Memory Dump Analysis Anthology

Volume 8b

Dmitry Vostokov
Software Diagnostics Institute

OpenTask

Published by OpenTask, Republic of Ireland

Copyright © 2015 by Dmitry Vostokov

Copyright © 2015 by Software Diagnostics Institute

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, without the prior written

permission of the publisher.

You must not circulate this book in any other binding or cover, and you must
impose the same condition on any acquirer.

OpenTask books are available through booksellers and distributors worldwide. For
further information or comments send requests to press@opentask.com.

Product and company names mentioned in this book may be trademarks of their
owners.

A CIP catalog record for this book is available from the British Library.

ISBN-13: 978-1-908043-54-2 (Paperback)

First printing, 2015

Revision 1.06 (March 2017)

mailto:press@opentask.com

Table of Contents

‘ w

o= Vol 7
MY ¢ ToTUL o 4 o T30 XU 4T N 9
PART 1: Professional Crash Dump Analysis and Debugging.........cccccceeeerincnnnnnn. 11
Win32 Start Address Fallacycceecvieeeeiiee et 11
Multidimensionality of EXCEPLIONSeeevveeriiieiiieniieeiee s 13
PART 2: Crash Dump Analysis Patternsccoeeiiiiiisnsssssssssssssssssssssssssssssssssssnnes 15
REFEIENCE LEAK . iiitiiiiieritese ettt st st e st sbe e sbeesbee e 15
(O]~ T o1 [o 11] =SSP 19
[[To o [=T o T =Y | OO RUORUPRRPPRNt 21
COMTUPT STIUCTUNE ..ttt babsbassbsnsssssbnsnsnnnes 26
SOFtWAre EXCEPLION ..uviiiiiiie ettt e et e e e tr e e e e aaa e e sareeeens 29
Crashed PrOCESScouveiiiieiiie ettt sttt sttt st ettt e st sabeesanee s 30
Variable SUDTIACEuiiiiieriecse e 31
USEr SPACE EVIAENCE ...uvveeeeiiee ettt ettt e et e e e s v e e e nbae e e enneeas 37
Technology-Specific Subtrace (COM Client Call)........cccccovveieiieeeicieeeeceee e, 38
INtErNAl STACK TrACE c.ueveeiiieeiee ettt st saee e 39
Distributed Exception (Managed Code).......ccccccuviiiiiireeciiee et 41
THIEAM POSEL c..eiiieii ettt 43
PART 3: Pattern Interactionccccceeviiiiiiiiiiiiiiiiiiisiisinsssnsnninnnssssssssnnns 45

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,
Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hintcccceeeiiiiiiciiee e, 45
PART 4: A Bit of Science and PhiloSOphy..........ccccvvvmmeriiiiiicsssnneeniinscssssnnneenennaes 57
Cantor Operating SYSTeMcoociiiiiiiii e 57
Metaphor of Memory as a Directed CoNtainerccceccvveeeecieeesciee e, 57
[= V=] £ < TSP P U P PP PO PPPUPPPTRRRPIOt 58

When Universe is GOING to ENA?.......oooeciiiiiiieeeeeee ettt see e 58

Notes 0N MemMOIdEalISMccuiiiiiiriie ettt s saee e 59
PART 5: Software Trace Analysis Patternscccoevviiinininsnssssssssssssssssssssssssnnns 61
B L0 T=To U PSP PUUO T UUPTPPPPPTRRIIN 61
F Yot Y AV Y7 o -1 o F S 65
AJOINT SPACE .ttt ettt enees 68
[0 [T =Tl 1Y (Y- =R 71
{1 o T I 1 =Y T ST UP RPN 76
PUNCLUALEd ACTIVILY . .oviiieei it 78
LI 1L A/ 1 SRS 79
RECTol= Y AT o Lo T1 0] XTI 82
DY I AT - | PR 84
RECOVEIEd IMESSAEES .eieeeieieiiiriieeeeeiciitrte e e e e e st e e e e e sstatree e e e e seesbtreeeeeesennnnnnes 86
PalimPSESt MIESSAES ...eeuveeeuieeriiieeiee sttt sttt sttt e bt e st e sbeesbeessneesane 88
Y LT (=B o I [- TP 91
INE B SPACE e 93
Trans|ated IMESSAEE ..eeeeiieiiiiieeee e e e e e e e e e s e bber e e e e e e s e aanaes 95
ACEIVITY DISTUPTION Loeviiiiiiiiiiiiieet et e e e s s arre e e e e s ssaanees 97
PART 6: Fun with Debugging, Crash Dumps, and Traces......ccccccceeeeerrrreennnnnnnnns 101
The DUMP from the FULUIEccevieieeee et 101
Exchange Rate 0N 16.12. 14ueeriiiiieeieesiieeeiee sttt ettt sre e 101
(08 Yol i o g V=T o [V - PSSP 102
DT o 0T =4 o =) =1 o = SRS 103
YAWE oottt ettt ettt ettt s e st s e st e st e st e s e e st e s beeea 103
Embedded SOftWare ENGINEETuuueeeeeeeeeciiieeeeeeeeesccieeieaeeessciiavveaaaaaen 103
IMINUEE-WISE ..ottt e et e e e nnee s 103

[0 =AY =1 Lo o Y=1 O RUU PP 103

1Y VL Lo [o e R SRS 103
KGB ettt te et e ettt v s e st et e s ettt en s n e nees 104
ClQ (CraSh 1Q)...ooeveeeiieeeeeieeeee ettt sttt ettt 104
Lo L@ o] 1 T O PUR PP 104
EXPIOSIVE MIXTUTE ...t et e et e et aaeesteaeeasaaaesaneees 104
[0 =1 104
YEAIrNOIMOUS DAY ..ottt 105

BNOIINIOUS. ..ottt ettt e e e e e te e e e e e e e ttaeeeeassssataenaeaens 105

2015 - The YEar Of RAMcoiiiiiiieeiii ittt sttt 106
Diagnostics and Debugging in Science Fictioncceceeiieenieenieenieenieeeeene 107
Software and Hardware EXCEPLioNS.......c..ueevcvieeeiiiie e 110
LOBEING FOr KIS ...eueieiiieiieeeiee ettt 112
[0o IR =T - U -SSP 113
MUSIC fOr DEDUGEING ...eevveeiiieiieee et 114
Tracing and Counting BOOKeeeicuiieeeiiiie et ciee e e e e re e e 115
LN I 15 4 = 4 o PSPPSR 116
Patching the Hardware Defect........cccueeiiiiieicciee et 117
Pattern IMatCh ..cco i 118
PART 7: Software Narratologyccccceeeerrrreiirsssisssssssssssssssssssssssssssssssnsssnnnnnnes 119
Coding and ArtiCOING....ccceeiieiuiiiiiee e e e et e e e e 119
PART 8: Software Diagnostics, Troubleshooting, and Debugging 120
Special and General Trace and LOg Analysisccccceveeiieeeiiiieeeniiee e, 121
Projective DEDUEEING ...ccccooieiiiieee ettt e 125
Pattern! What Pattern? ...ttt 134
| DidN’t SEE ANYLNING ...evviiiiieeeeee ettt et etae e e tre e e 137
PART 9: Art and Photographye.ecciiiiiiiieeccciiirierrercccnrrreenesesscse s seenanssnnens 139
Diagnostics DeSIZNEr GIASSES ...ccuviiiiiureeeiiiieeeiieeesrieeeestreeeeaeeeesereeeesraeeeennes 139
Pattern DiagnostiCs LOBO .ovvieiiieieieieieie et 140
Happy Valenting’s DAYcccveeeeciiie e ciee et sseee e st e s e s sntne e e snreeenanes 141
50 Shades of Crash DUMP ...cccuuiiiiiiee e rrer e e e e e 142
COMPULET UNIVEISE ...uviiieeiiiiieiiiieete e eestreee e e e s e siareeeee e s sesaateaeeeessesssnsseseeessennes 143
Failed SUIVEIIIANCE ...cooeeieeiieeeeee ettt 144
Debugging Allegory on FEB 23ooociiieiiiee et sceeee e sree et siree e e 145
Object in Signaled Stateccccuviiiiiee e e 146
Kernel Space Starts With 8coccviiiiiiie e 147
The Day of ST. P. The Elimination of Snakesccccceveiiiiieiiiiicciieeeee s 148
The Fifth ColUMN ..ciiiiie e s s 149
Proportionate Disproportionate Proportion.......ccccceeeeeeieiiiiieiciice e, 150
AUtoportrait in'5 ODJECESvvviiiciiee e 151
KEINEI WOTKS...ciiiiiiieeiiee ettt ettt e s e e s sbae e e 152

(01 T T'o 3N o /Y 3 ot USRS 153

INAUSEIIAl WINAOWS ...eveeiiiiiieeiieeeie ettt sttt ettt ettt e sanee s 154
The Meaning Of Lifecocuiiiiiiiiieee e 155
[e 1o 1=T o T LU= SRS 156
PART 10: MemOry FOreNSICS ...ccvvvueerriiiiiiinnmnnniiiisiinssnnssssissiimessssssssssinmsssssssns 157
Artifact-Malware and its Primary and Secondary Effects.......c.ccccevveeriiieneenne 157
PART 11: Miscellan@ous........ccceeeiiiiiiiiineneniiiiiisiinnneenniissssnsseesssssssssssssesssses 163
QUOTES. .ttt ettt e e e et et e e e s e et e e e s e nn e et e e e s e nnrreeeeeeeenans 163
SEAtUS UPAAteS..ueeeeeiiiiieiiie ettt et st 165
EXECULION RESIAUE ...ciiiiiiiiiiiiieeeee ettt et st e e s e e 166
7Y o] =T e | TP PPPP 167
Patterns are Weapons for Massive Debugging........c.ccccocuveeeevieiiiiiieeeccieeeens 167
Crash Dump Analysis Checklistcoecveriiiieeieiiiee e see e 168

Index of WinDbg Commandsccccceeerrrieerrrsssnnnnnes 171

Preface

‘ ~

This reference volume consists of revised, edited, cross-referenced and
thematically organized articles from Software Diagnostics Institute
(DumpAnalysis.org + TraceAnalysis.org) and Software Diagnostics Library (former
Crash Dump Analysis blog, DumpAnalysis.org/blog). Most of the selected articles
are about software diagnostics, debugging, crash dump analysis, software trace
and log analysis, malware analysis, and memory forensics. They were written in
December 2014 - July 2015. We hope this reference is useful for:

e Software engineers developing and maintaining products on Windows
platforms;

e Technical support and escalation engineers dealing with complex
software issues;

e Quality assurance engineers testing software on Windows platforms;

e Security researchers, reverse engineers, malware and memory forensics
analysts;

e Trace and log analysis articles will be of interest to users of any platform.

If you encounter any error, please contact me using this form:

http://www.dumpanalysis.org/contact

or send me a personal message using this contact e-mail:

dmitry.vostokov@dumpanalysis.org

Alternatively, via Twitter @DumpAnalysis

Facebook page and group:

http://www.facebook.com/DumpAnalysis

http://www.facebook.com/TraceAnalysis

http://www.facebook.com/groups/dumpanalysis

http://www.dumpanalysis.org/contact
mailto:dmitry.vostokov@dumpanalysis.org
http://www.facebook.com/DumpAnalysis
http://www.facebook.com/TraceAnalysis
http://www.facebook.com/groups/dumpanalysis

8 Preface

[This page is intentionally left blank]

About the Author

Dmitry Vostokov is an internationally
recognized expert, speaker, educator,
scientist and author. He is the founder of
pattern-oriented software diagnostics,
forensics and prognostics discipline and
Software Diagnostics Institute (DA+TA:
DumpAnalysis.org + TraceAnalysis.org).
Vostokov has also authored more than
30 books on software diagnostics,
forensics and problem-solving, memory
dump analysis, debugging, software
trace and log analysis, reverse

engineering, and malware analysis. He has more than 20 years of experience in
software architecture, design, development and maintenance in a variety of
industries including leadership, technical and people management roles. Dmitry
also founded DiaThings, Logtellect, OpenTask Iterative and Incremental Publishing
(OpenTask.com), Software Diagnostics Services (former Memory Dump Analysis
Services) PatternDiagnostics.com and Software Prognostics. In his spare time, he
presents various topics on Debugging. TV and explores Software Narratology, an
applied science of software stories that he pioneered, and its further
development as Narratology of Things and Diagnostics of Things (DoT). His current
area of interest is theoretical software diagnostics.

10 About the Author

[This page is intentionally left blank]

Win32 Start Address Fallacy 11

PART 1: Professional Crash Dump Analysis and Debugging

Win32 Start Address Fallacy

One of the common mistakes is not double-checking symbolic output (Volume 5,
page 21). Another example here is related to Win32 Start Address. In the output
of Ithread WinDbg command (or !process and !sprocess Stack Trace Collection
commands, Volume 1, page 409) we can see Win32 Start Address and, in cases of
Truncated Stack Traces (Volume 6, page 86) or No Component Symbols (Volume
1, page 298), we may use this information to guess the purpose of the thread.
Unfortunately, it is shown without function offsets and may give a false sense of
the thread purpose.

For example, this Win32 Start Address ModuleA!DoSomething may
suggest that the purpose of the thread was to DoSomething:

THREAD fffffaB803431cb50 Cid 03e8.2718 Teb: 000007f££££80000
Win32Thread: 0000000000000000 WAIT: (UserRequest) UserMode Non-
Alertable

ff£ffa80330e0500 SynchronizationEvent

Impersonation token: fffff8a00b807060 (Level Impersonation)
Owning Process fffffa8032354c40 Image: ServiceA.exe

Attached Process N/A Image: N/A

Wait Start TickCount 107175 Ticks: 19677 (0:00:05:06.963)
Context Switch Count 2303 IdealProcessor: 1

UserTime 00:00:00.218

KernelTime 00:00:00.109

Win32 Start Address ModuleA!DoSomething (0x000007fef46b4dcde)

Stack Init fffff88008e5fdb0 Current fffff88008e5£900

Base fffff88008e60000 Limit fffff88008e5a000 Call 0O

Priority 10 BasePriority 10 UnusualBoost 0 ForegroundBoost 0
IoPriority 2 PagePriority 5

Kernel stack not resident.

Child-SP RetAddr Call Site

ff££f£880°08e5£940 ff£ff£f800°01c7cf72 nt!KiSwapContext+0x7a
fff££880°08e5fa80 fffff800 01c8e39f nt!KiCommitThreadWait+0x1d2
ff££f£880°08e5fbl0 ff£fff800°01f7fe3e nt!KeWaitForSingleObject+0x19f
ff£f££880°08e5fbb0 ffff£f800°01c867d3 nt!NtWaitForSingleObject+0xde
f£f£££880°08e5fc20 00000000 76e5067a nt!KiSystemServiceCopyEnd+0x13
(TrapFrame @ ffff£f880°08e5£fc20)

00000000°0427cca8 000007fe f46adafe ntdll!NtWaitForSingleObject+0xa
00000000°0427ccb0 000007fe " £46c68d4 ModuleA!DoSomething+0xc68d4
00000000 0427cd60 000007fe f46cbade ModuleA!DoSomething+0xc5ee8

12 PART 1: Professional Crash Dump Analysis and Debugging

But if we look at fragments of the stack trace we see function huge offsets
and this means that this function was just some function from ModuleA export
table. It was chosen because return addresses fall into an address range between
exported functions. Because Win32 Start Address also falls into such an address
range it is listed as ModuleA!DoSomething but without an offset. In our case, an
engineer made the wrong assumption about the possible root cause and provided
unnecessary troubleshooting instructions.

Multidimensionality of Exceptions 13

Multidimensionality of Exceptions

Multiple Exceptions pattern (Volume 1, page 255) can happen horizontally
(different threads) and vertically (Nested Exceptions pattern, Volume 2, page
305) in one thread. The 3rd dimension is across processes (Error Reporting Fault
pattern, Volume 7, page 152).

14 PART 1: Professional Crash Dump Analysis and Debugging

[This page is intentionally left blank]

Reference Leak 15

PART 2: Crash Dump Analysis Patterns

Reference Leak

Objects such as processes may be referenced internally in addition to using
handles. If their reference counts are unbalanced, we may have this pattern. For
example, we have an instance of thousands of Zombie Processes (Volume 2, page
196) but we don’t see Handle Leaks (Volume 7, page 164) from their parent
processes if we analyze ParentCids:

0: kd> !process 0 0O

[oool

PROCESS fffffa801009a060

SessionId: 0 Cid: 2e270 Peb: 7fffffdb000 ParentCid: 032c
DirBase: 12ba37000 ObjectTable: 00000000 HandleCount: O.
Image: conhost.exe

PROCESS fffffa8009b7e8e0

SessionId: 1 Cid: 2e0c8 Peb: 7fffffd9000 ParentCid: 10a0
DirBase: 21653e000 ObjectTable: 00000000 HandleCount: O.
Image: taskmgr.exe

PROCESS fffffa8009e7a450

SessionId: 0 Cid: 2e088 Peb: 7efdf000 ParentCid: 0478
DirBase: 107£02000 ObjectTable: 00000000 HandleCount: O.
Image: AppA.exe

PROCESS fffffa8009e794b0

SessionId: 0 Cid: 2e394 Peb: 7fffffd3000 ParentCid: 032c
DirBase: 210ffc000 ObjectTable: 00000000 HandleCount: O.
Image: conhost.exe

PROCESS fffffa8009ed4060

SessionId: 0 Cid: 2dee4 Peb: 7efdf000 ParentCid: 0478
DirBase: 11b7c7000 ObjectTable: 00000000 HandleCount: O.
Image: AppB.exe

PROCESS fffffa800al3bb30

SessionId: 0 Cid: 2e068 Peb: 7fffffd5000 ParentCid: 032c
DirBase: 1bb8cl000 ObjectTable: 00000000 HandleCount: O.
Image: conhost.exe

16 PART 2: Crash Dump Analysis Patterns

PROCESS fffffa80096£26b0

SessionId: 0 Cid: 2e320 Peb: 7efdf000 ParentCid: 0478
DirBase: 6ad4c000 ObjectTable: 00000000 HandleCount: 0.
Image: AppC.exe

PROCESS fffffa8009c44060

SessionId: 0 Cid: 2e300 Peb: 7fffffdd000 ParentCid: 032c
DirBase: 10df06000 ObjectTable: 00000000 HandleCount: 0.
Image: conhost.exe

fooold

0: kd> !'object fffffa800al3bb30

Object: fffffa800al3bb30 Type: (fffffa8006cecf30) Process
ObjectHeader: fffffa800al3bb00 (new version)

HandleCount: 0 PointerCount: 1

0: kd> !object fffffa8009b7e8e0

Object: fffffa8009b7e8e0 Type: (fffffa8006cecf30) Process
ObjectHeader: fffffa8009b7e8b0 (new version)

HandleCount: 0 PointerCount: 1

Such number of processes correlates with non-paged pool usage for
process structures:

0: kd> !poolused 3

Sorting by NonPaged Pool Consumed

NonPaged Paged

Tag Allocs Frees Diff Used Allocs Frees Diff Used
Proc 55488 60 55428 80328320 O 0 0 0 Process objects , Binary: nt!ps
File 51733526 51708737 24789 7150416 0 0 0 0 File objects

loooll

Here we recommend enabling object reference tracing either using
gflags.exe or directly modifying registry:

Reference Leak 17

x|
System Registry | Kemel Flags | Image Fie | Slent Process Ext |
I” Stop on exception
[~ Show loader snaps [~ Enable debugging of Win32 subsystem
|~ Debug nitial command [~ Enable loading of kerne! debugger symbols
[~ Disable paging of kernel stacks
I~ Enable heap tal checking [~ Enable system critical breaks
I~ Enable heap free checking [~ Disable neap coalesce on free
|~ Enable heap parameter checking [~ Enable close exception
I~ Enable heap validation on call [~ Enable exception logging
[~ Enable appication verifier [~ Enable object handle type tagging
[" Enable page heap

