 2 Application e 6
Other Memory Mapping Functions 6
Data Coherence o 7
SUMMAry o e e e e 7
Chapter 15: Dynamic Link Libraries, 8
Introduction. L 8
Buildinga DLL e 8
Implicit and Explicit Linking L L 8
Implicit Linking 8
Explicit Linking 8
Calling Conventions 8
DLL Search and Redirection 8
The D1WMain Function e 9
DLL Injection e e e e 9
Injection with Remote Thread 9
Windows Hooks 9
DLL Injecting and Hooking with SetWindowsHookEx 9
APTHOOKING oo 9
IATHooking 9
“Detours” Style Hooking 9
DLL Base Address 10
Delay-Load DLLS e 10
The LoadLibraryEx Function 10
Miscellaneous Functions L 10
Summary 10
Chapter 16: Security o 11
Introduction 11
WinLogon 11
LogonUL. 11
LSASS . o o 11
Lsalso e 11
Security Reference Monitor L 11
EventLogger 11
SIDS . o e e 12
Tokens L 12
The Secondary Logon Service 12
Impersonation 12
Impersonation in Client/Server 12
Privileges 12
Super Privileges 12
Access Masks L 13

Security Descriptors 13

CONTENTS

The Default Security Descriptor o 13
Building Security Descriptors 13
User Access Control 14
Elevation 14
Running As Admin Required 14
UAC Virtualization oo 14
Integrity Levels o 14
UIPL . . e e 14
Specialized Security Mechanisms L L 14
Control Flow Guard 14
Process Mitigations 15
Summary 15
Chapter 17: The Registry 16
The Hives o o 16
HKEY LOCAL_MACHINE et 16
HKEY_USERS . . . 16
HKEY_CURRENT_USER (HKCU) et 16
HKEY_CLASSES_ROOT (HKCR) e e e 16
HKEY CURRENT CONFIG (HKCC) . . « o v o oo oo e e 16
HKEY_PERFORMANCE_DATA e 16
32-bit Specific Hives 17
Working with Keysand Values 17
Reading Values 17
Writing Values o e 17
Deleting Keysand Values 17
Creating Registry Links 17
Enumerating Keysand Values L 17
Registry Notifications 17
Transactional Registry 18
Registry and Impersonation L 18
Remote Registry e 18
Miscellaneous Registry Functions 18
SUMMATY o o o e e e e e e e e e e 18
Chapter 18: Pipes and Mailslots 19
Mailslots 19
Mailslot Clients 19
Multi-Mailslot Communication L 19
Anonymous Pipes 19
The Command Redirect Application 19
Named Pipes 19
Pipe Client 20
The Pipe Calculator Application 20
Other Pipe Functions 20

Summary e 20

CONTENTS

Chapter 19: SETrViCes i 21
Services Overview e 21
Service Process Architecture 21
ASimple Service 21

Installing the Service L 21
AService Client 21
Controlling Services 21
Installing a Service L 21
Starting a Service 22
Stopping a Service 22
Uninstalling the Service 22
Service Status and Enumeration Lo 22
The enumsve Application 22
Service Configuration L 22
Service Description 22
Failure Actions L 22
Pre-Shutdown Information 22
Delayed Auto-Start L 23
Trigger Information L L 23
Preferred NUMA Node 23
Launchas PPL 23
Debugging Services 23
Interactive Services L 23
Service Security L e 23
Service SID 23
Service Security Descriptor 23
Per-User Services e 24
Miscellaenous Functions 24
Summary e 24

Chapter 20: Debugging and Diagnostics 25

Debugger Output o 25
The DebugPrint Application 25
Performance Counters L 25
Working with Counters 25
The QSlice Application e 25
Process Smapshots L 25
Queryinga Snapshot L 26
The snapproc Application 26
Event Tracing for Windows L 26
Creating ETW Sessions00ttt t it et 26
Processing Traces L 26
Real-Time Event Processing e 26
The Kernel Provider 26
More ETW . . . o 26

Trace Logging 27

CONTENTS

Publishing Events with Trace Logging 27
Debuggers 27
ASimple Debugger. 27
More Debugging APIs 27
Writing a Real Debugger 27
SUMMAry o e e e e 28
Chapter 21: The Component Object Model 29
What is COM? 30
Interfaces and Implementations 34
The TUnknownInterface 37
HRESULTS o e e e e e e e e e e e e e e 39
COMRules (punintended) L 41
COMCHentso e e 42
Step 1: Initialize COM 43
Step 2: Create the BITS Manager 43
Step 3: Createa BITSJob 45
Step4: AddaDownload L 47
Step 5: Initiate the Transfer 47
Step 6: Wait for Transfer to Complete 48
Step 7: Display Results 48
Step8:Clean Up 49
COM Smart Pointers 49
Querying for Interfaces L 52
CoCreateInstance Underthe Hood 53
CoGetClassObject e 53
Implementing COM Interfaces 53
COM SErVers o it e e e e e e 54
Implementing the COM Class it 54
Implementing the Class Object (Factory) 54
Implementing D11GetClassObject. it 54
Implementing Self Registration 54
Registering the Server L 54
Debugging Registration 54
Testing the Server L 54
Testing withnon C/C++ Client 55
Proxiesand Stubs L 55
IDL and Type Libraries 55
Threads and Apartments L 55
The Free Threaded Marshalar (FTM), 55
Oddsand Ends e 55
Summary e e e 55
Chapter 22: The Windows Runtime, 56
Introduction. L 56

Working with WinRT o 56

CONTENTS

The IInspectableinterface 56
Language Projections 56
C++/WInRT e 56
Asynchronous Operations 56
Other Projections 57
SUMMAry o e e e e 57
Chapter 23: Structured Exception Handling 58
Termination Handlers 58
Replacing Termination Handlers with RAIL 58
Exception Handling 58
Simple Exception Handling 58
Using EXCEPTION_CONTINUE_EXECUTION 58
Exception Information 58
Unhandled Exceptions 59
Justin Time Debugging 59
Windows Error Reporting (WER) L L oL 59
Vectored Exception Handling 59
Software Exceptions 59
High-Level Exceptions e 59
Visual Studio Exception Settings 59
Summary e 59

Book Summary 59

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Who Should Read This Book

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

What You Should Know to Use This Book

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Sample Code

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 13: Working With Memory

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Memory APIs

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The virtualAllocx Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Decommitting / Releasing Memory

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Reserving and Committing Memory

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Micro Excel Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Working Sets

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Working Sets Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 13: Working With Memory 3

Heaps

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Private Heaps

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Heap Types

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Heap Debugging Features

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The C/C++ Runtime

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Local/Global APIs

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Other Heap Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Other virtual Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Memory Protection

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 13: Working With Memory 4

Locking Memory

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Memory Block Information

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Memory Hint Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Writing and Reading to/from Other Processes

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Large Pages

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Address Windowing Extensions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

NUMA

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The virtualAlloc2 Function

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 13: Working With Memory 5

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 14: Memory Mapped Files

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Mapping Files

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The filehist Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Sharing Memory

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Sharing Memory with File Backing

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Micro Excel 2 Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Other Memory Mapping Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 14: Memory Mapped Files 7

Data Coherence

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 15: Dynamic Link Libraries

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Building a DLL

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implicit and Explicit Linking

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implicit Linking

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Explicit Linking

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Calling Conventions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

DLL Search and Redirection

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 15: Dynamic Link Libraries 9

The p11Main Function

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

DLL Injection

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Injection with Remote Thread

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Windows Hooks

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

DLL Injecting and Hooking with SetWindowsHookEx

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

APl Hooking

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

IAT Hooking

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart?2.

