

Memory Dump Analysis Anthology

Volume 8b

Dmitry Vostokov
Software Diagnostics Institute

OpenTask

2

Published by OpenTask, Republic of Ireland

Copyright © 2015 by Dmitry Vostokov

Copyright © 2015 by Software Diagnostics Institute

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, without the prior written

permission of the publisher.

You must not circulate this book in any other binding or cover, and you must

impose the same condition on any acquirer.

OpenTask books are available through booksellers and distributors worldwide. For

further information or comments send requests to press@opentask.com.

Product and company names mentioned in this book may be trademarks of their

owners.

A CIP catalog record for this book is available from the British Library.

ISBN-13: 978-1-908043-54-2 (Paperback)

First printing, 2015

Revision 1.06 (March 2017)

mailto:press@opentask.com

 3

Table of Contents

Preface ... 7

About the Author ... 9

PART 1: Professional Crash Dump Analysis and Debugging 11

Win32 Start Address Fallacy .. 11

Multidimensionality of Exceptions .. 13

PART 2: Crash Dump Analysis Patterns ... 15

Reference Leak ... 15

Origin Module .. 19

Hidden Call ... 21

Corrupt Structure ... 26

Software Exception .. 29

Crashed Process ... 30

Variable Subtrace ... 31

User Space Evidence .. 37

Technology-Specific Subtrace (COM Client Call) .. 38

Internal Stack Trace ... 39

Distributed Exception (Managed Code) ... 41

Thread Poset .. 43

PART 3: Pattern Interaction .. 45

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint ... 45

PART 4: A Bit of Science and Philosophy ... 57

Cantor Operating System ... 57

Metaphor of Memory as a Directed Container ... 57

Praxiverse ... 58

When Universe is Going to End? .. 58

4

Notes on Memoidealism .. 59

PART 5: Software Trace Analysis Patterns .. 61

Timeout .. 61

Activity Overlap .. 65

Adjoint Space ... 68

Indirect Message .. 71

Watch Thread .. 76

Punctuated Activity .. 78

Trace Mask ... 79

Trace Viewpoints ... 82

Data Reversal ... 84

Recovered Messages ... 86

Palimpsest Messages ... 88

Message Space ... 91

Interspace .. 93

Translated Message ... 95

Activity Disruption ... 97

PART 6: Fun with Debugging, Crash Dumps, and Traces.................................. 101

The Dump from the Future .. 101

Exchange Rate on 16.12.14 .. 101

Check the Plug ... 102

Debugging Slang ... 103

YAWE ... 103

Embedded Software Engineer .. 103

Minute-wise ... 103

Developer ... 103

Multidigitalist ... 103

KgB ... 104

CIQ (Crash IQ)... 104

Pat Ching .. 104

Explosive Mixture ... 104

POEM ... 104

YearNormous Day .. 105

eNormous... 105

 5

2015 - The Year of RAM ... 106

Diagnostics and Debugging in Science Fiction ... 107

Software and Hardware Exceptions ... 110

Logging for Kids .. 112

Find the Bug ... 113

Music for Debugging .. 114

Tracing and Counting Book .. 115

The Last Error ... 116

Patching the Hardware Defect ... 117

Pattern Match .. 118

PART 7: Software Narratology .. 119

Coding and Articoding .. 119

PART 8: Software Diagnostics, Troubleshooting, and Debugging 120

Special and General Trace and Log Analysis .. 121

Projective Debugging ... 125

Pattern! What Pattern? ... 134

I Didn’t See Anything ... 137

PART 9: Art and Photography ... 139

Diagnostics Designer Glasses ... 139

Pattern Diagnostics Logo ... 140

Happy Valentine’s Day ... 141

50 Shades of Crash Dump .. 142

Computer Universe .. 143

Failed Surveillance ... 144

Debugging Allegory on FEB 23 ... 145

Object in Signaled State ... 146

Kernel Space Starts with 8 ... 147

The Day of ST. P. The Elimination of Snakes .. 148

The Fifth Column .. 149

Proportionate Disproportionate Proportion .. 150

Autoportrait in 5 Objects ... 151

Kernel Works .. 152

Chip Forensics .. 153

6

Industrial Windows .. 154

The Meaning of Life ... 155

Hidden Bug ... 156

PART 10: Memory Forensics ... 157

Artifact-Malware and its Primary and Secondary Effects 157

PART 11: Miscellaneous .. 163

Quotes.. 163

Status Updates ... 165

Execution Residue .. 166

Appendix .. 167

Patterns are Weapons for Massive Debugging .. 167

Crash Dump Analysis Checklist .. 168

Index of WinDbg Commands .. 171

 7

Preface

This reference volume consists of revised, edited, cross-referenced and

thematically organized articles from Software Diagnostics Institute

(DumpAnalysis.org + TraceAnalysis.org) and Software Diagnostics Library (former

Crash Dump Analysis blog, DumpAnalysis.org/blog). Most of the selected articles

are about software diagnostics, debugging, crash dump analysis, software trace

and log analysis, malware analysis, and memory forensics. They were written in

December 2014 - July 2015. We hope this reference is useful for:

• Software engineers developing and maintaining products on Windows

platforms;

• Technical support and escalation engineers dealing with complex

software issues;

• Quality assurance engineers testing software on Windows platforms;

• Security researchers, reverse engineers, malware and memory forensics

analysts;

• Trace and log analysis articles will be of interest to users of any platform.

If you encounter any error, please contact me using this form:

http://www.dumpanalysis.org/contact

or send me a personal message using this contact e-mail:

dmitry.vostokov@dumpanalysis.org

Alternatively, via Twitter @DumpAnalysis

Facebook page and group:

http://www.facebook.com/DumpAnalysis

http://www.facebook.com/TraceAnalysis

http://www.facebook.com/groups/dumpanalysis

http://www.dumpanalysis.org/contact
mailto:dmitry.vostokov@dumpanalysis.org
http://www.facebook.com/DumpAnalysis
http://www.facebook.com/TraceAnalysis
http://www.facebook.com/groups/dumpanalysis

8 Preface

[This page is intentionally left blank]

 9

About the Author

Dmitry Vostokov is an internationally

recognized expert, speaker, educator,

scientist and author. He is the founder of

pattern-oriented software diagnostics,

forensics and prognostics discipline and

Software Diagnostics Institute (DA+TA:

DumpAnalysis.org + TraceAnalysis.org).

Vostokov has also authored more than

30 books on software diagnostics,

forensics and problem-solving, memory

dump analysis, debugging, software

trace and log analysis, reverse

engineering, and malware analysis. He has more than 20 years of experience in

software architecture, design, development and maintenance in a variety of

industries including leadership, technical and people management roles. Dmitry

also founded DiaThings, Logtellect, OpenTask Iterative and Incremental Publishing

(OpenTask.com), Software Diagnostics Services (former Memory Dump Analysis

Services) PatternDiagnostics.com and Software Prognostics. In his spare time, he

presents various topics on Debugging.TV and explores Software Narratology, an

applied science of software stories that he pioneered, and its further

development as Narratology of Things and Diagnostics of Things (DoT). His current

area of interest is theoretical software diagnostics.

10 About the Author

[This page is intentionally left blank]

Win32 Start Address Fallacy 11

PART 1: Professional Crash Dump Analysis and Debugging

Win32 Start Address Fallacy

One of the common mistakes is not double-checking symbolic output (Volume 5,

page 21). Another example here is related to Win32 Start Address. In the output

of !thread WinDbg command (or !process and !sprocess Stack Trace Collection

commands, Volume 1, page 409) we can see Win32 Start Address and, in cases of

Truncated Stack Traces (Volume 6, page 86) or No Component Symbols (Volume

1, page 298), we may use this information to guess the purpose of the thread.

Unfortunately, it is shown without function offsets and may give a false sense of

the thread purpose.

For example, this Win32 Start Address ModuleA!DoSomething may

suggest that the purpose of the thread was to DoSomething:

THREAD fffffa803431cb50 Cid 03e8.2718 Teb: 000007fffff80000

Win32Thread: 0000000000000000 WAIT: (UserRequest) UserMode Non-

Alertable

fffffa80330e0500 SynchronizationEvent

Impersonation token: fffff8a00b807060 (Level Impersonation)

Owning Process fffffa8032354c40 Image: ServiceA.exe

Attached Process N/A Image: N/A

Wait Start TickCount 107175 Ticks: 19677 (0:00:05:06.963)

Context Switch Count 2303 IdealProcessor: 1

UserTime 00:00:00.218

KernelTime 00:00:00.109

Win32 Start Address ModuleA!DoSomething (0×000007fef46b4cde)

Stack Init fffff88008e5fdb0 Current fffff88008e5f900

Base fffff88008e60000 Limit fffff88008e5a000 Call 0

Priority 10 BasePriority 10 UnusualBoost 0 ForegroundBoost 0

IoPriority 2 PagePriority 5

Kernel stack not resident.

Child-SP RetAddr Call Site

fffff880`08e5f940 fffff800`01c7cf72 nt!KiSwapContext+0×7a

fffff880`08e5fa80 fffff800`01c8e39f nt!KiCommitThreadWait+0×1d2

fffff880`08e5fb10 fffff800`01f7fe3e nt!KeWaitForSingleObject+0×19f

fffff880`08e5fbb0 fffff800`01c867d3 nt!NtWaitForSingleObject+0xde

fffff880`08e5fc20 00000000`76e5067a nt!KiSystemServiceCopyEnd+0×13

(TrapFrame @ fffff880`08e5fc20)

00000000`0427cca8 000007fe`f46a4afe ntdll!NtWaitForSingleObject+0xa

00000000`0427ccb0 000007fe`f46c68d4 ModuleA!DoSomething+0xc68d4

00000000`0427cd60 000007fe`f46c6ade ModuleA!DoSomething+0xc5ee8

12 PART 1: Professional Crash Dump Analysis and Debugging

But if we look at fragments of the stack trace we see function huge offsets

and this means that this function was just some function from ModuleA export

table. It was chosen because return addresses fall into an address range between

exported functions. Because Win32 Start Address also falls into such an address

range it is listed as ModuleA!DoSomething but without an offset. In our case, an

engineer made the wrong assumption about the possible root cause and provided

unnecessary troubleshooting instructions.

Multidimensionality of Exceptions 13

Multidimensionality of Exceptions

Multiple Exceptions pattern (Volume 1, page 255) can happen horizontally

(different threads) and vertically (Nested Exceptions pattern, Volume 2, page

305) in one thread. The 3rd dimension is across processes (Error Reporting Fault

pattern, Volume 7, page 152).

14 PART 1: Professional Crash Dump Analysis and Debugging

[This page is intentionally left blank]

Reference Leak 15

PART 2: Crash Dump Analysis Patterns

Reference Leak

Objects such as processes may be referenced internally in addition to using

handles. If their reference counts are unbalanced, we may have this pattern. For

example, we have an instance of thousands of Zombie Processes (Volume 2, page

196) but we don’t see Handle Leaks (Volume 7, page 164) from their parent

processes if we analyze ParentCids:

0: kd> !process 0 0

[...]

PROCESS fffffa801009a060

SessionId: 0 Cid: 2e270 Peb: 7fffffdb000 ParentCid: 032c

DirBase: 12ba37000 ObjectTable: 00000000 HandleCount: 0.

Image: conhost.exe

PROCESS fffffa8009b7e8e0

SessionId: 1 Cid: 2e0c8 Peb: 7fffffd9000 ParentCid: 10a0

DirBase: 21653e000 ObjectTable: 00000000 HandleCount: 0.

Image: taskmgr.exe

PROCESS fffffa8009e7a450

SessionId: 0 Cid: 2e088 Peb: 7efdf000 ParentCid: 0478

DirBase: 107f02000 ObjectTable: 00000000 HandleCount: 0.

Image: AppA.exe

PROCESS fffffa8009e794b0

SessionId: 0 Cid: 2e394 Peb: 7fffffd3000 ParentCid: 032c

DirBase: 210ffc000 ObjectTable: 00000000 HandleCount: 0.

Image: conhost.exe

PROCESS fffffa8009ed4060

SessionId: 0 Cid: 2dee4 Peb: 7efdf000 ParentCid: 0478

DirBase: 11b7c7000 ObjectTable: 00000000 HandleCount: 0.

Image: AppB.exe

PROCESS fffffa800a13bb30

SessionId: 0 Cid: 2e068 Peb: 7fffffd5000 ParentCid: 032c

DirBase: 1bb8c1000 ObjectTable: 00000000 HandleCount: 0.

Image: conhost.exe

16 PART 2: Crash Dump Analysis Patterns

PROCESS fffffa80096f26b0

SessionId: 0 Cid: 2e320 Peb: 7efdf000 ParentCid: 0478

DirBase: 6ad4c000 ObjectTable: 00000000 HandleCount: 0.

Image: AppC.exe

PROCESS fffffa8009c44060

SessionId: 0 Cid: 2e300 Peb: 7fffffdd000 ParentCid: 032c

DirBase: 10df06000 ObjectTable: 00000000 HandleCount: 0.

Image: conhost.exe

[...]

0: kd> !object fffffa800a13bb30

Object: fffffa800a13bb30 Type: (fffffa8006cecf30) Process

ObjectHeader: fffffa800a13bb00 (new version)

HandleCount: 0 PointerCount: 1

0: kd> !object fffffa8009b7e8e0

Object: fffffa8009b7e8e0 Type: (fffffa8006cecf30) Process

ObjectHeader: fffffa8009b7e8b0 (new version)

HandleCount: 0 PointerCount: 1

Such number of processes correlates with non-paged pool usage for

process structures:

0: kd> !poolused 3

....

Sorting by NonPaged Pool Consumed

NonPaged Paged

Tag Allocs Frees Diff Used Allocs Frees Diff Used

Proc 55488 60 55428 80328320 0 0 0 0 Process objects , Binary: nt!ps

File 51733526 51708737 24789 7150416 0 0 0 0 File objects

[...]

Here we recommend enabling object reference tracing either using

gflags.exe or directly modifying registry:

Reference Leak 17

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Kernel

Value: ObTracePoolTags

Type: REG_SZ

Data: Proc

Note: after troubleshooting or debugging please disable tracing because it

consumes pool (another variant of Instrumentation Side Effect pattern, Volume

6, page 77, and may lead to similar Insufficient Memory pattern for stack trace

database, Volume 8a, page 57):

0: kd> !poolused 3

....

Sorting by NonPaged Pool Consumed

NonPaged Paged

Tag Allocs Frees Diff Used Allocs Frees Diff Used

ObRt 5688634 5676109 12525 4817288240 0 0 0 0 object reference stack tracing , Binary: nt!ob

Proc 22120 101 22019 25961168 0 0 0 0 Process objects , Binary: nt!ps

[...]

18 PART 2: Crash Dump Analysis Patterns

After enabling tracing, we collect a complete memory dump (in case of

postmortem debugging) to analyze another variant of Stack Trace pattern using

!obtrace WinDbg command (Volume 8a, page 51):

0: kd> !obtrace fffffa800af9e220

Object: fffffa800af9e220

Image: AppD.exe

Sequence (+/-) Tag Stack

-------- ----- ---- ---

ad377858 +1 Dflt nt! ?? ::NNGAKEGL::`string'+21577

nt!PspAllocateProcess+185

nt!NtCreateUserProcess+4a3

nt!KiSystemServiceCopyEnd+13

ad37787d +1 Dflt nt! ?? ::FNODOBFM::`string'+18f1d

nt!NtCreateUserProcess+569

nt!KiSystemServiceCopyEnd+13

ad377882 +1 Dflt nt! ?? ::NNGAKEGL::`string'+1f9d8

nt!NtProtectVirtualMemory+119

nt!KiSystemServiceCopyEnd+13

nt!KiServiceLinkage+0

nt!RtlCreateUserStack+1e4

nt!PspAllocateThread+299

nt!NtCreateUserProcess+65d

nt!KiSystemServiceCopyEnd+13

ad377884 -1 Dflt nt! ?? ::FNODOBFM::`string'+4886e

nt!NtProtectVirtualMemory+161

nt!KiSystemServiceCopyEnd+13

nt!KiServiceLinkage+0

nt!RtlCreateUserStack+1e4

[...]

Analysis of such traces may be complicated due to Truncated Stack Traces

(Volume 6, page 86). We plan to show one counting trick in the next pattern.