I¥ Ersbie ponlteagng [~ Debug WINLOGON
I~ Enable heap tagging [~ Buffer DbgPrint output
[~ Create user mode stack trace database [~ Early critical section event creation
|~ Create kernel mode stack trace database [~ Stop on user mode exception
[~ Maintain a Ist of objects for each type [~ Enable bad handles detection
I~ Enable heap tagging by DLL [~ Disable protected DLL venfication

Kernel Special Pool Tag —Object Reference Tracing

+ Hex [V Enable [~ Permanent

O Text I Pool Tags | Proc

" Verify Start & Verify End Process

[ok | canced | ooy |

Key: HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Kernel

Value: ObTracePoolTags
Type: REG_SZ
Data: Proc

Note: after troubleshooting or debugging please disable tracing because it
consumes pool (another variant of Instrumentation Side Effect pattern, Volume
6, page 77, and may lead to similar Insufficient Memory pattern for stack trace
database, Volume 8a, page 57):

0: kd> !poolused 3

Sorting by NonPaged Pool Consumed

NonPaged Paged

Tag Allocs Frees Diff Used Allocs Frees Diff Used

ObRt 5688634 5676109 12525 4817288240 0 0 0 0 object reference stack tracing , Binary: nt!ob
Proc 22120 101 22019 25961168 0 0 0 0 Process objects , Binary: nt!ps
loool

18 PART 2: Crash Dump Analysis Patterns

After enabling tracing, we collect a complete memory dump (in case of
postmortem debugging) to analyze another variant of Stack Trace pattern using
lobtrace WinDbg command (Volume 8a, page 51):

0: kd> !obtrace fffffa800af9e220

Object: fffffa800af9e220

Image: AppD.exe

Sequence (+/-) Tag Stack

ad377858 +1 Dflt nt! ?? ::NNGAKEGL:: string'+21577
nt!PspAllocateProcess+185
nt!NtCreateUserProcess+4a3
nt!KiSystemServiceCopyEnd+13

ad37787d +1 Dflt nt! ?? ::FNODOBFM:: string'+18fld
nt!NtCreateUserProcess+569
nt!KiSystemServiceCopyEnd+13

ad377882 +1 Dflt nt! ?? ::NNGAKEGL:: string'+1£9d8
nt!NtProtectVirtualMemory+119
nt!KiSystemServiceCopyEnd+13

nt!KiServiceLinkage+0

nt!RtlCreateUserStack+led

nt!PspAllocateThread+299
nt!NtCreateUserProcess+65d
nt!KiSystemServiceCopyEnd+13

ad377884 -1 Dflt nt! ?? ::FNODOBFM:: string'+4886e
nt!NtProtectVirtualMemory+161
nt!KiSystemServiceCopyEnd+13

nt!KiServiceLinkage+0

nt!RtlCreateUserStack+led

[oool

Analysis of such traces may be complicated due to Truncated Stack Traces
(Volume 6, page 86). We plan to show one counting trick in the next pattern.

Origin Module 19

Origin Module

To complement Module patterns sub-catalogue (Volume 7, page 510) we
introduce Origin Module pattern. This is a module that may have originated the
problem behavior. For example, when we look at a stack trace we may skip Top
Modules (Volume 6, page 62) due to our knowledge of the product, for example,
if they are not known as Problem Modules (Volume 7, page 85) or known as Well-
Tested Modules (Volume 6, page 48). In case of Truncated Stack Traces (Volume
7, page 86) we may designate bottom modules as possible problem origins. For
example, for Reference Leak (page 15) pattern example we may consider
checking reference counting for selected modules such as ModuleA and ModuleB:

ad377ae8 +1 Dflt nt! ?? ::FNODOBFM:: string'+18fld
nt!ObpCallPreOperationCallbacks+4e
nt!ObpPrelnterceptHandleCreate+af
nt! ?? ::NNGAKEGL:: string'+2c31lf
nt!0bOpenObjectByPointerWithTag+109
nt!PsOpenProcess+la2
nt!NtOpenProcess+23
nt!KiSystemServiceCopyEnd+13
nt!KiServiceLinkage+0

ModuleA+dca63

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+baeb6

ModuleA+b938d

ModuleA+cOec6t

ModuleAt+afce7

ad377aeb -1 Dflt nt! ?? ::FNODOBFM:: string'+4886e
nt!ObpCallPreOperationCallbacks+277
nt!ObpPrelnterceptHandleCreatetaf
nt! ?? ::NNGAKEGL:: string'+2c31f
nt!0bOpenObjectByPointerWithTag+109
nt!PsOpenProcess+la?2
nt!NtOpenProcess+23
nt!KiSystemServiceCopyEnd+13
nt!KiServicelLinkage+0

ModuleA+dca63

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+baeb6

ModuleA+b938d

ModuleA+cOec6b

ModuleAt+afce7

20 PART 2: Crash Dump Analysis Patterns

ad377af7 +1 Dflt nt! ?? ::NNGAKEGL:: string'+1fb4l
nt!ObReferenceObjectByHandle+25
ModuleA+dcade

ModuleA+b5bc

ModuleA+c9c2e

ModuleA+baeb6

ModuleA+b938d

ModuleA+cOec6

ModuleA+afce?7

ModuleA+87ca

ModuleA+834a

ModuleA+a522c

ModuleA+a51b6

ModuleA+a4d787

ModuleB+19c0Oc

ModuleB+19b28

ad377afa -1 Dflt nt! ?? ::FNODOBFM:: string'+4886e
ModuleA+dcbbe
ModuleA+b5bc
ModuleA+c9c2e
ModuleA+bae56
ModuleA+b938d
ModuleA+cOec6b
ModuleA+afce7
ModuleA+87ca
ModuleA+834a
ModuleA+a522c
ModuleA+a51b6
ModuleA+a4787
ModuleB+19c0Oc
ModuleB+19b28
ModuleB+b652

Hidden Call 21
Hidden Call

Sometimes, due to optimization or indeterminate stack trace reconstruction, we
may not see all stack trace frames. In some cases it is possible to reconstruct such
Hidden Calls. For example, we have the following unmanaged Stack Trace
(Volume 1, page 395) of CLR Thread (Volume 4, page 163):

0:000> k

ChildEBP RetAddr

0011d6b8 66fdee’c mscorwks!JIT_ IsInstanceOfClass+0xd
0011décc 67578500 PresentationCore ni!‘string'+0x4a2bc
0011d6e0 67578527 PresentationCore ni! 'string' <PERF>
0011d6f4 6757850d PresentationCore ni! string' <PERF>
0011d708 6757850d PresentationCore ni!'string' <PERF>
0011d71c 6757850d PresentationCore ni! ‘string' <PERF>
0011d730 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011d744 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)

(PresentationCore ni+0x778500)
(
(
(
(
(
0011d758 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
(
(
(
(
(
(

PresentationCore ni+0x778527)
PresentationCore ni+0x77850d)
PresentationCore ni+0x77850d)

0011d76¢c 67578527 PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011d780 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x778527)
0011d794 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011d7a8 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011d7bc 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
0011d7d0 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d7e4 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
0011d7£f8 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d80c 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011d820 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d834 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d848 6757850d PresentationCore ni! string' <PERF> (PresentationCore ni+0x77850d)
0011d85c 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d870 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
0011d884 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d898 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
0011d8ac 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d8c0 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d8d4 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
0011d8e8 67578527 PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d8fc 6757850d PresentationCore ni!‘'string' <PERF> (PresentationCore ni+0x778527)
0011d910 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011d924 6757850d PresentationCore ni!‘'string' <PERF> (PresentationCore ni+0x77850d)
0011d938 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d94c 6757850d PresentationCore ni!‘'string' <PERF> (PresentationCore ni+0x77850d)
0011d960 6757850d PresentationCore ni!‘'string' <PERF> (PresentationCore ni+0x77850d)
0011d974 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d988 6757850d PresentationCore ni!‘string' <PERF> (PresentationCore ni+0x77850d)
0011d99c 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d9b0 6757850d PresentationCore ni!'string' <PERF> (PresentationCore ni+0x77850d)
0011d9c4 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011d9d8 67578527 PresentationCore ni!'string' <PERF> (PresentationCore ni+0x77850d)
0011d%ec 6757850d PresentationCore ni!'string' <PERF> (PresentationCore ni+0x778527)
0011da00 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011dal4 6757850d PresentationCore ni!‘'string' <PERF> (PresentationCore ni+0x77850d)
0011da28 6757850d PresentationCore_ni! 'string' <PERF> (PresentationCore_ni+0x77850d)
0011da3c 6757850d PresentationCore_ni!‘string' <PERF> (PresentationCore ni+0x77850d)
0011da50 6757850d PresentationCore ni!‘'string' <PERF> (PresentationCore ni+0x77850d)
0011da64 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
0011da78 6757850d PresentationCore_ni!‘string' <PERF> (PresentationCore ni+0x77850d)
001lda8c 6757850d PresentationCore ni!'string' <PERF> (PresentationCore ni+0x77850d)
0011daa0 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore_ni+0x77850d)
0011dab4 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
00lldac8 6757850d PresentationCore_ni!‘string' <PERF> (PresentationCore ni+0x77850d)
00lldadc 6757850d PresentationCore ni!'string' <PERF> (PresentationCore ni+0x77850d)

22 PART 2: Crash Dump Analysis Patterns

0011ldaf0 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011db04 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011db18 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011db2c 67578527 PresentationCore ni!‘string' <PERF> (PresentationCore ni+0x77850d)
0011db40 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x778527)
0011db54 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011db68 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011ldb7c 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011db%0 6757850d PresentationCore ni! ‘string' <PERF> (PresentationCore ni+0x77850d)
001lldba4 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011dbb8 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
00lldbcc 6757850d PresentationCore_ni!‘string' <PERF> (PresentationCore ni+0x77850d)
0011dbe0 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011dbf4 6757850d PresentationCore ni!‘string' <PERF> (PresentationCore ni+0x77850d)
0011dc08 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
001ldclc 6757850d PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x77850d)
0011dc30 6757850d PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
0011dc44 6757850d PresentationCore ni! string' <PERF> (PresentationCore ni+0x77850d)
0011dc58 66fc3282 PresentationCore_ni!\string' <PERF> (PresentationCore ni+0x77850d)
*** WARNING: Unable to verify checksum for PresentationFramework.ni.dll

0011dd28 662a75e6 PresentationCore ni! 'string'+0x2e6c2

0011de08 662190a0 PresentationFramework ni+0x2675e6

0011dffc 66fc35e2 PresentationFramework ni+0x1d90a0

001leOec 66fd9dad PresentationCore ni! 'string'+0x2ea22

0011e214 66fe0459 PresentationCore ni! string'+0x45led

0011e238 66fdfd40 PresentationCore ni! string'+0x4b899

0011e284 66fdfc9b PresentationCore ni! 'string'+0x4b180

*** WARNING: Unable to verify checksum for WindowsBase.ni.dll

0011e2b0 723ca3la PresentationCore ni! 'string'+0x4b0db

001le2cc 723ca20a WindowsBase ni+0x9a3la

0011e30c 723c8384 WindowsBase_ni+0x9a20a

0011e330 723cd26d WindowsBase ni+0x98384

0011e368 723cd1f8 WindowsBase_ni+0x9d26d

0011e380 72841b4c WindowsBase ni+0x9d1f8

0011e390 728589ec mscorwks!CallDescrWorker+0x33

0011e410 72865acc mscorwks!CallDescrWorkerWithHandler+0xa3

0011e54c 72865aff mscorwks!MethodDesc: :CallDescr+0x19c

0011e568 72865bld mscorwks!MethodDesc::CallTargetWorker+0x1f

0011e580 728bd9c8 mscorwks!MethodDescCallSite::CallWithValueTypes+0xla

0011le74c 728bdble mscorwks!ExecuteCodeWithGuaranteedCleanupHelper+0x9f

*** WARNING: Unable to verify checksum for mscorlib.ni.dll

001le7fc 68395887 mscorwks!ReflectionInvocation: :ExecuteCodeWithGuaranteedCleanup+0x10£f
0011e818 683804b5 mscorlib ni+0x235887

0011e830 723cd133 mscorlib ni+0x2204b5

0011e86c 723c7a27 WindowsBase_ni+0x9d133

0011e948 723c7d13 WindowsBase ni+0x97a27

0011e984 723cad4fe WindowsBase_ni+0x97d13

0011e9d0 723ca42a WindowsBase ni+0x9adfe

0011e9f0 723ca3la WindowsBase_ni+0x9%ad2a

001lealc 723ca20a WindowsBase ni+0x9a3la

00lleadc 723c8384 WindowsBase ni+0x9a20a

0011ea70 723c74el WindowsBase_ni+0x98384

00lleaac 723c7430 WindowsBase ni+0x974el

00lleadc 723c9b6c WindowsBase ni+0x97430

001leb2c 757462fa WindowsBase ni+0x99b6c

0011leb58 75746d3a user32!InternalCallWinProc+0x23

0011lebd0 757477c4 user32!UserCallWinProcCheckWow+0x109

0011ec30 7574788a user32!DispatchMessageWorker+0x3bc

0011lec40 0577304e user32!DispatchMessageW+0xf

WARNING: Frame IP not in any known module. Following frames may be wrong.

00llec5c 723c7b24 0x577304e

00lleccc 723c71f9 WindowsBase ni+0x97b24

001lecd8 723c719c WindowsBase ni+0x971f9

00llece4 6620f07e WindowsBase ni+0x9719c

0011ecf0 6620e37f PresentationFramework ni+0xlcf07e

0011ed14 661f56d6 PresentationFramework ni+0xlce37f

001led24 661£f5699 PresentationFramework ni+0x1b56d6

0011ed80 72841b4c PresentationFramework ni+0x1b5699

001lleda0 72841b4c mscorwks!CallDescrWorker+0x33

0011ledb0 728589%ec mscorwks!CallDescrWorker+0x33

Hidden Call 23

001lee30 72865acc mscorwks!CallDescrWorkerWithHandler+0xa3
00llef6c 72865aff mscorwks!MethodDesc::CallDescr+0x19c

0011ef88 72865bld mscorwks!MethodDesc::CallTargetWorker+0x1f
001lefa0 728fef0l mscorwks!MethodDescCallSite::CallWithValueTypes+0xla
0011£104 728fee2l mscorwks!ClassLoader::RunMain+0x223

0011f36¢c 728ff33e mscorwks!Assembly: :ExecuteMainMethod+0xa6
0011£f83c 728£ff528 mscorwks!SystemDomain: :ExecuteMainMethod+0x45e
0011£88c 728ff458 mscorwks!ExecuteEXE+0x59

0011£8d4 70aef4f3 mscorwks! CorExeMain+0x1l5c

0011£90c 70b77efd mscoreei! CorExeMain+0x10a

0011£924 70b74de3 mscoree!ShellShim_ CorExeMain+0x7d

0011£92c 754c338a mscoree! CorExeMain Exported+0x8

0011£938 77659f72 kernel32!BaseThreadInitThunk+0Oxe

0011£978 77659f45 ntdll! RtlUserThreadStart+0x70

0011£990 00000000 ntdll! RtlUserThreadStart+0xlb

Its Managed Stack Trace (Volume 6, page 115) is the following:

0:000> !CLRStack

0S Thread Id: 0x1520 (0)

ESP EIP

0011e7a0 728493a4 [HelperMethodFrame PROTECTOBJ: 001le7a0]
System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup (TryCode,
CleanupCode, System.Object)

0011e808 68395887

System.Threading.ExecutionContext.RunInternal (System.Threading.ExecutionContext,
System.Threading.ContextCallback, System.Object)

0011e824 683804b5 System.Threading.ExecutionContext.Run (System.Threading.ExecutionContext,
System.Threading.ContextCallback, System.Object)

0011e83c 723cdl33 System.Windows.Threading.DispatcherOperation.Invoke ()

0011e874 723c7a27 System.Windows.Threading.Dispatcher.ProcessQueue ()

0011e950 723c7d13 System.Windows.Threading.Dispatcher.WndProcHook (IntPtr, Int32, IntPtr,
IntPtr, Boolean ByRef)

0011e99c 723ca4d4fe MS.Win32.HwndWrapper.WndProc (IntPtr, Int32, IntPtr, IntPtr, Boolean ByRef)
0011e9e8 723ca42a MS.Win32.HwndSubclass.DispatcherCallbackOperation (System.Object)
0011e9£f8 723ca3la
System.Windows.Threading.ExceptionWrapper.InternalRealCall (System.Delegate, System.Object,
Boolean)

00llealc 723ca20a System.Windows.Threading.ExceptionWrapper.TryCatchWhen (System.Object,
System.Delegate, System.Object, Boolean, System.Delegate)

001lea64 723c8384 System.Windows.Threading.Dispatcher.WrappedInvoke (System.Delegate,
System.Object, Boolean, System.Delegate)

0011ea84 723c74el

System.Windows.Threading.Dispatcher.InvokeImpl (System.Windows.Threading.DispatcherPriority,
System.TimeSpan, System.Delegate, System.Object, Boolean)

00lleac8 723c7430

System.Windows.Threading.Dispatcher.Invoke (System.Windows.Threading.DispatcherPriority,
System.Delegate, System.Object)

00lleaec 723c9%b6c MS.Win32.HwndSubclass.SubclassWndProc (IntPtr, Int32, IntPtr, IntPtr)
001llec74 00270b04 [NDirectMethodFrameStandalone: 00llec74]
MS.Win32.UnsafeNativeMethods.DispatchMessage (System.Windows.Interop.MSG ByRef)

0011ec84 723c7b24

System.Windows.Threading.Dispatcher.PushFrameImpl (System.Windows.Threading.DispatcherFrame)
001lecd4 723c71f9

System.Windows.Threading.Dispatcher.PushFrame (System.Windows.Threading.DispatcherFrame)
001lece0 723c719c System.Windows.Threading.Dispatcher.Run ()

00llecec 6620f07e System.Windows.Application.RunDispatcher (System.Object)

001lecf8 6620e37f System.Windows.Application.RunInternal (System.Windows.Window)

001lledlc 661£f56d6 System.Windows.Application.Run (System.Windows.Window)

00lled2c 661f5699 System.Windows.Application.Run ()

Moool

24 PART 2: Crash Dump Analysis Patterns

Caller-n-Callee (Volume 6, page 138) traces also don’t reveal anything more:

Thread 0

Current frame: mscorwks!JIT IsInstanceOfClass+0xd

ChildEBP RetAddr Caller,Callee

0011d6b8 66fdee’c (MethodDesc 0x66ee2954 +0x3c
MS.Internal.DeferredElementTreeState.GetLogicalParent (System.Windows.DependencyObject,
MS.Internal.DeferredElementTreeState)), calling mscorwks!JIT IsInstanceOfClass

0011d6cc 67578500 (MethodDesc 0x66eel270 +0x110
MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject)),
calling (MethodDesc 0x66ee2954 +0

MS.Internal.DeferredElementTreeState.GetLogicalParent (System.Windows.DependencyObject,
MS.Internal.DeferredElementTreeState))

0011d6e0 67578527 (MethodDesc 0x66eel270 +0x137
MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject)),
calling (MethodDesc 0x66eel270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject)
0011d6f4 6757850d (MethodDesc 0x66eel270 +0x11ld
MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject)),
calling (MethodDesc 0x66eel270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject))
0011d708 6757850d (MethodDesc 0x66eel270 +0x11d
MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject)),
calling (MethodDesc 0x66eel270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject))
0011d71c 6757850d (MethodDesc 0x66eel270 +0x11d
MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject)),
calling (MethodDesc 0x66eel270 +0

MS.Internal.UIElementHelper.InvalidateAutomationAncestors (System.Windows.DependencyObject))

[...]