“Detours” Style Hooking

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 15: Dynamic Link Libraries 10

DLL Base Address

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Delay-Load DLLs

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The LoadLibraryEx Function

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Miscellaneous Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 16: Security

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

WinLogon

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

LogonUl

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

LSASS

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Lsalso

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Security Reference Monitor

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Event Logger

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 16: Security 12

SIDs

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Tokens

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Secondary Logon Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Impersonation

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Impersonation in Client/Server

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Privileges

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Super Privileges

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Take Ownership

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 16: Security 13

Backup

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Restore

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Debug

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

TCB

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Create Token

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Access Masks

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Security Descriptors

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Default Security Descriptor

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Building Security Descriptors

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 16: Security 14

User Access Control

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Elevation

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Running As Admin Required

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

UAC Virtualization

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Integrity Levels

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

UIPI

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Specialized Security Mechanisms

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart?2.

Control Flow Guard

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 16: Security 15

Process Mitigations

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 17: The Registry

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Hives

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

HKEY_LOCAL_MACHINE

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

HKEY_USERS

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

HKEY_CURRENT_USER (HKCU)

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

HKEY_CLASSES_ROOT (HKCR)

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

HKEY_CURRENT_CONFIG (HKCC)

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

HKEY_PERFORMANCE_DATA

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 17: The Registry 17

32-bit Specific Hives

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Working with Keys and Values

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Reading Values

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Writing Values

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Deleting Keys and Values

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Creating Registry Links

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Enumerating Keys and Values

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Registry Notifications

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 17: The Registry 18

Transactional Registry

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Registry and Impersonation

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Remote Registry

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Miscellaneous Registry Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 18: Pipes and Mailslots

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Mailslots

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Mailslot Clients

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Multi-Mailslot Communication

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Anonymous Pipes

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Command Redirect Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Named Pipes

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 18: Pipes and Mailslots 20

Pipe Client

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Pipe Calculator Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Other Pipe Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 19: Services

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Services Overview

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Process Architecture

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

A Simple Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Installing the Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

A Service Client

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Controlling Services

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Installing a Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 19: Services 22

Starting a Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Stopping a Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Uninstalling the Service

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Status and Enumeration

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The enumsvc Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Configuration

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Description

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Failure Actions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Pre-Shutdown Information

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 19: Services 23

Delayed Auto-Start

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Trigger Information

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Preferred NUMA Node

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Launch as PPL

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Debugging Services

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Interactive Services

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Security

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service SID

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Security Descriptor

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 19: Services 24

Per-User Services

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Miscellaenous Functions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 20: Debugging and Diagnostics

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Debugger Output

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The DebugPrint Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Performance Counters

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Working with Counters

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The QSlice Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Process Snapshots

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart?2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 20: Debugging and Diagnostics 26

Querying a Snapshot

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The snapproc Application

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Event Tracing for Windows

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Creating ETW Sessions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Processing Traces

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Extended Information

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Real-Time Event Processing

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Kernel Provider

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

More ETW

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 20: Debugging and Diagnostics 27

ETW Filters

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Session Information

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Active Sessions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Trace Logging

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Publishing Events with Trace Logging

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Debuggers

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

A Simple Debugger

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

More Debugging APIs

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Writing a Real Debugger

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 20: Debugging and Diagnostics 28

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 21: The Component Object
Model

The Component Object Model (COM) technology made its official debut around 1992/93, initially called
OLE 2.0 and later renamed to COM, to better underline the fact that its use cases go much beyond an
enhanced implementation for Object Linking and Embedding (OLE), most often used within the Microsoft
Office suite of applications.

COM became the de-facto standard for object communication based on a binary protocol, which means
COM servers and clients could be written in any programming language that adheres to the COM
specification. COM is one of the most influential technology in the Microsoft technology stack, but it
is also one of the most misunderstood.

In this chapter, we’ll take a look at the fundamentals of COM, hopefully demystifying it, and see how
to use it from a client and server perspective. At the end of the chapter, you should have the knowledge
required to work with existing COM components and create your own when needed.

This chapter is by no means exhaustive, as complete books have been written about COM.

In this chapter:

« What is COM?

« Interfaces and Implementations
o The IUnknown Interface

« HRESULTs

o COM Rules

« COM Clients

« COM Smart Pointers

. CoCreateInstance Under the Hood
+ Implementing COM Interfaces
« COM Servers

« Proxies and Stubs

+ Threads and Apartments

« Odds and Ends

Chapter 21: The Component Object Model 30

What is COM?

Whenever a new technology is created, it’s because there are certain problems it aims to fix. COM is no
different; what was COM trying to fix? Here are a few scenarios encountered while developing applications
that are not easy to handle.

A developer wants to write a library, packaged as a DLL, to provide some functionality. What language
should the library be written in? If it’s written in C, it can be (relatively) easily consumed by a C or
C++ client for sure, but what about other languages/platforms? C is considered the lowest common
denominator, and facilities to consume it are available in most languages/platforms, such as .NET, Java,
Python, Rust, and many others. But what if the developer writes the library in C++ that exposes a set of
C++ classes? It’s easy enough to consume in C++, but what about other languages/platforms? It’s virtually
impossible because C++ works on the source level rather than the binary level.

Even with C++, life is not ideal. The way to expose a C++ class in a DLL is to provide a LIB file that would
be linked by the client. That forces the DLL to be loaded when the client process launches, rather than when
it’s needed. And if the DLL cannot be located, the process terminates, rather than having the opportunity
to handle the failure gracefully. As we saw in chapter 15, it’s practically impossible to dynamically link to
a C++ DLL with calls to LoadLibrary and GetProcAddress.

it’s possible to circumvent the dynamic loading problem by using Delay-Load DLLs, as
described in chapter 15.

Here is another example: a developer wants to implement some C++ classes that are hosted in their own
process. In this case, the client and server are different processes. How would the client gain access to the
server’s library functionality? Clearly, some form of inter-process communication (IPC) is required here,
but how is that to be implemented so that it’s easy for the client to consume the library, and easy for the
server to expose that functionality?

Another issue is related to component evolution. Suppose that a C++ class is exposed by some library
implemented in a DLL. At some point, a developer wants to extend the class with new functionality or
even fix a bug or enhance a feature. Standard C++ rules dictate that if you don’t change the public methods
of a class, then you’re good to go, as clients of your class do not need to make any source code changes.
Here is a simple C++ class to serve as an example:

// RPNCalculator.h

class RPNCalculator {
public:
RPNCalculator();
void Push(double value);
double Pop();
bool Add();
bool Subtract();

Chapter 21: The Component Object Model 31

private:
std: :stack<double> _stack;

}s

This class implements a Reverse Polish Notation (RPN) calculator, where values are pushed onto a stack,
and calculations are performed by calling the relevant method (e.g. Add). The method pops two values off
the stack, performs the calculation, and then pushes the result onto the stack. The stack is implemented in
this example using the C++ standard library std: : stack<> adapter class.