Origin Module 19

Origin Module

To complement Module patterns sub-catalogue (Volume 7, page 510) we

introduce Origin Module pattern. This is a module that may have originated the

problem behavior. For example, when we look at a stack trace we may skip Top

Modules (Volume 6, page 62) due to our knowledge of the product, for example,

if they are not known as Problem Modules (Volume 7, page 85) or known as Well-

Tested Modules (Volume 6, page 48). In case of Truncated Stack Traces (Volume

7, page 86) we may designate bottom modules as possible problem origins. For

example, for Reference Leak (page 15) pattern example we may consider

checking reference counting for selected modules such as ModuleA and ModuleB:

ad377ae8 +1 Dflt nt! ?? ::FNODOBFM::`string'+18f1d

nt!ObpCallPreOperationCallbacks+4e

nt!ObpPreInterceptHandleCreate+af

nt! ?? ::NNGAKEGL::`string'+2c31f

nt!ObOpenObjectByPointerWithTag+109

nt!PsOpenProcess+1a2

nt!NtOpenProcess+23

nt!KiSystemServiceCopyEnd+13

nt!KiServiceLinkage+0

ModuleA+dca63

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+bae56

ModuleA+b938d

ModuleA+c0ec6

ModuleA+afce7

ad377aeb -1 Dflt nt! ?? ::FNODOBFM::`string'+4886e

nt!ObpCallPreOperationCallbacks+277

nt!ObpPreInterceptHandleCreate+af

nt! ?? ::NNGAKEGL::`string'+2c31f

nt!ObOpenObjectByPointerWithTag+109

nt!PsOpenProcess+1a2

nt!NtOpenProcess+23

nt!KiSystemServiceCopyEnd+13

nt!KiServiceLinkage+0

ModuleA+dca63

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+bae56

ModuleA+b938d

ModuleA+c0ec6

ModuleA+afce7

20 PART 2: Crash Dump Analysis Patterns

ad377af7 +1 Dflt nt! ?? ::NNGAKEGL::`string'+1fb41

nt!ObReferenceObjectByHandle+25

ModuleA+dcade

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+bae56

ModuleA+b938d

ModuleA+c0ec6

ModuleA+afce7

ModuleA+87ca

ModuleA+834a

ModuleA+a522c

ModuleA+a51b6

ModuleA+a4787

ModuleB+19c0c

ModuleB+19b28

ad377afa -1 Dflt nt! ?? ::FNODOBFM::`string'+4886e

ModuleA+dcbbe

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+bae56

ModuleA+b938d

ModuleA+c0ec6

ModuleA+afce7

ModuleA+87ca

ModuleA+834a

ModuleA+a522c

ModuleA+a51b6

ModuleA+a4787

ModuleB+19c0c

ModuleB+19b28

ModuleB+b652

Hidden Call 21

Hidden Call

Sometimes, due to optimization or indeterminate stack trace reconstruction, we

may not see all stack trace frames. In some cases it is possible to reconstruct such

Hidden Calls. For example, we have the following unmanaged Stack Trace

(Volume 1, page 395) of CLR Thread (Volume 4, page 163):

0:000> k

ChildEBP RetAddr

0011d6b8 66fdee7c mscorwks!JIT_IsInstanceOfClass+0xd

0011d6cc 67578500 PresentationCore_ni!`string'+0x4a2bc

0011d6e0 67578527 PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x778500)

0011d6f4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x778527)

0011d708 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d71c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d730 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d744 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d758 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d76c 67578527 PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d780 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x778527)

0011d794 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d7a8 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d7bc 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d7d0 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d7e4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d7f8 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d80c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d820 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d834 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d848 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d85c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d870 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d884 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d898 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d8ac 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d8c0 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d8d4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d8e8 67578527 PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d8fc 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x778527)

0011d910 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d924 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d938 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d94c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d960 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d974 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d988 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d99c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d9b0 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d9c4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d9d8 67578527 PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011d9ec 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x778527)

0011da00 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da14 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da28 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da3c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da50 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da64 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da78 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011da8c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011daa0 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dab4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dac8 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dadc 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

22 PART 2: Crash Dump Analysis Patterns

0011daf0 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db04 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db18 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db2c 67578527 PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db40 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x778527)

0011db54 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db68 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db7c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011db90 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dba4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dbb8 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dbcc 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dbe0 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dbf4 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dc08 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dc1c 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dc30 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dc44 6757850d PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

0011dc58 66fc3282 PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x77850d)

*** WARNING: Unable to verify checksum for PresentationFramework.ni.dll

0011dd28 662a75e6 PresentationCore_ni!`string'+0x2e6c2

0011de08 662190a0 PresentationFramework_ni+0x2675e6

0011dffc 66fc35e2 PresentationFramework_ni+0x1d90a0

0011e0ec 66fd9dad PresentationCore_ni!`string'+0x2ea22

0011e214 66fe0459 PresentationCore_ni!`string'+0x451ed

0011e238 66fdfd40 PresentationCore_ni!`string'+0x4b899

0011e284 66fdfc9b PresentationCore_ni!`string'+0x4b180

*** WARNING: Unable to verify checksum for WindowsBase.ni.dll

0011e2b0 723ca31a PresentationCore_ni!`string'+0x4b0db

0011e2cc 723ca20a WindowsBase_ni+0x9a31a

0011e30c 723c8384 WindowsBase_ni+0x9a20a

0011e330 723cd26d WindowsBase_ni+0x98384

0011e368 723cd1f8 WindowsBase_ni+0x9d26d

0011e380 72841b4c WindowsBase_ni+0x9d1f8

0011e390 728589ec mscorwks!CallDescrWorker+0x33

0011e410 72865acc mscorwks!CallDescrWorkerWithHandler+0xa3

0011e54c 72865aff mscorwks!MethodDesc::CallDescr+0x19c

0011e568 72865b1d mscorwks!MethodDesc::CallTargetWorker+0x1f

0011e580 728bd9c8 mscorwks!MethodDescCallSite::CallWithValueTypes+0x1a

0011e74c 728bdb1e mscorwks!ExecuteCodeWithGuaranteedCleanupHelper+0x9f

*** WARNING: Unable to verify checksum for mscorlib.ni.dll

0011e7fc 68395887 mscorwks!ReflectionInvocation::ExecuteCodeWithGuaranteedCleanup+0x10f

0011e818 683804b5 mscorlib_ni+0x235887

0011e830 723cd133 mscorlib_ni+0x2204b5

0011e86c 723c7a27 WindowsBase_ni+0x9d133

0011e948 723c7d13 WindowsBase_ni+0x97a27

0011e984 723ca4fe WindowsBase_ni+0x97d13

0011e9d0 723ca42a WindowsBase_ni+0x9a4fe

0011e9f0 723ca31a WindowsBase_ni+0x9a42a

0011ea0c 723ca20a WindowsBase_ni+0x9a31a

0011ea4c 723c8384 WindowsBase_ni+0x9a20a

0011ea70 723c74e1 WindowsBase_ni+0x98384

0011eaac 723c7430 WindowsBase_ni+0x974e1

0011eadc 723c9b6c WindowsBase_ni+0x97430

0011eb2c 757462fa WindowsBase_ni+0x99b6c

0011eb58 75746d3a user32!InternalCallWinProc+0x23

0011ebd0 757477c4 user32!UserCallWinProcCheckWow+0x109

0011ec30 7574788a user32!DispatchMessageWorker+0x3bc

0011ec40 0577304e user32!DispatchMessageW+0xf

WARNING: Frame IP not in any known module. Following frames may be wrong.

0011ec5c 723c7b24 0x577304e

0011eccc 723c71f9 WindowsBase_ni+0x97b24

0011ecd8 723c719c WindowsBase_ni+0x971f9

0011ece4 6620f07e WindowsBase_ni+0x9719c

0011ecf0 6620e37f PresentationFramework_ni+0x1cf07e

0011ed14 661f56d6 PresentationFramework_ni+0x1ce37f

0011ed24 661f5699 PresentationFramework_ni+0x1b56d6

0011ed80 72841b4c PresentationFramework_ni+0x1b5699

0011eda0 72841b4c mscorwks!CallDescrWorker+0x33

0011edb0 728589ec mscorwks!CallDescrWorker+0x33

Hidden Call 23

0011ee30 72865acc mscorwks!CallDescrWorkerWithHandler+0xa3

0011ef6c 72865aff mscorwks!MethodDesc::CallDescr+0x19c

0011ef88 72865b1d mscorwks!MethodDesc::CallTargetWorker+0x1f

0011efa0 728fef01 mscorwks!MethodDescCallSite::CallWithValueTypes+0x1a

0011f104 728fee21 mscorwks!ClassLoader::RunMain+0x223

0011f36c 728ff33e mscorwks!Assembly::ExecuteMainMethod+0xa6

0011f83c 728ff528 mscorwks!SystemDomain::ExecuteMainMethod+0x45e

0011f88c 728ff458 mscorwks!ExecuteEXE+0x59

0011f8d4 70aef4f3 mscorwks!_CorExeMain+0x15c

0011f90c 70b77efd mscoreei!_CorExeMain+0x10a

0011f924 70b74de3 mscoree!ShellShim__CorExeMain+0x7d

0011f92c 754c338a mscoree!_CorExeMain_Exported+0x8

0011f938 77659f72 kernel32!BaseThreadInitThunk+0xe

0011f978 77659f45 ntdll!__RtlUserThreadStart+0x70

0011f990 00000000 ntdll!_RtlUserThreadStart+0x1b

Its Managed Stack Trace (Volume 6, page 115) is the following:

0:000> !CLRStack

OS Thread Id: 0x1520 (0)

ESP EIP

0011e7a0 728493a4 [HelperMethodFrame_PROTECTOBJ: 0011e7a0]

System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode,

CleanupCode, System.Object)

0011e808 68395887

System.Threading.ExecutionContext.RunInternal(System.Threading.ExecutionContext,

System.Threading.ContextCallback, System.Object)

0011e824 683804b5 System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext,

System.Threading.ContextCallback, System.Object)

0011e83c 723cd133 System.Windows.Threading.DispatcherOperation.Invoke()

0011e874 723c7a27 System.Windows.Threading.Dispatcher.ProcessQueue()

0011e950 723c7d13 System.Windows.Threading.Dispatcher.WndProcHook(IntPtr, Int32, IntPtr,

IntPtr, Boolean ByRef)

0011e99c 723ca4fe MS.Win32.HwndWrapper.WndProc(IntPtr, Int32, IntPtr, IntPtr, Boolean ByRef)

0011e9e8 723ca42a MS.Win32.HwndSubclass.DispatcherCallbackOperation(System.Object)

0011e9f8 723ca31a

System.Windows.Threading.ExceptionWrapper.InternalRealCall(System.Delegate, System.Object,

Boolean)

0011ea1c 723ca20a System.Windows.Threading.ExceptionWrapper.TryCatchWhen(System.Object,

System.Delegate, System.Object, Boolean, System.Delegate)

0011ea64 723c8384 System.Windows.Threading.Dispatcher.WrappedInvoke(System.Delegate,

System.Object, Boolean, System.Delegate)

0011ea84 723c74e1

System.Windows.Threading.Dispatcher.InvokeImpl(System.Windows.Threading.DispatcherPriority,

System.TimeSpan, System.Delegate, System.Object, Boolean)

0011eac8 723c7430

System.Windows.Threading.Dispatcher.Invoke(System.Windows.Threading.DispatcherPriority,

System.Delegate, System.Object)

0011eaec 723c9b6c MS.Win32.HwndSubclass.SubclassWndProc(IntPtr, Int32, IntPtr, IntPtr)

0011ec74 00270b04 [NDirectMethodFrameStandalone: 0011ec74]

MS.Win32.UnsafeNativeMethods.DispatchMessage(System.Windows.Interop.MSG ByRef)

0011ec84 723c7b24

System.Windows.Threading.Dispatcher.PushFrameImpl(System.Windows.Threading.DispatcherFrame)

0011ecd4 723c71f9

System.Windows.Threading.Dispatcher.PushFrame(System.Windows.Threading.DispatcherFrame)

0011ece0 723c719c System.Windows.Threading.Dispatcher.Run()

0011ecec 6620f07e System.Windows.Application.RunDispatcher(System.Object)

0011ecf8 6620e37f System.Windows.Application.RunInternal(System.Windows.Window)

0011ed1c 661f56d6 System.Windows.Application.Run(System.Windows.Window)

0011ed2c 661f5699 System.Windows.Application.Run()

[...]

24 PART 2: Crash Dump Analysis Patterns

Caller-n-Callee (Volume 6, page 138) traces also don’t reveal anything more:

Thread 0

Current frame: mscorwks!JIT_IsInstanceOfClass+0xd

ChildEBP RetAddr Caller,Callee

0011d6b8 66fdee7c (MethodDesc 0x66ee2954 +0x3c

MS.Internal.DeferredElementTreeState.GetLogicalParent(System.Windows.DependencyObject,

MS.Internal.DeferredElementTreeState)), calling mscorwks!JIT_IsInstanceOfClass

0011d6cc 67578500 (MethodDesc 0x66ee1270 +0x110

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject)),

calling (MethodDesc 0x66ee2954 +0

MS.Internal.DeferredElementTreeState.GetLogicalParent(System.Windows.DependencyObject,

MS.Internal.DeferredElementTreeState))

0011d6e0 67578527 (MethodDesc 0x66ee1270 +0x137

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject)),

calling (MethodDesc 0x66ee1270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject))

0011d6f4 6757850d (MethodDesc 0x66ee1270 +0x11d

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject)),

calling (MethodDesc 0x66ee1270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject))

0011d708 6757850d (MethodDesc 0x66ee1270 +0x11d

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject)),

calling (MethodDesc 0x66ee1270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject))

0011d71c 6757850d (MethodDesc 0x66ee1270 +0x11d

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject)),

calling (MethodDesc 0x66ee1270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors(System.Windows.DependencyObject))

[...]

However, if we check the return address for Top Module (Volume 6, page

62) mscorwks (66fdee7c) we will see a call possibly related to 3D processing:

0:000> k

ChildEBP RetAddr

0011d6b8 66fdee7c mscorwks!JIT_IsInstanceOfClass+0xd

0011d6cc 67578500 PresentationCore_ni!`string’+0×4a2bc

0011d6e0 67578527 PresentationCore_ni!`string’ <PERF>

(PresentationCore_ni+0×778500)

0011d6f4 6757850d PresentationCore_ni!`string’ <PERF>

(PresentationCore_ni+0×778527)

[…]

0:000> ub 66fdee7c

PresentationCore_ni!`string'+0x4a2a2:

66fdee62 740c je PresentationCore_ni!`string'+0x4a2b0

(66fdee70)

66fdee64 8bc8 mov ecx,eax

66fdee66 8b01 mov eax,dword ptr [ecx]

66fdee68 ff90d8030000 call dword ptr [eax+3D8h]

66fdee6e 8bf0 mov esi,eax

66fdee70 8bd7 mov edx,edi

66fdee72 b998670467 mov ecx,offset

PresentationCore_ni!`string'+0xb1bd8 (67046798)

66fdee77

e82c7afaff call PresentationCore_ni!?System.Windows.Media.Media3D.Viewpo

rt3DVisual.PrecomputeContent@@200001+0×3c (66f868a8)

Hidden Call 25

The call structure seems to be valid when we check the next return address

from the stack trace (67578500):

0:000> ub 67578500

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784e7):

675784e7

e8f4a2a0ff call PresentationCore_ni!?System.Windows.Media.Media3D.Scale

Transform3D.UpdateResource@@2002011280M802+0x108 (66f827e0)

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784ec):

675784ec eb05 jmp PresentationCore_ni!`string' <PERF>

(PresentationCore_ni+0x7784f3) (675784f3)

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784ee):

675784ee b801000000 mov eax,1

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784f3):

675784f3 85c0 test eax,eax

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784f5):

675784f5 74b1 je PresentationCore_ni!`string' <PERF>

(PresentationCore_ni+0x7784a8) (675784a8)

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784f7):

675784f7 8bcb mov ecx,ebx

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784f9):

675784f9 33d2 xor edx,edx

PresentationCore_ni!`string' <PERF> (PresentationCore_ni+0x7784fb):

675784fb e84069a6ff call PresentationCore_ni!`string’+0×4a280

(66fdee40)

26 PART 2: Crash Dump Analysis Patterns

Corrupt Structure

Corrupt Structure pattern is added for completeness of pattern discourse. We

mentioned it a few times, for example, in Self-Diagnosis (kernel mode, Volume 6,

89), and Critical Section Corruption (Volume 2, page 324). Typical signals of the

corrupt structure include:

• Regular Data (Volume 7, page 106) such as ASCII and UNICODE

fragments over substructures and pointer areas

• Large values where you expect small and vice versa

• User space address values where we expect kernel space and vice versa

• Malformed and partially zeroed _LIST_ENTRY data (see exercise C31 for

linked list navigation)

• Memory read errors for pointer dereferences or inaccessible memory

indicators (??)

• Memory read error at the end of the linked list while traversing

structures

0: kd> dt _ERESOURCE ffffd0002299f830

ntdll!_ERESOURCE

+0x000 SystemResourcesList : _LIST_ENTRY [0xffffc000`07b64800 -

0xffffe000`02a79970]

+0x010 OwnerTable : 0xffffe000`02a79940 _OWNER_ENTRY

+0x018 ActiveCount : 0n0

+0x01a Flag : 0

+0x01a ReservedLowFlags : 0 ''

+0x01b WaiterPriority : 0 ''

+0x020 SharedWaiters : 0x00000000`00000001 _KSEMAPHORE

+0x028 ExclusiveWaiters : 0xffffe000`02a79a58 _KEVENT

+0x030 OwnerEntry : _OWNER_ENTRY

+0x040 ActiveEntries : 0

+0x044 ContentionCount : 0

+0×048 NumberOfSharedWaiters : 0×7b64800

+0×04c NumberOfExclusiveWaiters : 0xffffc000

+0×050 Reserved2 : (null)

+0×058 Address : 0xffffd000`2299f870 Void

+0×058 CreatorBackTraceIndex : 0xffffd000`2299f870

+0×060 SpinLock : 1

1 http://www.patterndiagnostics.com/advanced-windows-memory-dump-
analysis-book

Corrupt Structure 27

0: kd> dt _ERESOURCE ffffd0002299d830

ntdll!_ERESOURCE

+0×000 SystemResourcesList : _LIST_ENTRY [0×000001e0`00000280 -

0×00000000`00000004]

+0×010 OwnerTable : 0×00000000`0000003c _OWNER_ENTRY

+0×018 ActiveCount : 0n0

+0×01a Flag : 0

+0×01a ReservedLowFlags : 0 ”

+0×01b WaiterPriority : 0 ”

+0×020 SharedWaiters : 0×0000003c`000001e0 _KSEMAPHORE

+0×028 ExclusiveWaiters : (null)

+0×030 OwnerEntry : _OWNER_ENTRY

+0×040 ActiveEntries : 0

+0×044 ContentionCount : 0×7f

+0×048 NumberOfSharedWaiters : 0×7f

+0×04c NumberOfExclusiveWaiters : 0×7f

+0×050 Reserved2 : 0×00000001`00000001 Void

+0×058 Address : 0×00000000`00000005 Void

+0×058 CreatorBackTraceIndex : 5

+0×060 SpinLock : 0

However, we need to be sure that we supplied the correct pointer to dt

WinDbg command. One of the signs that the pointer was incorrect are memory

read errors or all zeroes:

0: kd> dt _ERESOURCE ffffd000229af830

ntdll!_ERESOURCE

+0x000 SystemResourcesList : _LIST_ENTRY [0x00000000`00000000 -

0x00000000`00000000]

+0x010 OwnerTable : (null)

+0x018 ActiveCount : 0n0

+0x01a Flag : 0

+0x01a ReservedLowFlags : 0 ''

+0x01b WaiterPriority : 0 ''

+0x020 SharedWaiters : (null)

+0x028 ExclusiveWaiters : (null)

+0x030 OwnerEntry : _OWNER_ENTRY

+0x040 ActiveEntries : 0

+0x044 ContentionCount : 0

+0x048 NumberOfSharedWaiters : 0

+0x04c NumberOfExclusiveWaiters : 0

+0x050 Reserved2 : (null)

+0x058 Address : (null)

+0x058 CreatorBackTraceIndex : 0

+0x060 SpinLock : 0

28 PART 2: Crash Dump Analysis Patterns

0: kd> dt _ERESOURCE ffffd00022faf830

ntdll!_ERESOURCE

+0x000 SystemResourcesList : _LIST_ENTRY

+0x010 OwnerTable : ????