However, if we check the return address for Top Module (Volume 6, page
62) mscorwks (66fdee7c) we will see a call possibly related to 3D processing:

0:000> k

ChildEBP RetAddr

0011d6b8 66fdee7c mscorwks!JIT IsInstanceOfClass+0xd
0011d6cc 67578500 PresentationCore ni! string’+0x4a2bc
0011d6e0 67578527 PresentationCore ni! string’ <PERF>
(PresentationCore_ni+0x778500)

0011d6f4 6757850d PresentationCore_ni! string’ <PERF>
(PresentationCore_ni+0x778527)

[..]

0:000> ub 66fdee7c
PresentationCore ni! string'+0x4a2a2:

66fdee62 740c J@ PresentationCore ni! string'+0x4a2b0
(66£dee70)

66fdee64 8bc8 mov ecx,eax

66fdee66 8b01 mov eax,dword ptr [ecx]

66fdee68 ££90d4d8030000 call dword ptr [eax+3D8h]

66fdeebe 8bf0 mov esi,eax

66fdee70 8bd7 mov edx, edi

66fdee72 998670467 mov ecx,offset
PresentationCore ni! string'+0xblbd8 (67046798)

66fdee’7

e82c7afaff call PresentationCore_ni!?System.Windows.Media.Media3D.Viewpo

rt3DVisual.PrecomputeContent@@200001+0x3c (66£868a8

Hidden Call 25

The call structure seems to be valid when we check the next return address
from the stack trace (67578500):

0:000> ub 67578500

PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784e7):

675784e7

e8fd4a2alff call PresentationCore ni!?System.Windows.Media.Media3D.Scale
Transform3D.UpdateResource@@2002011280M802+0x108 (66£827e0)
PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784ec):

675784ec eb05 Jjmp PresentationCore ni! string' <PERF>
(PresentationCore ni+0x7784£f3) (675784£f3)

PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784ee):

675784ee b801000000 mov eax, 1

PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784f3):
675784£3 85c0 test eax,eax
PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784f5) :
675784£5 74bl je PresentationCore ni! string' <PERF>

(PresentationCore ni+0x7784a8) (675784a8)
PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784f7):

675784f7 8bcb mov ecx, ebx

PresentationCore ni! string' <PERF> (PresentationCore ni+0x7784f9) :
675784f9 33d2 xor edx, edx

PresentationCore ni! 'string' <PERF> (PresentationCore ni+0x7784fb) :
675784fb e84069a6ff call PresentationCore_ni! string’+0x4a280

(66£deed0)

26 PART 2: Crash Dump Analysis Patterns

Corrupt Structure

Corrupt Structure pattern is added for completeness of pattern discourse. We
mentioned it a few times, for example, in Self-Diagnosis (kernel mode, Volume 6,
89), and Critical Section Corruption (Volume 2, page 324). Typical signals of the
corrupt structure include:

e Regular Data (Volume 7, page 106) such as ASCIl and UNICODE
fragments over substructures and pointer areas

e Large values where you expect small and vice versa

e User space address values where we expect kernel space and vice versa

e Malformed and partially zeroed _LIST_ENTRY data (see exercise C3? for
linked list navigation)

e Memory read errors for pointer dereferences or inaccessible memory
indicators (?7?)

e Memory read error at the end of the linked list while traversing
structures

0: kd> dt _ERESOURCE ffffd0002299£830
ntdll! ERESOURCE

+0x000 SystemResourcesList : LIST ENTRY [0xffffc000°07b64800 -
0xffffe000°02a79970]

+0x010 OwnerTable : O0xffffe000°02a79940 OWNER ENTRY
+0x018 ActiveCount : 0noO

+0x0la Flag : 0

+0x0la ReservedLowFlags : 0 ''

+0x01lb WaiterPriority HEO

+0x020 SharedWaiters : 0x00000000°00000001 KSEMAPHORE
+0x028 ExclusiveWaiters : Oxffffe000'02a79a58 KEVENT
+0x030 OwnerEntry : _OWNER ENTRY

+0x040 ActiveEntries : 0

+0x044 ContentionCount : 0

+0x048 NumberOfSharedWaiters : 0x7b64800
+0x04c NumberOfExclusiveWaiters : Oxffffc000

+0x050 Reserved2 : (null)

+0x058 Address : Oxffffd000°2299£f870 Void
+0x058 CreatorBackTracelIndex : 0xffffd000 2299f870
+0x060 SpinLock : 1

! http://www.patterndiagnostics.com/advanced-windows-memory-dump-
analysis-book

Corrupt Structure 27

0: kd> dt _ERESOURCE ffffd0002299d830

ntdll! ERESOURCE

+0x000 SystemResourcesList : _LIST ENTRY [0x000001e0° 00000280 -
0x00000000°00000004]

+0x010 OwnerTable : 0x00000000°0000003c _OWNER_ENTRY
+0x018 ActiveCount : 0noO

+0x0la Flag : 0

+0x0la ReservedLowFlags : 0 ”

+0x01lb WaiterPriority HEN

+0x020 SharedWaiters : 0x0000003c"000001e0 _KSEMAPHORE
+0x028 ExclusiveWaiters : (null)

+0x030 OwnerEntry : _OWNER_ENTRY

+0x040 ActiveEntries : 0

+0x044 ContentionCount : 0x7f

+0x048 NumberOfSharedWaiters : 0x7f
+0x04c NumberOfExclusiveWaiters : 0x7f

+0x050 Reserved2 : 0x00000001°00000001 Void
+0x058 Address : 0x00000000°00000005 Void
+0x058 CreatorBackTracelIndex : 5

+0x060 SpinLock : 0

However, we need to be sure that we supplied the correct pointer to dt
WinDbg command. One of the signs that the pointer was incorrect are memory
read errors or all zeroes:

0: kd> dt _ERESOURCE ffffd000229%af830
ntdll! ERESOURCE

+0x000 SystemResourcesList : _LIST ENTRY [0x00000000°00000000 -
0x00000000 00000000 1
+0x010 OwnerTable : (null)

+0x018 ActiveCount : OnO

+0x0la Flag : O

+0x0la ReservedLowFlags : 0 ''
+0x01lb WaiterPriority : 0 ''
+0x020 SharedWaiters : (null)
+0x028 ExclusiveWaiters : (null)
+0x030 OwnerEntry : _OWNER ENTRY
+0x040 ActiveEntries : 0

+0x044 ContentionCount : 0O
+0x048 NumberOfSharedWaiters : 0
+0x04c NumberOfExclusiveWaiters : 0O
+0x050 Reserved2 : (null)

+0x058 Address : (null)

+0x058 CreatorBackTracelIndex : 0
+0x060 SpinLock : O

28 PART 2: Crash Dump Analysis Patterns

0: kd>

dt ERESOURCE ffffd00022faf830

ntdll! ERESOURCE

+0x000
+0x010
+0x018
+0x01la
+0x01la
+0x01b
+0x020
+0x028
+0x030
+0x040
+0x044
+0x048
+0x04c
+0x050
+0x058
+0x058
+0x060
Memory

SystemResourcesList : _LIST ENTRY
OwnerTable HErarardrd
ActiveCount g B?

Flag g B?
ReservedLowFlags : ?°?
WaiterPriority HE]
SharedWaiters HERarirard
ExclusiveWaiters : 22727
OwnerEntry : _OWNER_ENTRY
ActiveEntries HE]
ContentionCount : 27?
NumberOfSharedWaiters : 27?
NumberOfExclusiveWaiters : 2?
Reserved2 HErararard

Address HErararars
CreatorBackTraceIndex : ?°?
SpinLock HIE]

read error ff££fd00022faf890

Software Exception 29

Software Exception

Software Exception is added for completeness of pattern discourse. We
mentioned it a few times before, for example, in Activation Context (Volume 6,
page 117), Exception Module (Volume 8a, page 80), Missing Component (static
linkage, Volume 2, page 283), Self-Dump (Volume 2, page 181), Stack Overflow
(software implementation, Volume 6, page 82), and Translated Exception
(Volume 7, page 107) patterns. A typical example of software exceptions is C++
Exception (Volume 3, page 84) pattern.

Software exceptions, such as not enough memory, are different from the
so-called hardware exceptions by being predictable, synchronous, and detected
by software code itself. Hardware exceptions such as divide by zero, access
violation, and memory protection, on the contrary, are unpredictable and
detected by hardware. Of course, it is possible to do some checks before code
execution, and then throw a software exception or some diagnostic message for a
would be hardware exception. See, for example, Self-Diagnosis pattern for user
mode (Volume 2, page 318) and its corresponding equivalent for kernel mode
(Volume 6, page 89).

In Windows memory dumps we may see RaiseException call in user space
stack trace, such as from Data Correlation (Volume 6, page 84) pattern example:

0:000> kL

ChildEBP RetAddr

0012e950 78158e89 kernel32!'RaiseException+0x53

0012988 7830770c msvcr80! CxxThrowException+0x46

0012e99c 783095bc mfc80u!AfxThrowMemoryException+0x19
0012e9b4 02afa8ca mfc80u!operator new+0x27

0012e9c8 02b0992f ModuleA!std:: Allocate<..>+0xla

0012e9e0 02b09%e7c ModuleA!std::vector<double,std::allocator
>::vector<double,std::allocator >+0x3f

[..]</double, std::allocator</double, std::allocator

When looking for Multiple Exceptions (Volume 1, page 255) or Hidden
Exceptions (Volume 1, page 271) we may also want to check for such calls.

30 PART 2: Crash Dump Analysis Patterns

Crashed Process

Sometimes we can see signs of Crashed Processes in the kernel and complete
memory dumps. By crashes (Volume 1, page 36) we mean the sudden
disappearance of processes from Task Manager, for example. In memory dumps,
we can still see such processes as Zombie Processes (Volume 2, page 196). Special
Processes (Volume 2, page 164) found in the process list may help to select the
possible candidate among many Zombie Processes. If a process is supposed to be
launched only once (as a service) but found several times as Zombie Process and
also as a normal process later in the process list (for example, as Last Object,
Volume 8a, page 37), then this may point to possible past crashes (or silent
terminations). We also have a similar trace analysis pattern: Singleton Event
(Volume 8a, page 108). The following example illustrates both signs:

0: kd> !process 0 0

PROCESS fffffa80088a5640

SessionId: 0 Cid: 2184 Peb: 7fffffd7000 ParentCid: 0888
DirBase: 381b8000 ObjectTable: 00000000 HandleCount: 0.
Image: WerFault.exe

PROCESS fffffa8007254b30

SessionId: 0 Cid: 20ac Peb: 7fffffdf000 ParentCid: 02cc
DirBase: b3306000 ObjectTable: 00000000 HandleCount: O.
Image: ServiceA.exe

PROCESS fffffa8007fe2b30

SessionId: 0 Cid: 2alc Peb: 7fffffdf000 ParentCid: 02cc

DirBase: 11b649000 ObjectTable: fffff8a014939530 HandleCount: 112.
Image: ServiceA.exe

Variable Subtrace 31

Variable Subtrace

When analyzing Spiking Threads (Volume 1, page 305) across Snapshot Collection
(Volume 5, page 346) we are interested in finding a module (or a function) that
was most likely responsible (for example, “looping” inside). Here we can compare
the same thread stack trace from different memory dumps and find their Variable
Subtrace. For such subtraces, we have changes in the kv-style output: in return
addresses, stack frame values, and possible arguments. The call site that starts the
variable subtrace is the most likely candidate (subject to the number of
snapshots). For example, consider the following pseudo code:

ModuleA!start ()
{
ModuleA! funcl () ;
}
ModuleA! funcl ()
{
ModuleB! func2 () ;
}
ModuleB! func?2 ()
{
while (..)
{
ModuleB! func3 () ;
}
}
ModuleB! func3 ()
{
ModuleB! funci4 () ;
}
ModuleB! func4 ()
{
ModuleB! funcbh () ;
}
ModuleB! funch5 ()
{
VA
}

Here, the variable stack trace part will correspond to ModuleB frames. The
memory dump can be saved anywhere inside the “while” loop and down the calls,
and the last variable return address down the stack trace will belong to
ModuleB!func2 address range. The non-variable part will start with
ModuleAlfuncl address range:

32 PART 2: Crash Dump Analysis Patterns
// snapshot 1

RetAddr

ModuleB! func4+0x20
ModuleB! func3+0x10
ModuleB! func2+0x40
ModuleA!funcl+0x10
ModuleA!start+0x300

// snapshot 2

RetAddr

ModuleB! func2+0x20
ModuleA! funcl+0x10
ModuleA!start+0x300

// snapshot 3

RetAddr

ModuleB! func3+0x20
ModuleB! func2+0x40
ModuleA! funcl+0x10
ModuleA!start+0x300

To illustrate this analysis pattern we adopted Memory Cell Diagram (MCD)
approach from Accelerated Disassembly, Reconstruction and Reversing? training
and introduce here Abstract Stack Trace Notation (ASTN) diagrams where
different colors are used for different modules and changes are highlighted with
different fill patterns. The following three ASTN diagrams from subsequently
saved process memory dumps illustrate real stack traces we analyzed some time
ago. We see that the variable subtrace contains only the 3rd-party ModuleB calls.
Moreover, the loop is possibly contained inside ModuleB because all ModuleA
frames are non-variable including Child-SP and Args column values.

2 http://www.dumpanalysis.org/accelerated-disassembly-reconstruction-
reversing-book

Variable Subtrace 33

Child-
SP RetAddr Args

ModuleB
ModuleB
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
kernel32
ntdll

kernel32
ModuleB
ModuleB
ModuleB
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA

34 PART 2: Crash Dump Analysis Patterns

ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
kernel32
ntdll

ntdll
ModuleB
ModuleB
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA
kernel32
ntdll

Variable Subtrace 35

If we had ASTN diagrams below instead we would have concluded that the

loop was in ModuleA with changes in ModuleB columns as an execution side
effect:

kernel32
ntdll

kernel32
ModuleB
ModuleB
ModuleB
ModuleA
ModuleA
ModuleA
ModuleA
ModuleA

36 PART 2: Crash Dump Analysis Patterns

ModuleA

kernel32
ntdll

kernel32
ntdll

User Space Evidence 37

User Space Evidence

One of the questions asked was what can we do if we got a kernel memory dump
instead of the requested complete memory dump? Can it be useful? Of course, if
we requested a complete memory dump after analyzing a kernel memory dump
then the second kernel dump may be useful for double checking. Therefore, we
assume that we just got a kernel memory dump for the first time, and the issue is
some performance issue or system freeze and not a bugcheck. If we have a
bugcheck, then kernel memory dumps are sufficient most of the time, and we do
not consider them for this pattern.

Such a kernel memory dump is still useful because of user space diagnostic
indicators pointing to possible patterns in user space or “interspace”. We call this
pattern User Space Evidence. It is a collective super-pattern like Historical
Information (Volume 1, page 458).

We can see patterns in kernel memory dumps such as Wait Chains (for
example, ALPC, Volume 3, page 97, or Process Objects, Volume 5, page 49),
Deadlocks (for example ALPC, Volume 1, page 474), kernel stack traces
corresponding to specific Dual Stack Traces (Volume 6, page 52, for example,
exception processing), Handle Leaks (Volume 1, page 327), Missing Threads
(Volume 1, page 362), Module Product Process (Volume 7, page 189), One-
Thread Processes (Volume 7, page 187), Spiking Thread (Volume 1, page 305),
Process Factory (Volume 3, page 112, for example, PPID for Zombie Processes,
Volume 2, page 196), and others.

Found evidence may point to specific processes and process groups
(Couples Processes, Volume 1, page 419, and session processes) and suggest
process memory dump collection (especially forcing further complete memory
dumps is problematic) or troubleshooting steps for diagnosed processes.

38 PART 2: Crash Dump Analysis Patterns

Technology-Specific Subtrace (COM Client Call)

Here we add yet another Technology-Specific Subtrace pattern for COM client
calls (as compared to COM interface invocation for servers, Volume 6, page 67).
We recently got a complete memory dump where we had to find the destination
server process, and we used the old technique described in the article In Search
of Lost CID (Volume 2, page 136). We reprint the 32-bit stack subtrace trace here:

[oool

00faf828 7778c38b
0le32!CRpcChannelBuffer::SwitchAptAndDispatchCall+0x112
00£faf908 776c0565 0le32!CRpcChannelBuffer::SendReceive2+0xd3
00faf974 776c04fa 0le32!CAptRpcChnl: :SendReceive+0xab
00faf9c8 77ce247f o0le32!CCtxComChnl: :SendReceive+0x1a9
00faf9ed4 77ce252f RPCRT4!NdrProxySendReceive+0x43

00fafdcc 77ce25a6 RPCRT4!NdrClientCall2+0x206

[oool

Here’s also an x64 fragment from Semantic Structures (PID.TID) pattern
(Volume 6, page 73):

[ooo]

00000000°018ce450 000007fe ffee041lb

ole32!CRpcChannelBuffer: :SwitchAptAndDispatchCall+0xa3

00000000°018ce4f0 000007fe ££d819c6 ole32!CRpcChannelBuffer::SendReceive2+0x11b
00000000°018cebb0 000007fe ££d81928 o0le32!CAptRpcChnl::SendReceive+0x52
00000000°018ce780 000007fe ffedfcf5 o0le32!CCtxComChnl::SendReceive+0x68
00000000°018ce830 000007fe ff56ba3b 0le32!NdrExtpProxySendReceive+0x45
00000000°018ce860 000007fe ffee02d0 RPCRT4!NdrpClientCall3+0x2e2

[ooo]

If we have the call over ALPC it is easy to find the server process and
thread (Wait Chain, Volume 3, page 97). In case of a modal loop, we can use the
raw stack analysis technique mentioned above (see also the case study from
Volume 3, page 205).

Other subtrace examples can be found in pattern examples for High
Contention (.NET CLR monitors, Volume 7, page 142), Wait Chain
(RTL_RESOURCE, Volume 8a, page 29), and in the case study from Volume 4, page
182.