Suppose this class is properly implemented and packaged in a DLL. A client working with the calculator
can do so with code like the following:

#include "RPNCalculator.h"

void SimpleCalc() {
RPNCalculator calc;
calc.Push(10);
calc.Push(20);
calc.Add();

// should output 30 (and the stack is empty)
printf("Result: %1f\n", calc.Pop());

So far, so good. Now suppose the developer of the RPNCalculator class realizes that working with any
instance is not thread-safe, as the std: : stack<> class is not thread-safe. The developer decides to add
synchronization support by adding a CRITICAL_SECTION object as a private member, like so:

class RPNCalculator {
public:
RPNCalculator();
void Push(double value);
double Pop();
bool Add();
bool Subtract();

private:
std: :stack<double> _stack;
CRITICAL_SECTION _cs;

}s

The relevant method implementations are updated to use the critical section internally. The developer
recompiles the DLL and hands it off to the client developer. The client developer replaces his copy of the
DLL (the old one) with the new updated version. From a C++ perspective, everything should be fine, since

Chapter 21: The Component Object Model 32

the public methods in the class have not changed. Now the client application runs (without recompiling
the code, as the public stuff has not changed). Can you guess what happens when the client app runs and
the SimpleCalc function executes?

If you guessed “something bad” or “memory corruption”, then you’re absolutely correct. Can you spot the
problem? Suppose the constructor is implemented in this way:

RPNCalculator::RPNCalculator() {
::InitializeCriticalSection(&_cs);

Fairly simple, but this causes a memory corruption. This is because the client code was not recompiled, so
the size of an RPNCalculator object is the size of std: : stack<double> - the client does not know of
the CRITICAL_SECTION member, which causes the updated class code to trample stack memory. (if the
allocation was dynamic, this would cause a heap corruption). This all happens because the C++ language
has no binary compatibility, only source compatibility. We cannot use a “plug & play” approach, where a
DLL can simply be replaced by a newer version, with the new functionality available without a hitch if
the public surface of the class remains intact.

There are other issues when using C++ for evolving components, but the above list should suffice as
motivation for developing something better.

COM aims to solve these problems, by providing a binary standard of communication. This means
the communication protocol between client and server is not based on the semantics of any specific
programming language or platform; instead, communication is facilitated by defining some binary object
layout that can be implemented by (theoretically) any language or platform, by adhering to the COM
specification.

COM has many features and aspects, but it’s built on top of two fundamental principles:

« Clients communicate with server objects using (abstract) interfaces, not concrete classes.

« Location transparency - the client does not need to know where a COM class implementation resides.
Once the client obtains an interface pointer, it just makes calls and that’s it. The server object may be
in the same process, a different process on the same machine, or even a process on another machine
(this is known as Distributed COM or DCOM, although it’s not really different from standard COM).

Some of the terms used above need a more precise definition:

« COM Interface - a binary contract consisting of a set of methods with a well-defined binary layout.
« COM Class - an implementation of one or more COM interfaces.

« COM Object - an instance of a COM class.

« COM Component/Server - a deployment binary, consisting of one or more COM classes.

Chapter 21: The Component Object Model 33

A COM Server can be in-process or out-of-process, depending on whether it’s a DLL (loaded into the
client’s process) or an executable (launched in a separate process). Clients should be able to communicate
with COM objects in either way. The in-process scenario is easier to understand, and is depicted in figure
21-1.

Client process (address space)

Call method —O—

O_
oO— A MyServer.DI|

Call method —» Q—
O— B COM
O— Class A

o— COM
Call method —QO— A Class B

O_

Figure 21-1: DLL (in process) COM Server

The MyServer.DIl implements two COM classes, A and B. From these implementations, three objects are
created by the client: two instances of A and one instance of B. Then the client calls methods (invoking
functionality) on one or more interfaces exposed by these objects. We have yet to discuss how the DLL is
loaded, how objects are created, etc. We’ll explain all these details as the chapter progresses.

In the out-of-process scenario, the COM infrastructure uses a proxy and stub object pair to facilitate
transparent communication between client and server. The proxy is the server object’s representation
in the client’s address space, while the stub is listening on the object’s (server) side for method invocation
requests. This layout is depicted in figure 21-2.

Chapter 21: The Component Object Model 34

Client process Server process

Apparent call

|
|
|
|
|
Method call
—

Binary-encoded
call information

Figure 21-2: EXE (out of process) COM Server

Figure 21-2 demonstrates the location transparency property of COM. The client gets an interface pointer
that looks like the real object - the proxy implements all the interfaces implemented by the real object -
the client cannot (easily) and need not distinguish between a proxy and a real object. The client invokes
methods normally (on the proxy). The proxy’s job is to marshal the arguments of the method to the
other side, so that the receiving end (the stub) can unmarshal the arguments and call the real object. This
marshaling procedure is also performed in reverse for values that need to be returned back to the client.
All this marshaling behavior is provided by the “magic” of COM out-of-process invocation.

Interfaces and Implementations

The most fundamental entity in COM is the interface. A COM interface is a binary contract, meaning that
once defined and exposed to the clients, an interface should be immutable. This means it should never
again change, as existing clients depend on the binary layout and semantics of the interface. If a change or
extension is to be introduced, it must be done by defining a new interface (it may inherit all the methods
from the original interface or by creating a completely new one).

In C++, a COM interface definition consists of a class with all functions defined as pure virtual. Here is an
example of an interface that could be used with an RPN calculator implementation:

struct IRPNCalculator {
virtual void Push(double value) = 0;
virtual double Pop() = 0;
virtual bool Add() = 0;
virtual bool Subtract() = 0;
}s

’ It’s customary to name interfaces starting with a capital I.

Chapter 21: The Component Object Model 35

With the above definition, the class implementation can be changed in terms of the interface:

class RPNCalculator : public IRPNCalculator {
public:

void Push(double value) overrdide;

double Pop() override;

bool Add() override;

bool Subtract() overrdide;

private:
std: :stack<double> _stack;
CRITICAL_SECTION _cs;

}s

Does the above change solve the crashing problem we observed earlier? Not yet. The next step is to hide the
RPNCalculator implementation from the client entirely. The header exposed to clients should contain
two pieces: the interface definition, and a factory function to create an instance. Here’s what that may

look like:

// RPNCalculatorClient.h

struct IRPNCalculator {
virtual void Push(double value) = 0;
virtual double Pop() = 0;
virtual bool Add() = 0;
virtual bool Subtract() = 0;

}s
extern "C" IRPNCalculator* CreateCalculator();

The client has no idea where the interface is implemented or how. Creating an instance is now turned over
to the server. This is ideal, since the server knows which implementation to create, and it’s always going
to have the correct size. Here is a revised client code:

void SimpleCalc() {
IRPNCalculator* calc = CreateCalculator();
if (calc) {
calc->Push(10);
calc->Push(20);
calc->Add();
printf("Result: %f\n", calc->Pop());

// not ideal (see later)

Chapter 21: The Component Object Model 36

delete calc;

The factory is defined with C linkage, because as established earlier, C is the lowest common
denominator that is supported for exporting functions by literally all languages/platforms.

This is almost perfect. If the implementation changes, for example by adding or changing data members in
the behind-the-scenes implementation, the client should not be affected. This is because the binary layout
of the interface remains the same. With a C++ implementation, the virtual table mechanism is used to
implement virtual functions, which provide the exact layout defined by a COM interface, making C++ a
natural choice for COM class implementations. This layout is depicted in figure 21-3.