+0x018 ActiveCount : ??

+0x01a Flag : ??

+0x01a ReservedLowFlags : ??

+0x01b WaiterPriority : ??

+0x020 SharedWaiters : ????

+0x028 ExclusiveWaiters : ????

+0x030 OwnerEntry : _OWNER_ENTRY

+0x040 ActiveEntries : ??

+0x044 ContentionCount : ??

+0x048 NumberOfSharedWaiters : ??

+0x04c NumberOfExclusiveWaiters : ??

+0x050 Reserved2 : ????

+0x058 Address : ????

+0x058 CreatorBackTraceIndex : ??

+0x060 SpinLock : ??

Memory read error ffffd00022faf890

Software Exception 29

Software Exception

Software Exception is added for completeness of pattern discourse. We

mentioned it a few times before, for example, in Activation Context (Volume 6,

page 117), Exception Module (Volume 8a, page 80), Missing Component (static

linkage, Volume 2, page 283), Self-Dump (Volume 2, page 181), Stack Overflow

(software implementation, Volume 6, page 82), and Translated Exception

(Volume 7, page 107) patterns. A typical example of software exceptions is C++

Exception (Volume 3, page 84) pattern.

Software exceptions, such as not enough memory, are different from the

so-called hardware exceptions by being predictable, synchronous, and detected

by software code itself. Hardware exceptions such as divide by zero, access

violation, and memory protection, on the contrary, are unpredictable and

detected by hardware. Of course, it is possible to do some checks before code

execution, and then throw a software exception or some diagnostic message for a

would be hardware exception. See, for example, Self-Diagnosis pattern for user

mode (Volume 2, page 318) and its corresponding equivalent for kernel mode

(Volume 6, page 89).

In Windows memory dumps we may see RaiseException call in user space

stack trace, such as from Data Correlation (Volume 6, page 84) pattern example:

0:000> kL

ChildEBP RetAddr

0012e950 78158e89 kernel32!RaiseException+0×53

0012e988 7830770c msvcr80!_CxxThrowException+0×46

0012e99c 783095bc mfc80u!AfxThrowMemoryException+0×19

0012e9b4 02afa8ca mfc80u!operator new+0×27

0012e9c8 02b0992f ModuleA!std::_Allocate<…>+0×1a

0012e9e0 02b09e7c ModuleA!std::vector<double,std::allocator

>::vector<double,std::allocator >+0×3f

[…]</double,std::allocator</double,std::allocator

When looking for Multiple Exceptions (Volume 1, page 255) or Hidden

Exceptions (Volume 1, page 271) we may also want to check for such calls.

30 PART 2: Crash Dump Analysis Patterns

Crashed Process

Sometimes we can see signs of Crashed Processes in the kernel and complete

memory dumps. By crashes (Volume 1, page 36) we mean the sudden

disappearance of processes from Task Manager, for example. In memory dumps,

we can still see such processes as Zombie Processes (Volume 2, page 196). Special

Processes (Volume 2, page 164) found in the process list may help to select the

possible candidate among many Zombie Processes. If a process is supposed to be

launched only once (as a service) but found several times as Zombie Process and

also as a normal process later in the process list (for example, as Last Object,

Volume 8a, page 37), then this may point to possible past crashes (or silent

terminations). We also have a similar trace analysis pattern: Singleton Event

(Volume 8a, page 108). The following example illustrates both signs:

0: kd> !process 0 0

[...]

PROCESS fffffa80088a5640

SessionId: 0 Cid: 2184 Peb: 7fffffd7000 ParentCid: 0888

DirBase: 381b8000 ObjectTable: 00000000 HandleCount: 0.

Image: WerFault.exe

PROCESS fffffa8007254b30

SessionId: 0 Cid: 20ac Peb: 7fffffdf000 ParentCid: 02cc

DirBase: b3306000 ObjectTable: 00000000 HandleCount: 0.

Image: ServiceA.exe

[...]

PROCESS fffffa8007fe2b30

SessionId: 0 Cid: 2a1c Peb: 7fffffdf000 ParentCid: 02cc

DirBase: 11b649000 ObjectTable: fffff8a014939530 HandleCount: 112.

Image: ServiceA.exe

Variable Subtrace 31

Variable Subtrace

When analyzing Spiking Threads (Volume 1, page 305) across Snapshot Collection

(Volume 5, page 346) we are interested in finding a module (or a function) that

was most likely responsible (for example, “looping” inside). Here we can compare

the same thread stack trace from different memory dumps and find their Variable

Subtrace. For such subtraces, we have changes in the kv-style output: in return

addresses, stack frame values, and possible arguments. The call site that starts the

variable subtrace is the most likely candidate (subject to the number of

snapshots). For example, consider the following pseudo code:

ModuleA!start()

{

 ModuleA!func1();

}

ModuleA!func1()

{

 ModuleB!func2();

}

ModuleB!func2()

{

 while (…)

 {

 ModuleB!func3();

 }

}

ModuleB!func3()

{

 ModuleB!func4();

}

ModuleB!func4()

{

 ModuleB!func5();

}

ModuleB!func5()

{

 // ...

}

Here, the variable stack trace part will correspond to ModuleB frames. The

memory dump can be saved anywhere inside the “while” loop and down the calls,

and the last variable return address down the stack trace will belong to

ModuleB!func2 address range. The non-variable part will start with

ModuleA!func1 address range:

32 PART 2: Crash Dump Analysis Patterns

// snapshot 1

RetAddr

ModuleB!func4+0×20

ModuleB!func3+0×10

ModuleB!func2+0×40

ModuleA!func1+0×10

ModuleA!start+0×300

// snapshot 2

RetAddr

ModuleB!func2+0×20

ModuleA!func1+0×10

ModuleA!start+0×300

// snapshot 3

RetAddr

ModuleB!func3+0×20

ModuleB!func2+0×40

ModuleA!func1+0×10

ModuleA!start+0×300

To illustrate this analysis pattern we adopted Memory Cell Diagram (MCD)

approach from Accelerated Disassembly, Reconstruction and Reversing2 training

and introduce here Abstract Stack Trace Notation (ASTN) diagrams where

different colors are used for different modules and changes are highlighted with

different fill patterns. The following three ASTN diagrams from subsequently

saved process memory dumps illustrate real stack traces we analyzed some time

ago. We see that the variable subtrace contains only the 3rd-party ModuleB calls.

Moreover, the loop is possibly contained inside ModuleB because all ModuleA

frames are non-variable including Child-SP and Args column values.

2 http://www.dumpanalysis.org/accelerated-disassembly-reconstruction-
reversing-book

Variable Subtrace 33

Child-
SP RetAddr Args
 ModuleB

 ModuleB

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 kernel32

 ntdll

 kernel32

 ModuleB

 ModuleB

 ModuleB

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

34 PART 2: Crash Dump Analysis Patterns

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 kernel32

 ntdll

 ntdll

 ModuleB

 ModuleB

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 kernel32

 ntdll

Variable Subtrace 35

If we had ASTN diagrams below instead we would have concluded that the

loop was in ModuleA with changes in ModuleB columns as an execution side

effect:

 ModuleB

 ModuleB

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 kernel32

 ntdll

 kernel32

 ModuleB

 ModuleB

 ModuleB

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

36 PART 2: Crash Dump Analysis Patterns

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 kernel32

 ntdll

 ntdll

 ModuleB

 ModuleB

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 ModuleA

 kernel32

 ntdll

User Space Evidence 37

User Space Evidence

One of the questions asked was what can we do if we got a kernel memory dump

instead of the requested complete memory dump? Can it be useful? Of course, if

we requested a complete memory dump after analyzing a kernel memory dump

then the second kernel dump may be useful for double checking. Therefore, we

assume that we just got a kernel memory dump for the first time, and the issue is

some performance issue or system freeze and not a bugcheck. If we have a

bugcheck, then kernel memory dumps are sufficient most of the time, and we do

not consider them for this pattern.

Such a kernel memory dump is still useful because of user space diagnostic

indicators pointing to possible patterns in user space or “interspace”. We call this

pattern User Space Evidence. It is a collective super-pattern like Historical

Information (Volume 1, page 458).

We can see patterns in kernel memory dumps such as Wait Chains (for

example, ALPC, Volume 3, page 97, or Process Objects, Volume 5, page 49),

Deadlocks (for example ALPC, Volume 1, page 474), kernel stack traces

corresponding to specific Dual Stack Traces (Volume 6, page 52, for example,

exception processing), Handle Leaks (Volume 1, page 327), Missing Threads

(Volume 1, page 362), Module Product Process (Volume 7, page 189), One-

Thread Processes (Volume 7, page 187), Spiking Thread (Volume 1, page 305),

Process Factory (Volume 3, page 112, for example, PPID for Zombie Processes,

Volume 2, page 196), and others.

Found evidence may point to specific processes and process groups

(Couples Processes, Volume 1, page 419, and session processes) and suggest

process memory dump collection (especially forcing further complete memory

dumps is problematic) or troubleshooting steps for diagnosed processes.

38 PART 2: Crash Dump Analysis Patterns

Technology-Specific Subtrace (COM Client Call)

Here we add yet another Technology-Specific Subtrace pattern for COM client

calls (as compared to COM interface invocation for servers, Volume 6, page 67).

We recently got a complete memory dump where we had to find the destination

server process, and we used the old technique described in the article In Search

of Lost CID (Volume 2, page 136). We reprint the 32-bit stack subtrace trace here:

[...]

00faf828 7778c38b

ole32!CRpcChannelBuffer::SwitchAptAndDispatchCall+0x112

00faf908 776c0565 ole32!CRpcChannelBuffer::SendReceive2+0xd3

00faf974 776c04fa ole32!CAptRpcChnl::SendReceive+0xab

00faf9c8 77ce247f ole32!CCtxComChnl::SendReceive+0×1a9

00faf9e4 77ce252f RPCRT4!NdrProxySendReceive+0×43

00fafdcc 77ce25a6 RPCRT4!NdrClientCall2+0×206

[...]

Here’s also an x64 fragment from Semantic Structures (PID.TID) pattern

(Volume 6, page 73):

[...]

00000000`018ce450 000007fe`ffee041b

ole32!CRpcChannelBuffer::SwitchAptAndDispatchCall+0xa3

00000000`018ce4f0 000007fe`ffd819c6 ole32!CRpcChannelBuffer::SendReceive2+0×11b

00000000`018ce6b0 000007fe`ffd81928 ole32!CAptRpcChnl::SendReceive+0×52

00000000`018ce780 000007fe`ffedfcf5 ole32!CCtxComChnl::SendReceive+0×68

00000000`018ce830 000007fe`ff56ba3b ole32!NdrExtpProxySendReceive+0×45

00000000`018ce860 000007fe`ffee02d0 RPCRT4!NdrpClientCall3+0×2e2

[...]

If we have the call over ALPC it is easy to find the server process and

thread (Wait Chain, Volume 3, page 97). In case of a modal loop, we can use the

raw stack analysis technique mentioned above (see also the case study from

Volume 3, page 205).

Other subtrace examples can be found in pattern examples for High

Contention (.NET CLR monitors, Volume 7, page 142), Wait Chain

(RTL_RESOURCE, Volume 8a, page 29), and in the case study from Volume 4, page

182.

Internal Stack Trace 39

Internal Stack Trace

Occasionally, we look at Stack Trace Collection (Volume 1, page 409) and notice

Internal Stack Trace. This is a stack trace that is shouldn’t be seen in a normal

crash dump because statistically it is rare (we planned to name this pattern Rare

Stack Trace initially). This stack trace is also not Special Stack Trace (Volume 1,

page 479) because it is not associated with the special system events or problems.

It is also not a stack trace that belongs to various Wait Chains (Volume 1, page

482) or Spiking Threads (Volume 1, page 305). This is also a real stack trace and

not a reconstructed or hypothetical stack trace such as Rough Stack Trace

(Volume 8a, page 39) or Past Stack Trace (Volume 8a, page 43). This is simply a

thread stack trace that shows some internal operation, for example, where it

suggests that message hooking was involved:

THREAD fffffa8123702b00 Cid 11cc.0448 Teb: 000007fffffda000 Win32Thread:

fffff900c1e6ec20 WAIT: (WrUserRequest) UserMode Non-Alertable

fffffa81230cf4e0 SynchronizationEvent

Not impersonating

DeviceMap fffff8a0058745e0

Owning Process fffffa81237a8b30 Image: ProcessA.exe

Attached Process N/A Image: N/A

Wait Start TickCount 1258266 Ticks: 18 (0:00:00:00.280)

Context Switch Count 13752 IdealProcessor: 1 NoStackSwap LargeStack

UserTime 00:00:00.468

KernelTime 00:00:00.187

Win32 Start Address ProcessA!ThreadProc (0×000007feff17c608)

Stack Init fffff8800878c700 Current fffff8800878ba10

Base fffff8800878d000 Limit fffff88008781000 Call fffff8800878c750

Priority 12 BasePriority 8 UnusualBoost 0 ForegroundBoost 2 IoPriority 2

PagePriority 5

Child-SP RetAddr Call Site

fffff880`0878ba50 fffff800`01a6c8f2 nt!KiSwapContext+0×7a

fffff880`0878bb90 fffff800`01a7dc9f nt!KiCommitThreadWait+0×1d2

fffff880`0878bc20 fffff960`0010dbd7 nt!KeWaitForSingleObject+0×19f

fffff880`0878bcc0 fffff960`0010dc71 win32k!xxxRealSleepThread+0×257

fffff880`0878bd60 fffff960`000c4bf7 win32k!xxxSleepThread+0×59

fffff880`0878bd90 fffff960`000d07a5 win32k!xxxInterSendMsgEx+0×112a

fffff880`0878bea0 fffff960`00151bf8 win32k!xxxCallHook2+0×62d

fffff880`0878c010 fffff960`000d2454 win32k!xxxCallMouseHook+0×40

fffff880`0878c050 fffff960`0010bf23 win32k!xxxScanSysQueue+0×1828

fffff880`0878c390 fffff960`00118fae win32k!xxxRealInternalGetMessage+0×453

fffff880`0878c470 fffff800`01a76113 win32k!NtUserRealInternalGetMessage+0×7e

fffff880`0878c500 00000000`771b913a nt!KiSystemServiceCopyEnd+0×13 (TrapFrame @

fffff880`0878c570)

00000000`053ff258 000007fe`fac910f4 USER32!NtUserRealInternalGetMessage+0xa

00000000`053ff260 000007fe`fac911fa DUser!CoreSC::xwProcessNL+0×173

00000000`053ff2d0 00000000`771b9181 DUser!MphProcessMessage+0xbd

00000000`053ff330 00000000`774111f5 USER32!_ClientGetMessageMPH+0×3d

00000000`053ff3c0 00000000`771b908a ntdll!KiUserCallbackDispatcherContinue

(TrapFrame @ 00000000`053ff288)

00000000`053ff438 00000000`771b9055 USER32!NtUserPeekMessage+0xa

40 PART 2: Crash Dump Analysis Patterns

00000000`053ff440 000007fe`ebae03fa USER32!PeekMessageW+0×105

00000000`053ff490 000007fe`ebae4925 ProcessA+0×5a

[…]

00000000`053ff820 00000000`773ec541 kernel32!BaseThreadInitThunk+0xd

00000000`053ff850 00000000`00000000 ntdll!RtlUserThreadStart+0×1d

We see that this thread was neither waiting for significant time nor

consuming CPU. It was reported that ProcessA.exe was very slow responding. So

perhaps this was slowly punctuated thread execution with periodic small waits. In

fact, Execution Residue (Volume 2, page 239) analysis revealed Non-Coincidental

Symbolic Information (Volume 1, page 390) of the 3rd-party Message Hook

(Volume 5, page 76) and its Module Product Process (Volume 7, page 189) was

identified. Its removal resolved the problem.

Distributed Exception (Managed Code) 41

Distributed Exception (Managed Code)

Managed code Nested Exceptions (Volume 2, page 310) give us process virtual

space bound stack traces. However, exception objects may be marshaled across

processes and even computers. The remote stack trace return addresses don’t

have the same validity in different process contexts. Fortunately, there is a

_remoteStackTraceString field in exception objects, and it contains the original

stack trace. Default analysis command sometimes uses it:

0:013> !analyze -v

[...]

EXCEPTION_OBJECT: !pe 25203b0

Exception object: 00000000025203b0

Exception type: System.Reflection.TargetInvocationException

Message: Exception has been thrown by the target of an invocation.

InnerException: System.Management.Instrumentation.WmiProviderInstallationException, Use

!PrintException 0000000002522cf0 to see more.