Internal Stack Trace 39

Internal Stack Trace

Occasionally, we look at Stack Trace Collection (Volume 1, page 409) and notice
Internal Stack Trace. This is a stack trace that is shouldn’t be seen in a normal
crash dump because statistically it is rare (we planned to name this pattern Rare
Stack Trace initially). This stack trace is also not Special Stack Trace (Volume 1,
page 479) because it is not associated with the special system events or problems.
It is also not a stack trace that belongs to various Wait Chains (Volume 1, page
482) or Spiking Threads (Volume 1, page 305). This is also a real stack trace and
not a reconstructed or hypothetical stack trace such as Rough Stack Trace
(Volume 8a, page 39) or Past Stack Trace (Volume 8a, page 43). This is simply a
thread stack trace that shows some internal operation, for example, where it
suggests that message hooking was involved:

THREAD fffffa8123702b00 Cid 1lcc.0448 Teb: 000007fffffda000 Win32Thread:
fffff900clebec20 WAIT: (WrUserRequest) UserMode Non-Alertable
fffffa81230cf4el0 SynchronizationEvent

Not impersonating

DeviceMap fffff8a0058745e0

Owning Process fffffaB81237a8b30 Image: ProcessA.exe

Attached Process N/A Image: N/A

Wait Start TickCount 1258266 Ticks: 18 (0:00:00:00.280)

Context Switch Count 13752 IdealProcessor: 1 NoStackSwap LargeStack
UserTime 00:00:00.468

KernelTime 00:00:00.187

Win32 Start Address ProcessA!ThreadProc (0x000007feffl7c608

Stack Init fffff8800878c700 Current fffff8800878ball

Base fffff8800878d000 Limit fffff88008781000 Call fffff8800878c750
Priority 12 BasePriority 8 UnusualBoost 0 ForegroundBoost 2 IoPriority 2
PagePriority 5

Child-SP RetAddr Call Site

ffff£f880°0878ba50 fffff800°01lab6c8f2 nt!KiSwapContext+0x7a
fff£f£880°0878bb90 fffff800°0la7dc9f nt!KiCommitThreadWait+0x1d2
ff£f£f£880°0878bc20 fffff960° 0010dbd7 nt!KeWaitForSingleObject+0x19f
ff£f£f£880°0878bccO0 fffff960°0010dc71 win32k!xxxRealSleepThread+0x257
fff£f£880°0878bd60 fffff960 000c4bf7 win32k!xxxSleepThread+0x59
£f££££880°0878bd90 £ff£f£960° 000d07a5 win32k!xxxInterSendMsgEx+0x112a
f££££880°0878beal fff£f£f960 00151bf8 win32k!xxxCallHook2+0x62d
£££££880°0878c010 £f£££960° 000d2454 win32k!xxxCallMouseHook+0x40
£££££880°0878c050 £f£££960 0010b£f23 win32k!xxxScanSysQueue+0x1828
ff£f£f£880°0878c390 fffff960 00118fae win32k!xxxReallnternalGetMessage+0x453
fff£f£880°0878c470 fffff800°01a76113 win32k!NtUserReallInternalGetMessage+0x7e
f£f£££880°0878c500 00000000 771b913a nt!KiSystemServiceCopyEnd+0x13 (TrapFrame @
f££f££880°0878c570

00000000 053£f£258 000007fe fac910f4 USER32!NtUserReallInternalGetMessage+0xa
00000000 053££260 000007fe fac91llfa DUser!CoreSC: :xwProcessNL+0x173
00000000 053£f£2d0 00000000 771b9181 DUser!MphProcessMessage+0xbd
00000000°053££330 00000000°774111£f5 USER32! ClientGetMessageMPH+0x3d
00000000 053f£3c0 00000000 771b908a ntdll!KiUserCallbackDispatcherContinue
(TrapFrame @ 00000000 °053f£288)

00000000 053££438 00000000 771b9055 USER32!NtUserPeekMessage+0xa

40 PART 2: Crash Dump Analysis Patterns

00000000°053£ff440 000007fe ebae03fa USER32!PeekMessageW+0x105
00000000°053£f£f490 000007fe ebaed925 ProcessA+0x5a

[..]
00000000°053££820 00000000°773ec541 kernel32!BaseThreadInitThunk+0xd
00000000°053££850 00000000°00000000 ntdll!RtlUserThreadStart+0x1d

We see that this thread was neither waiting for significant time nor
consuming CPU. It was reported that ProcessA.exe was very slow responding. So
perhaps this was slowly punctuated thread execution with periodic small waits. In
fact, Execution Residue (Volume 2, page 239) analysis revealed Non-Coincidental
Symbolic Information (Volume 1, page 390) of the 3rd-party Message Hook
(Volume 5, page 76) and its Module Product Process (Volume 7, page 189) was
identified. Its removal resolved the problem.

Distributed Exception (Managed Code) 41

Distributed Exception (Managed Code)

Managed code Nested Exceptions (Volume 2, page 310) give us process virtual
space bound stack traces. However, exception objects may be marshaled across
processes and even computers. The remote stack trace return addresses don’t
have the same validity in different process contexts. Fortunately, there is a
_remoteStackTraceString field in exception objects, and it contains the original
stack trace. Default analysis command sometimes uses it:

0:013> !analyze -v

EXCEPTION_OBJECT: !pe 25203b0

Exception object: 00000000025203b0

Exception type: System.Reflection.TargetInvocationException

Message: Exception has been thrown by the target of an invocation.

InnerException: System.Management.Instrumentation.WmiProviderInstallationException, Use
!PrintException 0000000002522cf0 to see more.

StackTrace (generated) :

SP IP Function

000000001D39E720 0000000000000001 Component!Proxy.Start () +0x20

000000001D39E720 000007FEF503D0B6

mscorlib ni!System.Threading.ExecutionContext.RunInternal (System.Threading.ExecutionContext,
System.Threading.ContextCallback, System.Object, Boolean)+0x286

000000001D39E880 000007FEF503CE1A

mscorlib ni!System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext,
System.Threading.ContextCallback, System.Object, Boolean)+0xa

000000001D39E8BO 000007FEF503CDD8

mscorlib ni!System.Threading.ExecutionContext.Run (System.Threading.ExecutionContext,
System.Threading.ContextCallback, System.Object)+0x58

000000001D39E900 000007FEF4FB0302

mscorlib ni!System.Threading.ThreadHelper.ThreadStart ()+0x52

MANAGED_STACK COMMAND: ** Check field _remoteStackTraceString **;!do 2522cf0;'do 2521900

0:013> !DumpObj 2522cf0

loool

000007fef51b77£0 4000054 2c System.String 0 instance 2521900 _remoteStackTraceString
[..]

0:013> !DumpObj 2521900

Name: System.String

[..]

String: at System.Management.Instrumentation.InstrumentationManager.RegisterType (Type
managementType)

at Component.Provider..ctor (

at Component.Start (

42 PART 2: Crash Dump Analysis Patterns

Checking this field may also be necessary for exceptions of interest from
managed space Execution Residue (Volume 6, page 149). We call this pattern
Distributed Exception. The basic idea is illustrated in the following diagram using

the borrowed UML notation (not limited to just two computers):

Server Exception
Stack Trace

Server 2]
r Z Server
Exception
\
\
\
\
\
\
\
\

\

\

\

Remote Call
\
\\ \
\
\ Server
Exception
C“en,t Client 2]
Exception € Z

Client Exception |\
Stack Trace

Distributed Exception |\
Stack Trace

Thread Poset

Thread Poset 43

Predicate Stack Trace Collections (Volume 7, page 100) allow us to get a subset of

stack traces, for example, by showing only stack traces where a specific module is

used (for example, Istacks 2 module WinDbg command). From diagnostic analysis

perspective, the order in which threads from the subset appear is also important,

especially when the output is sorted by thread creation time or simply the order is

given by a global thread linked list. We call this analysis pattern Thread Poset by

analogy with a mathematical concept of poset (partially ordered set3):

Kernel

Creation Time Y

Process

Creation Time

PID.TID 4.8

PID.TID 4.10 ModuleA!Func

PID.TID 4.18 ModuleA!WorkerThread

PID.TID 4.20

PID.TID 4.28 ModuleA!WorkerThread

PID.TID 200.400

PID.TID 200.408

PID.TID 200.410

PID.TID 200.418

3 http://en.wikipedia.org/wiki/Partially_ordered_set

44 PART 2: Crash Dump Analysis Patterns

differences or when we don’t have symbols for some problem version and want
to map threads to some other previous normal run where symbol files are
available. Any discrepancies may point in the direction of further diagnostic
analysis. For example, we got this fragment of Stack Trace Collection (Volume 1,

Such an analysis pattern is mostly useful when we compare stack traces for

page 409):

N S TN

anything wrong with those threads. Fortunately, we had Thread Poset from an

.000188
.00018c
.000190
.000194
.000198
.0001lac
.0001b0
.0001cO

We didn’t have symbols, and, therefore, didn’t know whether there was

f£f£ffa800d3d3b50
f££f£ffa800d3£9950
fffffa800d4161b0
fffffa800d418b50
fffffa800d418660
fffffa800d41eb50
fffffa800d41e660
fffffa800d48£300

££d40780f
£f£d07b53
fffffdaé6
fffffdaé6
fffffdaé6
££d4078d2
££d40780f
f£d0e5c0

Blocked
Blocked
Blocked
Blocked
Blocked
Blocked
Blocked
Blocked

ModuleA+0Oxlacl
ModuleA+0xd802
ModuleA+0x9ced
ModuleA+0x9ced
ModuleA+0x9ce4
ModuleA+0Oxa7cft
ModuleA+0x9ced
ModuleA+0x7eeb

earlier 32-bit version with available symbol files:

[N N

.0000ec
.0000£0
.0000£fc
.000104
.000108
.000110
.000114

If we map worker threads to the middle section of x64 version we see just

85d8dc58
85d9fc78
85db8a58
85cdbd48
85da2788
857862e0
85dda250

000068c
001375a
000068c
000££44
000££47
0013758
000ff44

Blocked
Blocked
Blocked
Blocked
Blocked
Blocked
Blocked

ModuleA!FuncA+0x9b
ModuleA!FuncB+0x67

ModuleA!WorkerThread+0xa2
ModuleA!WorkerThread+0xa2
ModuleA!WorkerThread+0xa2

ModuleA!FuncC+0xe4
ModuleA!FuncD+0x£f2

one more worker thread, but the overall order is the same:

N N S L . S

normal too. Of course, only initially, then to continue looking for other patterns of
abnormal behavior. If necessary, we may need to inspect stack traces deeper
because individual threads from two Thread Posets may differ in their stack trace
depth, subtraces, and in usage of other components. Despite the same order,

.000188
.00018c
.000190
.000194
.000198
.0001lac
.0001b0
.0001cO

So we may think of x64 Thread Poset as normal if x86 Thread Poset is

fffffa800d3d3b50
fffffa800d3£9950
f£f££££fa800d4161b0
f£££££fa800d418b50
f£££££fa800d4418660
fffffa800d41eb50
f££££fa800d41e660
fffffa800d48£300

£f£d0780f
f£d07b53
fffffda6
fffffda6
fffffda6
££d4078d2
££40780f
££d0e5c0

Blocked
Blocked
Blocked
Blocked
Blocked
Blocked
Blocked
Blocked

some threads may actually be abnormal.

ModuleA+0Oxlacl
ModuleA+0xd802
ModuleA+0x9ce4
ModuleA+0x9ce4
ModuleA+0x9ce4
ModuleA+0Oxa7cft
ModuleA+0x9ce4
ModuleA+0x7eeb

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,
Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value
References, Namespace, and Module Hint 45

PART 3: Pattern Interaction

Virtualized Process, Stack Trace Collection, COM Interface
Invocation Subtrace, Active Thread, Spiking Thread, Last Error
Collection, RIP Stack Trace, Value References, Namespace, and
Module Hint

Recently we analyzed a memory dump posted in DA+TA group* and posted our
results there. The problem was resolved. Afterward, we decided to look at the
earlier dump that was posted for the same problem: a COM server program was
unresponsive. That dump was not fully analyzed by group members, so we
decided to write a case study based on it since it had one more pattern.

When we open the dump in WinDbg it shows Virtualized Process (WOW64,
Volume 1, page 400) pattern:

wowb64cpu! TurboDispatchJumpAddressEnd+0x598:
00000000°77c£2772 c3 ret

We load symbols, WOW64 extension, and switch to x86 mode:
0:000> .symfix c:\mss

0:000> .reload

0:000> .load wowb4dexts

0:000> !sw
Switched to 32bit mode

4 http://www.facebook.com/groups/dumpanalysis/

46 PART 3: Pattern Interaction

Then we check threads in Stack Trace Collection (Volume 1, page 409):
0:000:x86> ~*kL

0 Id: 16d8.11e0 Suspend: 0 Teb: fffdc000 Unfrozen
ChildEBP RetAddr
002fb0a8 765cl0fd ntdll 77d00000!NtWaitForSingleObject+0xc
002fb118 76606586 KERNELBASE!WaitForSingleObjectEx+0x99
002fb138 00499ddc KERNELBASE!GetOverlappedResult+0x9d
WARNING: Stack unwind information not available. Following frames may
be wrong.
002fblal0 005261la4 ServerA+0x99ddc
002fbled4 005278c9 ServerA+0xl26la4d
002fb454 0053bc4d ServerA+0x1278c9
002fba34 005febc8 ServerA+0x13bc4dd
002fbe20 006094eb ServerA+Oxlfeb5c8
002fc40c 0060a0d7 ServerA+0x2094eb
0038ee8c 0061lalcb ServerA+0x20a0d7
0038eead 75e65c3e ServerA+0x2lalcb
0038eed0 75edf497 rpcrt4d!Invoke+0x2a
0038£55c 763b04d5 rpcrt4!NdrStubCall2+0x33c
0038£f5a4 769aa572 combase!CStdStubBuffer Invoke+0x96
0038£5c4 763b039d oleaut32!CUnivStubWrapper: :Invoke+0x30
0038£650 762b3733 combase!SyncStubInvoke+0x144

(Inline) —— combase!StubInvoke+0x9a

0038£f77c 763bl1198 combase!CCtxComChnl: :ContextInvoke+0x222
(Inline) —— combase!DefaultInvokeInApartment+0x4e
(Inline) —— combase!ClassicSTAInvokeInApartment+0x103

0038£824 763b0bc2 combase!AppInvoke+0x258

0038£980 762b277e combase!ComInvokeWithLockAndIPID+0x5fb
(Inline) —— combase!ComInvoke+0x15c

(Inline) —- combase!ThreadDispatch+0x169

0038£f9b0 75cf7834 combase!ThreadWndProc+0x2ad

0038£9dc 75cf7a%a user32! InternalCallWinProc+0x23
0038fabc 75cf988e user32!UserCallWinProcCheckWow+0x184
0038fad8 75d08857 user32!DispatchMessageWorker+0x208
0038fae0 0061cb88 user32!DispatchMessageA+0x10

0038ff74 0061d85a ServerA+0x21cb88

0038ff8c 7617919f ServerA+0x21d85a

0038£f£98 77d4a8cb kernel32!BaseThreadInitThunk+0xe
0038ffdc 77d4a8al ntdll 77d00000! RtlUserThreadStart+0x20
0038ffec 00000000 ntdll 77d00000! RtlUserThreadStart+0xlb

1 Id: 16d8.f5c Suspend: 0 Teb: f£ffd9000 Unfrozen

ChildEBP RetAddr

WARNING: Frame IP not in any known module. Following frames may be
Wrong.

0159ff8c 7617919f 0x3b02c8

0159f£98 77d4a8cb kernel32!BaseThreadInitThunk+0Oxe

0159ffdc 77d4a8al ntdll 77d00000! RtlUserThreadStart+0x20
0159ffec 00000000 ntdll 77d00000! RtlUserThreadStart+0xlb

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,
Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value
References, Namespace, and Module Hint 47

2 Id: 16d8.a88 Suspend: 0 Teb: ffe47000 Unfrozen

ChildEBP RetAddr

097cfde8 77d227d3 ntdll 77d00000!NtWaitForWorkViaWorkerFactory+0xc
097cff8c 7617919f ntdll 77d00000!TppWorkerThread+0x259

097cf£98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

097cffdc 77d4a8al ntdll 77d00000! RtlUserThreadStart+0x20
097cffec 00000000 ntdll 77d00000! RtlUserThreadStart+0xlb

3 Id: 16d8.ab0 Suspend: 0 Teb: ff£fd3000 Unfrozen

ChildEBP RetAddr

0414fde8 77d227d3 ntdll 77d00000!NtWaitForWorkViaWorkerFactory+0xc
0414££f8c 7617919f ntdll 77d00000!TppWorkerThread+0x259

0414££98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

0414ffdc 77d4a8al ntdll 77d00000! RtlUserThreadStart+0x20
0414ffec 00000000 ntdll 77d00000! RtlUserThreadStart+0xlb

4 Id: 16d8.868 Suspend: 0 Teb: ffe4d000 Unfrozen

ChildEBP RetAddr

0460fde8 77d227d3 ntdll 77d00000!NtWaitForWorkViaWorkerFactory+0xc
0460£f£f8c 7617919f ntdll 77d00000!TppWorkerThread+0x259

0460£f£98 77d4a8cb kernel32!BaseThreadInitThunk+0xe

0460ffdc 77d4a8al ntdll 77d00000! RtlUserThreadStart+0x20
0460ffec 00000000 ntdll 77d00000! RtlUserThreadStart+0xlb

The first thread (#0) has Technology-Specific Subtrace (COM interface
invocation, Volume 6, page 67) calling ServerA module code, and the second trace
(#1) seems to be Active Thread (not waiting, Volume 7, page 236) having RIP
Stack Trace (Volume 7, page 244).

However, only thread #0 seems to be Spiking Thread (Volume 1, page 305):

0:000:x86> !runaway f
User Mode Time

Thread Time
0:11e0 0 days 0:44:44.890
4:868 0 days 0:00:00.000
3:ab0 0 days 0:00:00.000
2:a88 0 days 0:00:00.000
1sE5e 0 days 0:00:00.000
Kernel Mode Time
Thread Time
0:11e0 0 days 0:10:38.312
4:868 0 days 0:00:00.015
3:ab0 0 days 0:00:00.000
2:a88 0 days 0:00:00.000
1:f5c 0 days 0:00:00.000

48 PART 3: Pattern Interaction

Elapsed Time

Thread Time
0:11e0 0 days 2:56:23.297
1:f5c 0 days 2:56:22.625
2:a88 0 days 2:54:36.883
3:ab0 0 days 0:02:18.705
4:868 0 days 0:01:07.372

Last Error Collection (Volume 2, page 337) is clear but needs to be double
checked by TEB32 (since we have a virtualized process):

0:000:x86> !gle

LastErrorValue: (Win32) 0 (0) - The operation completed successfully.
LastStatusValue: (NTSTATUS) O - STATUS WAIT O

Wow64 TEB status:

LastErrorValue: (Win32) 0 (0) - The operation completed successfully.
LastStatusValue: (NTSTATUS) 0 - STATUS WAIT O

0:000:x86> !teb
Wow64 TEB32 at 00000000£££fde000

ExceptionList: 00000000002£fb108
StackBase: 0000000000390000
StackLimit: 0000000000255000
SubSystemTib: 0000000000000000
FiberData: 0000000000001e00
ArbitraryUserPointer: 0000000000000000
Self: 00000000£££de000
EnvironmentPointer: 0000000000000000
ClientId: 00000000000016d8 . 00000000000011e0
RpcHandle: 0000000000000000
Tls Storage: 0000000000e12978
PEB Address: 00000000£££d£000
LastErrorValue: 38
LastStatusValue: c0000011
Count Owned Locks: 0
HardErrorMode: 0

Wow64 TEB at 00000000f££f£dc000
ExceptionList: 00000000£££de000
StackBase: 000000000008£d30
StackLimit: 0000000000083000
SubSystemTib: 0000000000000000
FiberData: 0000000000001e00
ArbitraryUserPointer: 0000000000000000
Self: 00000000£££dc000
EnvironmentPointer: 0000000000000000
ClientId: 00000000000016d8 . 00000000000011e0
RpcHandle: 0000000000000000
Tls Storage: 0000000000000000
PEB Address: 00000000£££d6000
LastErrorValue: 0

LastStatusValue: 0

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,
Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value
References, Namespace, and Module Hint 49

Count Owned Locks: 0
HardErrorMode: 0

From the errors, we suggested checking the code dealing with EOF condition.

0:000:x86> !error 0On38
Error code: (Win32) 0x26 (38) - Reached the end of the file.

0:000:x86> !'error c0000011

Error code: (NTSTATUS) 0xc0000011 (3221225489) - The end-of-file
marker has been reached. There is no valid data in the file beyond
this marker.