RPNCalculator: :Push
IRPNCalculator V-table alculator: :Pus

Client 1—» vptr > Push
Pop RPNCalculator: :Pop
Data Add
Members
Subtract

RPNCalculator: :Add

Client 2——> vptr RPNCalculator::Subtract

p Al

Data
Members

Figure 21-3: Virtual dispatch mechanism

All the client sees is the virtual table pointer (vptr) that is always the first member of any instance with
virtual functions. The data members of the implementation are unknown (hidden) to the client. In fact,
there is no way for the client to query any implementation details, such as the size of the object. This is
great, as the implementation can be changed freely without any need for the client to recompile anything,
so long as the interface remains the same - the same function order and the same parameters (the function
names themselves mean nothing as the invocation is based on the offset of the function pointer within the
v-table).

The above SimpleCalc still has one snag. To free the object, it calls the C++ delete operator. This
assumes the object’s memory was allocated with the C++ new operator.

Chapter 21: The Component Object Model 37

Using de'lete in this way has even more hidden assumptions: the client and server must use the same
compiler. Both use the same C++ runtime library (dynamic vs.static), and that there is no operator
overloading for new and delete in the server’s class implementation).

This assumption (or assumptions) are too problematic. The solution is to transfer the responsibility of
freeing the object back to the server (just as was done with object creation). This could be done by adding
another method to every COM interface like so:

struct IRPNCalculator {
virtual void Release() = 0;
virtual void Push(double value) = 0;

/]...
15

All the client needs to do is call the Release method and not have to know anything about how the
object’s memory was allocated.

The Iunknown Interface

The previous section looked at some problematic details of the C++ language, and how separating interface
from implementation could solve these issues. Now it’s time to introduce the “official” COM definitions
that are based on the principles outlined in the previous section.

COM defines a base interface, from which all interfaces must derive (extend). This ensures certain
functionality is always available given any COM interface. This interface is called TUnknown and defined
like so:

struct IUnknown {
virtual HRESULT __stdcall
QueryInterface(const IID& riid, void** ppv) = 0;
virtual ULONG __stdcall AddRef() = 0;

virtual ULONG _stdcall Release() = 0;

+s

COM defines semantics for managing an object’s lifetime. Instead of just providing a way to create and
destroy an object, two methods are defined on TUnknown - AddRef and Release to manage the object’s
reference count (and indirectly - its lifetime). Whether the class implementation actually uses reference
counting or not is no concern of COM, but the rules are clear: if the client receives an interface pointer, it
must eventually call Release. AddRef may be used to artificially increment the object’s reference count
before passing the interface pointer to an independent entity (such as a separate thread of execution). In
this way, each client works with the object safely until the pointer is no longer needed. Then the client
calls Release on its pointer, and from that point on the pointer should be considered poison. The object
may or may not be destroyed, but that should not matter to the particular client.

Chapter 21: The Component Object Model 38

All COM interface methods must use the standard calling convention (__stdcall). This is required as
part of the binary interface - the choice seems arbitrary, but nevertheless some choice must be made so
that clients and servers are in sync.

The first function in IUnknown, QueryInterface is concerned with querying the object for another
interface that may or may not be supported by the object. Identifying interfaces, like most other COM
entities, is done with Globally Unique Identifiers (GUIDs, also called Universally Unique Identifiers -
UUIDs). These 128-bit numbers are generated by an algorithm that statistically guarantees uniqueness
across time and space. Since 128-bit numbers cannot yet be represented in C/C++ as simple types, the GUID
structure is defined to hold such a value. It has several alternative typedefs such as IID and CLSID, that
have slightly different semantic meanings, but are otherwise identical from the binary perspective:

typedef struct _GUID {
unsigned long Datal;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
} GUID;

GUIDs can be generated programmatically as needed by calling CoCreateGu-id:

HRESULT CoCreateGuid(_Out_ GUID* pguid);

You might encounter some strange macros in the Windows header files, such as FAR that expand
to nothing. This is a relic from 16-bit Windows, where there were near and far pointers.

Visual Studio provides a tool called Create GUID, normally accessible from the Tools menu, that calls
CoCreateGuid and provides several formatting options (figure 21-4).

Each time you click New GUID, a new GUID is generated anf formatted. Clicking Copy copies the selected
format to the clipboard. We’ll use this tool later to generate GUIDs for COM components we’ll author.

Chapter 21: The Component Object Model 39

Create GUID

Choose the desired format below, then select "Copy™ to

copy the results to the clipboard {the results can then be Copy
pasted into your source code). Choose "Bxit" when New GUID
done.
Exit
GUID Format

(1. IMPLEMENT_CLECREATE(..)

()2 DEFINE_GUID{..)

(®) 3. static const struct GUID ={ ... }

i) 4. Registry Format fie. feocoomzoon ... o J)
() 5. [Guid("eccoomoon: ... woo)]

()6, «Guid("oooooocoon .. oo

Result

A7 {T020B30D9-CEFE-4RDC-35D7-FO261C3CDERR}

static const GUID <<names> =

{ (70200349, Oecefe, ndBde, { (89, Gxd?, O D, 26, (x1c, (xdc,
(de, (eBE }};

Figure 21-4: The Create GUID tool

GUIDs are used everywhere in COM. For example, interfaces are identified by GUIDs, as using strings
such as “IRPNCalculator” are not globally unique. This means that the IUnknown interface has its own
GUID, defined in the earliest days of COM. It’s identified in the Windows headers with the variable
IID_IUnknown.

This brings us back to the QueryInterface method from IUnknown. Its first argument is the interface ID
to query for (interface names don’t mean anything and can be projected differently by other languages/plat-
forms). The result of the query is stored in the second argument (a pointer to a void pointer). The method
returns an HRESULT - the standard COM return value, indicating success or failure of the operation.

HRESULTs

Most COM methods encountered return an HRESULT type. An HRESULT is just a signed 32-bit integer that
conveys an error or success code. If the most significant bit (MSB) is set, this indicates an error. Looking
back at the IUnknown interface, it’s clear AddRef and Release do not return HRESULTSs. These methods
should be the only exceptions.

Chapter 21: The Component Object Model 40

The COM standard specifies that AddRef and Release should return zero if the object is
destroyed, and non-zero value otherwise. The return value is not required to be the actual
reference count of the object, but often is. It follows that AddRef should never return zero, as
it’s only possible call AddRef on a live object.

The standard HRESULT success code is S_OK (0). QueryInterface returns S_OK if the requested interface
is supported (and its pointer returned in *ppv, otherwise it returns E_NOINTERFACE, indicating the
interface is not supported. Some of the common error codes are shown in table 21-1.

Table 21-1: Common failure HRESULTs

HRESULT symbol Description

E_NOINTERFACE Interface is not supported

E_POINTER Pointer is not valid (typically NULL when it shouldn’t be)
E_UNEXPECTED Unexpected call to this method at this time

E_NOTIMPL Functionality is not implemented

E_OUTOFMEMORY Not enough memory to complete the operation
E_INVALIDARG One or more invalid arguments to the call

E_FAIL Generic failure

The general layout of an HRESULT contains three parts: the facility that identifies the category of result,
the error or success, and the actual code. The HRESULT macros are built based on these three parts in the
following way: FACILITY_S/E_CODE. The facility for all the values in table 21-1 is FACILITY_NULL,
that does not show up in the named constants.

Checking for an HRESULT is typically done using the FAILED or SUCCEEDED macros. These return true
on a failed or successful HRESULT, respectively.