StackTrace (generated):

SP IP Function

000000001D39E720 0000000000000001 Component!Proxy.Start()+0x20

000000001D39E720 000007FEF503D0B6

mscorlib_ni!System.Threading.ExecutionContext.RunInternal(System.Threading.ExecutionContext,

System.Threading.ContextCallback, System.Object, Boolean)+0x286

000000001D39E880 000007FEF503CE1A

mscorlib_ni!System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext,

System.Threading.ContextCallback, System.Object, Boolean)+0xa

000000001D39E8B0 000007FEF503CDD8

mscorlib_ni!System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext,

System.Threading.ContextCallback, System.Object)+0x58

000000001D39E900 000007FEF4FB0302

mscorlib_ni!System.Threading.ThreadHelper.ThreadStart()+0x52

[...]

MANAGED_STACK_COMMAND: ** Check field _remoteStackTraceString **;!do 2522cf0;!do 2521900

[...]

0:013> !DumpObj 2522cf0

[...]

000007fef51b77f0 4000054 2c System.String 0 instance 2521900 _remoteStackTraceString

[…]

0:013> !DumpObj 2521900

Name: System.String

[…]

String: at System.Management.Instrumentation.InstrumentationManager.RegisterType(Type

managementType)

at Component.Provider..ctor()

at Component.Start()

42 PART 2: Crash Dump Analysis Patterns

Checking this field may also be necessary for exceptions of interest from

managed space Execution Residue (Volume 6, page 149). We call this pattern

Distributed Exception. The basic idea is illustrated in the following diagram using

the borrowed UML notation (not limited to just two computers):

Server

Server
Exception

Client
Client

Exception

Server Exception
Stack Trace

Client Exception
Stack Trace

Distributed Exception
Stack Trace

Server
Exception

Remote Call

Thread Poset 43

Thread Poset

Predicate Stack Trace Collections (Volume 7, page 100) allow us to get a subset of

stack traces, for example, by showing only stack traces where a specific module is

used (for example, !stacks 2 module WinDbg command). From diagnostic analysis

perspective, the order in which threads from the subset appear is also important,

especially when the output is sorted by thread creation time or simply the order is

given by a global thread linked list. We call this analysis pattern Thread Poset by

analogy with a mathematical concept of poset (partially ordered set3):

Creation Time

PID.TID 4.8

PID.TID 4.10 ModuleA!Func

PID.TID 4.18 ModuleA!WorkerThread

PID.TID 4.20

Creation Time

PID.TID 200.400

PID.TID 200.408

PID.TID 200.410

PID.TID 200.418

PID.TID 4.28 ModuleA!WorkerThread

Kernel

Process

3 http://en.wikipedia.org/wiki/Partially_ordered_set

44 PART 2: Crash Dump Analysis Patterns

Such an analysis pattern is mostly useful when we compare stack traces for

differences or when we don’t have symbols for some problem version and want

to map threads to some other previous normal run where symbol files are

available. Any discrepancies may point in the direction of further diagnostic

analysis. For example, we got this fragment of Stack Trace Collection (Volume 1,

page 409):

4.000188 fffffa800d3d3b50 ffd0780f Blocked ModuleA+0x1ac1

4.00018c fffffa800d3f9950 ffd07b53 Blocked ModuleA+0xd802

4.000190 fffffa800d4161b0 fffffda6 Blocked ModuleA+0x9ce4

4.000194 fffffa800d418b50 fffffda6 Blocked ModuleA+0x9ce4

4.000198 fffffa800d418660 fffffda6 Blocked ModuleA+0x9ce4

4.0001ac fffffa800d41eb50 ffd078d2 Blocked ModuleA+0xa7cf

4.0001b0 fffffa800d41e660 ffd0780f Blocked ModuleA+0x9ce4

4.0001c0 fffffa800d48f300 ffd0e5c0 Blocked ModuleA+0x7ee5

We didn’t have symbols, and, therefore, didn’t know whether there was

anything wrong with those threads. Fortunately, we had Thread Poset from an

earlier 32-bit version with available symbol files:

4.0000ec 85d8dc58 000068c Blocked ModuleA!FuncA+0x9b

4.0000f0 85d9fc78 001375a Blocked ModuleA!FuncB+0x67

4.0000fc 85db8a58 000068c Blocked ModuleA!WorkerThread+0xa2

4.000104 85cdbd48 000ff44 Blocked ModuleA!WorkerThread+0xa2

4.000108 85da2788 000ff47 Blocked ModuleA!WorkerThread+0xa2

4.000110 857862e0 0013758 Blocked ModuleA!FuncC+0xe4

4.000114 85dda250 000ff44 Blocked ModuleA!FuncD+0xf2

If we map worker threads to the middle section of x64 version we see just

one more worker thread, but the overall order is the same:

4.000188 fffffa800d3d3b50 ffd0780f Blocked ModuleA+0x1ac1

4.00018c fffffa800d3f9950 ffd07b53 Blocked ModuleA+0xd802

4.000190 fffffa800d4161b0 fffffda6 Blocked ModuleA+0×9ce4

4.000194 fffffa800d418b50 fffffda6 Blocked ModuleA+0×9ce4

4.000198 fffffa800d418660 fffffda6 Blocked ModuleA+0×9ce4

4.0001ac fffffa800d41eb50 ffd078d2 Blocked ModuleA+0xa7cf

4.0001b0 fffffa800d41e660 ffd0780f Blocked ModuleA+0×9ce4

4.0001c0 fffffa800d48f300 ffd0e5c0 Blocked ModuleA+0×7ee5

So we may think of x64 Thread Poset as normal if x86 Thread Poset is

normal too. Of course, only initially, then to continue looking for other patterns of

abnormal behavior. If necessary, we may need to inspect stack traces deeper

because individual threads from two Thread Posets may differ in their stack trace

depth, subtraces, and in usage of other components. Despite the same order,

some threads may actually be abnormal.

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 45

PART 3: Pattern Interaction

Virtualized Process, Stack Trace Collection, COM Interface

Invocation Subtrace, Active Thread, Spiking Thread, Last Error

Collection, RIP Stack Trace, Value References, Namespace , and

Module Hint

Recently we analyzed a memory dump posted in DA+TA group4 and posted our

results there. The problem was resolved. Afterward, we decided to look at the

earlier dump that was posted for the same problem: a COM server program was

unresponsive. That dump was not fully analyzed by group members, so we

decided to write a case study based on it since it had one more pattern.

When we open the dump in WinDbg it shows Virtualized Process (WOW64,

Volume 1, page 400) pattern:

wow64cpu!TurboDispatchJumpAddressEnd+0x598:

00000000`77cf2772 c3 ret

We load symbols, WOW64 extension, and switch to x86 mode:

0:000> .symfix c:\mss

0:000> .reload

0:000> .load wow64exts

0:000> !sw

Switched to 32bit mode

4 http://www.facebook.com/groups/dumpanalysis/

46 PART 3: Pattern Interaction

Then we check threads in Stack Trace Collection (Volume 1, page 409):

0:000:x86> ~*kL

. 0 Id: 16d8.11e0 Suspend: 0 Teb: fffdc000 Unfrozen

ChildEBP RetAddr

002fb0a8 765c10fd ntdll_77d00000!NtWaitForSingleObject+0xc

002fb118 76606586 KERNELBASE!WaitForSingleObjectEx+0x99

002fb138 00499ddc KERNELBASE!GetOverlappedResult+0x9d

WARNING: Stack unwind information not available. Following frames may

be wrong.

002fb1a0 005261a4 ServerA+0x99ddc

002fb1e4 005278c9 ServerA+0x1261a4

002fb454 0053bc4d ServerA+0x1278c9

002fba34 005fe5c8 ServerA+0x13bc4d

002fbe20 006094eb ServerA+0x1fe5c8

002fc40c 0060a0d7 ServerA+0x2094eb

0038ee8c 0061a0cb ServerA+0x20a0d7

0038eea4 75e65c3e ServerA+0x21a0cb

0038eed0 75edf497 rpcrt4!Invoke+0×2a

0038f55c 763b04d5 rpcrt4!NdrStubCall2+0×33c

0038f5a4 769aa572 combase!CStdStubBuffer_Invoke+0×96

0038f5c4 763b039d oleaut32!CUnivStubWrapper::Invoke+0×30

0038f650 762b3733 combase!SyncStubInvoke+0×144

(Inline) ——– combase!StubInvoke+0×9a

0038f77c 763b1198 combase!CCtxComChnl::ContextInvoke+0×222

(Inline) ——– combase!DefaultInvokeInApartment+0×4e

(Inline) ——– combase!ClassicSTAInvokeInApartment+0×103

0038f824 763b0bc2 combase!AppInvoke+0×258

0038f980 762b277e combase!ComInvokeWithLockAndIPID+0×5fb

(Inline) ——– combase!ComInvoke+0×15c

(Inline) ——– combase!ThreadDispatch+0×169

0038f9b0 75cf7834 combase!ThreadWndProc+0×2ad

0038f9dc 75cf7a9a user32!_InternalCallWinProc+0×23

0038fa6c 75cf988e user32!UserCallWinProcCheckWow+0×184

0038fad8 75d08857 user32!DispatchMessageWorker+0×208

0038fae0 0061cb88 user32!DispatchMessageA+0×10

0038ff74 0061d85a ServerA+0×21cb88

0038ff8c 7617919f ServerA+0×21d85a

0038ff98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

0038ffdc 77d4a8a1 ntdll_77d00000!__RtlUserThreadStart+0×20

0038ffec 00000000 ntdll_77d00000!_RtlUserThreadStart+0×1b

1 Id: 16d8.f5c Suspend: 0 Teb: fffd9000 Unfrozen

ChildEBP RetAddr

WARNING: Frame IP not in any known module. Following frames may be

wrong.

0159ff8c 7617919f 0×3b02c8

0159ff98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

0159ffdc 77d4a8a1 ntdll_77d00000!__RtlUserThreadStart+0×20

0159ffec 00000000 ntdll_77d00000!_RtlUserThreadStart+0×1b

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 47

2 Id: 16d8.a88 Suspend: 0 Teb: ffe47000 Unfrozen

ChildEBP RetAddr

097cfde8 77d227d3 ntdll_77d00000!NtWaitForWorkViaWorkerFactory+0xc

097cff8c 7617919f ntdll_77d00000!TppWorkerThread+0x259

097cff98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

097cffdc 77d4a8a1 ntdll_77d00000!__RtlUserThreadStart+0x20

097cffec 00000000 ntdll_77d00000!_RtlUserThreadStart+0x1b

3 Id: 16d8.ab0 Suspend: 0 Teb: fffd3000 Unfrozen

ChildEBP RetAddr

0414fde8 77d227d3 ntdll_77d00000!NtWaitForWorkViaWorkerFactory+0xc

0414ff8c 7617919f ntdll_77d00000!TppWorkerThread+0x259

0414ff98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

0414ffdc 77d4a8a1 ntdll_77d00000!__RtlUserThreadStart+0x20

0414ffec 00000000 ntdll_77d00000!_RtlUserThreadStart+0x1b

4 Id: 16d8.868 Suspend: 0 Teb: ffe4d000 Unfrozen

ChildEBP RetAddr

0460fde8 77d227d3 ntdll_77d00000!NtWaitForWorkViaWorkerFactory+0xc

0460ff8c 7617919f ntdll_77d00000!TppWorkerThread+0x259

0460ff98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

0460ffdc 77d4a8a1 ntdll_77d00000!__RtlUserThreadStart+0x20

0460ffec 00000000 ntdll_77d00000!_RtlUserThreadStart+0x1b

The first thread (#0) has Technology-Specific Subtrace (COM interface

invocation, Volume 6, page 67) calling ServerA module code, and the second trace

(#1) seems to be Active Thread (not waiting, Volume 7, page 236) having RIP

Stack Trace (Volume 7, page 244).

However, only thread #0 seems to be Spiking Thread (Volume 1, page 305):

0:000:x86> !runaway f

 User Mode Time

 Thread Time

 0:11e0 0 days 0:44:44.890

 4:868 0 days 0:00:00.000

 3:ab0 0 days 0:00:00.000

 2:a88 0 days 0:00:00.000

 1:f5c 0 days 0:00:00.000

 Kernel Mode Time

 Thread Time

 0:11e0 0 days 0:10:38.312

 4:868 0 days 0:00:00.015

 3:ab0 0 days 0:00:00.000

 2:a88 0 days 0:00:00.000

 1:f5c 0 days 0:00:00.000

48 PART 3: Pattern Interaction

 Elapsed Time

 Thread Time

 0:11e0 0 days 2:56:23.297

 1:f5c 0 days 2:56:22.625

 2:a88 0 days 2:54:36.883

 3:ab0 0 days 0:02:18.705

 4:868 0 days 0:01:07.372

Last Error Collection (Volume 2, page 337) is clear but needs to be double

checked by TEB32 (since we have a virtualized process):

0:000:x86> !gle

LastErrorValue: (Win32) 0 (0) - The operation completed successfully.

LastStatusValue: (NTSTATUS) 0 - STATUS_WAIT_0

Wow64 TEB status:

LastErrorValue: (Win32) 0 (0) - The operation completed successfully.

LastStatusValue: (NTSTATUS) 0 - STATUS_WAIT_0

0:000:x86> !teb

Wow64 TEB32 at 00000000fffde000

 ExceptionList: 00000000002fb108

 StackBase: 0000000000390000

 StackLimit: 0000000000255000

 SubSystemTib: 0000000000000000

 FiberData: 0000000000001e00

 ArbitraryUserPointer: 0000000000000000

 Self: 00000000fffde000

 EnvironmentPointer: 0000000000000000

 ClientId: 00000000000016d8 . 00000000000011e0

 RpcHandle: 0000000000000000

 Tls Storage: 0000000000e12978

 PEB Address: 00000000fffdf000

 LastErrorValue: 38

 LastStatusValue: c0000011

 Count Owned Locks: 0

 HardErrorMode: 0

Wow64 TEB at 00000000fffdc000

 ExceptionList: 00000000fffde000

 StackBase: 000000000008fd30

 StackLimit: 0000000000083000

 SubSystemTib: 0000000000000000

 FiberData: 0000000000001e00

 ArbitraryUserPointer: 0000000000000000

 Self: 00000000fffdc000

 EnvironmentPointer: 0000000000000000

 ClientId: 00000000000016d8 . 00000000000011e0

 RpcHandle: 0000000000000000

 Tls Storage: 0000000000000000

 PEB Address: 00000000fffd6000

 LastErrorValue: 0

 LastStatusValue: 0

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 49

 Count Owned Locks: 0

 HardErrorMode: 0

From the errors, we suggested checking the code dealing with EOF condition.

0:000:x86> !error 0n38

Error code: (Win32) 0x26 (38) - Reached the end of the file.

0:000:x86> !error c0000011

Error code: (NTSTATUS) 0xc0000011 (3221225489) - The end-of-file

marker has been reached. There is no valid data in the file beyond

this marker.

But let’s look at the thread #1 raw address and check whether we have

traces of malware or JIT code or something else:

0:000:x86> ~1s

003b02c8 c20c00 ret 0Ch

0:001:x86> u 0×3b02c8

003b02c8 c20c00 ret 0Ch

003b02cb 90 nop

003b02cc cc int 3

003b02cd cc int 3

003b02ce cc int 3

003b02cf cc int 3

003b02d0 cc int 3

003b02d1 cc int 3

0:001:x86> ub 0x3b02c8

003b02b6 cc int 3

003b02b7 cc int 3

003b02b8 cc int 3

003b02b9 cc int 3

003b02ba cc int 3

003b02bb cc int 3

003b02bc b803000d00 mov eax,0D0003h

003b02c1 64ff15c0000000 call dword ptr fs:[0C0h]

0:001:x86> dps fs:[0C0h] L1

0053:000000c0 77cf11d8 wow64cpu!KiFastSystemCall

50 PART 3: Pattern Interaction

0:001:x86> !address 0x3b02c8

Usage:

Base Address: 003b0000

End Address: 003b1000

Region Size: 00001000

State: 00001000 MEM_COMMIT

Protect: 00000020 PAGE_EXECUTE_READ

Type: 00020000 MEM_PRIVATE

Allocation Base: 003b0000

Allocation Protect: 00000040 PAGE_EXECUTE_READWRITE

Dumping this executable region only shows WOW64 calls:

0:001:x86> dc 003b0000 003b1000

[...]