But let’s look at the thread #1 raw address and check whether we have
traces of malware or JIT code or something else:

0:000:x86> ~1s
003b02c8 c20c00 ret 0Ch

0:001:x86> u 0x3b02c8

003b02c8 ¢20c00 ret 0Ch
003b02cb 90 nop
003b02cc cc int 3
003b02cd cc int 3
003b02ce cc int 3
003b02cf cc int 3
003b02d0 cc int 3
003b02d1 cc int 3

0:001:x86> ub 0x3b02c8

003b02b6 cc int 3

003b02b7 cc int 3

003b02b8 cc int 3

003b02b9 cc int 3

003b02ba cc int 3

003b02bb cc int 3

003b02bc 803000400 mov eax, 0D0003h
003b02cl 64f£f15c0000000 call dword ptr fs:[0COh]

0:001:x86> dps fs:[0COh] L1
0053:000000c0 77cfl1d8 wow6bdcpu!KiFastSystemCall

50 PART 3: Pattern Interaction

0:001:x86> !address 0x3b02c8

Usage:

Base Address: 003b0000

End Address: 003b1000

Region Size: 00001000

State: 00001000 MEM COMMIT

Protect: 00000020 PAGE EXECUTE READ
Type: 00020000 MEM PRIVATE

Allocation Base: 003b0000

Allocation Protect: 00000040 PAGE_EXECUTE_READWRITE

Dumping this executable region only shows WOW&64 calls:

0:001:x86> dc 003b0000 0031000
foool

0:001:x86> .asm no_code_bytes
Assembly options: no_code_bytes

0:001:x86> u 003b0110 003b02e0
003b0110 add byte ptr [eax
003b0112 add byte ptr [eax
003b0114 add byte ptr [eax
003b0116 add byte ptr [eax
003b0118 mov eax, 3000Eh
003b011d call dword ptr fs:[0COh]
00300124 ret 4

003b0127 nop
00300128 int
00300129 int
003b012a int
003b012b int
003b012c int
003b012d int
003b012e int
003b012f int
00300130 int
003b0131 int
00300132 int
003b0133 int
003b0134 mov eax, 32h

003b0139 call dword ptr fs:[0COh]
003b0140 ret 18h

003b0143 nop
003b0144 int
003b0145 int
00300146 int
00300147 int
00300148 int
003b0149 int
003b014a int
003b014b int
003b01l4c int
003b014d int
003b01l4e int
003b014f int
003b0150 mowv eax, 1BO006h

1,al
1,al
1,al
]

,al

W wwwwwwwwwww

W wwwwwwwwwww

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

003b0155
003b015¢c
003b015f
003b0160
003b0161
003b0162
003b0163
003b0164
003b0165
003b0166
003b0167
003b0168
003b0169
003b016a
003b016b
003b016¢c
003b0171
003b0178
003b017b
003b017c
003b017d
003b017e
003b017£f
0030180
003b0181
003b0182
003b0183
003b0184
003b0185
003b0186
003b0187
003b0188
003b018d
003b0194
003b0197
003b0198
003b0199
003b019%a
003b019b
003b019¢c
003b019d
003b019%e
003b019f
003b01a0
003b0lal
003b01a2
003b01a3
003b01a4
003b01a9
003b01b0
003b01b3
003b01b4
003b01b5
003b01b6
003b01b7
003b01b8
003b01b9

call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int

References, Namespace, and Module Hint 51

dword ptr fs:[0COh]
28h

W wwwwwwwwwww

eax, 7002Bh
dword ptr fs:[0COh]
8

W wwwwwwwwwww

eax,17h
dword ptr fs:[0COh]
18h

W wwwwwwwwwww

eax, 4Fh
dword ptr fs:[0COh]
14h

w w w w w w

52 PART 3: Pattern Interaction

003b01ba
003b01bb
003b01bc
003b01bd
003b01be
003b01bf
003b01c0
003b01c5
003b01cc
003b01cf
003b01d0
003b01d1
003b01d2
003b01d3
003b01d4
003b01d5
003b01d6
003b01d7
003b01d8
003b01d9
003b01lda
003b01db
003b01dc
003b0lel
003b01e8
003b0leb
003b0lec
003b0led
003b0lee
003b0lef
003b01£0
003b01f1
003b01£f2
003b01£3
003b01£f4
003b01£5
003b01£f6
003b01£7
003b01£8
003b01£fd
00300204
00300207
00300208
00300209
003b020a
003b020b
003b020c
003b020d
003b020e
003b020f
00300210
003b0211
003b0212
003b0213
003b0214
003b0219
003b0220
003b0223
003b0224
003b0225

int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int

wWwwwww

eax, 1Dh
dword ptr fs:[0COh]
10h

W wwwwwwwwwww

eax,22h
dword ptr fs:[0COh]
18h

W wwwwwwwwwww

eax,47h
dword ptr fs:[0COh]
14h

W wWwwwwwwwwwww

eax, 1A0005h
dword ptr fs:[0COh]
24h

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

003b0226
003b0227
0030228
003b0229
003b022a
003b022b
003b022c
003b022d
003b022e
003b022f
0030230
003b0235
003b023c
003b023f
003b0240
003b0241
003b0242
003b0243
003b0244
003b0245
003b0246
003b0247
0030248
0030249
003b024a
003b024b
003b024c
003b0251
0030258
003b025b
003b025c
003b025d
003b025e
003b025£
003b0260
003b0261
003b0262
003b0263
003b0264
003b0265
003b0266
003b0267
003b0268
003b026d
003b0274
003b0277
003b0278
003b0279
003b027a
003b027b
003b027c
003b027d
003b027e
003b027£
003b0280
003b0281
003b0282

int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
ret
nop
int
int
int
int
int
int
int
int
int
int
int
int
mov
call
R
nop
int
int
int
int
int
int
int
int
int
int
int

References, Namespace, and Module Hint 53

W wwwwwwwww

eax,10h
dword ptr fs:[0COh]
14h

W wwwwwwwwwww

eax,112h
dword ptr fs:[0COh]
0Ch

W wwwwwwwwwww

eax, 13Eh
dword ptr fs:[0COh]
0Ch

W wwwwwwwwww

54 PART 3: Pattern Interaction

003b0283 int 3

003b0284 mov eax,24h

003b0289 call dword ptr fs:[0COh]
003b0290 ret 14h

003b0293 nop
00300294 int
0030295 int
0030296 int
0030297 int
0030298 int
00300299 int
003b029%a int
003b029b int
003b029¢c int
003b029d int
003b029%e int
003b029f int
003b02a0 mov eax,18h
003b02a5 call dword ptr fs:[0COh]
003b02ac ret 14h
003b02af nop
003b02b0 int
003b02bl int
003b02b2 int
003b02b3 int
003b02b4 int
003b02b5 int
003b02b6 int
003b02b7 int
003b02b8 int
003b02b9 int
003b02ba int
003b02bb int
003b02bc mowv eax, 0D0003h
003b02cl call dword ptr fs:[0COh]
003b02c8 ret 0Ch
003b02cb nop
003b02cc int
003b02cd int
003b02ce int
003b02cf int
003b02d0 int
003b02d1 int
003b02d2 int
003b02d3 int
003b02d4 int
003b02d5 int
003b02d6 int
003b02d7 int
003b02d8 add byte ptr []
003b02da add byte ptr []
003b02dc add byte ptr [eax],al

[]

[]

W wwwwwwwwwww W wwwwwwwwwww

W wwwwwwwwwww

003b02de add byte ptr
003b02e0 add byte ptr

Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace,

Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value

References, Namespace, and Module Hint 55

Searching for the address of system call points to another executable region:

0:001:x86> s-d 0 L? (FFFFFFFF/4)
00030044 003b02bc 00300284 71b74be0 0824448b ..;..;..K.q.D$.

0:001:x86> !address 00030044

Usage:

Base Address: 00030000
End Address: 00031000
Region Size: 00001000

State:
Protect:
Type:

00001000
00000020
00020000

Allocation Base: 00030000
Allocation Protect: 00000040
0:001:x86> dps 00030000 00031000

00030000
00030004
00030008
0003000¢c
00030010
00030014
00030018
0003001c
00030020
00030024
00030028
0003002¢c
00030030
00030034
00030038
0003003c
00030040
00030044
00030048
0003004c

to export symbols for UMEngx86.dll -

cd697e0e
4beéb72cc
036£2786
be5fe321
00000f5c
00000038
00000000
00000030
00000000
00000001
003d0000
003d0028
003b0000
00000000

003b02bc

MEM COMMIT
PAGE EXECUTE READ
MEM PRIVATE

PAGE EXECUTE READWRITE

77d4ce23 ntdll_77d400000!'LdrLoadDll
77d62fdd ntdll_77d00000!LdrUnloadDll
77d6094d ntdll 77d00000!LdrAddRefD11

003b02bc
003b0284

71b74be0*** ERROR: Symbol file could not be found. Defaulted

UMEngx86+0x4be0

00030050
00030054
00030058
0003005¢c
[oool

0824448b
00300589
52b8003d
9000700

56 PART 3: Pattern Interaction

In addition to Ldr* Namespace (Volume 7, page 257) we see a valid
symbolic reference (Module Hint, Volume 6, page 92) to AV:

0:001:x86> u 71b74bel

UMEngx86+0x4be0:

71b74be0 push ebp

71b74bel mov ebp, esp

71b74be3 push OFFFFFFFEQh

71b74be5 push offset UMEngx86!RegQueryValueExW+0x29818 (71b9f9b8)
71b74bea push offset UMEngx86!RegQueryValueExW+0x20b0 (71b78250)
71b74bef mov eax,dword ptr £s:[00000000h]

71b74bf5 push eax

71b74bf6 sub esp, 8

0:001:x86> 1lmv m UMEngx86
start end
71b70000 71bae000 UMEngx86 (export symbols)
Loaded symbol image file: UMEngx86.dl1l
Image path: C:\ProgramData\Symantec\Symantec
Endpoint Protection\12.1.4100.4126.105\Data\
Definitions\BASHDefs\20150307.011\UMEngx86.d1l1l
Image name: UMEngx86.dl11l

module name
UMEngx86.d11

Timestamp: Fri Jan 23 00:52:29 2015 (54C19B4D)
CheckSum: 00045930

ImageSize: 0003EQ000

File version: 9.1.1.4

Product version: 9.1.1.4

File flags: 0 (Mask 3F)

File OS: 4 Unknown Win32

File type: 2.0 D11

File date: 00000000.00000000

Translations: 0409.04b0

CompanyName : Symantec Corporation

ProductName: BASH

InternalName: UMEngx86

OriginalFilename: UMEngx86.dll

ProductVersion: 9.1.1.4

FileVersion: 9.1.1.4

FileDescription: SONAR Engine

LegalCopyright: Copyright (C) 2009 - 2014 Symantec

Corporation.

All rights reserved.

Cantor Operating System 57

PART 4: A Bit of Science and Philosophy

Cantor Operating System

Named after Georg Cantor CAN.TOR.0S(==°) brings computation from the distant
future to today. The transfinite worldview and universe of tomorrow into the
finite worldview and universe of today. Cantor OS drives transfinite computing
and saves transfinite memory dumps. [...] One cautious note though: transfinite
doesn’t mean absolute infinity or God-like computation, the latter is the realm of
Memory Religion®.

Metaphor of Memory as a Directed Container

The usual metaphor of Memory as a container is static and not useful for Memory
worldview because it has to explain Time. Previously, in 2010, we introduced
memorized relation (Volume 4, page 259) that may give memory order necessary
for Time. Later we came to a Directed Container metaphor that provides order
and directedness responsible for perceived Time Arrow. After doing some
research, we found that directed container datatype’ was introduced in computer
science that accounts for positions inside container structures that determine
substructures. However, our metaphor is intuitive and doesn’t specify exact
representation except the possible involvement of memorized relation.

5 (o) TOR is a new transfinite operation in addition to finite OR, AND or
XOR

6 http://www.memoryreligion.com/

7 http://link.springer.com/chapter/10.1007%2F978-3-642-28729-9 5

58 PART 4: A Bit of Science and Philosophy

Praxiverse

We are realized in Universe filled with memory verses via memory praxis
transforming it into Praxiverse - live Memory Universe, producing new memories,
new memory verses.

When Universe is Going to End?

When Universe is going to end? When it finishes writing a memory dump. This is a
logical conclusion from EPOCH (Exception Processing Of Crash Hypothesis).
According to it, our Universe is saving one huge Memory Dump from a runaway
HUC (Big Bang of Hyper-Universal Computation, or simply HUge Computation). It
is also called Memory Dump Universe Hypothesis (Volume 4, page 271).

Notes on Memoidealism 59

Notes on Memoidealism

We continue publishing new notes here. The previous ones can be found
scattered in previous volumes of Memory Dump Analysis Anthology.

Intuition is an attentive perception of metaphysical Memory as the
foundation of Universe (after Bergson's intuition as "perception of metaphysical
reality").

The experiment is a question put to memory (after Charles Sanders Pierce®
and Julius Adolph Stéckhardt®).

pHilosophy is a pointer to a thread of wisdom. Hilo: a thin veil of ore.
Origin: Spanish = thread, from Latin filum (from Shorter Oxford English
Dictionary).

The question of Memory comes from the primordial and falls back to it.

Memory as the efficient cause. In addition to its material cause (everything
is made from Memory), we can also say that everything started from Memory.
See also the final cause: “The purpose of everything is to come back to Memory”
(Volume 8A, page 91).

Philosophy is about memories, people’s memories (from bugtations'®).
Transcendental Memory Principle of Memoidealism (Volume 3, page 303)

is independent of any religious belief. Although in Memorianity (Memory
Religion!!) Memory is both Absolute and Infinite.

8 http://en.wikipedia.org/wiki/Charles_Sanders_Peirce
% http://en.wikipedia.org/wiki/Julius_Adolph_St%C3%B6ckhardt
10 http://www.dumpanalysis.org/Bugtations

1 http://www.memoryreligion.com/

60 PART 4: A Bit of Science and Philosophy

Each DA+TA (Dump Artifact + Trace Artifact) pattern is a pOEM (a pointer
to Originally Executed Memory). According to Alain Badiou'?, a poem is a true art,
an event of thought, a trace of the event, and an interruption of language. We say
a pOEM is a true art(ifact), an event of memory execution, interruption of
execution.

12 https://en.wikipedia.org/wiki/Alain_Badiou

Timeout 61

PART 5: Software Trace Analysis Patterns

Timeout

Some Discontinuities (Volume 4, page 341) may be Periodic Message Blocks
(Volume 7, page 300) as Silent Messages (Volume 7, page 339). If such
discontinuities belong to the same Thread of Activity (Volume 4, page 339) and
their Time Deltas (Volume 5, page 282) are constant we may see Timeout
pattern. When timeouts are followed by Error Message (Volume 7, page 299), we
can identify them by Back Tracing (Volume 8a, page 95). Timeouts are different
from Blackouts (Volume 8a, page 95) where the latter are usually Singleton
Events (Volume 8a, page 108) and have large Time Deltas.

62 PART 5: Software Trace Analysis Patterns

Here is a generalized graphical case study. An error message was identified
based on incident Basic Facts (Volume 3, page 345):

Time
@ # PIDTID Time Message

Timeout 63

We filtered the trace for error message TID and found 3 timeouts 30
minutes each:

Time
@ # PIDTID Time Message

64 PART 5: Software Trace Analysis Patterns

Time
@ # PIDTID Time Message

Activity Overlap 65

Activity Overlap

Sometimes specific parts of simultaneous Use Case Trails (Volume 8a, page 101),
blocks of Significant Events (Volume 5, page 281) or Message Sets (Volume 7,
page 349) in general may overlap. This may point to possible synchronization
problems such as race conditions (prognostics) or be visible root causes of them if
such problems are reported (diagnostics). We call this pattern Activity Overlap:

Time
@ # PIDTID Time

66 PART 5: Software Trace Analysis Patterns

For example, a first request may start a new session, and we expect the
second request to be processed by the same already established session:

SID
A
Session Initialization Prologue
Additional Request
I
L4 » #

However, users report the second session started upon the second
request. If we filter execution log by session id, we find out that session
initialization prologs (Volume 5, page 299) are overlapped. The new session
started because the first session initialization was not completed:

SID
A

Session Initialization Prologue

N\

Activity Overlap 67

68 PART 5: Software Trace Analysis Patterns

Adjoint Space

Sometimes we need memory reference information not available in software
traces and logs, for example, to see pointer dereferences, to follow pointers and
linked structures. In such cases, memory dumps saved during logging sessions
may help. In the case of process memory dumps, we can even have several Step
Dumps (Volume 7, page 173). Complete and kernel memory dumps may be
forced after saving a log file. We call such pattern Adjoint Space:

Time
@ # PIDTID Time Message

Adjoint Space 69

Then we can analyze logs and memory dumps together, for example, to
follow pointer data further in memory space:

Time
@ # PIDTID Time Message

70 PART 5: Software Trace Analysis Patterns

There is also a reverse situation when we use logs to see past data changes
before memory snapshot time (Paratext memory analysis pattern, Volume 7,
page 225):

Time
@ # PIDTID Time

Indirect Message 71

Indirect Message

Sometimes we have Basic Facts (Volume 3, page 345) in a problem description
but can’t find messages corresponding to them in a trace or log file but we are
sure the tracing (logging) was done correctly. This may be because we have
Sparse Trace (Volume 7, page 303), or we are not familiar well with product or
system tracing messages (such as with Implementation Discourse, Volume 6,
page 245).

- Basic Fact

Time
®

72 PART 5: Software Trace Analysis Patterns

In such a case we for search for Indirect Message of a possible cause:

Possible Cause

Indirect Message 73

Having found such a message we may hypothesize that Missing Message
(Volume 8a, page 99) should have located nearby (this is based on semantics of
both messages), and we then explore corresponding Message Context (Volume 5,
page 305):

- Basic Fact

Time
®

Possible Cause

74 PART 5: Software Trace Analysis Patterns

The same analysis strategy is possible for missing causal messages. Here
we search for effect or side effect messages:

- Basic Fact

Time
®

Possible Effect or Side Effect

Indirect Message 75

Having found them we proceed with further analysis:

Possible Effect or Side Effect

76 PART 5: Software Trace Analysis Patterns

Watch Thread

When we do tracing and logging much of computational activity is not visible. For
live tracing and debugging this can be alleviated by adding Watch Threads. These
are selected memory locations that may or may not be formatted according to
specific data structures and are inspected at each main trace message occurrence

or after specific intervals or events:

pData g_Var localvar

rime N/

Main Trace ‘ ‘

Watch Thread 77

This analysis pattern is different from State Dump (Volume 7, page 346)
which is about intrinsic tracing where the developer of logging statements already
incorporated variable watch in the source code. Watch Threads are completely
independent of original tracing and may be added independently. Counter Value
(Volume 7, page 288) is the simplest example of Watch Thread if done
externally because the former usually doesn’t require source code and often
means some OS or Module Variable (Volume 7, page 98) independent of product
internals. Watch Thread is also similar to Data Flow (Volume 7, page 296) pattern
where specific data we are interested in is a part of every trace message.

78 PART 5: Software Trace Analysis Patterns

Punctuated Activity

Sometimes we have a uniform stream of messages that belong to some Activity
Region (Volume 4, page 348), Thread of Activity (Volume 4, page 339), or Adjoint
Thread of Activity (Volume 5, page 283). We can use micro-Discontinuities
(Volume 4, page 341) to structure that message stream, especially if the
semantics of trace messages is not yet fully clear for us. This may also help us to
recognize Visitor Trace (Volume 8a, page 110). Originally we wanted to call this
pattern Micro Delays, but, after recognizing that such delays only make sense for
one activity (since there can be too many of them in the overall log), we named
this pattern Punctuated Activity. Usually, such delays are small compare to
Timeouts (page 61) and belong to Silent Messages (Volume 7, page 339).