More specific HRESULT values are defined in the SDK headers, and new ones may be defined by
components as needed. If a new HRESULT is to be defined, bit 29 should be set for custom HRESULT
values. Here is a ficticious example for querying for some custom interface and handling an error:

void DoWork(IUnknownx p) {
ICalculator* pCalc;
HRESULT hr = p->QueryInterface(IID_ICalculator,

reinterpret_cast<voidx*x*>(&pCalc));

if (SUCCEEDED (hr)) {

// successful call to QueryInterface increments
// the object's reference count
int result;
hr = pCalc->Add(4, 6, &result);
if(FAILED(hr)) {
printf("Failed in call to Add (0x%08X)\n", hr);

Chapter 21: The Component Object Model 41

}
// done working with the interface
pCalc->Release();

}
else {

printf("Interface not supported\n");
}

0 You may wonder why reinterpret_cast is needed in the above code. Can’t we cast

ICalculator*x to void** implicitly? The answer is no as these types have no inheritance
relationship, so the cast is necessary. If you feel lazy, you can use a C-style cast (void*x)
instead of reinterpret_cast.

COM Rules (pun intended)

There are several rules concerning reference counting and IUnknown that are worth listing explicitly:

Whenever an interface pointer is returned via QueryInterface, the client should assume the
reference count of the object was incremented, meaning the client must eventually call Release
on that interface pointer, or else that object will leak.

QueryInterface implementations must be symmetric: if it’s possible to query for interface IX
from IV, it should be possible to go the other way around.

It should always be possible to query for the same interface calling QueryInterface.

If one can get from IX to IY and from IY to IZ, then it should also be possible to directly request
IZ from an IX interface pointer.

The TUnknown pointer serves as the object’s identity. This means an object should always return
the same IUnknown pointer, no matter from which interface it’s requested.

All COM interfaces must inherit from IUnknown, directly or indirectly. This means that the first 3
methods of every interface are QueryInterface, AddRef, and Release, in that order.

Our early IRPNCalculator interface was not COM compliant. Let’s turn it into a proper COM interface:

Chapter 21: The Component Object Model 42

#include <Unknwn.h> // dincluding <Windows.h> also includes this one

struct IRPNCalculator : IUnknown {
virtual HRESULT __stdcall Push(double value) = 0;
virtual HRESULT __stdcall Pop(doublex value) = 0;
virtual HRESULT __stdcall Add() = 0;

virtual HRESULT __stdcall Subtract() = 0;

s

The interface has seven methods, including those inherited from IUnknown. Ordinary return values (such
as from Pop) turned into parameters with an extra level of indirection (double turned into doublex)
because of the requirement to return HRESULT from every method.

There is still something missing from the interface - its GUID. We'll get to that in the section “COM
Servers”, later in this chapter.

COM Clients

We now have enough information to start working with COM as clients, which is considerably easier than
creating a COM server. The following example will use the Background Intelligent Transfer Service (BITS)
API to download a file in the background. BITS is implemented as a Windows Service (see chapter 20 for
more on services), but that fact is not really relevant to the way a BITS client invokes BITS functionality
thanks to the location transparency property of COM, as we shall see.

We'll start with a standard C++ console application (named BitsDemo in the accompanying source code).
First, we’ll add the usual includes and an extra one for the BITS APIL:

#include <Windows.h>
#include <stdio.h>
#include <Bits.h> // BITS API

The steps we need to take to download a file using the BITS service are outlined below:

. Initialize COM for this thread.

. Create an instance of the BITS manager.

. Create a BITS job for download.

. Add a URL to download from and local file to store the resulting file.
. Initiate the transfer.

. Wait for the transfer to complete.

. Display final results.

. Release the various objects created in the previous steps.

[l e S - NI

Most of the above steps are specific to the way the BITS API is to be used, but some of the steps are generic
and applicable to all COM clients.

Chapter 21: The Component Object Model 43

Step 1: Initialize COM

Before making any COM-related API call from a thread (there are very few exceptions to this rule),
COM must be initialized for that thread. This can be done with a call to one of the following functions:
CoInitialize or the extended CoInitializeEx:

HRESULT CoInitialize(_In_opt_ LPVOID pvReserved);
HRESULT CoInitializeEx(

_In_opt_ LPVOID pvReserved,

In DWORD dwCoInit);

CoInitialize canonlyaccept NULL, and in fact is just special case of CoInitializeEx.It’s equivalent
to calling CoInitializeEx (nullptr, COINIT_APARTMENTTHREADED).

Although the term “initializing COM” may be good enough to proceed to the next step, it would be
more accurate to say that the function puts the calling thread into an apartment whose type depends
on the dwCoInit parameter (and is always a single-threaded apartment in the Coinitialize case). A
comprehensive discussion of apartments is reserved for the section “Threads and Apartments”. For now,
we’ll just call one of the functions as the first line inside main and move on to step 2:

::CoInitialize(nullptr);

Step 2: Create the BITS Manager

As with any API, proper usage requires reading the API’s documentation. The next steps are based on the
BITS API official documentation. Accessing BITS functionality requires creating an instance of a COM
class called the Background Copy Manager. In general, creating instances of COM classes is achieved (in
most cases) by calling CoCreateInstance:

HRESULT CoCreateInstance(
In REFCLSID rclsid,
_In_opt_ LPUNKNOWN pUnkoOuter,
In DWORD dwClsContext,
In REFIID ridid,

_COM_Outptr_ LPVOID* ppv);

COM object creation is also referred to as Activation.

0 The prefix Co that most COM APIs use stands for “Component Object”.

Chapter 21: The Component Object Model 44

The purpose of CoCreateInstance is to create an instance of a given class and return a requested
interface pointer to the new object. The first parameter identifies the class itself with a GUID, referred to
here as class ID (CLSID), to make it easier to understand, but it’s a GUID like any other. COM classes -
implementations of COM interfaces - are identified by GUIDs, giving them unique names. The CLSID is
looked up in the Windows Registry, as we shall see in the next section. The interface ID (supplied as the
fourth parameter) is not good enough, as one interface can have any number of implementations.

The second parameter to CoCreateInstance is an IUnknown pointer called “outer [Unknown”. This
parameter is related to a COM extensibility mechanism called Aggregation. Aggregation is beyond the
scope of this chapter, and if not used (the typical case), NULL is specified.

The next parameter (dwClsContext) indicates (mostly) which context the server should be allowed to
run in. The most common value is CLSCTX_ALL, which means the client doesn’t care, and would accept
any implementation. Here are some Common alternatives:

+ CLSCTX_INPROC_SERVER - in-process (DLL) implementation.

« CLSCTX_LOCAL_SERVER - out-of-process (EXE) implementation on the same machine as the client.

« CLSCTX_REMOTE_SERVER - out-of-process (EXE) implementation on another machine (used with
CoCreateInstanceEx).

Multiple flags can be specified by using the or (|) operator. The function will attempt to get the “closest”
implementation (i.e. DLL preferred over EXE, local EXE preferred over a remote server).

The next parameter is the interface ID requested from the new object. This can be TUnknown (IID_-
IUknown), which must always be supported, or a more specific interface that is known to be imple-
mented by the class. If IUnknown is requested, another interface can later be obtained by calling
QueryInterface.

The last parameter is the resulting pointer, if the call succeeds. As usual, the return value is an HRESULT,
that is S_OK with a successful call.

Given this information and the BITS docs, we need to make the following call:

IBackgroundCopyManager* mgr;
HRESULT hr = ::CoCreateInstance(CLSID_BackgroundCopyManager,
nullptr, CLSCTX_ALL,
IID_IBackgroundCopyManager, reinterpret_cast<voidx*x*>(&mgr));
if (FAILED(hr))
return Error(hr);

CLSIDs are traditionally prefixed with CLSID_ and interface IDs with IID_. The above GUIDs are defined
in the bits.h header.