0:001:x86> .asm no_code_bytes

Assembly options: no_code_bytes

0:001:x86> u 003b0110 003b02e0

003b0110 add byte ptr [eax],al

003b0112 add byte ptr [eax],al

003b0114 add byte ptr [eax],al

003b0116 add byte ptr [eax],al

003b0118 mov eax,3000Eh

003b011d call dword ptr fs:[0C0h]

003b0124 ret 4

003b0127 nop

003b0128 int 3

003b0129 int 3

003b012a int 3

003b012b int 3

003b012c int 3

003b012d int 3

003b012e int 3

003b012f int 3

003b0130 int 3

003b0131 int 3

003b0132 int 3

003b0133 int 3

003b0134 mov eax,32h

003b0139 call dword ptr fs:[0C0h]

003b0140 ret 18h

003b0143 nop

003b0144 int 3

003b0145 int 3

003b0146 int 3

003b0147 int 3

003b0148 int 3

003b0149 int 3

003b014a int 3

003b014b int 3

003b014c int 3

003b014d int 3

003b014e int 3

003b014f int 3

003b0150 mov eax,1B0006h

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 51

003b0155 call dword ptr fs:[0C0h]

003b015c ret 28h

003b015f nop

003b0160 int 3

003b0161 int 3

003b0162 int 3

003b0163 int 3

003b0164 int 3

003b0165 int 3

003b0166 int 3

003b0167 int 3

003b0168 int 3

003b0169 int 3

003b016a int 3

003b016b int 3

003b016c mov eax,7002Bh

003b0171 call dword ptr fs:[0C0h]

003b0178 ret 8

003b017b nop

003b017c int 3

003b017d int 3

003b017e int 3

003b017f int 3

003b0180 int 3

003b0181 int 3

003b0182 int 3

003b0183 int 3

003b0184 int 3

003b0185 int 3

003b0186 int 3

003b0187 int 3

003b0188 mov eax,17h

003b018d call dword ptr fs:[0C0h]

003b0194 ret 18h

003b0197 nop

003b0198 int 3

003b0199 int 3

003b019a int 3

003b019b int 3

003b019c int 3

003b019d int 3

003b019e int 3

003b019f int 3

003b01a0 int 3

003b01a1 int 3

003b01a2 int 3

003b01a3 int 3

003b01a4 mov eax,4Fh

003b01a9 call dword ptr fs:[0C0h]

003b01b0 ret 14h

003b01b3 nop

003b01b4 int 3

003b01b5 int 3

003b01b6 int 3

003b01b7 int 3

003b01b8 int 3

003b01b9 int 3

52 PART 3: Pattern Interaction

003b01ba int 3

003b01bb int 3

003b01bc int 3

003b01bd int 3

003b01be int 3

003b01bf int 3

003b01c0 mov eax,1Dh

003b01c5 call dword ptr fs:[0C0h]

003b01cc ret 10h

003b01cf nop

003b01d0 int 3

003b01d1 int 3

003b01d2 int 3

003b01d3 int 3

003b01d4 int 3

003b01d5 int 3

003b01d6 int 3

003b01d7 int 3

003b01d8 int 3

003b01d9 int 3

003b01da int 3

003b01db int 3

003b01dc mov eax,22h

003b01e1 call dword ptr fs:[0C0h]

003b01e8 ret 18h

003b01eb nop

003b01ec int 3

003b01ed int 3

003b01ee int 3

003b01ef int 3

003b01f0 int 3

003b01f1 int 3

003b01f2 int 3

003b01f3 int 3

003b01f4 int 3

003b01f5 int 3

003b01f6 int 3

003b01f7 int 3

003b01f8 mov eax,47h

003b01fd call dword ptr fs:[0C0h]

003b0204 ret 14h

003b0207 nop

003b0208 int 3

003b0209 int 3

003b020a int 3

003b020b int 3

003b020c int 3

003b020d int 3

003b020e int 3

003b020f int 3

003b0210 int 3

003b0211 int 3

003b0212 int 3

003b0213 int 3

003b0214 mov eax,1A0005h

003b0219 call dword ptr fs:[0C0h]

003b0220 ret 24h

003b0223 nop

003b0224 int 3

003b0225 int 3

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 53

003b0226 int 3

003b0227 int 3

003b0228 int 3

003b0229 int 3

003b022a int 3

003b022b int 3

003b022c int 3

003b022d int 3

003b022e int 3

003b022f int 3

003b0230 mov eax,10h

003b0235 call dword ptr fs:[0C0h]

003b023c ret 14h

003b023f nop

003b0240 int 3

003b0241 int 3

003b0242 int 3

003b0243 int 3

003b0244 int 3

003b0245 int 3

003b0246 int 3

003b0247 int 3

003b0248 int 3

003b0249 int 3

003b024a int 3

003b024b int 3

003b024c mov eax,112h

003b0251 call dword ptr fs:[0C0h]

003b0258 ret 0Ch

003b025b nop

003b025c int 3

003b025d int 3

003b025e int 3

003b025f int 3

003b0260 int 3

003b0261 int 3

003b0262 int 3

003b0263 int 3

003b0264 int 3

003b0265 int 3

003b0266 int 3

003b0267 int 3

003b0268 mov eax,13Eh

003b026d call dword ptr fs:[0C0h]

003b0274 ret 0Ch

003b0277 nop

003b0278 int 3

003b0279 int 3

003b027a int 3

003b027b int 3

003b027c int 3

003b027d int 3

003b027e int 3

003b027f int 3

003b0280 int 3

003b0281 int 3

003b0282 int 3

54 PART 3: Pattern Interaction

003b0283 int 3

003b0284 mov eax,24h

003b0289 call dword ptr fs:[0C0h]

003b0290 ret 14h

003b0293 nop

003b0294 int 3

003b0295 int 3

003b0296 int 3

003b0297 int 3

003b0298 int 3

003b0299 int 3

003b029a int 3

003b029b int 3

003b029c int 3

003b029d int 3

003b029e int 3

003b029f int 3

003b02a0 mov eax,18h

003b02a5 call dword ptr fs:[0C0h]

003b02ac ret 14h

003b02af nop

003b02b0 int 3

003b02b1 int 3

003b02b2 int 3

003b02b3 int 3

003b02b4 int 3

003b02b5 int 3

003b02b6 int 3

003b02b7 int 3

003b02b8 int 3

003b02b9 int 3

003b02ba int 3

003b02bb int 3

003b02bc mov eax,0D0003h

003b02c1 call dword ptr fs:[0C0h]

003b02c8 ret 0Ch

003b02cb nop

003b02cc int 3

003b02cd int 3

003b02ce int 3

003b02cf int 3

003b02d0 int 3

003b02d1 int 3

003b02d2 int 3

003b02d3 int 3

003b02d4 int 3

003b02d5 int 3

003b02d6 int 3

003b02d7 int 3

003b02d8 add byte ptr [eax],al

003b02da add byte ptr [eax],al

003b02dc add byte ptr [eax],al

003b02de add byte ptr [eax],al

003b02e0 add byte ptr [eax],al

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 55

Searching for the address of system call points to another executable region:

0:001:x86> s-d 0 L?(FFFFFFFF/4) 003b02bc

00030044 003b02bc 003b0284 71b74be0 0824448b ..;…;..K.q.D$.

0:001:x86> !address 00030044

Usage:

Base Address: 00030000

End Address: 00031000

Region Size: 00001000

State: 00001000 MEM_COMMIT

Protect: 00000020 PAGE_EXECUTE_READ

Type: 00020000 MEM_PRIVATE

Allocation Base: 00030000

Allocation Protect: 00000040 PAGE_EXECUTE_READWRITE

0:001:x86> dps 00030000 00031000

00030000 cd697e0e

00030004 4b6b72cc

00030008 036f2786

0003000c be5fe321

00030010 00000f5c

00030014 00000038

00030018 00000000

0003001c 00000030

00030020 00000000

00030024 00000001

00030028 003d0000

0003002c 003d0028

00030030 003b0000

00030034 00000000

00030038 77d4ce23 ntdll_77d00000!LdrLoadDll

0003003c 77d62fdd ntdll_77d00000!LdrUnloadDll

00030040 77d6094d ntdll_77d00000!LdrAddRefDll

00030044 003b02bc

00030048 003b0284

0003004c 71b74be0*** ERROR: Symbol file could not be found. Defaulted

to export symbols for UMEngx86.dll -

UMEngx86+0×4be0

00030050 0824448b

00030054 00300589

00030058 52b8003d

0003005c e9000700

[...]

56 PART 3: Pattern Interaction

In addition to Ldr* Namespace (Volume 7, page 257) we see a valid

symbolic reference (Module Hint, Volume 6, page 92) to AV:

0:001:x86> u 71b74be0

UMEngx86+0x4be0:

71b74be0 push ebp

71b74be1 mov ebp,esp

71b74be3 push 0FFFFFFFEh

71b74be5 push offset UMEngx86!RegQueryValueExW+0x29818 (71b9f9b8)

71b74bea push offset UMEngx86!RegQueryValueExW+0x20b0 (71b78250)

71b74bef mov eax,dword ptr fs:[00000000h]

71b74bf5 push eax

71b74bf6 sub esp,8

0:001:x86> lmv m UMEngx86

start end module name

71b70000 71bae000 UMEngx86 (export symbols) UMEngx86.dll

 Loaded symbol image file: UMEngx86.dll

 Image path: C:\ProgramData\Symantec\Symantec

 Endpoint Protection\12.1.4100.4126.105\Data\

 Definitions\BASHDefs\20150307.011\UMEngx86.dll

 Image name: UMEngx86.dll

 Timestamp: Fri Jan 23 00:52:29 2015 (54C19B4D)

 CheckSum: 00045930

 ImageSize: 0003E000

 File version: 9.1.1.4

 Product version: 9.1.1.4

 File flags: 0 (Mask 3F)

 File OS: 4 Unknown Win32

 File type: 2.0 Dll

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Symantec Corporation

 ProductName: BASH

 InternalName: UMEngx86

 OriginalFilename: UMEngx86.dll

 ProductVersion: 9.1.1.4

 FileVersion: 9.1.1.4

 FileDescription: SONAR Engine

 LegalCopyright: Copyright (C) 2009 - 2014 Symantec

 Corporation. All rights reserved.

Cantor Operating System 57

PART 4: A Bit of Science and Philosophy

Cantor Operating System

Named after Georg Cantor CAN.TOR.OS(∞5) brings computation from the distant

future to today. The transfinite worldview and universe of tomorrow into the

finite worldview and universe of today. Cantor OS drives transfinite computing

and saves transfinite memory dumps. [...] One cautious note though: transfinite

doesn’t mean absolute infinity or God-like computation, the latter is the realm of

Memory Religion6.

Metaphor of Memory as a Directed Container

The usual metaphor of Memory as a container is static and not useful for Memory

worldview because it has to explain Time. Previously, in 2010, we introduced

memorized relation (Volume 4, page 259) that may give memory order necessary

for Time. Later we came to a Directed Container metaphor that provides order

and directedness responsible for perceived Time Arrow. After doing some

research, we found that directed container datatype7 was introduced in computer

science that accounts for positions inside container structures that determine

substructures. However, our metaphor is intuitive and doesn’t specify exact

representation except the possible involvement of memorized relation.

5 (∞) TOR is a new transfinite operation in addition to finite OR, AND or
XOR

6 http://www.memoryreligion.com/

7 http://link.springer.com/chapter/10.1007%2F978-3-642-28729-9_5

58 PART 4: A Bit of Science and Philosophy

Praxiverse

We are realized in Universe filled with memory verses via memory praxis

transforming it into Praxiverse - live Memory Universe, producing new memories,

new memory verses.

When Universe is Going to End?

When Universe is going to end? When it finishes writing a memory dump. This is a

logical conclusion from EPOCH (Exception Processing Of Crash Hypothesis).

According to it, our Universe is saving one huge Memory Dump from a runaway

HUC (Big Bang of Hyper-Universal Computation, or simply HUge Computation). It

is also called Memory Dump Universe Hypothesis (Volume 4, page 271).

Notes on Memoidealism 59

Notes on Memoidealism

We continue publishing new notes here. The previous ones can be found

scattered in previous volumes of Memory Dump Analysis Anthology.

Intuition is an attentive perception of metaphysical Memory as the

foundation of Universe (after Bergson's intuition as "perception of metaphysical

reality").

The experiment is a question put to memory (after Charles Sanders Pierce8

and Julius Adolph Stöckhardt9).

pHilosophy is a pointer to a thread of wisdom. Hilo: a thin veil of ore.

Origin: Spanish = thread, from Latin filum (from Shorter Oxford English

Dictionary).

The question of Memory comes from the primordial and falls back to it.

Memory as the efficient cause. In addition to its material cause (everything

is made from Memory), we can also say that everything started from Memory.

See also the final cause: “The purpose of everything is to come back to Memory”

(Volume 8A, page 91).

Philosophy is about memories, people’s memories (from bugtations10).

Transcendental Memory Principle of Memoidealism (Volume 3, page 303)

is independent of any religious belief. Although in Memorianity (Memory

Religion11) Memory is both Absolute and Infinite.

8 http://en.wikipedia.org/wiki/Charles_Sanders_Peirce

9 http://en.wikipedia.org/wiki/Julius_Adolph_St%C3%B6ckhardt

10 http://www.dumpanalysis.org/Bugtations

11 http://www.memoryreligion.com/

60 PART 4: A Bit of Science and Philosophy

Each DA+TA (Dump Artifact + Trace Artifact) pattern is a pOEM (a pointer

to Originally Executed Memory). According to Alain Badiou12, a poem is a true art,

an event of thought, a trace of the event, and an interruption of language. We say

a pOEM is a true art(ifact), an event of memory execution, interruption of

execution.

12 https://en.wikipedia.org/wiki/Alain_Badiou

Timeout 61

PART 5: Software Trace Analysis Patterns

Timeout

Some Discontinuities (Volume 4, page 341) may be Periodic Message Blocks

(Volume 7, page 300) as Silent Messages (Volume 7, page 339). If such

discontinuities belong to the same Thread of Activity (Volume 4, page 339) and

their Time Deltas (Volume 5, page 282) are constant we may see Timeout

pattern. When timeouts are followed by Error Message (Volume 7, page 299), we

can identify them by Back Tracing (Volume 8a, page 95). Timeouts are different

from Blackouts (Volume 8a, page 95) where the latter are usually Singleton

Events (Volume 8a, page 108) and have large Time Deltas.

62 PART 5: Software Trace Analysis Patterns

Here is a generalized graphical case study. An error message was identified

based on incident Basic Facts (Volume 3, page 345):

Time
PID TID Time Message

Timeout 63

We filtered the trace for error message TID and found 3 timeouts 30

minutes each:

Time
PID TID Time Message

64 PART 5: Software Trace Analysis Patterns

Time
PID TID Time Message

30 minutes

30 minutes

30 minutes

Activity Overlap 65

Activity Overlap

Sometimes specific parts of simultaneous Use Case Trails (Volume 8a, page 101),

blocks of Significant Events (Volume 5, page 281) or Message Sets (Volume 7,

page 349) in general may overlap. This may point to possible synchronization

problems such as race conditions (prognostics) or be visible root causes of them if

such problems are reported (diagnostics). We call this pattern Activity Overlap:

Time
PID TID Time Message

66 PART 5: Software Trace Analysis Patterns

For example, a first request may start a new session, and we expect the

second request to be processed by the same already established session:

#

SID

Session Initialization Prologue

Additional Request

However, users report the second session started upon the second

request. If we filter execution log by session id, we find out that session

initialization prologs (Volume 5, page 299) are overlapped. The new session

started because the first session initialization was not completed:

#

SID

Session Initialization Prologue

Activity Overlap 67

68 PART 5: Software Trace Analysis Patterns

Adjoint Space

Sometimes we need memory reference information not available in software

traces and logs, for example, to see pointer dereferences, to follow pointers and

linked structures. In such cases, memory dumps saved during logging sessions

may help. In the case of process memory dumps, we can even have several Step

Dumps (Volume 7, page 173). Complete and kernel memory dumps may be

forced after saving a log file. We call such pattern Adjoint Space:

Time
PID TID Time Message

m
em

ory
 d

um
p

Adjoint Space 69

Then we can analyze logs and memory dumps together, for example, to

follow pointer data further in memory space:

Time
PID TID Time Message

m
em

ory
 d

um
p

70 PART 5: Software Trace Analysis Patterns

There is also a reverse situation when we use logs to see past data changes

before memory snapshot time (Paratext memory analysis pattern, Volume 7,

page 225):

Time
PID TID Time Message

m
em

ory
 d

um
p

Indirect Message 71

Indirect Message

Sometimes we have Basic Facts (Volume 3, page 345) in a problem description

but can’t find messages corresponding to them in a trace or log file but we are

sure the tracing (logging) was done correctly. This may be because we have

Sparse Trace (Volume 7, page 303), or we are not familiar well with product or

system tracing messages (such as with Implementation Discourse, Volume 6,

page 245).

Time

Where is it?

Basic Fact

72 PART 5: Software Trace Analysis Patterns

In such a case we for search for Indirect Message of a possible cause:

Time

Possible Cause

Basic Fact

Indirect Message 73

Having found such a message we may hypothesize that Missing Message

(Volume 8a, page 99) should have located nearby (this is based on semantics of

both messages), and we then explore corresponding Message Context (Volume 5,

page 305):

Time

Missing Effect Message

Possible Cause

Basic Fact

74 PART 5: Software Trace Analysis Patterns

The same analysis strategy is possible for missing causal messages. Here

we search for effect or side effect messages:

Time

Possible Effect or Side Effect

Basic Fact

Indirect Message 75

Having found them we proceed with further analysis:

Time

Missing Cause Message

Possible Effect or Side Effect

Basic Fact

76 PART 5: Software Trace Analysis Patterns

Watch Thread

When we do tracing and logging much of computational activity is not visible. For

live tracing and debugging this can be alleviated by adding Watch Threads. These

are selected memory locations that may or may not be formatted according to

specific data structures and are inspected at each main trace message occurrence

or after specific intervals or events:

Time

Main Trace

pData g_Var localVar

U
n

d
e

fin
e

d
U

n
d

e
fin

e
d

Watch Thread 77

This analysis pattern is different from State Dump (Volume 7, page 346)

which is about intrinsic tracing where the developer of logging statements already

incorporated variable watch in the source code. Watch Threads are completely

independent of original tracing and may be added independently. Counter Value

(Volume 7, page 288) is the simplest example of Watch Thread if done

externally because the former usually doesn’t require source code and often

means some OS or Module Variable (Volume 7, page 98) independent of product

internals. Watch Thread is also similar to Data Flow (Volume 7, page 296) pattern

where specific data we are interested in is a part of every trace message.

78 PART 5: Software Trace Analysis Patterns

Punctuated Activity

Sometimes we have a uniform stream of messages that belong to some Activity

Region (Volume 4, page 348), Thread of Activity (Volume 4, page 339), or Adjoint

Thread of Activity (Volume 5, page 283). We can use micro-Discontinuities

(Volume 4, page 341) to structure that message stream, especially if the

semantics of trace messages is not yet fully clear for us. This may also help us to

recognize Visitor Trace (Volume 8a, page 110). Originally we wanted to call this

pattern Micro Delays, but, after recognizing that such delays only make sense for

one activity (since there can be too many of them in the overall log), we named

this pattern Punctuated Activity. Usually, such delays are small compare to

Timeouts (page 61) and belong to Silent Messages (Volume 7, page 339).