Time

Trace Mask 79

Trace Mask

Trace Mask is a superposition of two (or many) different traces. This is different
from Inter-Correlation (Volume 4, page 350) pattern where we may only search
for certain messages without the synthesis of a new log. The most useful Trace
Mask is when we have different time scales (or significantly different Statement
Currents, Volume 4, page 335). Then we impose an additional structure on the
one of the traces:

80 PART 5: Software Trace Analysis Patterns

Time Time

Time

Trace Mask 81

We got the idea from Narrative Masks discussed in Miroslav Drozda’s

” (n

book “Narativni masky ruské prézy” ("Narrative Masks in Russian Prose”).

The very simple example of Trace Mask is shown in Debugging TV!? Episode 0x15.

13 http://www.debugging.tv/

82 PART 5: Software Trace Analysis Patterns

Trace Viewpoints

Reading Boris Uspensky'¥s book “A Poetics of Composition: The Structure of the
Artistic Text and Typology of a Compositional Form” (in its original Russian
version) led me to borrow the concept of viewpoints. The resulting analysis
pattern is called Trace Viewpoints. These viewpoints are, “subjective”
(semantically laden from the perspective of a trace and log reader), and can be
(not limited to):

e Error viewpoints (see also False Positive Error, Volume 5, page 303,
Periodic Error, Volume 3, page 344, and Error Distribution, Volume 7,
page 290)

e Use case (functional) viewpoints (see also Use Case Trail, Volume 8a,
page 101)

e Architectural (design) viewpoints (see also Milestones, Volume 8a, page
105)

e Implementation viewpoints (see also Implementation Discourse, Volume
6, page 245, Macrofunctions, Volume 7, page 283, and Focus of Tracing,
Volume 6, page 243)

e Non-functional viewpoints (see also Counter Value, Volume 7, page 288,
and Diegetic Messages, Volume 5, page 302)

e Signal / noise viewpoints (see also Background and Foreground
Components, Volume 5, page 287)

14 http://en.wikipedia.org/wiki/Boris_Uspensky

Trace Viewpoints 83

Time
@ # PIDTID Time Message

N mmmm Error Viewpoint

S mm Use Case Viewpoint

mmmm Architectural Viewpoint

mmmm Implementational Viewpoint

e Non-Functional Viewpoint

In comparison, Activity Regions (Volume 4, page 348), Data Flow (Volume
7, page 296), Thread of Activity (Volume 4, page 339), and Adjoint Thread of
Activity (Volume 5, page 283) are “objective” (structural, syntactical) viewpoints.

84 PART 5: Software Trace Analysis Patterns

Data Reversal

Sometimes we notice that data values are in a different order than expected. We
call this pattern Data Reversal. By data values, we mean some variable parts of a
specific repeated message such the address of some structure or object. Data
Reversal may happen for one message type:

Time
@ # PIDTID Time Message

Data Reversal 85

But it can also happen for some message types and not for others. Typical
example here are Enter/Leave trace messages for nested synchronization objects
such as monitors and critical sections:

Time Time
@ # PIDTID Time @ # PIDTID Time

Since we talk about the same message type (the same Message Invariant,
Volume 6, page 251), this pattern is different from Event Sequence Order
(Volume 6, page 244) pattern.

In rare cases, we may observe Data Reversal inside one message with
several variable parts but this may also be a case of Data Association (Volume 7,
page 344).

86 PART 5: Software Trace Analysis Patterns

Recovered Messages

If we analyze ETW-based traces such as CDF we may frequently encounter No
Trace Metafile (Volume 5, page 296) pattern especially after product updates and
fixes. This complicates pattern analysis because we may not be able to see
Significant Events (Volume 5, page 281), Anchor Messages (Volume 5, page 293),
and Error Messages (Volume 7, page 299). In some cases, we can recover
messages by comparing Message Context (Volume 7, page 289) for unknown
messages. If we have source code access, this may also help. Both approaches are
illustrated in the following diagram:

Recovered Messages 87

Time
@ # PIDTID Time Message

Source code

foo()
{

Trace (“...”);
bar();
}

bar()
{

3

Trace (“...”);

PP?2??77?7??7

Trace from a different version

The same approach may also be applied for a different kind of trace
artifacts when some messages are corrupt. In such cases, it is possible to recover
diagnostic evidence and, therefore, we call this pattern Recovered Messages.

88 PART 5: Software Trace Analysis Patterns

Palimpsest Messages

Palimpsest Messages are messages where some part or all of their content was
erased or overwritten.

Time
@ # PIDTID Time Message

Palimpsest Messages 89

The name of this pattern comes from palimpsest!®> manuscript scrolls. Such
messages may be a part of malnarratives (Volume 8a, page 121) or result from
Circular Tracing (Volume 3, page 346) or trace buffer corruption. Sometimes, not
all relevant data is erased and by using Intra- (Volume 3, page 347) and Inter-
Correlation (Volume 4, page 350), and via the analysis of Message Invariants
(Volume 6, page 251) it is possible to recover the original data. Also, as in
Recovered Messages (page 86) pattern it may be possible to use Message
Context (Volume 7, page 289) to infer some partial content.

15 http://en.wikipedia.org/wiki/Palimpsest

90 PART 5: Software Trace Analysis Patterns

Time
@ # PIDTID Time Message

Message Space 91

Message Space

The message stream can be considered as a union of Message Spaces. A message
space is an ordered set of messages preserving the structure of the overall trace.
Such messages may be selected based on memory space they came from or can
be selected by some other general attribute, or a combination of attributes and
facts. The differences from Message Set (Volume 7, page 349) is that Message
Space is usually much larger (with large scale structure) with various Message
Sets extracted from it later for fine-grained analysis. This pattern also fits nicely
with Adjoint Spaces (page 68). Here’s an example of kernel and managed spaces
in the same CDF / ETW trace from Windows platform where we see that kernel
space messages came not only from System process but also from other process
contexts:

92 PART 5: Software Trace Analysis Patterns

Time Time
@ # PIDTID Time Message @ # PIDTID Time Message

Kernel
Space

Managed
Space

In the context of general traces and logs (page 121) such as debugger logs,
separate Message Space regions may be linked (or “surrounded”) by Interspace
(page 93).

Interspace 93

Interspace

General traces and logs (page 121) may have Message Space (page 91) regions
“surrounded” by the so-called Interspace. Such Interspace regions may link
individual Message Space regions like in this diagram generalizing WinDbg
Iprocess 0 3f command output:

94 PART 5: Software Trace Analysis Patterns

Interspace

Kernel Space

User Space

Interspace

Kernel Space

User Space

Interspace

Kernel Space

User Space

WinDbg log Interspace
example: contains
information about
everything that is not a
stack trace:

ALPC requests
Synchronization objects
like mutants, threads,
and processes
Performance information
IRPs

Process environment

The parts of the output of
any command or script
that don’t contain stack
traces

Translated Message 95

Translated Message

Sometimes we have messages that report about the error but do not give exact
details. For example, “Communication error. The problem on the server side” or
“Access denied error”. This may be the case of Translated Messages. Such
messages are plain language descriptions or reinterpretations of flags, error and
status codes contained in another log message. These descriptions may be coming
from system API, for example, FormatMessage from Windows API, or may be
from the custom formatting code. Since the code translating the message is in
close proximity to the original message both messages usually follow each other
with zero or very small Time Delta (Volume 5, page 282), come from the same
component, file, function, and belong to the same Thread of Activity (Volume 4,
page 339):

96 PART 5: Software Trace Analysis Patterns

Time
@ # PIDTID Time Message

This pattern is different from Gossip (Volume 6, page 248) because the
latter messages come from different modules, and, although they reflect some
underlying event, they are independent of each.

Activity Disruption 97

Activity Disruption

Sometimes a few Error Messages (Volume 7, page 299) or Periodic Errors
(Volume 3, page 344) with low Statement Density (Volume 4, page 335) for
specific Activity Regions (Volume 4, page 348) or Adjoint Threads of Activity (for
specific component, file or function, Volume 5, page 283) may constitute Activity
Disruption. If the particular functionality was no longer available at the logging
time then its unavailability may not be explained by such disruptions, and such
messages may be considered False Positive Errors (Volume 5, page 303) in
relation to the reported problem:

98 PART 5: Software Trace Analysis Patterns

Time
®

But, if we have Periodic Message Blocks (Volume 7, page 300) containing
only Periodic Errors (Volume 3, page 344), Activity Region (Volume 4, page 348)
or Adjoint Thread (Volume 5, page 283) Discontinuity (Volume 4, page 341), or
simply No Activity (Volume 5, page 297), then we may have the complete cease
of activity that may correlate with the unavailable functionality:

Activity Disruption 99

Time

100 PART 5: Software Trace Analysis Patterns

[This page is intentionally left blank]

The Dump from the Future 101

PART 6: Fun with Debugging, Crash Dumps, and Traces

The Dump from the Future

deaddead: kd> !session
Sessions on machine: 3735936685

Exchange Rate on 16.12.14

Dmitry Vostokov

@DumpAnalysis

3300 3800

102 PART 6: Fun with Debugging, Crash Dumps, and Traces

Check the Plug

Check The Plug

Copyright © 2014 by Dmitry Vostokov, DumpAnalysis.org

Debugging Slang 103

Debugging Slang

YAWE

YAWE - Yet Another Windbg Extension

Embedded Software Engineer

A software engineer embedded in a non-software team.

Compare with: Embedded Technical Support Engineer.

‘Minute-wise

When we have two logs from different time zones or generated using different
time APIs, so we compare minutes.

Developer

One who uses bricks of books to build the walls of knowledge.

‘Multidigitalist

A person who simultaneously wears an Android watch, an Apple watch, and a
Microsoft Band.

104 PART 6: Fun with Debugging, Crash Dumps, and Traces

KgB

Hardcopy data measured in kilogram-bytes. Usage: We got plenty of KgB archives.

ClQ (Crash 1Q)

Crash 1Q (ClQ, pronounced “sick”) is the measure of intellectuality of a crash
dump and, reciprocally, the measure of system sickness. The less CIQ your crash
dump has, the easier your analysis. For example, compare low CIQ NULL pointer
issue with High ClQ system freeze.

Pat Ching

Pat Ching (patching) - from Pat (a light blow ... with ... instrument) and Ching
(Book of Changes).

Explosive Mixture

PowerBuilder VM + Visual Basic VM

POEM

A pointer to OEM. Example: | found a few poems in this memory dump.

Debugging Slang 105

YearNormous Day

YNK day calculated via formula YYYY-MM-DD = NOOO or YYYY-DD-MM = NOOO.
Something eNormous may happen on that day.

eNormous

Normal in e-World (virtual) but may have a very big influence on Real World.

106 PART 6: Fun with Debugging, Crash Dumps, and Traces

2015 - The Year of RAM

Because 2015 is the true year of RAM we greet you again in memory dump
analysis style:

; random analysis of memory / reversing analysis of memory

0:001> g o a t 2015
Bp expression 'o ' could not be resolved, adding deferred bp
*** Bp expression 'o ' contains symbols not qualified with module
name.
Bp expression 't ' could not be resolved, adding deferred bp
*** Bp expression 't ' contains symbols not qualified with module
name.
Unable to insert breakpoint 10001 at 00000000 0000000a, Win32 error
0n299
"Only part of a ReadProcessMemory or WriteProcessMemory request
was completed."
The breakpoint was set with BP. If you want breakpoints
to track module load/unload state you must use BU.
go bpl0001 at 00000000°0000000a failed
Unable to insert breakpoint 10003 at 00000000 00002015, Win32 error
0n299
"Only part of a ReadProcessMemory or WriteProcessMemory request
was completed."
The breakpoint was set with BP. If you want breakpoints
to track module load/unload state you must use BU.
go bpl0003 at 00000000°00002015 failed
WaitForEvent failed
ntdll!DbgBreakPoint+0x1:
00000000°77280591 c3 ret

Diagnostics and Debugging in Science Fiction 107

Diagnostics and Debugging in Science Fiction

Here’s an incomplete list of SF short stories, novellas, and novels | have read by
the time of this writing with my summaries and thoughts.

"Guest of Honor" (by Robert Reed)
The imperfect solution to the problem of immortality, stupid death
accidents, and human curiosity. Humans designed for to bring memories
back to their parents. The possibility of suicidal memory resonance. The
terrible fear of being disassembled.

"The Man Who Walked Home" (by James Tiptree, Jr)
A malfunction absorbed in the greater malfunction. No diagnostics of the
former one is possible. What we see is "Dust from the future". Very sparse
trace messages, one per year. Takes centuries to get enough for
diagnostics. Diagnostics and Special Relativity. When Time becomes Space.

"Martian Blood" (by Allen M. Steele)
About the consequences of diagnostics.

"The Clockwork Atom Bomb" (by Dominic Green)

Set in post-WW3 African environment featuring black hole
troubleshooting.

"Pathways" (by Nancy Kress)
Prion debugging.
"The End of the World" (by Sushma Joshi)

A Nepalese town population enjoys the last meal on hearing such
prognostics. Then comes the end of the end.

108 PART 6: Fun with Debugging, Crash Dumps, and Traces

"Fermi and Frost" (by Frederik Pohl)
Bifurcation points in the narrative of nuclear apocalypse.

"Dinner in Audoghast" (by Bruce Sterling)
Prognostics at its best.

"The Discovered Country" (by lan MaclLeod)
A too perfect program is most likely malware.

"When Sysadmins Ruled the Earth" (by Cory Doctorow)
Fighting entropy after a global disaster. But whodunit?

"The Waiting Stars" (by Aliette de Bodard)
One's freedom is another's slavery. Prenatally modified births of space ship
control systems. Confucianism at cosmic scales. Deep memories that were
not erased cause severe depression. Unconsciousness in the computer,
consciousness in some human body. A body as a cage. The clash of
civilizations and a personal relationship. Unfolding of being.

"Seveneves" (by Neal Stephenson)
"... I'mright in the middle of debugging this method..."

"Mortimer Gray's History of Death" (by Brian Stableford)
Interesting SF novella: it combines two narratives; one is a literary criticism
of the multivolume history of death written millennia far into the future;
the other narrative is some kind of a fragmented memoir from the author
of that history book. The war on death is the main drive of humanity.
When death problematic is solved for individuals (becomes "a social
contract") and seems there's nothing to do (at least for the author) there
comes a distant existential death threat to all humanity that needs to be

fought off again (the author got the new meaning of life). What caught my
attention is this workaround pattern for software behavior: "I handed over

Diagnostics and Debugging in Science Fiction 109

full responsibility for answering all my calls to a state-of-the-art Personal
Simulation program, which grew so clever and so ambitious with practice
that it began to give live interviews on broadcast television. Although it
offered what was effectively no comment in a carefully elaborate fashion |
eventually thought it best to introduce a block into its operating system — a
block that ensured that my face dropped out of public sight for half a
century."

"Guardians of the Phoenix" (by Eric Brown)

Horrors of cannibals encounter in the post-apocalyptic Earth (after China
invaded India) reminded me "The 13th Warrior" movie. You still debug at
the electronic high system level there (replace transistors when they
blow).

110 PART 6: Fun with Debugging, Crash Dumps, and Traces

Software and Hardware Exceptions

Gloomy outlook before | started my work on Pattern 0n222 (Software Exception)

Software and Hardware Exceptions 111

But after | finished my work on Pattern On222 (Software Exception)

weather improved with Hardware Exception:

112 PART 6: Fun with Debugging, Crash Dumps, and Traces

Logging for Kids

Trace in Space from the Log of Trace Malone Space Detective

e ISBN-13:9780340626696

e Publisher: Hodder Headline plc

e Publication date: 2/29/2000

e Pages: 118

e Description: “Trace is the youngest-ever cadet in charge of her own
spaceship. Unfortunately, her crew consists of a computer with an
attitude, a droid with the personality chip of a surfer and an armadillo.
Now the team has its first mission to find the missing computer chips
from Planet Megalon.”

Find the Bug 113

Find the Bug

114 PART 6: Fun with Debugging, Crash Dumps, and Traces

Music for Debugging

e “The 50 Darkest Pieces of Classical Music”. Great quality recordings on Fostex
TH600 headphones and Marantz CD player.

e In addition to well-known composers, we also discovered Suite Gothique
(Boéllmann) / Toccata for organ.

e Music for tracing. Gloria Coates String Quartet No. 5. The tracks:
1. Through Time

2. Through Space
3. In the Fifth Dimension

Tracing and Counting Book 115

Tracing and Counting Book

116 PART 6: Fun with Debugging, Crash Dumps, and Traces

The Last Error

Looks like I'm not the first "Vostokov" to talk about errors. Just found 1966
"L'ultimo errore" book (The Last Error) by Vladimir Vostokov and Oleg Smelov.
Interesting that there is a crash dump analysis pattern called Last Error Collection.
This seems to be a well-known Soviet espionage thriller and the author
"Vostokov" is actually a pseudonym.

Patching the Hardware Defect 117

Patching the Hardware Defect

118 PART 6: Fun with Debugging, Crash Dumps, and Traces

Pattern Match

Coding and Articoding 119

PART 7: Software Narratology

Coding and Articoding

The analysis of software traces and logs is largely a qualitative activity. We look
for specific problem domain patterns using general analysis patterns'®. Some
methodological aspects of this software defect research are similar to “qualitative
research” method in social sciences'’. The latter method uses the so-called
“coding” techniques for data analysis'®. Software traces and debugger logs from
memory dumps are software execution artifacts we previously called DA+TA
(Dump Artifact + Trace Artifact)'®. We propose to use similar “coding” techniques
to annotate them with diagnostic indicators, signal, and sign mnemonics, and
patterns (such as software diagnosis codes?®). We, therefore, call this software
post-construction “coding” as articoding (artecoding), from artifact (artefact) +
coding, to distinguish it from software construction coding. Such articoding forms
a part of software post-construction problem solving?!. Articodes form a second
order software narrative?? and can be articoded too.

Many software tools were developed for assisting qualitative research
coding, and these can be reused for “coding” debugger logs, for example. In
addition to those tools, general word and table processing programs can be used
as well for some types of artifacts. Here we show MS Word for a WinDbg log
example. The debugger log with stack traces from all processes and threads was

16 Memory Dump Analysis Anthology, Volume 7, page 393

7 http://en.wikipedia.org/wiki/Qualitative research

18 http://en.wikipedia.org/wiki/Qualitative research#Coding

1% Memory Dump Analysis Anthology, Volume 3, page 330
20 \olume 7, page 446
21 Introduction to Pattern-Driven Software Problem Solving, page 8

22 Memory Dump Analysis Anthology, Volume 8a, page 123

http://en.wikipedia.org/wiki/Qualitative_research
http://en.wikipedia.org/wiki/Qualitative_research#Coding

120 PART 7: Software Narratology

loaded into MS Word template table with 3 columns. The first column is the log
itself, the second column is for diagnostic indicators (such as critical section, CPU
consumption, ALPC wait, etc.), and the third column is for pattern language
articodes (here we use pattern names from Memory Analysis Pattern Catalogue?,
for traces we can use MS Excel and Trace and Log Analysis Pattern Catalogue?*).
Formatting and highlighting creativity here is unlimited. Irrelevant parts from the
log can be deleted, and the final analysis log can have only relevant annotated

tracing information.