The last two arguments in the above CoCreateInstance call can be shortened by using the IID_-
PPV_ARGS macro like so:

HRESULT hr = ::CoCreatelInstance(CLSID_BackgroundCopyManager,

nullptr, CLSCTX_ALL, IID_PPV_ARGS(&ngr));

Chapter 21: The Component Object Model 45

Error is just a simple function that displays the HRESULT

int Error (HRESULT hr) {
printf("COM error (hr=%08X)\n", hr);
return 1;

The process of locating the server is described in the next section. For the purposes of this demo, if we
receive back a proper interface, we can move on to step 3.

Step 3: Create a BITS Job

The IBackgroundCopyManager interface is defined like so (copied from bits.h):

MIDL_INTERFACE("5ce34c0d-0dc9-4c1f-897c-daalb78cee7c")
IBackgroundCopyManager : public IUnknown {
public:
virtual HRESULT STDMETHODCALLTYPE CreateJob(

/* [in] %=/ __RPC__in LPCWSTR DisplayName,

/* [in] */ BG_JOB_TYPE Type,

/* [out] %/ __RPC__out GUID *pJobId,

/* [out] */ __RPC__deref_out_opt IBackgroundCopyJob *xppJob) = 0;
virtual HRESULT STDMETHODCALLTYPE GetJob(

/% [in] */ __RPC__in REFGUID jobID,

/* [out] %/ __RPC__deref_out_opt IBackgroundCopyJob x**ppJob)
virtual HRESULT STDMETHODCALLTYPE EnumJobs(

/* [in] =/ DWORD dwFlags,

/* [out] =/ __RPC__deref_out_opt IEnumBackgroundCopyJobs **ppEnum)

= 0;

virtual HRESULT STDMETHODCALLTYPE GetErrorDescription(

/* [in] */ HRESULT hResult,

/* [in] =/ DWORD Languageld,

/* [out] */ __RPC__deref_out_opt LPWSTR xpErrorDescription) = 0;
}s

03

At first glance, this doesn’t appear to be human-written code - it looks machine-generated. And indeed it
is, as can be seen from reading the first line in bits.h:

Chapter 21: The Component Object Model 46

/* this ALWAYS GENERATED file contains the definitions for the interface\
s x/

The file was generated from an Interface Definition Language (IDL) file that was compiled by the Microsoft
IDL (MIDL) compiler. The reason for using yet another file format for generating interfaces is discussed
in the section “The Interface Definition Language”, later in this chapter. For now, let’s make sure we
understand the above interface definition.

The STDMETHODCALLTYPE macro expands to __stdcall, as is required by all COM methods. All the
__RPC-something macros are SAL annotations. The MIDL_INTERFACE is defined like so:

#define MIDL_INTERFACE(x) struct DECLSPEC_UUID(x) DECLSPEC_NOVTABLE
Continuing with the remaining macros:

#define DECLSPEC_UUID(x) __declspec(uuid(x))
#define DECLSPEC_NOVTABLE __declspec(novtable)

MIDL_INTERFACE defines an interface by using the struct keyword (as C++ has no special keyword for
interfaces), and uses two Visual C++ specific attributes. uuid (x) associates a GUID with the definition,
which helps to simplify code by not requiring usage of an IID_IX variable, instead opting for the more
elegant __uuidof (IX) operator that uses the attached GUID. This can also be used by classes, by the
way, as it is with the Background Copy Manager:

class DECLSPEC_UUID("4991d34b-80a1-4291-83b6-3328366b9097") BackgroundCo)\
pyManager;

All this means that the initial CoCreateInstance code can be simplified like so:

HRESULT hr = ::CoCreateInstance(__uuidof(BackgroundCopyManager),
nullptr, CLSCTX_ALL,
__uuidof (IBackgroundCopyManager), reinterpret_cast<void**>(&mgr));

All this is just compiler trickery and does not have any effect at runtime.

The macro IID_PPV_ARGS uses the __uuidof operator, without which it cannot “get” the
interface ID.

A new BITS job is created by calling IBackgroundCopyManager: :CreateJob, rather than requiring
its own CoCreateInstance call. This is a very common pattern, as it allows the creation function to
accept any extra parameters needed and provides control over instance creation (and does not require any
Registry settings).

Chapter 21: The Component Object Model 47

GUID jobId;
IBackgroundCopyJob* pJob;
hr = mgr->CreateJob(L"My job", BG_JOB_TYPE_DOWNLOAD, &jobId, &pJob);
if (FAILED(hr))
return Error(hr);

The call to CreateJob returns a new interface pointer on a BITS job object. It also returns a GUID
identifying this job. This GUID has nothing to do with COM, and is used internally by BITS to uniquely
identify transfers. The inputs are a display name, which can be anything, and whether the job is a download
or upload.

We can now technically release the interface pointer to IBackgroundCopyManager - we won’t be
needing it again:

mgr->Release();

Remember, this doesn’t necessarily mean the object is destroyed. It’s possible (and in fact probable) that
the job object holds another interface pointer to the BITS manager. Regardless, as clients, we don’t care.
Once we don’t need an interface pointer we received earlier, we release it.

Step 4: Add a Download

The next step is to add at least one file to download:

hr = pJob->AddFile(
L"https://www. fnordware.com/superpng/pnggradlérgb.png",
L"c:\\temp\\image.png");

if (FAILED(hr))
return Error(hr);

The first parameter is the remote URL to download from (or upload to if this was an upload job). The
second parameter is the local file to which the remote is to be downloaded.

I've selected some fairly random image URL, that may or may not continue to work by the
time you read this. If this does not work, find some other file to download from the web.

We can add more files if we want for the same job, but in this example we’ll continue with just one.

Step 5: Initiate the Transfer

Starting the transfer is fairly easy with a call to IBackgroundCopyJob: :Resume:

Chapter 21: The Component Object Model 48

hr = pJob->Resume();
BITS works asynchronously, so Resume should start the download and return immediately. We need
to know when the transfer is complete (or there is some error). BITS provides two ways to do this:

synchronously and asynchronously. We’ll use the synchronous option here, and discuss the asynchronous
option later in this chapter, as it requires us to implement a callback interface.

Step 6: Wait for Transfer to Complete

We’ll have a loop that polls the job object every some interval and query the state of the transfer, exiting
the loop when it’s done:

if (SUCCEEDED(hr)) {

printf("Downloading... ");
BG_JOB_STATE state;
for (5;) {
pJob->GetState(&state); // assume it cannot fail

if (state == BG_JOB_STATE_ERROR
| | state == BG_JOB_STATE_TRANSFERRED)
break;
printf(".");
::Sleep(300);
}

IBackgroundCopyJob: :GetState returns the state of the transfer. The code waits for a successful
completion or some error to break out of the loop. It uses a Sleep call to prevent CPU hogging, as this is
a network transfer.

Step 7: Display Results
Once out of the loop, we can show the results:

if (state == BG_JOB_STATE_ERROR) {
printf("\nError in transfer!\n");

}
else {
pJob->Complete();
printf("\nTransfer successful!\n");
1

}
pJob->Release();

The call to Complete is required, as BITS stores the downloaded file with a temporary name generated
by BITS. The call to Complete flushes any remaining bytes and renames the file to the client-provided
name. Finally, the job interface pointer is released.