Time

Trace Mask 79

Trace Mask

Trace Mask is a superposition of two (or many) different traces. This is different

from Inter-Correlation (Volume 4, page 350) pattern where we may only search

for certain messages without the synthesis of a new log. The most useful Trace

Mask is when we have different time scales (or significantly different Statement

Currents, Volume 4, page 335). Then we impose an additional structure on the

one of the traces:

80 PART 5: Software Trace Analysis Patterns

Time Time

+

=
Time

Trace Mask 81

We got the idea from Narrative Masks discussed in Miroslav Drozda’s

book “Narativní masky ruské prózy” (”Narrative Masks in Russian Prose”).

The very simple example of Trace Mask is shown in Debugging TV13 Episode 0×15.

13 http://www.debugging.tv/

82 PART 5: Software Trace Analysis Patterns

Trace Viewpoints

Reading Boris Uspensky14’s book “A Poetics of Composition: The Structure of the

Artistic Text and Typology of a Compositional Form” (in its original Russian

version) led me to borrow the concept of viewpoints. The resulting analysis

pattern is called Trace Viewpoints. These viewpoints are, “subjective”

(semantically laden from the perspective of a trace and log reader), and can be

(not limited to):

• Error viewpoints (see also False Positive Error, Volume 5, page 303,

Periodic Error, Volume 3, page 344, and Error Distribution, Volume 7,

page 290)

• Use case (functional) viewpoints (see also Use Case Trail, Volume 8a,

page 101)

• Architectural (design) viewpoints (see also Milestones, Volume 8a, page

105)

• Implementation viewpoints (see also Implementation Discourse, Volume

6, page 245, Macrofunctions, Volume 7, page 283, and Focus of Tracing,

Volume 6, page 243)

• Non-functional viewpoints (see also Counter Value, Volume 7, page 288,

and Diegetic Messages, Volume 5, page 302)

• Signal / noise viewpoints (see also Background and Foreground

Components, Volume 5, page 287)

14 http://en.wikipedia.org/wiki/Boris_Uspensky

Trace Viewpoints 83

Time
PID TID Time Message

Error Viewpoint

Use Case Viewpoint

Architectural Viewpoint

Implementational Viewpoint

Non-Functional Viewpoint

In comparison, Activity Regions (Volume 4, page 348), Data Flow (Volume

7, page 296), Thread of Activity (Volume 4, page 339), and Adjoint Thread of

Activity (Volume 5, page 283) are “objective” (structural, syntactical) viewpoints.

84 PART 5: Software Trace Analysis Patterns

Data Reversal

Sometimes we notice that data values are in a different order than expected. We

call this pattern Data Reversal. By data values, we mean some variable parts of a

specific repeated message such the address of some structure or object. Data

Reversal may happen for one message type:

PID TID Time Message

Time

Data Reversal 85

But it can also happen for some message types and not for others. Typical

example here are Enter/Leave trace messages for nested synchronization objects

such as monitors and critical sections:

PID TID Time Message

Time
PID TID Time Message

Time

Since we talk about the same message type (the same Message Invariant,

Volume 6, page 251), this pattern is different from Event Sequence Order

(Volume 6, page 244) pattern.

In rare cases, we may observe Data Reversal inside one message with

several variable parts but this may also be a case of Data Association (Volume 7,

page 344).

86 PART 5: Software Trace Analysis Patterns

Recovered Messages

If we analyze ETW-based traces such as CDF we may frequently encounter No

Trace Metafile (Volume 5, page 296) pattern especially after product updates and

fixes. This complicates pattern analysis because we may not be able to see

Significant Events (Volume 5, page 281), Anchor Messages (Volume 5, page 293),

and Error Messages (Volume 7, page 299). In some cases, we can recover

messages by comparing Message Context (Volume 7, page 289) for unknown

messages. If we have source code access, this may also help. Both approaches are

illustrated in the following diagram:

Recovered Messages 87

PID TID Time Message

Time

 ?????????

Source code

foo()
{
 Trace (“...”);
 bar();
}

bar()
{
 Trace (“...”);
}

Trace from a different version

The same approach may also be applied for a different kind of trace

artifacts when some messages are corrupt. In such cases, it is possible to recover

diagnostic evidence and, therefore, we call this pattern Recovered Messages.

88 PART 5: Software Trace Analysis Patterns

Palimpsest Messages

Palimpsest Messages are messages where some part or all of their content was

erased or overwritten.

PID TID Time Message

Time

Name=’ ‘

IP=0.0.0.0

Palimpsest Messages 89

The name of this pattern comes from palimpsest15 manuscript scrolls. Such

messages may be a part of malnarratives (Volume 8a, page 121) or result from

Circular Tracing (Volume 3, page 346) or trace buffer corruption. Sometimes, not

all relevant data is erased and by using Intra- (Volume 3, page 347) and Inter-

Correlation (Volume 4, page 350), and via the analysis of Message Invariants

(Volume 6, page 251) it is possible to recover the original data. Also, as in

Recovered Messages (page 86) pattern it may be possible to use Message

Context (Volume 7, page 289) to infer some partial content.

15 http://en.wikipedia.org/wiki/Palimpsest

90 PART 5: Software Trace Analysis Patterns

 Old Data

PID TID Time Message

Time

 New Data

C
o

n
te

x
t

Message Space 91

Message Space

The message stream can be considered as a union of Message Spaces. A message

space is an ordered set of messages preserving the structure of the overall trace.

Such messages may be selected based on memory space they came from or can

be selected by some other general attribute, or a combination of attributes and

facts. The differences from Message Set (Volume 7, page 349) is that Message

Space is usually much larger (with large scale structure) with various Message

Sets extracted from it later for fine-grained analysis. This pattern also fits nicely

with Adjoint Spaces (page 68). Here’s an example of kernel and managed spaces

in the same CDF / ETW trace from Windows platform where we see that kernel

space messages came not only from System process but also from other process

contexts:

92 PART 5: Software Trace Analysis Patterns

PID TID Time Message

Time
PID TID Time Message

Time

 Kernel

 Space

 Managed

 Space

In the context of general traces and logs (page 121) such as debugger logs,

separate Message Space regions may be linked (or “surrounded”) by Interspace

(page 93).

Interspace 93

Interspace

General traces and logs (page 121) may have Message Space (page 91) regions

“surrounded” by the so-called Interspace. Such Interspace regions may link

individual Message Space regions like in this diagram generalizing WinDbg

!process 0 3f command output:

94 PART 5: Software Trace Analysis Patterns

Kernel Space

User Space

Kernel Space

User Space

Kernel Space

User Space

Interspace

Interspace

Interspace

...

...

WinDbg log Interspace
example: contains
information about
everything that is not a
stack trace:

ALPC requests
Synchronization objects
like mutants, threads,
and processes
Performance information
IRPs
Process environment
...
The parts of the output of
any command or script
that don’t contain stack
traces

Translated Message 95

Translated Message

Sometimes we have messages that report about the error but do not give exact

details. For example, “Communication error. The problem on the server side” or

“Access denied error”. This may be the case of Translated Messages. Such

messages are plain language descriptions or reinterpretations of flags, error and

status codes contained in another log message. These descriptions may be coming

from system API, for example, FormatMessage from Windows API, or may be

from the custom formatting code. Since the code translating the message is in

close proximity to the original message both messages usually follow each other

with zero or very small Time Delta (Volume 5, page 282), come from the same

component, file, function, and belong to the same Thread of Activity (Volume 4,

page 339):

96 PART 5: Software Trace Analysis Patterns

PID TID Time Message

Time

This pattern is different from Gossip (Volume 6, page 248) because the

latter messages come from different modules, and, although they reflect some

underlying event, they are independent of each.

Activity Disruption 97

Activity Disruption

Sometimes a few Error Messages (Volume 7, page 299) or Periodic Errors

(Volume 3, page 344) with low Statement Density (Volume 4, page 335) for

specific Activity Regions (Volume 4, page 348) or Adjoint Threads of Activity (for

specific component, file or function, Volume 5, page 283) may constitute Activity

Disruption. If the particular functionality was no longer available at the logging

time then its unavailability may not be explained by such disruptions, and such

messages may be considered False Positive Errors (Volume 5, page 303) in

relation to the reported problem:

98 PART 5: Software Trace Analysis Patterns

Time

But, if we have Periodic Message Blocks (Volume 7, page 300) containing

only Periodic Errors (Volume 3, page 344), Activity Region (Volume 4, page 348)

or Adjoint Thread (Volume 5, page 283) Discontinuity (Volume 4, page 341), or

simply No Activity (Volume 5, page 297), then we may have the complete cease

of activity that may correlate with the unavailable functionality:

Activity Disruption 99

Time

100 PART 5: Software Trace Analysis Patterns

[This page is intentionally left blank]

The Dump from the Future 101

PART 6: Fun with Debugging, Crash Dumps, and Traces

The Dump from the Future

deaddead: kd> !session

Sessions on machine: 3735936685

Exchange Rate on 16.12.14

102 PART 6: Fun with Debugging, Crash Dumps, and Traces

Check the Plug

Debugging Slang 103

Debugging Slang

YAWE

YAWE - Yet Another Windbg Extension

Embedded Software Engineer

A software engineer embedded in a non-software team.

Compare with: Embedded Technical Support Engineer.

Minute-wise

When we have two logs from different time zones or generated using different

time APIs, so we compare minutes.

Developer

One who uses bricks of books to build the walls of knowledge.

Multidigitalist

A person who simultaneously wears an Android watch, an Apple watch, and a

Microsoft Band.

104 PART 6: Fun with Debugging, Crash Dumps, and Traces

KgB

Hardcopy data measured in kilogram-bytes. Usage: We got plenty of KgB archives.

CIQ (Crash IQ)

Crash IQ (CIQ, pronounced “sick”) is the measure of intellectuality of a crash

dump and, reciprocally, the measure of system sickness. The less CIQ your crash

dump has, the easier your analysis. For example, compare low CIQ NULL pointer

issue with High CIQ system freeze.

Pat Ching

Pat Ching (patching) - from Pat (a light blow ... with ... instrument) and Ching

(Book of Changes).

Explosive Mixture

PowerBuilder VM + Visual Basic VM

POEM

A pointer to OEM. Example: I found a few poems in this memory dump.

Debugging Slang 105

YearNormous Day

YNK day calculated via formula YYYY-MM-DD = N000 or YYYY-DD-MM = N000.

Something eNormous may happen on that day.

eNormous

Normal in e-World (virtual) but may have a very big influence on Real World.

106 PART 6: Fun with Debugging, Crash Dumps, and Traces

2015 - The Year of RAM

Because 2015 is the true year of RAM we greet you again in memory dump

analysis style:

; random analysis of memory / reversing analysis of memory

0:001> g o a t 2015

Bp expression 'o ' could not be resolved, adding deferred bp

*** Bp expression 'o ' contains symbols not qualified with module

name.

Bp expression 't ' could not be resolved, adding deferred bp

*** Bp expression 't ' contains symbols not qualified with module

name.

Unable to insert breakpoint 10001 at 00000000`0000000a, Win32 error

0n299

 "Only part of a ReadProcessMemory or WriteProcessMemory request

was completed."

The breakpoint was set with BP. If you want breakpoints

to track module load/unload state you must use BU.

go bp10001 at 00000000`0000000a failed

Unable to insert breakpoint 10003 at 00000000`00002015, Win32 error

0n299

 "Only part of a ReadProcessMemory or WriteProcessMemory request

was completed."

The breakpoint was set with BP. If you want breakpoints

to track module load/unload state you must use BU.

go bp10003 at 00000000`00002015 failed

WaitForEvent failed

ntdll!DbgBreakPoint+0x1:

00000000`77280591 c3 ret

Diagnostics and Debugging in Science Fiction 107

Diagnostics and Debugging in Science Fiction

Here’s an incomplete list of SF short stories, novellas, and novels I have read by

the time of this writing with my summaries and thoughts.

"Guest of Honor" (by Robert Reed)

The imperfect solution to the problem of immortality, stupid death

accidents, and human curiosity. Humans designed for to bring memories

back to their parents. The possibility of suicidal memory resonance. The

terrible fear of being disassembled.

"The Man Who Walked Home" (by James Tiptree, Jr)

A malfunction absorbed in the greater malfunction. No diagnostics of the

former one is possible. What we see is "Dust from the future". Very sparse

trace messages, one per year. Takes centuries to get enough for

diagnostics. Diagnostics and Special Relativity. When Time becomes Space.

"Martian Blood" (by Allen M. Steele)

About the consequences of diagnostics.

"The Clockwork Atom Bomb" (by Dominic Green)

Set in post-WW3 African environment featuring black hole

troubleshooting.

"Pathways" (by Nancy Kress)

Prion debugging.

"The End of the World" (by Sushma Joshi)

A Nepalese town population enjoys the last meal on hearing such

prognostics. Then comes the end of the end.

108 PART 6: Fun with Debugging, Crash Dumps, and Traces

"Fermi and Frost" (by Frederik Pohl)

Bifurcation points in the narrative of nuclear apocalypse.

"Dinner in Audoghast" (by Bruce Sterling)

Prognostics at its best.

"The Discovered Country" (by Ian MacLeod)

A too perfect program is most likely malware.

"When Sysadmins Ruled the Earth" (by Cory Doctorow)

Fighting entropy after a global disaster. But whodunit?

"The Waiting Stars" (by Aliette de Bodard)

One's freedom is another's slavery. Prenatally modified births of space ship

control systems. Confucianism at cosmic scales. Deep memories that were

not erased cause severe depression. Unconsciousness in the computer,

consciousness in some human body. A body as a cage. The clash of

civilizations and a personal relationship. Unfolding of being.

"Seveneves" (by Neal Stephenson)

"... I'm right in the middle of debugging this method..."

"Mortimer Gray's History of Death" (by Brian Stableford)

Interesting SF novella: it combines two narratives; one is a literary criticism

of the multivolume history of death written millennia far into the future;

the other narrative is some kind of a fragmented memoir from the author

of that history book. The war on death is the main drive of humanity.

When death problematic is solved for individuals (becomes "a social

contract") and seems there's nothing to do (at least for the author) there

comes a distant existential death threat to all humanity that needs to be

fought off again (the author got the new meaning of life). What caught my

attention is this workaround pattern for software behavior: "I handed over

Diagnostics and Debugging in Science Fiction 109

full responsibility for answering all my calls to a state-of-the-art Personal

Simulation program, which grew so clever and so ambitious with practice

that it began to give live interviews on broadcast television. Although it

offered what was effectively no comment in a carefully elaborate fashion I

eventually thought it best to introduce a block into its operating system – a

block that ensured that my face dropped out of public sight for half a

century."

"Guardians of the Phoenix" (by Eric Brown)

Horrors of cannibals encounter in the post-apocalyptic Earth (after China

invaded India) reminded me "The 13th Warrior" movie. You still debug at

the electronic high system level there (replace transistors when they

blow).

110 PART 6: Fun with Debugging, Crash Dumps, and Traces

Software and Hardware Exceptions

Gloomy outlook before I started my work on Pattern 0n222 (Software Exception)

Software and Hardware Exceptions 111

But after I finished my work on Pattern 0n222 (Software Exception)

weather improved with Hardware Exception:

112 PART 6: Fun with Debugging, Crash Dumps, and Traces

Logging for Kids

Trace in Space from the Log of Trace Malone Space Detective

• ISBN-13: 9780340626696

• Publisher: Hodder Headline plc

• Publication date: 2/29/2000

• Pages: 118

• Description: “Trace is the youngest-ever cadet in charge of her own

spaceship. Unfortunately, her crew consists of a computer with an

attitude, a droid with the personality chip of a surfer and an armadillo.

Now the team has its first mission to find the missing computer chips

from Planet Megalon.”

Find the Bug 113

Find the Bug

114 PART 6: Fun with Debugging, Crash Dumps, and Traces

Music for Debugging

• “The 50 Darkest Pieces of Classical Music”. Great quality recordings on Fostex

TH600 headphones and Marantz CD player.

• In addition to well-known composers, we also discovered Suite Gothique

(Boëllmann) / Toccata for organ.

• Music for tracing. Gloria Coates String Quartet No. 5. The tracks:

1. Through Time

2. Through Space

3. In the Fifth Dimension

Tracing and Counting Book 115

Tracing and Counting Book

116 PART 6: Fun with Debugging, Crash Dumps, and Traces

The Last Error

Looks like I'm not the first "Vostokov" to talk about errors. Just found 1966

"L'ultimo errore" book (The Last Error) by Vladimir Vostokov and Oleg Smelov.

Interesting that there is a crash dump analysis pattern called Last Error Collection.

This seems to be a well-known Soviet espionage thriller and the author

"Vostokov" is actually a pseudonym.

Patching the Hardware Defect 117

Patching the Hardware Defect

118 PART 6: Fun with Debugging, Crash Dumps, and Traces

Pattern Match

Coding and Articoding 119

PART 7: Software Narratology

Coding and Articoding

The analysis of software traces and logs is largely a qualitative activity. We look

for specific problem domain patterns using general analysis patterns16. Some

methodological aspects of this software defect research are similar to “qualitative

research” method in social sciences17. The latter method uses the so-called

“coding” techniques for data analysis18. Software traces and debugger logs from

memory dumps are software execution artifacts we previously called DA+TA

(Dump Artifact + Trace Artifact)19. We propose to use similar “coding” techniques

to annotate them with diagnostic indicators, signal, and sign mnemonics, and

patterns (such as software diagnosis codes20). We, therefore, call this software

post-construction “coding” as articoding (artecoding), from artifact (artefact) +

coding, to distinguish it from software construction coding. Such articoding forms

a part of software post-construction problem solving21. Articodes form a second

order software narrative22 and can be articoded too.