The full-size picture can be found here:
http://www.dumpanalysis.org/blog/files/ArticodingExample.png

3 Encyclopedia of Crash Dump Analysis Patterns

24 software Trace and Log Analysis: A Pattern Reference

http://www.dumpanalysis.org/blog/files/ArticodingExample.png

Special and General Trace and Log Analysis 121

PART 8: Software Diagnostics, Troubleshooting, and Debugging

Special and General Trace and Log Analysis

Most software traces include message timestamps or have an implicit time arrow
via sequential ordering. We call such traces Special. The analysis is special too
because causality is easily seen. Typical examples of analysis patterns here are
Discontinuity (Volume 4, page 341), Time Delta (Volume 5, page 282), Event
Sequence Order (Volume 6, page 244), Data Flow (Volume 7, page 296, see also
time dependency markers in the training course reference??), and more recently
added patterns such as Back Trace (Volume 8a, page 95), Timeout (page 61),
Milestones (Volume 8a, page 105), and Event Sequence Phase (Volume 8a, page
103). Inter- (Volume 4, page 350) and Intra-Correlation (Volume 3, page 347)
analysis is also easy.

2 http://www.patterndiagnostics.com/Training/Accelerated-Windows-
Software-Trace-Analysis-Public.pdf

http://www.patterndiagnostics.com/Training/Accelerated-Windows-Software-Trace-Analysis-Public.pdf
http://www.patterndiagnostics.com/Training/Accelerated-Windows-Software-Trace-Analysis-Public.pdf

122 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Time
@ #

On the other side, there are plenty of software logs or digital media
artifacts with “chaotic” records where time arrow is missing or only partial.
Typical examples are debugger logs from WinDbg debugger from Microsoft
Debugging Tools for Windows or logs from debugging sessions on other
platforms. Such logs may contain global ordering such as the list of processes and
threads (Last Object memory analysis pattern, Volume 8a, page 37) interspaced
with local pockets of stack traces that have reversed ordering. Some logging
output may not have any ordering or timing information whatever.

Special and General Trace and Log Analysis 123

|
!
!
|
¥

In a more general case, logging may be completely arbitrarily. A typical
example is raw stack analysis and its Rough Stack Trace (Volume 8a, page 39) and
Past Stack Trace (Volume 8a, page 43) patterns.

124 PART 8: Software Diagnostics, Troubleshooting, and Debugging

We call such traces General. The main task of general trace analysis is to
recover causality. It may be possible if another analysis pattern is introduced
called Causality Markers. The prototypes of such a pattern are various Wait
Chains?®, Waiting Thread Time (Volume 1, page 343) memory analysis pattern
and its process memory dump equivalent (Volume 2, page 319).

% Encyclopedia of Crash Dump Analysis Patterns, page 952

Projective Debugging 125

Projective Debugging

Modern software systems and products are hard to debug despite their elaborate
tracing and logging facilities. Typical logs may include millions of trace messages
from hundreds and thousands of components, processes, and threads. The
postmortem diagnostic analysis became more structural after the introduction of
Trace and Log Analysis Patterns?’ but live debugging requires a lot more efforts.
Here we introduce Projective Debugging as a tool for trace-level debugging. Its
main idea is to analyze, diagnose and debug the so-called “projected” execution
of software as seen from the original software execution traces and logs:

O rigi n a I Projected

Software

SOftwa re as seen from
Execution

Time

\4

Picture 1. Original software execution is mapped into projected software as seen
from traces and logs.

27 Software Trace and Log Analysis: A Pattern Reference (ISBN: 978-1-
908043801)

126 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Please notice, that Projective Debugging is different from the so-called
Prototype Debugging by creating models after the software product is built (some
engineering methodologies prescribe that prototypes should be discarded before
building the product):

Prototype O rigi n a I

Software

Software

Time

\ 4

Picture 2. The prototype software is mapped into the product.

Projective Debugging 127

The problems diagnosed and solved in the projected system are fed back
into the original system:

Debugged
Original
Software

Picture 3. Debugged projected software is mapped into the original software.

128 PART 8: Software Diagnostics, Troubleshooting, and Debugging

The implementation of the main idea of Projective Debugging is that: we

can take a trace or log, interpret every trace message according to some rules,

and translate it into executable code mirroring components and execution

entities such as user sessions, processes, and threads. This is a task for the

Projective Debugger, and it is illustrated in the following diagram where we

borrowed notation from UML:

Original Product Execution

N

Execution Trace or Log

Projective Debugger

Picture 4. The logs and traces from the original product execution are translated

by Projective Debugger.

For example, the Projective Debugger (ProjectiveDebugger.exe) interprets

these very simple messages below, and creates a process PID220.exe (we have

only one thread), and then opens a file “data.txt”. After 10 seconds, it closes the

file.

11:00:00 220 330 Open “data.txt”

11:00:10 220 330 Close “data.txt”

Projective Debugging 129

In addition to executing code corresponding to messages using the same
time deltas as read from the trace, it may scale execution time proportionally, for
example, executing 2-day log in a matter of minutes. Such scaling may also
uncover additional synchronization bugs.

The trace may be pre-processed, and all necessary objects created before
execution or it may be interpreted line by line. For complex traces, the projected
source code may be generated for later compilation, linking, and execution. Once
the projected code is executed, breakpoints may be set on existing traces, and
other types of Debugging Implementation Patterns?® may be applied. Moreover,
we may re-execute the trace several times and even have some limited form of
backward execution.

28 Accelerated Windows Debugging? (ISBN: 978-1908043566)

130 PART 8: Software Diagnostics, Troubleshooting, and Debugging

The resulting code model can be inspected by native debuggers for the

presence of Memory Analysis Patterns?® and can even have its own logging

instrumentation with traces and logs analyzed by another instance of the

Projective Debugger:

1

Execution

Projective Debugger

Execution Trace or Log

L

L2 | o]
Projected Product Execution <
A
Projected Product »
-

Projective Debugger

Picture 5. Projected Product Execution is inspected by a native debugger and also

generates its own set of traces and logs to be projected to another model by

another instance of the Projected Debugger.

2 Encyclopedia of Crash Dump Analysis Patterns: Detecting Abnormal
Software Structure and Behavior in Computer Memory (ISBN: 978-1-906717216)

Projective Debugging 131

We created the first version of the Projective Debugger and successfully
applied to a small trace involving synchronization primitives across several
threads. The Projective Debugger was able to translate it into an executable
model with the same number of threads and the same synchronization primitives
and logic. The resulting process was hung as expected and we attached a native
debugger (WinDbg for Windows) and found a deadlock.

Since traces are analyzed from platform-independent Software
Narratology>° perspective, it is possible to get a trace from one operating system,
and then, after applying a set of rules, re-interpret it into an executable model in
another operating system. We created the similar multithreading test program on
Mac OS X that was hung and reinterpreted its trace into an executable model
under Windows:

30 Software Narratology: An Introduction to the Applied Science of
Software Stories (ISBN: 978-1908043078)

132 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Mac OS X

N

Original Product Execution Execution Trace or Log

Windows

Projective Debugger

Picture 6. The traces and logs from the original product execution on Mac OS X are
projected by a Windows version of Projective Debugger into an executable model
for a Windows platform.

Since resultant executable models can also have corresponding logging
instrumentation mirroring original tracing, any problems found in executable
models can be fixed iteratively and, once the problem disappears, the resulting fix
or configuration may be incorporated into the original product or system.

If tracing involves kernel space and mode, a specialized projected
executable can be created to model the operating system and driver level.

Projective Debugging 133

The more trace data you have, the more real your projected execution
becomes. However, we want to have enough tracing statements but not to
complicate the projected model. Then, ideally, we should trace only relevant
behavior, for example, corresponding to use cases and architecture.

Projective Debugging may also improve your system or product
maintainability by highlighting whether you need more tracing statements and
whether you need more accurate and complete tracing statements.

134 PART 8: Software Diagnostics, Troubleshooting, and Debugging

Pattern! What Pattern?

There is confusion about patterns of diagnostics such as related to crash dump
analysis and software trace and log analysis. We are often asked about pattern
percentage detection rate or whether it is possible to automate pattern
diagnostics. Before asking and answering such questions, it is important to
understand what kinds of patterns are meant. Patterns of diagnostics can be
subdivided into concrete and general problem patterns, and, also, into concrete
and general analysis patterns.

Problem patterns are simply diagnostic patterns, and they can be defined
as (fusing Diagnostic Pattern3! and Diagnostic Problem3? definitions):

A common recurrent identifiable set of indicators (signs) together with a set
of recommendations and possible solutions to apply in a specific context.

Concrete Problem Patterns are particular sets of indicators, for example,
an exception stack trace showing an invalid memory access in the particular
function from the particular component/module code loaded and executed on
Windows platform.

But such indicators can be generalized from different products and OS
platforms giving rise to General Problem Patterns forming a pattern language.
Our previous example can be generalized as Exception Stack Trace (Volume 4,
page 337) showing Invalid Pointer (Volume 1, page 267) and Exception Module
(Volume 8a, page 80). Concrete Problem Patterns are the implementation of the
corresponding General Problem Patterns.

Now, it becomes clear why Memory Analysis Pattern Catalog>® doesn’t
have any concrete BSOD bugcheck numbers. Most of such numbers are concrete
implementations of Self-Diagnosis (Volume 6, page 89) pattern.

31 pattern-Oriented Software Forensics: A Foundation of Memory Forensics
and Forensics of Things, page 13

32 |bid., page 14

Pattern! What Pattern? 135

Then we have Concrete Analysis Patterns as particular techniques to
uncover Concrete Problem Patterns. For example, thread raw stack analysis for
historical information to reconstruct a stack trace. Again, such techniques vary
between OS platform and even between debuggers.

Generalizing again, we have General Analysis Patterns, for example,
analyzing Historical Information (Volume 1, page 458) in Execution Residue
(Volume 2, page 239) to construct Glued Stack Trace (Volume 7, page 178).

General Problem Pattern descriptions may already reference General
Analysis Patterns, and in some cases, both may coincide. For example, Hidden
Exception (Volume 1, page 271) pattern uses Execution Residue pattern as a
technique to uncover such exceptions.

Most of Software Trace and Log Analysis Patterns3* are General Analysis
Patterns that were devised and cataloged to structure the analysis of the diverse
logs from different products and OS platforms®. For example, a specific data
value common to both working and problem logs that helps to find out the
missing information from the problem description can be generalized to Inter-
Correlation (Volume 4, page 350) analysis between the problem trace and Master
Trace (Volume 6, page 247) using Shared Point (Volume 7, page 341).

33 Encyclopedia of Crash Dump Analysis Patterns
34 Software Trace and Log Analysis: A Pattern Reference

35 Malware Narratives: An Introduction, page 14

136 PART 8: Software Diagnostics, Troubleshooting, and Debugging

This partitioning is depicted in the following diagram:

Concrete Problem Patterns General Problem Patterns

Concrete Analysis Patterns General Analysis Patterns

Software Diagnostics Institute3® innovation is in devising and cataloging
general problem and analysis patterns and providing some concrete analysis
implementations on specific OS platforms such as Windows and Mac OS X.

36 http://www.DumpAnalysis.org + http://www.TraceAnalysis.org

http://www.dumpanalysis.org/
http://www.traceanalysis.org/

| Didn’t See Anything 137

| Didn’t See Anything

How often do you hear that back from support departments when you submit
your memory dumps and software logs? “Analysis inconclusive”, “logs or crash
dumps are not good”, “I need more”, “liaise with another vendor”, and many
others hide the same response behind the elaborate narrative facade. Based on
the audit of memory dump analysis reports submitted to Software Diagnostics
Services (former Memory Dump Analysis Services) by its customers over the
course of the last few years | think such responses usually result from support
engineers not utilizing the proper software diagnostics methodology, for example,
using only what they remembered from their own past diagnostics,
troubleshooting, and debugging practice. What is a solution to this problem?

Software Diagnostics Institute (DumpAnalysis.org + TraceAnalysis.org) has
been collecting analysis patterns for the past 8 years in cooperation with Software
Diagnostics Services providing research funds and software execution artifacts.
Patterns are organized into pattern catalogs, and checklists are recommended.
The approach is called Pattern-Oriented Diagnostics which has 3 parts: pattern-
driven, systemic, and pattern-based. Pattern-driven means that you go through
the list of patterns and report ones you found and not found. This may be done
iteratively. Systemic part means you can apply the same general patterns across
different software execution artifacts, products, and operating systems. Pattern-
based means you iteratively extend and improve your pattern catalogs and use
Pattern-View-Controller diagnostics architecture.

Please find the following presentations for each part:

e Pattern-Driven: http://www.patterndiagnostics.com/Introduction-
Software-Diagnostics-materials

e Systemic: http://www.patterndiagnostics.com/systemic-diagnostics-
materials

e Pattern-Based: http://www.patterndiagnostics.com/pattern-based-
diagnostics-materials

e Pattern-View-Controller: http://www.dumpanalysis.org/patterns-view-
controller

http://www.patterndiagnostics.com/Introduction-Software-Diagnostics-materials
http://www.patterndiagnostics.com/Introduction-Software-Diagnostics-materials
http://www.patterndiagnostics.com/systemic-diagnostics-materials
http://www.patterndiagnostics.com/systemic-diagnostics-materials
http://www.patterndiagnostics.com/pattern-based-diagnostics-materials
http://www.patterndiagnostics.com/pattern-based-diagnostics-materials
http://www.dumpanalysis.org/patterns-view-controller
http://www.dumpanalysis.org/patterns-view-controller

138 PART 8: Software Diagnostics, Troubleshooting, and Debugging
This is a very flexible approach already applied to malware detection and
analysis, digital forensics, debugging, and network trace analysis. You can find

more here:

http://www.patterndiagnostics.com/training-materials

So the next time you hear a similar response from an engineer ask to
provide the list of patterns not found in your memory dumps, traces, and logs.

http://www.patterndiagnostics.com/training-materials

Diagnostics Designer Glasses 139

PART 9: Art and Photography

Diagnostics Designer Glasses

140 PART 9: Art and Photography

Pattern Diagnostics Logo

Defect

Detect

Happy Valentine’s Day 141

Happy Valentine’s Day

14:feb> 1m

start end module name
00014feb 0014febl FirstHalf
014feb00 14feb000 SecondHalf

14:feb> dn
0140feb0 "FCpy NVabutnes Qg™

Copyright © 2015 by Dmitry Vostokov, DumpAnalysis.org

142 PART 9: Art and Photography

50 Shades of Crash Dump

50 Shades of Crash Dump

Copyright © 2015 by Dmitry Vostokov, DumpAnalysis.org

Computer Universe 143

Computer Universe

Computer Universe

Hello World? .
Campiled and Linked 4GB of Physical Computer Memory

in visual Ces

Copyright @ 2015 by Dmitry Vostokov, DumpAnalysi=.org

144 PART 9: Art and Photography

Failed Surveillance

Failed Surveillance

Copyright © 2015 by Dmitry Vostokov, DumpAnalysis.org

Debugging Allegory on FEB 23 145

Debugging Allegory on FEB 23

Debugging Allegory on FEB 23

*** wait with pending attach

(1328.1b44%: Break instruction exception - code 30800883
(first chance)

ntdll!DbgBreakPoint:

gepaaRea” 77828598 cc int 3

@:881> ~Bkc

Call site
ForeignAggressor!ConsumeResources+@x282
kernel32!BaseThreadInitThunk+@xd
ntdll!RtlUserThreadStart+exld

@:@el> .ttime
Created: Mon Feb 23 23:23:23.823 2815

g:eels q

Terminated

Copyright @ 2015 by Dmitrv Vostokov, DumpAnalvysis.org

146 PART 9: Art and Photography

Object in Signaled State

Object in Signaled State

I B & 23808 BA TR EEE oFCEAGERE Sallwda
atildll s3F G FA TR EEE A GEFE

0000 Taper 0"
0007 Abrluts 0
=0=002 E.;:: O=d
=013 Bherertin 0
=0=003 D@:.éw e 0"
#0000 Eack - 26274k
+axm; Oigral State: . T
0008 WFarelinCoad . _ LT BT _ENTROGS [0-88575418 -

0-82]fR918]

Copvright © 2015 by Dmitrvy Vostokov, Dumpfnalyvsis.org

Kernel Space Starts with 8 147

Kernel Space Starts with 8

Kernel Space Starts with 8

M(arch)

Copyright @ 2815 by Dmitry Vostokov, Dumplnalysis.org

148 PART 9: Art and Photography

The Day of ST. P. The Elimination of Snakes

The Day of ST. P.

(Simple Threaded Process)

2015 by Dmitry Vostokov, Dumpfnalysis.org

The Fifth Column 149

The Fifth Column

The Fifth Column

ol Il
[BlE[B]e]|=]x]o]|]~

E
I
I
I
I
I
I
I
I
I
I
I
I
|

13

Copyright @ 2815 by Dmitry Vostokov, Dumplnalysis.org

150 PART 9: Art and Photography

Proportionate Disproportionate Proportion

Disproportionate Proportion

Proportionate Disproportion

Copyright ® 2015 by Dmitry Vostokov, DumpAnalysis.org

Autoportrait in 5 Objects 151

Autoportrait in 5 Objects

Gopgright © 2015 by Dmitrg Yostokov, DumpAnalysi:

152 PART 9: Art and Photography

Kernel Works

Kernel Works

Date: 1st of May

Copyright @& 20815 by Dmitry Vostokov, Dumplnalysis.org

Chip Forensics 153

Chip Forensics

€Chip Forensics

Copuright ° 2015 by Dmitry Yestokov, DumpBnalysis.org

154 PART 9: Art and Photography

Industrial Windows

The Meaning of Life 155

The Meaning of Life

My favorite debugger
was asked about the
meaning of life.

@: kd> What is the meaning of life?
A No runnable debuggees error in
"What is the meaning of life?’

Copyright @ 2815 by Dmitry Vostokov, DumpAnalysis.org

156 PART 9: Art and Photography

Hidden Bug

Artifact-Malware and its Primary and Secondary Effects 157

PART 10: Memory Forensics

Artifact-Malware and its Primary and Secondary Effects

Once we saw an article in Facebook stream about trolling airline passengers.
When they descend to an airport, they read a different city name written in large
letters on the roof of some house.

An idea came to us to model this behavior for memory dump analysis:
when we analyze crash dumps we usually rely on the output of some commands
that redirect or reformat the contents of memory. For example, Imv WinDbg
command shows module resource information such as its product name,
copyright information, etc. What if that information were deliberately crafted to
deceive and disturb software diagnostics and debugging process, and ultimately
to explore possible vulnerabilities there? Popular debuggers have their own
vulnerabilities®” which may be used not only for anti-debugging purposes. When
we say “deliberately crafted” we don’t mean Fake Module (Volume 7, page 240)
malware analysis pattern that is about a module that tries to present itself as
another legitimate, well-known module. Also, we are not concerned with false
positive decoy artifacts®®. In our case Artifact-Malware, as we call it (or Arti-
Malware for short, not to confuse with anti-malware), intentionally leaves
malicious legitimate artifacts in software execution artifacts (such as memory
dumps, traces, and logs) deliberately structured to alter execution of static
analysis tools such as debuggers, disassemblers, reversing tools, etc. Such artifacts
in artifacts may suggest exploring them further as possible culprits of abnormal
software behavior thus triggering certain software and human vulnerabilities, and
even social engineering attacks (when they suggest calling a phone number).