Chapter 21: The Component Object Model 49

Step 8: Clean Up

We already released the manager and job interfaces. There is very little left to do - just uninitialize COM
before the thread exits:

::CoUninitialize();
return 0;
Run the application and you should see an output like the following:

Downloading...covv...
Transfer successful!

If some error occurs, you should get an error output (one simple way to get this is to modify the URL to a
non-existing one):

Downloading. ..
Error in transfer!

IBackgroundCopyJob::GetError. Add code to display rich error information in
case of a failure with the transfer. Remember to follow COM rules regarding interface
pointers.

?’ If an error occurs, BITS provides extended error information by calling

COM Smart Pointers

The rules concerning AddRef and Release calls are not complicated when viewed in isolation, but in
practice it’s difficult to keep track of all interface pointers going around. As a consequence, it’s easy to
miss calling Release especially when an interface pointer is no longer needed in all code paths using that
pointer. This is where COM smart pointers come in, automating calls to AddRef and Release so that
explicit calls to these methods is rarely needed.

As a bonus, these smart pointers also provide easier access to QueryInterface by overloading construc-
tors and the assignment operators. Several COM smart pointers are available in the Windows SDK today:

+ <comdef.h>has definitions for smart pointers based on a class named _com_ptr_t, .. These throw
C++ exceptions for failed QueryInterface calls.

« ATL provides two smart pointer classes that don’t ever throw exceptions.

« The newer Windows Runtime Library (WRL) provide its own version of smart pointers (ComPtr<>),
that are more verbose than the ATL ones.

Chapter 21: The Component Object Model 50

Which smart pointer class you use is mostly a matter of taste. As this book uses ATL and WTL, I will
demonstrate the usage of the ATL smart pointers, which I also personally prefer for their convenience and
simplicity.

The two classes most often used are CComPtr<> and CComQIPtr<>, the latter having extra constructors
that call QueryInterface when faced with a different typed interface.

What makes a pointer “smart®? In the COM case, it’s about convenient constructors and destructor, that
call AddRef, QueryInterface and Release as appropriate, and operator overloading for dereferencing
(*, =>) and address-of (&), as we shall see in the next code snippet.

The previous section used raw pointers (sometimes dubbed “stupid pointers”) to access BITS functionality.
Here is the equivalent code using the ATL smart pointers:

#include <atlcomcli.h>

HRESULT DoBITSWork() {
// assume CoInitialize has already been called for this thread

CComPtr<IBackgroundCopyManager> spMgr;
HRESULT hr = spMgr.CoCreateInstance(
__uuidof (BackgroundCopyManager));
if (FAILED(hr))
return hr;

CComPtr<IBackgroundCopyJob> spJob;

GUID guid;

hr = spMgr->CreateJob(L"My Job", BG_JOB_TYPE_DOWNLOAD,
&guid, &spJob);

if (FAILED(hr))
return hr;

hr = spJob->AddFile(
L"https://www. fnordware.com/superpng/pnggradlérgb.png",
L"c:\\temp\\image.png");

if (FAILED(hr))
return hr;

hr = spJob->Resume();
if (SUCCEEDED(hr)) {
printf("Downloading... ");
BG_JOB_STATE state;
for (55) {
spJob->GetState(&state);
if (state == BG_JOB_STATE_ERROR

Chapter 21: The Component Object Model 51

|| state == BG_JOB_STATE_TRANSFERRED)
break;
printf(".");
::Sleep(300);
}
if (state == BG_JOB_STATE_ERROR) {
printf("\nError in transfer!\n");

}
else {
spJob->Complete();
printf("\nTransfer successful!\n");
}

}

return hr;

The function starts by including <atlcomcli.h> where the ATL smart pointers are defined. Alternatively,
you can include <atlbase.h>, which has some useful extras and also includes <atlcomcli.h>.

The various interface methods are exposed directly by CComPtr<> because the -> operator is overloaded
and returns the internal interface pointer. Notice there are no Release calls in the above code. In fact,
trying to call Release as the following example shows fails to compile:

spMgr->Release();

This is intentional, as allowing this call to Release will likely cause a crash, since the destructor, unaware
that Release has been called, will attempt another Release call, which is one too many. The class does
provide a Release method that can be called so that the interface is released early (before the destructor
runs):

spMgr.Release();

This call invokes the internal interface’s Release and sets the interface pointer to NULL so that the
destructor does not call Release again (seeing the interface pointer is NULL). An equivalent call is setting
the object to NULL (operator overloading at work):

spMgr = nullptr;

The original call to CoCreateInstance is replaced in the above code by the

CoCreateInstance method exposed by the CComPtr<> class. This is just a helpful shortcut that calls
CoCreateInstance, but provides the defaults of NULL for the outer TUnknown and CLSCTX_ALL for
the class context.

IBackgroundCopyManager::EnumJobs. Display each job’s display name, state,

f Write a console application that lists all currently active BITS jobs by calling
description, priority, GUID, creation time, and progress. Use smart pointers.

Chapter 21: The Component Object Model 52

My BITSManager tool shows how to accomplish this (https://github.com/zodiacon/
BITSManager).

Querying for Interfaces

The BITS job object implements more than the IBackgroundCopyJob interface - it also supports the
extended interfaces IBackgroundCopyJob2 and IBackgroundCopyJob3. However, these interfaces
may or may not be supported based on the BITS version on the machine. This extended functionality was
added after the first BITS version was out, so new interfaces had to be defined. The new interfaces may
inherit (extend) an existing interface, or be unrelated (inheriting directly from IUnknown). This is left to
the discretion of those defining the new interface(s).

A client that wants to gain access to the new functionality must query for it and be ready to handle failure
gracefully. Here is an example for working with one of the extended job interfaces:

// after the job is created (in spJob)

// leading space for SetNotifyCmdLine
WCHAR localPath[] = L" c:\\temp\\image.png";

CComPtr<IBackgroundCopyJob2> spJob2;
hr = spJob->QueryInterface(__uuidof(IBackgroundCopyJob2),
reinterpret_cast<voidxx>(&spJob2));
if (spJob2) { // checking HR is ok too
hr = spJob2->SetNotifyCmdLine(
L"c:\\windows\\system32\\mspaint.exe", localPath);
// interface pointer released here

hr = spJob->AddFile(
L"https://www. fnordware.com/superpng/pnggradlérgb.png",
localPath + 1);

// rest of code 1is unchanged

If you try this out, mspaint should come up automatically when the file is downloaded successfully.

The caller must be prepared for the interface not being implemented and handle that appropriately. In
some cases, the caller just won’t use the new functionality. In other cases, it may be more appropriate to
report an error and notify the user that a newer library is required for proper functionality.

The above QueryInterface (QI) call uses the real QueryInterface method to make the call, providing
the interface ID and the address of a pointer to fill in on success. The ATL smart pointers, however, provide
simplified ways to achieve the same thing. Here are more options for making the same QI call:

https://github.com/zodiacon/BITSManager
https://github.com/zodiacon/BITSManager

Chapter 21: The Component Object Model 53

// leverages the __uuidof operator
hr = spJob.QueryInterface(&spJob2);

// uses CComQIPtr<>
CComQIPtr<IBackgroundCopyJob2> spJob2(spJob);
if(spJob2) { // no HRESULT to examine

// interface available

Make sure you release an interface pointer if you plan to reuse it for a future create or QI,
otherwise you’ll get an assertion failure from the ATL smart pointers.

CoCreateInstance Under the Hood

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

CoGetClassObject

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart?2.