Many software tools were developed for assisting qualitative research

coding, and these can be reused for “coding” debugger logs, for example. In

addition to those tools, general word and table processing programs can be used

as well for some types of artifacts. Here we show MS Word for a WinDbg log

example. The debugger log with stack traces from all processes and threads was

16 Memory Dump Analysis Anthology, Volume 7, page 393

17 http://en.wikipedia.org/wiki/Qualitative_research

18 http://en.wikipedia.org/wiki/Qualitative_research#Coding

19 Memory Dump Analysis Anthology, Volume 3, page 330

20 Volume 7, page 446

21 Introduction to Pattern-Driven Software Problem Solving, page 8

22 Memory Dump Analysis Anthology, Volume 8a, page 123

http://en.wikipedia.org/wiki/Qualitative_research
http://en.wikipedia.org/wiki/Qualitative_research#Coding

120 PART 7: Software Narratology

loaded into MS Word template table with 3 columns. The first column is the log

itself, the second column is for diagnostic indicators (such as critical section, CPU

consumption, ALPC wait, etc.), and the third column is for pattern language

articodes (here we use pattern names from Memory Analysis Pattern Catalogue23,

for traces we can use MS Excel and Trace and Log Analysis Pattern Catalogue24).

Formatting and highlighting creativity here is unlimited. Irrelevant parts from the

log can be deleted, and the final analysis log can have only relevant annotated

tracing information.

The full-size picture can be found here:

http://www.dumpanalysis.org/blog/files/ArticodingExample.png

23 Encyclopedia of Crash Dump Analysis Patterns

24 Software Trace and Log Analysis: A Pattern Reference

http://www.dumpanalysis.org/blog/files/ArticodingExample.png

Special and General Trace and Log Analysis 121

PART 8: Software Diagnostics, Troubleshooting, and Debugging

Special and General Trace and Log Analysis

Most software traces include message timestamps or have an implicit time arrow

via sequential ordering. We call such traces Special. The analysis is special too

because causality is easily seen. Typical examples of analysis patterns here are

Discontinuity (Volume 4, page 341), Time Delta (Volume 5, page 282), Event

Sequence Order (Volume 6, page 244), Data Flow (Volume 7, page 296, see also

time dependency markers in the training course reference25), and more recently

added patterns such as Back Trace (Volume 8a, page 95), Timeout (page 61),

Milestones (Volume 8a, page 105), and Event Sequence Phase (Volume 8a, page

103). Inter- (Volume 4, page 350) and Intra-Correlation (Volume 3, page 347)

analysis is also easy.

25 http://www.patterndiagnostics.com/Training/Accelerated-Windows-
Software-Trace-Analysis-Public.pdf

http://www.patterndiagnostics.com/Training/Accelerated-Windows-Software-Trace-Analysis-Public.pdf
http://www.patterndiagnostics.com/Training/Accelerated-Windows-Software-Trace-Analysis-Public.pdf

122 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Time

On the other side, there are plenty of software logs or digital media

artifacts with “chaotic” records where time arrow is missing or only partial.

Typical examples are debugger logs from WinDbg debugger from Microsoft

Debugging Tools for Windows or logs from debugging sessions on other

platforms. Such logs may contain global ordering such as the list of processes and

threads (Last Object memory analysis pattern, Volume 8a, page 37) interspaced

with local pockets of stack traces that have reversed ordering. Some logging

output may not have any ordering or timing information whatever.

Special and General Trace and Log Analysis 123

In a more general case, logging may be completely arbitrarily. A typical

example is raw stack analysis and its Rough Stack Trace (Volume 8a, page 39) and

Past Stack Trace (Volume 8a, page 43) patterns.

124 PART 8: Software Diagnostics, Troubleshooting, and Debugging

T4

T4

T2

T1

T2

T4

T1

T3

T4

T1

T3

We call such traces General. The main task of general trace analysis is to

recover causality. It may be possible if another analysis pattern is introduced

called Causality Markers. The prototypes of such a pattern are various Wait

Chains26, Waiting Thread Time (Volume 1, page 343) memory analysis pattern

and its process memory dump equivalent (Volume 2, page 319).

26 Encyclopedia of Crash Dump Analysis Patterns, page 952

Projective Debugging 125

Projective Debugging

Modern software systems and products are hard to debug despite their elaborate

tracing and logging facilities. Typical logs may include millions of trace messages

from hundreds and thousands of components, processes, and threads. The

postmortem diagnostic analysis became more structural after the introduction of

Trace and Log Analysis Patterns27 but live debugging requires a lot more efforts.

Here we introduce Projective Debugging as a tool for trace-level debugging. Its

main idea is to analyze, diagnose and debug the so-called “projected” execution

of software as seen from the original software execution traces and logs:

Original
Software
Execution

Projected
Software

as seen from
traces and logs

Time

Picture 1. Original software execution is mapped into projected software as seen

from traces and logs.

27 Software Trace and Log Analysis: A Pattern Reference (ISBN: 978-1-
908043801)

126 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Please notice, that Projective Debugging is different from the so-called

Prototype Debugging by creating models after the software product is built (some

engineering methodologies prescribe that prototypes should be discarded before

building the product):

Original
Software

Prototype
Software

Time

Picture 2. The prototype software is mapped into the product.

Projective Debugging 127

The problems diagnosed and solved in the projected system are fed back

into the original system:

Debugged
Original

Software

Projected
Software Execution

Debugged
Projected
Software

Picture 3. Debugged projected software is mapped into the original software.

128 PART 8: Software Diagnostics, Troubleshooting, and Debugging

The implementation of the main idea of Projective Debugging is that: we

can take a trace or log, interpret every trace message according to some rules,

and translate it into executable code mirroring components and execution

entities such as user sessions, processes, and threads. This is a task for the

Projective Debugger, and it is illustrated in the following diagram where we

borrowed notation from UML:

Original Product Execution Execution Trace or Log

Projective DebuggerProjected Product Execution

Picture 4. The logs and traces from the original product execution are translated

by Projective Debugger.

For example, the Projective Debugger (ProjectiveDebugger.exe) interprets

these very simple messages below, and creates a process PID220.exe (we have

only one thread), and then opens a file “data.txt”. After 10 seconds, it closes the

file.

Time PID TID Message

11:00:00 220 330 Open “data.txt”

11:00:10 220 330 Close “data.txt”

Projective Debugging 129

In addition to executing code corresponding to messages using the same

time deltas as read from the trace, it may scale execution time proportionally, for

example, executing 2-day log in a matter of minutes. Such scaling may also

uncover additional synchronization bugs.

The trace may be pre-processed, and all necessary objects created before

execution or it may be interpreted line by line. For complex traces, the projected

source code may be generated for later compilation, linking, and execution. Once

the projected code is executed, breakpoints may be set on existing traces, and

other types of Debugging Implementation Patterns28 may be applied. Moreover,

we may re-execute the trace several times and even have some limited form of

backward execution.

28 Accelerated Windows Debugging3 (ISBN: 978-1908043566)

130 PART 8: Software Diagnostics, Troubleshooting, and Debugging

The resulting code model can be inspected by native debuggers for the

presence of Memory Analysis Patterns29 and can even have its own logging

instrumentation with traces and logs analyzed by another instance of the

Projective Debugger:

Projective DebuggerProjected Product Execution

 Execution Trace or LogNative Debugger

Projective Debugger
Projected Product

Execution

Picture 5. Projected Product Execution is inspected by a native debugger and also

generates its own set of traces and logs to be projected to another model by

another instance of the Projected Debugger.

29 Encyclopedia of Crash Dump Analysis Patterns: Detecting Abnormal
Software Structure and Behavior in Computer Memory (ISBN: 978-1-906717216)

Projective Debugging 131

We created the first version of the Projective Debugger and successfully

applied to a small trace involving synchronization primitives across several

threads. The Projective Debugger was able to translate it into an executable

model with the same number of threads and the same synchronization primitives

and logic. The resulting process was hung as expected and we attached a native

debugger (WinDbg for Windows) and found a deadlock.

Since traces are analyzed from platform-independent Software

Narratology30 perspective, it is possible to get a trace from one operating system,

and then, after applying a set of rules, re-interpret it into an executable model in

another operating system. We created the similar multithreading test program on

Mac OS X that was hung and reinterpreted its trace into an executable model

under Windows:

30 Software Narratology: An Introduction to the Applied Science of
Software Stories (ISBN: 978-1908043078)

132 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Original Product Execution Execution Trace or Log

Projective DebuggerProjected Product Execution

Mac OS X

Windows

Picture 6. The traces and logs from the original product execution on Mac OS X are

projected by a Windows version of Projective Debugger into an executable model

for a Windows platform.

Since resultant executable models can also have corresponding logging

instrumentation mirroring original tracing, any problems found in executable

models can be fixed iteratively and, once the problem disappears, the resulting fix

or configuration may be incorporated into the original product or system.

If tracing involves kernel space and mode, a specialized projected

executable can be created to model the operating system and driver level.

Projective Debugging 133

The more trace data you have, the more real your projected execution

becomes. However, we want to have enough tracing statements but not to

complicate the projected model. Then, ideally, we should trace only relevant

behavior, for example, corresponding to use cases and architecture.

Projective Debugging may also improve your system or product

maintainability by highlighting whether you need more tracing statements and

whether you need more accurate and complete tracing statements.

134 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Pattern! What Pattern?

There is confusion about patterns of diagnostics such as related to crash dump

analysis and software trace and log analysis. We are often asked about pattern

percentage detection rate or whether it is possible to automate pattern

diagnostics. Before asking and answering such questions, it is important to

understand what kinds of patterns are meant. Patterns of diagnostics can be

subdivided into concrete and general problem patterns, and, also, into concrete

and general analysis patterns.

Problem patterns are simply diagnostic patterns, and they can be defined

as (fusing Diagnostic Pattern31 and Diagnostic Problem32 definitions):

A common recurrent identifiable set of indicators (signs) together with a set

of recommendations and possible solutions to apply in a specific context.

Concrete Problem Patterns are particular sets of indicators, for example,

an exception stack trace showing an invalid memory access in the particular

function from the particular component/module code loaded and executed on

Windows platform.

But such indicators can be generalized from different products and OS

platforms giving rise to General Problem Patterns forming a pattern language.

Our previous example can be generalized as Exception Stack Trace (Volume 4,

page 337) showing Invalid Pointer (Volume 1, page 267) and Exception Module

(Volume 8a, page 80). Concrete Problem Patterns are the implementation of the

corresponding General Problem Patterns.

Now, it becomes clear why Memory Analysis Pattern Catalog33 doesn’t

have any concrete BSOD bugcheck numbers. Most of such numbers are concrete

implementations of Self-Diagnosis (Volume 6, page 89) pattern.

31 Pattern-Oriented Software Forensics: A Foundation of Memory Forensics
and Forensics of Things, page 13

32 Ibid., page 14

Pattern! What Pattern? 135

Then we have Concrete Analysis Patterns as particular techniques to

uncover Concrete Problem Patterns. For example, thread raw stack analysis for

historical information to reconstruct a stack trace. Again, such techniques vary

between OS platform and even between debuggers.

Generalizing again, we have General Analysis Patterns, for example,

analyzing Historical Information (Volume 1, page 458) in Execution Residue

(Volume 2, page 239) to construct Glued Stack Trace (Volume 7, page 178).

General Problem Pattern descriptions may already reference General

Analysis Patterns, and in some cases, both may coincide. For example, Hidden

Exception (Volume 1, page 271) pattern uses Execution Residue pattern as a

technique to uncover such exceptions.

Most of Software Trace and Log Analysis Patterns34 are General Analysis

Patterns that were devised and cataloged to structure the analysis of the diverse

logs from different products and OS platforms35. For example, a specific data

value common to both working and problem logs that helps to find out the

missing information from the problem description can be generalized to Inter-

Correlation (Volume 4, page 350) analysis between the problem trace and Master

Trace (Volume 6, page 247) using Shared Point (Volume 7, page 341).

33 Encyclopedia of Crash Dump Analysis Patterns

34 Software Trace and Log Analysis: A Pattern Reference

35 Malware Narratives: An Introduction, page 14

136 PART 8: Software Diagnostics, Troubleshooting, and Debugging

This partitioning is depicted in the following diagram:

General Analysis PatternsConcrete Analysis Patterns

Concrete Problem Patterns General Problem Patterns

Software Diagnostics Institute36 innovation is in devising and cataloging

general problem and analysis patterns and providing some concrete analysis

implementations on specific OS platforms such as Windows and Mac OS X.

36 http://www.DumpAnalysis.org + http://www.TraceAnalysis.org

http://www.dumpanalysis.org/
http://www.traceanalysis.org/

I Didn’t See Anything 137

I D idn’t See Anything

How often do you hear that back from support departments when you submit

your memory dumps and software logs? “Analysis inconclusive”, “logs or crash

dumps are not good”, “I need more”, “liaise with another vendor”, and many

others hide the same response behind the elaborate narrative façade. Based on

the audit of memory dump analysis reports submitted to Software Diagnostics

Services (former Memory Dump Analysis Services) by its customers over the

course of the last few years I think such responses usually result from support

engineers not utilizing the proper software diagnostics methodology, for example,

using only what they remembered from their own past diagnostics,

troubleshooting, and debugging practice. What is a solution to this problem?

Software Diagnostics Institute (DumpAnalysis.org + TraceAnalysis.org) has

been collecting analysis patterns for the past 8 years in cooperation with Software

Diagnostics Services providing research funds and software execution artifacts.

Patterns are organized into pattern catalogs, and checklists are recommended.

The approach is called Pattern-Oriented Diagnostics which has 3 parts: pattern-

driven, systemic, and pattern-based. Pattern-driven means that you go through

the list of patterns and report ones you found and not found. This may be done

iteratively. Systemic part means you can apply the same general patterns across

different software execution artifacts, products, and operating systems. Pattern-

based means you iteratively extend and improve your pattern catalogs and use

Pattern-View-Controller diagnostics architecture.

Please find the following presentations for each part:

• Pattern-Driven: http://www.patterndiagnostics.com/Introduction-
Software-Diagnostics-materials

• Systemic: http://www.patterndiagnostics.com/systemic-diagnostics-
materials

• Pattern-Based: http://www.patterndiagnostics.com/pattern-based-
diagnostics-materials

• Pattern-View-Controller: http://www.dumpanalysis.org/patterns-view-
controller

http://www.patterndiagnostics.com/Introduction-Software-Diagnostics-materials
http://www.patterndiagnostics.com/Introduction-Software-Diagnostics-materials
http://www.patterndiagnostics.com/systemic-diagnostics-materials
http://www.patterndiagnostics.com/systemic-diagnostics-materials
http://www.patterndiagnostics.com/pattern-based-diagnostics-materials
http://www.patterndiagnostics.com/pattern-based-diagnostics-materials
http://www.dumpanalysis.org/patterns-view-controller
http://www.dumpanalysis.org/patterns-view-controller

138 PART 8: Software Diagnostics, Troubleshooting, and Debugging

This is a very flexible approach already applied to malware detection and

analysis, digital forensics, debugging, and network trace analysis. You can find

more here:

http://www.patterndiagnostics.com/training-materials

So the next time you hear a similar response from an engineer ask to

provide the list of patterns not found in your memory dumps, traces, and logs.

http://www.patterndiagnostics.com/training-materials

Diagnostics Designer Glasses 139

PART 9: Art and Photography

Diagnostics Designer Glasses

DA TA

140 PART 9: Art and Photography

Pattern Diagnostics Logo

Defect

Detect

Happy Valentine’s Day 141

Happy Valentine’s Day

142 PART 9: Art and Photography

50 Shades of Crash Dump

Computer Universe 143

Computer Universe

144 PART 9: Art and Photography

Failed Surveillance

Debugging Allegory on FEB 23 145

Debugging Allegory on FEB 23

146 PART 9: Art and Photography

Object in Signaled State

Kernel Space Starts with 8 147

Kernel Space Starts with 8

148 PART 9: Art and Photography

The Day of ST. P. The Elimination of Sna kes

The Fifth Column 149

The Fifth Column

150 PART 9: Art and Photography

Proportionate Disproportionate Proportion

Autoportrait in 5 Objects 151

Autoportrait in 5 Objects

152 PART 9: Art and Photography

Kernel Works

Chip Forensics 153

Chip Forensics

154 PART 9: Art and Photography

Industrial Windows

The Meaning of Life 155

The Meaning of Life

156 PART 9: Art and Photography

Hidden Bug

Artifact-Malware and its Primary and Secondary Effects 157

PART 10: Memory Forensics

Artifact-Malware and its Primary and Secondary Effects

Once we saw an article in Facebook stream about trolling airline passengers.

When they descend to an airport, they read a different city name written in large

letters on the roof of some house.

An idea came to us to model this behavior for memory dump analysis:

when we analyze crash dumps we usually rely on the output of some commands

that redirect or reformat the contents of memory. For example, lmv WinDbg

command shows module resource information such as its product name,

copyright information, etc. What if that information were deliberately crafted to

deceive and disturb software diagnostics and debugging process, and ultimately

to explore possible vulnerabilities there? Popular debuggers have their own

vulnerabilities37 which may be used not only for anti-debugging purposes. When

we say “deliberately crafted” we don’t mean Fake Module (Volume 7, page 240)

malware analysis pattern that is about a module that tries to present itself as

another legitimate, well-known module. Also, we are not concerned with false

positive decoy artifacts38. In our case Artifact-Malware, as we call it (or Arti-

Malware for short, not to confuse with anti-malware), intentionally leaves

malicious legitimate artifacts in software execution artifacts (such as memory

dumps, traces, and logs) deliberately structured to alter execution of static

analysis tools such as debuggers, disassemblers, reversing tools, etc. Such artifacts

in artifacts may suggest exploring them further as possible culprits of abnormal

software behavior thus triggering certain software and human vulnerabilities, and

even social engineering attacks (when they suggest calling a phone number).