37 M. Sikorski, A. Honig, Practical Malware Analysis, Debugger
Vulnerabilities, page 363

38 A. Walters, N. Petroni, Jr., Volatools: Integrating Volatile Memory
Forensics into the Digital Investigation Process
(http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-

Walters-WP.pdf)

http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf

158 PART 10: Memory Forensics

To model this, we quickly created a small Visual C++ project called
TrollingApp and inserted version info resource. Normally WinDbg Imv command
would show something like this:

0:000> 1Imv m TrollingModule

start
00000001 "3££50000 00000001 3££58000
symbols) C:\Work\TrollingApp\x64\Release\TrollingModule.pdb

Loaded symbol image file:

end

module name

TrollingModule C (private pdb

TrollingModule.exe

Image path: C:\Work\TrollingApp\x64\Release\TrollingModule.exe

Image name:

TrollingModule.exe

Timestamp: Sat Jun 27 10:28:47 2015 (558E6CCF)

CheckSum: 00000000

ImageSize: 00008000

File version: 1.0.0.1

Product version: 1.0.0.1

File flags: 0 (Mask 3F)

File OS: 40004 NT Win32

File type: 1.0 App

File date: 00000000.00000000

Translations: 1809.04b0

CompanyName : TODO: <Company name>

ProductName: TODO: <Product name>

InternalName: TrollingModule.exe

OriginalFilename: TrollingModule.exe

ProductVersion: 1.0.0.1

FileVersion: 1.0.0.1

FileDescription: TODO: <File description>

LegalCopyright: Copyright © 2015 by Software Diagnostics
Institute

Since LegalCopyright is the last field shown in the formatted output, we
changed it to contain the long string of “\r\n” characters intended to scroll away
module information. The string was long as it was allowed by the resource
compiler.

VS VERSION INFO VERSIONINFO
FILEVERSION 1,0,0,1
PRODUCTVERSION 1,0,0,1
FILEFLAGSMASK 0x3fL
FILEFLAGS 0x0L
FILEOS 0x40004L
FILETYPE Ox1L
FILESUBTYPE O0x0L

BEGIN

BLOCK "StringFileInfo"
BEGIN

BLOCK "180904b0"

Artifact-Malware and its Primary and Secondary Effects 159

BEGIN
VALUE "CompanyName", "TODO: <Company name>"
VALUE "FileDescription", "TODO: <File description>"
VALUE "FileVersion", "1.0.0.1"
VALUE "InternalName", "TrollingModule.exe"
VALUE "LegalCopyright", "\r\n\r\n\r\n ... "
VALUE "OriginalFilename", "TrollingModule.exe"
VALUE "ProductName", "TODO: <Product name>"
VALUE "ProductVersion", "1.0.0.1"

END
END
BLOCK "VarFileInfo"
BEGIN
VALUE "Translation", 0x1809, 1200
END

END

The program itself is very simple triggering a NULL pointer exception to
generate a crash dump (we configured LocalDumps registry key on Windows 7).

int tmain(int argc, TCHAR* argv([])
{
int *p = 0;

*p 0;
return 0;

So we opened a crash dump and checked the stack trace which suggested
checking information about TrollingModule (as Exception Module memory
analysis pattern, Volume 8a, page 80):

Loading Dump File [C:\MemoryDumps\TrollingModule.exe.2076.dmp]
User Mini Dump File with Full Memory: Only application data is available

Windows 7 Version 7601 (Service Pack 1) MP (4 procs) Free x64
Product: WinNt, suite: SingleUserTS Personal

Machine Name:

Debug session time: Sat Jun 27 10:28:58.000 2015 (UTC + 1:00)
System Uptime: 3 days 21:28:51.750

Process Uptime: 0 days 0:00:01.000

This dump file has an exception of interest stored in it.

The stored exception information can be accessed via .ecxr.
(81c.1604) : Access violation - code c0000005 (first/second chance not
available)

ntdll!NtWaitForMultipleObjects+0xa:

00000000°7769186a c3 ret

0:000> .symfix c:\mss

0:000> .reload

160 PART 10: Memory Forensics

0:000> kL

Child-SP RetAddr Call Site

00000000 001fe6d8 000007fe £d741430 ntdll!NtWaitForMultipleObjects+0xa
00000000 001fe6e0 00000000°77541723 KERNELBASE!WaitForMultipleObjectsEx+0xe8
00000000°001fe7e0 00000000 775bb5e5
kernel32!WaitForMultipleObjectsExImplementation+0xb3

00000000°001£fe870 00000000 775bb767 kernel32!WerpReportFaultInternal+0x215
00000000°001£e910 00000000 775bb7bf kernel32!WerpReportFault+0x77

00000000 001£fe940 00000000 775bb9dc kernel32!BasepReportFault+0x1f
00000000°001£e970 00000000°776d3398 kernel32!UnhandledExceptionFilter+0xlfc
00000000°001fea50 00000000 776585c8 ntdll! ?7? ::FNODOBFM:: string'+0x2365
00000000°001fea80 00000000°77669d2d ntdll! C specific handler+0x8c

00000000 001feaf0 00000000°776591cf ntdll!RtlpExecuteHandlerForException+0xd
00000000 001feb20 00000000°77691248 ntdll!RtlDispatchException+0x45a
00000000°001££200 00000001 3£f£51002 ntdll!KiUserExceptionDispatch+0x2e
00000000 001££908 00000001 3f£f51283 TrollingModule!wmain+0x2
00000000°001££910 00000000°775359%ed TrollingModule! tmainCRTStartup+0x10f
00000000 001££940 00000000°7766c541 kernel32!BaseThreadInitThunk+0xd
00000000°001££970 00000000 00000000 ntdll!RtlUserThreadStart+0x1ld

But when we executed Imv command we saw the blank screen with some
UNICODE symbols at the end:

&1 bump C:\MemoryDumps\TrollingModule.exe.2076.¢
File Edit View Debug Window Help
@ * R EERB PR 0D

DRAGEOREEODE|E A E

Command B

(=) .

<| | »
[0 0005 |

| [tno, Col 0 [Sys 0:C:\Memo [Proc 000:81c |Thrd 000:1604 [A5M [0va [CAPS [NUM

Artifact-Malware and its Primary and Secondary Effects 161

Not only we triggered the scroll but the artifact buffer somehow caused
additional unintended consequences.

We were also surprised by the second order effects. We were curious
about what that Unicode string was meant and copied it to Google translate page
in IE. It was hanging afterward spiking CPU when we were switching to that tab.
We tried to save a crash dump using Task Manager, but it failed with a message
about an error in ReadProcessMemory APl and, although, the crash dump was
saved, it was corrupt. The tab was recovered, and we were not able to reproduce
it again. Perhaps, the browser was already in an abnormal state because on the
second attempt it behaved better:

Chinese (Traditional) - English ~
ranslate from Chinese

=2E Piao gl atrophy

Simple Google search shows that such output also appeared in different
problems such as related to PDF printing:

Google mye | q |

Wah Imeages Maps MNews Widai Mora - Search 1ol

PDF Printing Problems - Slickdeals.net
slickdeals net » Sickdeats Foruims » General Discussian » Tech Suppar =

In conclusion, we say that the primary effect of arti-malware is abnormal
software behavior in static analysis tools. We have the secondary effect when
information produced by a static analysis tool triggers abnormal software
behavior in another analysis tool.

162 PART 10: Memory Forensics

[This page is intentionally left blank]

Quotes 163

PART 11: Miscellaneous

Quotes

These are my selected thoughts | posted previously on Facebook, Twitter, and
where appropriate, on LinkedIn.

Strong Al (if it ever exists) does not pose a threat to humanity if designed with
defects.

Pattern languages facilitate critical thinking and clear writing in software
diagnostics and forensics.

If the software can eat your data, it can vomit it too.

The right question to ask when your program doesn't work is "Please give me a
memory dump or trace/log or both". If you can't ask this question, then rethink
your diagnostics strategy.

One letter makes a difference: cash dump vs. crash dump.

Windows kernel trivia: RIP results from IRP permutation.

There are numbers you see and instantly feel suspicion.

HIWORD is not 'Hi' word and LOWORD is not 'Lo' word (archaic greeting).

Most if not all of postmodern philosophy can be explained by trace and log
analysis patterns.

Occupy Memory Space!

It is better if a process hangs earlier in the long journey. You have a chance to
revise your strategy.

A network outage is an opportunity to read a book.

164 PART 11: Miscellaneous

It is important to teach problem-solving skills. However, it is more important to
teach the right solving of the correctly identified problems. It is only attainable
through the broad diagnostics education.

A product intended to simplify user experience may actually complexify internal
workings of the software environment.

A Hegelian approach to truth: being in opposition to the opposition.
A C++ object definition that is also grammatically correct: An obj;
Memory dump analysis is the job of the future.

One of the oldest TCP implementations was over pipes (in prisons).
Diagnostics: the science of focusing on problems, not solutions.

A diagnostics masterpiece is akin to the work of a sculptor. From the mass of
possible patterns only a few relevant remain.

Computers value status more than humans do.

When you see a complete memory dump for the first time from the board of your
debugger, you feel memory space sickness. But then you adapt.

In the future world without software crashes, hangs, spikes, leaks, and just bugs
software engineers will indulge themselves with writing bad code.

Books and Beers have the same pattern: B[vvc]s.

You need a solid software architecture to support bug fixing.

Status Updates 165

Status Updates

Facebook or LinkedIn status updates are forms of software logs, and we can apply
the whole pattern analysis apparatus to them:

http://www.dumpanalysis.org/trace-log-analysis-pattern-reference

http://www.dumpanalysis.org/trace-log-analysis-pattern-reference

166 PART 11: Miscellaneous

Execution Residue

ALirenas Smiary wesehen Sofvenre Traes o Loy Amadpsbes & Poriers Sndwremn

Memory Forensics

Principles of Memory Du

Software Diagnostics: The Collected Seminars

Accelerated .NET Memory Dump Analysis 2

Advanced Windows Memory Dump Analysis 2 ed
Advanced Windows RT Memory Dump Analysis ARM ed
Accelerated W Software Trace Analysis

Accelerated Disassembly, Reconstruction and Reversing

Accelerated Windows Debugging ’

Accelerated Mac OS X Core Dump Analysis, 2" ed

Accelerated Windows Malware Analysis

Accelerated Windows Memory Dump Analysis 3 ! ed.

Accelerated Mac OS X Core Dump Analysis

Accelerated Windows Memory Dump Analysis 2" ed

Patterns are Weapons for Massive Debugging 167

Appendix

Patterns are Weapons for Massive Debugging

Patterns are Weapons for Massive Debugging

Arts & Photog

Help Library

Software Diagnostics Institute

Search

E—

Memory Analysis
Patterns

- Multiple

Exceptions (user mode) -
Modeling Example

n Multiple

Exceptions (kernel mode)

[/ L/ PR

Exceptions (managed
space)

m Dynamic Memory

Corruption (process

heap)

m Dynamic Memory

Corruption (kernel pool)
Dynamic Memory
Corruption (managed
heap)

B ... cosicive

Dump

Trace and Log

5t t 1 d Behavi 1 Patt £ s
ructural and Behavioral Patterns tor Analysis Patterns

Software Diagnostics, Forensics and

s Periodic Error
Prognostics

Our tools are only os good 65 our pottern Language.

Software Behavior

h Patternsq

software Diagnostics Institute
Bumphralysiz.org + Tracafnalysis.crg

Trace Acceler

Copyright © 2015 Software Diagnostics Institute (DumpAnalysis.org + TraceAnalysis.org)

168 Appendix

Crash Dump Analysis Checklist

General:

Symbol servers (.symfix)

Internal database(s) search

Google or Microsoft search for suspected components as this could be a
known issue. Sometimes a simple search immediately points to the fix on
a vendor’s site

The tool used to save a dump (to flag false positive, incomplete or
inconsistent dumps)

OS/SP version (version)

Language

Debug time

System uptime

Computer name (dS srvisrvcomputername or !lenvvar COMPUTERNAME)
List of loaded and unloaded modules (Imv or !dlls)

Hardware configuration (/sysinfo)

.kframes 1000

Application or service:

Default analysis (/analyze -v or lanalyze -v -hang for hangs)

Critical sections (/cs -s -1 -0, !locks) for both crashes and hangs
Component timestamps, duplication, and paths. DLL Hell? (Imv and !dlls)
Do any newer components exist?

Process threads (~*kv or !unigstack) for multiple exceptions and blocking
functions

Process uptime

Your components on the full raw stack of the problem thread

Your components on the full raw stack of the main application thread
Process size

Number of threads

Gflags value (/gflag)

Time consumed by threads (/runaway)

Environment (/peb)

Import table (/dh)

Hooked functions (/chkimg)

Exception handlers (/exchain)

Crash Dump Analysis Checklist 169

e Computer name (/envvar COMPUTERNAME)

e Process heap stats and validation (/heap -s, 'heap -s -v)

e CLRthreads? (mscorwks or clr modules on stack traces) Yes: use .NET
checklist below

e Hidden (unhandled and handled) exceptions on thread raw stacks

System hang:

e Default analysis (/analyze -v -hang)

e ERESOURCE contention (/locks)

e Processes and virtual memory including session space (/vm 4)

e Important services are present and not hanging (for example, terminal or
IMA services for Citrix environments)

e Pools (!poolused)

e Waiting threads (/stacks)

e Critical system queues (/exqueue f)

e 1/O (lirpfind)

e The list of all thread stack traces (/process 0 3f)

e LPC/ALPC chain for suspected threads (!/lpc message or lalpc /m after
search for "Waiting for reply to LPC" or "Waiting for reply to ALPC" in
Iprocess 0 3f output)

e Mutants (search for "Mutants - owning thread" in !process 0 3f output)

e (Critical sections for suspected processes (/cs -/ -0 -s)

e Sessions, session processes (/session, Isprocess)

e Processes (size, handle table size) (/process 0 0)

e Running threads (/running)

e Ready threads (/ready)

e DPC queues (/dpcs)

e The list of APCs (/apc)

e Internal queued spinlocks (/glocks)

e Computer name (dS srvisrvcomputername)

e File cache, VACB (!filecache)

e File objects for blocked thread IRPs (/irp -> Ifileobj)

e Network (/ndiskd.miniports and Indiskd.pktpools)

e Disk (/scsikd.classext -> Iscsikd.classext class_device 2)

e Modules rdbss, mrxdav, mup, mrxsmb in stack traces

e Functions NtfsINtfs* and nt!Fs* in stack traces

170 Appendix

BSOD:

Default analysis (/analyze -v)

Pool address (/pool)

Component timestamps (Imv)

Processes and virtual memory (/vm 4)

Current threads on other processors

Raw stack

Bugcheck description (including In exception address for corrupt or
truncated dumps)

Bugcheck callback data (/bugdump for systems prior to Windows XP SP1)
Bugcheck secondary callback data (.enumtag)

Computer name (dS srvisrvcomputername)

Hardware configuration (/sysinfo)

.NET application or service:

CLR module and SOS extension versions (Imv and .chain)
Managed exceptions (~*e Ipe)

Nested managed exceptions (/pe -nested)

Managed threads (/Threads -special)

Managed stack traces (~*e /CLRStack)

Managed execution residue (~*e !DumpStackObjects and
IDumpRuntimeTypes)

Managed heap (!VerifyHeap, IDumpHeap -stat and !eeheap -gc)
GC handles (!GCHandles, !GCHandleLeaks)

Finalizer queue (!FinalizeQueue)

Sync blocks (/syncblk)

171

Index of WinDbg Commands

laddress, 50, 55 Ipoolused, 16, 17, 167
lalpc, 167 Iprocess, 11, 15, 30, 92, 167
lanalyze, 41, 166, 167, 168 Iglocks, 167
Ibugdump, 168 Iready, 167

Ichkimg, 166 Irunaway, 47, 166
ICLRStack, 23, 168 Irunning, 167

Ics, 166, 167 Iscsikd.classext, 167
Idh, 166 Isession, 99, 167
Idlls, 166 Isprocess, 11, 167
ldpcs, 167 Istacks, 43, 167
IDumpHeap, 168 Isw, 45

IDumpObj, 41 Isyncblk, 168
IDumpRuntimeTypes, 168 Isysinfo, 166, 168
IDumpStackObjects, 168 lteb, 48

leeheap, 168 Ithread, 11

lenvvar, 166, 167 IThreads, 168
lerror, 49 lunigstack, 166
lexchain, 166 VerifyHeap, 168
lexqueue, 167 lvm, 167, 168
Ifilecache, 167 .asm, 50

Ifileobj, 167 .chain, 168
IFinalizeQueue, 168 .enumtag, 168
IGCHandleLeaks, 168 kframes, 166
IGCHandles, 168 .load, 45

Igflag, 166 .reload, 45, 157

Igle, 48 .symfix, 45, 157, 166
lheap, 167 ~, 166, 168

lirp, 167 ~*kv, 166

lirpfind, 167 dc, 50, 155

llocks, 166, 167 dps, 49, 55

llpc, 167 ds, 166, 167, 168
Indiskd.miniports, 167 dt, 26, 27, 28
Indiskd.pktpools, 167 kL, 29, 46, 158
lobject, 16 Imv, 56, 155, 156, 158, 166, 168
lobtrace, 18 In, 168

Ipe, 168 s, 166, 167

Ipeb, 166 s-d, 55

Ipool, 168 ub, 24, 25, 49

	Preface
	About the Author
	PART 1: Professional Crash Dump Analysis and Debugging
	Win32 Start Address Fallacy
	Multidimensionality of Exceptions

	PART 2: Crash Dump Analysis Patterns
	Reference Leak
	Origin Module
	Hidden Call
	Corrupt Structure
	Software Exception
	Crashed Process
	Variable Subtrace
	User Space Evidence
	Technology-Specific Subtrace (COM Client Call)
	Internal Stack Trace
	Distributed Exception (Managed Code)
	Thread Poset

	PART 3: Pattern Interaction
	Virtualized Process, Stack Trace Collection, COM Interface Invocation Subtrace, Active Thread, Spiking Thread, Last Error Collection, RIP Stack Trace, Value References, Namespace, and Module Hint

	PART 4: A Bit of Science and Philosophy
	Cantor Operating System
	Metaphor of Memory as a Directed Container
	Praxiverse
	When Universe is Going to End?
	Notes on Memoidealism

	PART 5: Software Trace Analysis Patterns
	Timeout
	Activity Overlap
	Adjoint Space
	Indirect Message
	Watch Thread
	Punctuated Activity
	Trace Mask
	Trace Viewpoints
	Data Reversal
	Recovered Messages
	Palimpsest Messages
	Message Space
	Interspace
	Translated Message
	Activity Disruption

	PART 6: Fun with Debugging, Crash Dumps, and Traces
	The Dump from the Future
	Exchange Rate on 16.12.14
	Check the Plug
	Debugging Slang
	YAWE
	Embedded Software Engineer
	Minute-wise
	Developer
	Multidigitalist
	KgB
	CIQ (Crash IQ)
	Pat Ching
	Explosive Mixture
	POEM
	YearNormous Day
	eNormous

	2015 - The Year of RAM
	Diagnostics and Debugging in Science Fiction
	Software and Hardware Exceptions
	Logging for Kids
	Find the Bug
	Music for Debugging
	Tracing and Counting Book
	The Last Error
	Patching the Hardware Defect
	Pattern Match

	PART 7: Software Narratology
	Coding and Articoding

	PART 8: Software Diagnostics, Troubleshooting, and Debugging
	Special and General Trace and Log Analysis
	Projective Debugging
	Pattern! What Pattern?
	I Didn’t See Anything

	PART 9: Art and Photography
	Diagnostics Designer Glasses
	Pattern Diagnostics Logo
	Happy Valentine’s Day
	50 Shades of Crash Dump
	Computer Universe
	Failed Surveillance
	Debugging Allegory on FEB 23
	Object in Signaled State
	Kernel Space Starts with 8
	The Day of ST. P. The Elimination of Snakes
	The Fifth Column
	Proportionate Disproportionate Proportion
	Autoportrait in 5 Objects
	Kernel Works
	Chip Forensics
	Industrial Windows
	The Meaning of Life
	Hidden Bug

	PART 10: Memory Forensics
	Artifact-Malware and its Primary and Secondary Effects

	PART 11: Miscellaneous
	Quotes
	Status Updates
	Execution Residue

	Appendix
	Patterns are Weapons for Massive Debugging
	Crash Dump Analysis Checklist

	Index of WinDbg Commands