DLL Activation

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

EXE Activation

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Service Activation

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implementing COM Interfaces

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 21: The Component Object Model 54

COM Servers

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implementing the COM Class

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implementing the Class Object (Factory)

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implementing D11GetClassObject

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Implementing Self Registration

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Registering the Server

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Debugging Registration

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Testing the Server

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 21: The Component Object Model 55

Testing with non C/C++ Client

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Proxies and Stubs

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

IDL and Type Libraries

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Threads and Apartments

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The Free Threaded Marshalar (FTM)

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Odds and Ends

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 22: The Windows Runtime

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Working with WinRT

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

The IInspectable interface

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Language Projections

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

C++/WIinRT

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Asynchronous Operations

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart?2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 22: The Windows Runtime 57

Other Projections

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 23: Structured Exception
Handling

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Termination Handlers

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Replacing Termination Handlers with RAII

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Exception Handling

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Simple Exception Handling

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Using EXCEPTION_CONTINUE_EXECUTION

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Exception Information

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

Chapter 23: Structured Exception Handling 59

Unhandled Exceptions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Just in Time Debugging

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Windows Error Reporting (WER)

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Vectored Exception Handling

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Software Exceptions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

High-Level Exceptions

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Visual Studio Exception Settings

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

Book Summary

This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.
com/windows10systemprogrammingpart2.

https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2
https://leanpub.com/windows10systemprogrammingpart2

	Table of Contents
	Introduction
	Who Should Read This Book
	What You Should Know to Use This Book
	Sample Code

	Chapter 13: Working With Memory
	Memory APIs
	The VirtualAlloc* Functions
	Decommitting / Releasing Memory

	Reserving and Committing Memory
	The Micro Excel Application

	Working Sets
	The Working Sets Application

	Heaps
	Private Heaps
	Heap Types
	Heap Debugging Features
	The C/C++ Runtime
	The Local/Global APIs
	Other Heap Functions

	Other Virtual Functions
	Memory Protection
	Locking Memory
	Memory Block Information
	Memory Hint Functions

	Writing and Reading to/from Other Processes
	Large Pages
	Address Windowing Extensions
	NUMA
	The VirtualAlloc2 Function
	Summary

	Chapter 14: Memory Mapped Files
	Introduction
	Mapping Files
	The filehist Application

	Sharing Memory
	Sharing Memory with File Backing

	The Micro Excel 2 Application
	Other Memory Mapping Functions
	Data Coherence
	Summary

	Chapter 15: Dynamic Link Libraries
	Introduction
	Building a DLL
	Implicit and Explicit Linking
	Implicit Linking
	Explicit Linking
	Calling Conventions
	DLL Search and Redirection

	The DllMain Function
	DLL Injection
	Injection with Remote Thread
	Windows Hooks
	DLL Injecting and Hooking with SetWindowsHookEx

	API Hooking
	IAT Hooking
	``Detours'' Style Hooking

	DLL Base Address
	Delay-Load DLLs
	The LoadLibraryEx Function
	Miscellaneous Functions
	Summary

	Chapter 16: Security
	Introduction
	WinLogon
	LogonUI
	LSASS
	LsaIso
	Security Reference Monitor
	Event Logger

	SIDs
	Tokens
	The Secondary Logon Service
	Impersonation
	Impersonation in Client/Server

	Privileges
	Super Privileges

	Access Masks
	Security Descriptors
	The Default Security Descriptor
	Building Security Descriptors

	User Access Control
	Elevation
	Running As Admin Required
	UAC Virtualization

	Integrity Levels
	UIPI

	Specialized Security Mechanisms
	Control Flow Guard
	Process Mitigations

	Summary

	Chapter 17: The Registry
	The Hives
	HKEY_LOCAL_MACHINE
	HKEY_USERS
	HKEY_CURRENT_USER (HKCU)
	HKEY_CLASSES_ROOT (HKCR)
	HKEY_CURRENT_CONFIG (HKCC)
	HKEY_PERFORMANCE_DATA

	32-bit Specific Hives
	Working with Keys and Values
	Reading Values
	Writing Values
	Deleting Keys and Values
	Creating Registry Links
	Enumerating Keys and Values

	Registry Notifications
	Transactional Registry
	Registry and Impersonation
	Remote Registry
	Miscellaneous Registry Functions
	Summary

	Chapter 18: Pipes and Mailslots
	Mailslots
	Mailslot Clients
	Multi-Mailslot Communication

	Anonymous Pipes
	The Command Redirect Application

	Named Pipes
	Pipe Client
	The Pipe Calculator Application
	Other Pipe Functions

	Summary

	Chapter 19: Services
	Services Overview
	Service Process Architecture
	A Simple Service
	Installing the Service
	A Service Client

	Controlling Services
	Installing a Service
	Starting a Service
	Stopping a Service
	Uninstalling the Service

	Service Status and Enumeration
	The enumsvc Application

	Service Configuration
	Service Description
	Failure Actions
	Pre-Shutdown Information
	Delayed Auto-Start
	Trigger Information
	Preferred NUMA Node
	Launch as PPL

	Debugging Services
	Interactive Services

	Service Security
	Service SID
	Service Security Descriptor

	Per-User Services
	Miscellaenous Functions
	Summary

	Chapter 20: Debugging and Diagnostics
	Debugger Output
	The DebugPrint Application

	Performance Counters
	Working with Counters
	The QSlice Application

	Process Snapshots
	Querying a Snapshot
	The snapproc Application

	Event Tracing for Windows
	Creating ETW Sessions
	Processing Traces
	Real-Time Event Processing
	The Kernel Provider
	More ETW

	Trace Logging
	Publishing Events with Trace Logging

	Debuggers
	A Simple Debugger
	More Debugging APIs
	Writing a Real Debugger

	Summary

	Chapter 21: The Component Object Model
	What is COM?
	Interfaces and Implementations
	The IUnknown Interface
	HRESULTs
	COM Rules (pun intended)
	COM Clients
	Step 1: Initialize COM
	Step 2: Create the BITS Manager
	Step 3: Create a BITS Job
	Step 4: Add a Download
	Step 5: Initiate the Transfer
	Step 6: Wait for Transfer to Complete
	Step 7: Display Results
	Step 8: Clean Up

	COM Smart Pointers
	Querying for Interfaces

	CoCreateInstance Under the Hood
	CoGetClassObject

	Implementing COM Interfaces
	COM Servers
	Implementing the COM Class
	Implementing the Class Object (Factory)
	Implementing DllGetClassObject
	Implementing Self Registration
	Registering the Server
	Debugging Registration
	Testing the Server
	Testing with non C/C++ Client

	Proxies and Stubs
	IDL and Type Libraries
	Threads and Apartments
	The Free Threaded Marshalar (FTM)

	Odds and Ends
	Summary

	Chapter 22: The Windows Runtime
	Introduction
	Working with WinRT
	The IInspectable interface

	Language Projections
	C++/WinRT
	Asynchronous Operations
	Other Projections

	Summary

	Chapter 23: Structured Exception Handling
	Termination Handlers
	Replacing Termination Handlers with RAII

	Exception Handling
	Simple Exception Handling
	Using EXCEPTION_CONTINUE_EXECUTION

	Exception Information
	Unhandled Exceptions
	Just in Time Debugging
	Windows Error Reporting (WER)

	Vectored Exception Handling
	Software Exceptions
	High-Level Exceptions
	Visual Studio Exception Settings

	Summary
	Book Summary