37 M. Sikorski, A. Honig, Practical Malware Analysis, Debugger
Vulnerabilities, page 363

38 A. Walters, N. Petroni, Jr., Volatools: Integrating Volatile Memory
Forensics into the Digital Investigation Process
(http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-
Walters-WP.pdf)

http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf

158 PART 10: Memory Forensics

To model this, we quickly created a small Visual C++ project called

TrollingApp and inserted version info resource. Normally WinDbg lmv command

would show something like this:

0:000> lmv m TrollingModule

start end module name

00000001`3ff50000 00000001`3ff58000 TrollingModule C (private pdb

symbols) C:\Work\TrollingApp\x64\Release\TrollingModule.pdb

 Loaded symbol image file: TrollingModule.exe

 Image path: C:\Work\TrollingApp\x64\Release\TrollingModule.exe

 Image name: TrollingModule.exe

 Timestamp: Sat Jun 27 10:28:47 2015 (558E6CCF)

 CheckSum: 00000000

 ImageSize: 00008000

 File version: 1.0.0.1

 Product version: 1.0.0.1

 File flags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 1.0 App

 File date: 00000000.00000000

 Translations: 1809.04b0

 CompanyName: TODO: <Company name>

 ProductName: TODO: <Product name>

 InternalName: TrollingModule.exe

 OriginalFilename: TrollingModule.exe

 ProductVersion: 1.0.0.1

 FileVersion: 1.0.0.1

 FileDescription: TODO: <File description>

 LegalCopyright: Copyright © 2015 by Software Diagnostics

Institute

Since LegalCopyright is the last field shown in the formatted output, we

changed it to contain the long string of “\r\n” characters intended to scroll away

module information. The string was long as it was allowed by the resource

compiler.

VS_VERSION_INFO VERSIONINFO

 FILEVERSION 1,0,0,1

 PRODUCTVERSION 1,0,0,1

 FILEFLAGSMASK 0x3fL

 FILEFLAGS 0x0L

 FILEOS 0x40004L

 FILETYPE 0x1L

 FILESUBTYPE 0x0L

BEGIN

 BLOCK "StringFileInfo"

 BEGIN

 BLOCK "180904b0"

Artifact-Malware and its Primary and Secondary Effects 159

 BEGIN

 VALUE "CompanyName", "TODO: <Company name>"

 VALUE "FileDescription", "TODO: <File description>"

 VALUE "FileVersion", "1.0.0.1"

 VALUE "InternalName", "TrollingModule.exe"

 VALUE "LegalCopyright", "\r\n\r\n\r\n ... "

 VALUE "OriginalFilename", "TrollingModule.exe"

 VALUE "ProductName", "TODO: <Product name>"

 VALUE "ProductVersion", "1.0.0.1"

 END

 END

 BLOCK "VarFileInfo"

 BEGIN

 VALUE "Translation", 0x1809, 1200

 END

END

The program itself is very simple triggering a NULL pointer exception to

generate a crash dump (we configured LocalDumps registry key on Windows 7).

int _tmain(int argc, _TCHAR* argv[])

{

 int *p = 0;

 *p = 0;

 return 0;

}

So we opened a crash dump and checked the stack trace which suggested

checking information about TrollingModule (as Exception Module memory

analysis pattern, Volume 8a, page 80):

Loading Dump File [C:\MemoryDumps\TrollingModule.exe.2076.dmp]

User Mini Dump File with Full Memory: Only application data is available

Windows 7 Version 7601 (Service Pack 1) MP (4 procs) Free x64

Product: WinNt, suite: SingleUserTS Personal

Machine Name:

Debug session time: Sat Jun 27 10:28:58.000 2015 (UTC + 1:00)

System Uptime: 3 days 21:28:51.750

Process Uptime: 0 days 0:00:01.000

.....

This dump file has an exception of interest stored in it.

The stored exception information can be accessed via .ecxr.

(81c.1604): Access violation - code c0000005 (first/second chance not

available)

ntdll!NtWaitForMultipleObjects+0xa:

00000000`7769186a c3 ret

0:000> .symfix c:\mss

0:000> .reload

.....

160 PART 10: Memory Forensics

0:000> kL

Child-SP RetAddr Call Site

00000000`001fe6d8 000007fe`fd741430 ntdll!NtWaitForMultipleObjects+0xa

00000000`001fe6e0 00000000`77541723 KERNELBASE!WaitForMultipleObjectsEx+0xe8

00000000`001fe7e0 00000000`775bb5e5

kernel32!WaitForMultipleObjectsExImplementation+0xb3

00000000`001fe870 00000000`775bb767 kernel32!WerpReportFaultInternal+0x215

00000000`001fe910 00000000`775bb7bf kernel32!WerpReportFault+0x77

00000000`001fe940 00000000`775bb9dc kernel32!BasepReportFault+0x1f

00000000`001fe970 00000000`776d3398 kernel32!UnhandledExceptionFilter+0x1fc

00000000`001fea50 00000000`776585c8 ntdll! ?? ::FNODOBFM::`string'+0x2365

00000000`001fea80 00000000`77669d2d ntdll!_C_specific_handler+0x8c

00000000`001feaf0 00000000`776591cf ntdll!RtlpExecuteHandlerForException+0xd

00000000`001feb20 00000000`77691248 ntdll!RtlDispatchException+0x45a

00000000`001ff200 00000001`3ff51002 ntdll!KiUserExceptionDispatch+0x2e

00000000`001ff908 00000001`3ff51283 TrollingModule!wmain+0x2

00000000`001ff910 00000000`775359ed TrollingModule!__tmainCRTStartup+0x10f

00000000`001ff940 00000000`7766c541 kernel32!BaseThreadInitThunk+0xd

00000000`001ff970 00000000`00000000 ntdll!RtlUserThreadStart+0x1d

But when we executed lmv command we saw the blank screen with some

UNICODE symbols at the end:

Artifact-Malware and its Primary and Secondary Effects 161

Not only we triggered the scroll but the artifact buffer somehow caused

additional unintended consequences.

We were also surprised by the second order effects. We were curious

about what that Unicode string was meant and copied it to Google translate page

in IE. It was hanging afterward spiking CPU when we were switching to that tab.

We tried to save a crash dump using Task Manager, but it failed with a message

about an error in ReadProcessMemory API and, although, the crash dump was

saved, it was corrupt. The tab was recovered, and we were not able to reproduce

it again. Perhaps, the browser was already in an abnormal state because on the

second attempt it behaved better:

Simple Google search shows that such output also appeared in different

problems such as related to PDF printing:

In conclusion, we say that the primary effect of arti-malware is abnormal

software behavior in static analysis tools. We have the secondary effect when

information produced by a static analysis tool triggers abnormal software

behavior in another analysis tool.

162 PART 10: Memory Forensics

[This page is intentionally left blank]

Quotes 163

PART 11: Miscellaneous

Quotes

These are my selected thoughts I posted previously on Facebook, Twitter, and

where appropriate, on LinkedIn.

Strong AI (if it ever exists) does not pose a threat to humanity if designed with

defects.

Pattern languages facilitate critical thinking and clear writing in software

diagnostics and forensics.

If the software can eat your data, it can vomit it too.

The right question to ask when your program doesn't work is "Please give me a

memory dump or trace/log or both". If you can't ask this question, then rethink

your diagnostics strategy.

One letter makes a difference: cash dump vs. crash dump.

Windows kernel trivia: RIP results from IRP permutation.

There are numbers you see and instantly feel suspicion.

HIWORD is not 'Hi' word and LOWORD is not 'Lo' word (archaic greeting).

Most if not all of postmodern philosophy can be explained by trace and log

analysis patterns.

Occupy Memory Space!

It is better if a process hangs earlier in the long journey. You have a chance to

revise your strategy.

A network outage is an opportunity to read a book.

164 PART 11: Miscellaneous

It is important to teach problem-solving skills. However, it is more important to

teach the right solving of the correctly identified problems. It is only attainable

through the broad diagnostics education.

A product intended to simplify user experience may actually complexify internal

workings of the software environment.

A Hegelian approach to truth: being in opposition to the opposition.

A C++ object definition that is also grammatically correct: An obj;

Memory dump analysis is the job of the future.

One of the oldest TCP implementations was over pipes (in prisons).

Diagnostics: the science of focusing on problems, not solutions.

A diagnostics masterpiece is akin to the work of a sculptor. From the mass of

possible patterns only a few relevant remain.

Computers value status more than humans do.

When you see a complete memory dump for the first time from the board of your

debugger, you feel memory space sickness. But then you adapt.

In the future world without software crashes, hangs, spikes, leaks, and just bugs

software engineers will indulge themselves with writing bad code.

Books and Beers have the same pattern: B[vvc]s.

You need a solid software architecture to support bug fixing.

Status Updates 165

Status Updates

Facebook or LinkedIn status updates are forms of software logs, and we can apply

the whole pattern analysis apparatus to them:

http://www.dumpanalysis.org/trace-log-analysis-pattern-reference

http://www.dumpanalysis.org/trace-log-analysis-pattern-reference

166 PART 11: Miscellaneous

Execution Residue

Patterns are Weapons for Massive Debugging 167

Appendix

Patterns are Weapons for Massive Debugging

168 Appendix

Crash Dump Analysis Checklist

General:

• Symbol servers (.symfix)

• Internal database(s) search

• Google or Microsoft search for suspected components as this could be a
known issue. Sometimes a simple search immediately points to the fix on
a vendor’s site

• The tool used to save a dump (to flag false positive, incomplete or
inconsistent dumps)

• OS/SP version (version)

• Language

• Debug time

• System uptime

• Computer name (dS srv!srvcomputername or !envvar COMPUTERNAME)

• List of loaded and unloaded modules (lmv or !dlls)

• Hardware configuration (!sysinfo)

• .kframes 1000

Application or service:

• Default analysis (!analyze -v or !analyze -v -hang for hangs)

• Critical sections (!cs -s -l -o, !locks) for both crashes and hangs

• Component timestamps, duplication, and paths. DLL Hell? (lmv and !dlls)

• Do any newer components exist?

• Process threads (~*kv or !uniqstack) for multiple exceptions and blocking

functions

• Process uptime

• Your components on the full raw stack of the problem thread

• Your components on the full raw stack of the main application thread

• Process size

• Number of threads

• Gflags value (!gflag)

• Time consumed by threads (!runaway)

• Environment (!peb)

• Import table (!dh)

• Hooked functions (!chkimg)

• Exception handlers (!exchain)

Crash Dump Analysis Checklist 169

• Computer name (!envvar COMPUTERNAME)

• Process heap stats and validation (!heap -s, !heap -s -v)

• CLR threads? (mscorwks or clr modules on stack traces) Yes: use .NET

checklist below

• Hidden (unhandled and handled) exceptions on thread raw stacks

System hang:

• Default analysis (!analyze -v -hang)

• ERESOURCE contention (!locks)

• Processes and virtual memory including session space (!vm 4)

• Important services are present and not hanging (for example, terminal or
IMA services for Citrix environments)

• Pools (!poolused)

• Waiting threads (!stacks)

• Critical system queues (!exqueue f)

• I/O (!irpfind)

• The list of all thread stack traces (!process 0 3f)

• LPC/ALPC chain for suspected threads (!lpc message or !alpc /m after
search for "Waiting for reply to LPC" or "Waiting for reply to ALPC" in
!process 0 3f output)

• Mutants (search for "Mutants - owning thread" in !process 0 3f output)

• Critical sections for suspected processes (!cs -l -o -s)

• Sessions, session processes (!session, !sprocess)

• Processes (size, handle table size) (!process 0 0)

• Running threads (!running)

• Ready threads (!ready)

• DPC queues (!dpcs)

• The list of APCs (!apc)

• Internal queued spinlocks (!qlocks)

• Computer name (dS srv!srvcomputername)

• File cache, VACB (!filecache)

• File objects for blocked thread IRPs (!irp -> !fileobj)

• Network (!ndiskd.miniports and !ndiskd.pktpools)

• Disk (!scsikd.classext -> !scsikd.classext class_device 2)

• Modules rdbss, mrxdav, mup, mrxsmb in stack traces

• Functions Ntfs!Ntfs* and nt!Fs* in stack traces

170 Appendix

BSOD:

• Default analysis (!analyze -v)

• Pool address (!pool)

• Component timestamps (lmv)

• Processes and virtual memory (!vm 4)

• Current threads on other processors

• Raw stack

• Bugcheck description (including ln exception address for corrupt or
truncated dumps)

• Bugcheck callback data (!bugdump for systems prior to Windows XP SP1)

• Bugcheck secondary callback data (.enumtag)

• Computer name (dS srv!srvcomputername)

• Hardware configuration (!sysinfo)

.NET application or service:

• CLR module and SOS extension versions (lmv and .chain)

• Managed exceptions (~*e !pe)

• Nested managed exceptions (!pe -nested)

• Managed threads (!Threads -special)

• Managed stack traces (~*e !CLRStack)

• Managed execution residue (~*e !DumpStackObjects and

!DumpRuntimeTypes)

• Managed heap (!VerifyHeap, !DumpHeap -stat and !eeheap -gc)

• GC handles (!GCHandles, !GCHandleLeaks)

• Finalizer queue (!FinalizeQueue)

• Sync blocks (!syncblk)

 171

Index of WinDbg Commands

!address, 50, 55

!alpc, 167

!analyze, 41, 166, 167, 168

!bugdump, 168

!chkimg, 166

!CLRStack, 23, 168

!cs, 166, 167

!dh, 166

!dlls, 166

!dpcs, 167

!DumpHeap, 168

!DumpObj, 41

!DumpRuntimeTypes, 168

!DumpStackObjects, 168

!eeheap, 168

!envvar, 166, 167

!error, 49

!exchain, 166

!exqueue, 167

!filecache, 167

!fileobj, 167

!FinalizeQueue, 168

!GCHandleLeaks, 168

!GCHandles, 168

!gflag, 166

!gle, 48

!heap, 167

!irp, 167

!irpfind, 167

!locks, 166, 167

!lpc, 167

!ndiskd.miniports, 167

!ndiskd.pktpools, 167

!object, 16

!obtrace, 18

!pe, 168

!peb, 166

!pool, 168

!poolused, 16, 17, 167

!process, 11, 15, 30, 92, 167

!qlocks, 167

!ready, 167

!runaway, 47, 166

!running, 167

!scsikd.classext, 167

!session, 99, 167

!sprocess, 11, 167

!stacks, 43, 167

!sw, 45

!syncblk, 168

!sysinfo, 166, 168

!teb, 48

!thread, 11

!Threads, 168

!uniqstack, 166

!VerifyHeap, 168

!vm, 167, 168

.asm, 50

.chain, 168

.enumtag, 168

.kframes, 166

.load, 45

.reload, 45, 157

.symfix, 45, 157, 166

~, 166, 168

~*kv, 166

dc, 50, 155

dps, 49, 55

dS, 166, 167, 168

dt, 26, 27, 28

kL, 29, 46, 158

lmv, 56, 155, 156, 158, 166, 168

ln, 168

s, 166, 167

s-d, 55

ub, 24, 25, 49

	Preface
	About the Author
	PART 1: Professional Crash Dump Analysis and Debugging
	Win32 Start Address Fallacy
	Multidimensionality of Exceptions

	PART 2: Crash Dump Analysis Patterns
	Reference Leak
	Origin Module
	Hidden Call
	Corrupt Structure
	Software Exception
	Crashed Process
	Variable Subtrace
	User Space Evidence
	Technology-Specific Subtrace (COM Client Call)
	Internal Stack Trace
	Distributed Exception (Managed Code)
	Thread Poset

	PART 3: Pattern Interaction
	Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace, Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value References, Namespace, and Module Hint

	PART 4: A Bit of Science and Philosophy
	Cantor Operating System
	Metaphor of Memory as a Directed Container
	Praxiverse
	When Universe is Going to End?
	Notes on Memoidealism

	PART 5: Software Trace Analysis Patterns
	Timeout
	Activity Overlap
	Adjoint Space
	Indirect Message
	Watch Thread
	Punctuated Activity
	Trace Mask
	Trace Viewpoints
	Data Reversal
	Recovered Messages
	Palimpsest Messages
	Message Space
	Interspace
	Translated Message
	Activity Disruption

	PART 6: Fun with Debugging, Crash Dumps, and Traces
	The Dump from the Future
	Exchange Rate on 16.12.14
	Check the Plug
	Debugging Slang
	YAWE
	Embedded Software Engineer
	Minute-wise
	Developer
	Multidigitalist
	KgB
	CIQ (Crash IQ)
	Pat Ching
	Explosive Mixture
	POEM
	YearNormous Day
	eNormous

	2015 - The Year of RAM
	Diagnostics and Debugging in Science Fiction
	Software and Hardware Exceptions
	Logging for Kids
	Find the Bug
	Music for Debugging
	Tracing and Counting Book
	The Last Error
	Patching the Hardware Defect
	Pattern Match

	PART 7: Software Narratology
	Coding and Articoding

	PART 8: Software Diagnostics, Troubleshooting, and Debugging
	Special and General Trace and Log Analysis
	Projective Debugging
	Pattern! What Pattern?
	I Didn’t See Anything

	PART 9: Art and Photography
	Diagnostics Designer Glasses
	Pattern Diagnostics Logo
	Happy Valentine’s Day
	50 Shades of Crash Dump
	Computer Universe
	Failed Surveillance
	Debugging Allegory on FEB 23
	Object in Signaled State
	Kernel Space Starts with 8
	The Day of ST. P. The Elimination of Snakes
	The Fifth Column
	Proportionate Disproportionate Proportion
	Autoportrait in 5 Objects
	Kernel Works
	Chip Forensics
	Industrial Windows
	The Meaning of Life
	Hidden Bug

	PART 10: Memory Forensics
	Artifact-Malware and its Primary and Secondary Effects

	PART 11: Miscellaneous
	Quotes
	Status Updates
	Execution Residue

	Appendix
	Patterns are Weapons for Massive Debugging
	Crash Dump Analysis Checklist

	Index of WinDbg Commands

