

Why PowerShell? (Spanish)

The DevOps Collective, Inc.

Este libro está a la venta en
http://leanpub.com/why-powershell-spanish

Esta versión se publicó en 2018-10-28

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicación. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/why-powershell-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Índice general

¿Por qué PowerShell? . 1

Una breve reseña . 3

¿Por qué el Scripting? ¿Por qué un Shell? 4

¿Por qué PowerShell? . 6
PowerShell es un shell de línea de comandos y un

lenguaje de secuencias de comandos (ambos) . . . 6
PowerShell puede interactuar con un sin número de

tecnologías . 6
PowerShell está basado en objetos 7
PowerShell llegó para quedarse 8
Consolidar y multiplicar su aprendizaje 8
En Windows, PowerShell realmente es la única opción . 9

La historia de negocio . 10

¿Dónde se puede aprender más? 12

¿Por qué PowerShell Remoting? (Mientras respondemos
otros “por qué”…) . 14
¿Qué es PowerShell Remoting? 15
Comparando Remoting con sus antecesores 16
Pero esta es la mejor razón 17

¿Por qué PowerShell?
Escrito por Warren Frame y Don Jones

Un vistazo increíblemente conciso del porqueWindows PowerShell
es importante, desde una perspectiva técnica y de negocios.

Esta guía se publica bajo la licencia Creative CommonsAttribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo más ampliamente posible, pero le solicitan que no
modifique el documento original.

¿Ha sido útil este libro? El (los) autor (es) le pide (n) que haga
una donación deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective¹ para apoyar su trabajo.

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras::

• Nuestra rama principal GitHub organization², con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

¹https://devopscollective.org/donate/
²https://github.com/devops-collective-inc

https://devopscollective.org/donate/
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://devopscollective.org/donate/
https://github.com/devops-collective-inc

¿Por qué PowerShell? 2

• Nuestra GitBook page³, donde puede navegar por los libros
en línea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en línea, puede saltar a capítulos específicos.
Visite https://www.gitbook.com/@devopscollective

• En LeanPub⁴, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donación a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualización.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser sólo espejos utilizados para el proceso
de publicación. GitBook normalmente contendrá nuestra última
versión, incluyendo algunos bits no terminados; LeanPub siempre
contiene la más reciente “publicación liberada” de cualquier libro.

³https://www.gitbook.com/@devopscollective
⁴https://leanpub.com/u/devopscollective

https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Una breve reseña
Los entusiastas de PowerShell a menudo se encuentran explicando
por qué alguien con responsabilidades de TI debe aprender PowerS-
hell. Decidimos escribir esto como referencia para el futuro.

No discutiremos porque PowerShell por encima de otros lenguajes
deMicrosoft, como VBScript o archivos de lotes (batch), o lenguajes
de uso general como Python o Perl. Hay un lugar para todos estos
lenguajes, pero si trabajas en entornos Microsoft, PowerShell es un
lenguaje importante para aprender.

También es importante entender que Microsoft tiene un gran
compromiso con PowerShell. Llego para quedarse, y de hecho la
empresa está construyendo más y más de sus soluciones de gestión
utilizándolo. Hasta cierto punto, Microsoft incluso se ha apartado
un poco del desarrollo de herramientas especializadas, en favor
de crear estas mismas utilizando PowerShell. Eso es algo muy
significativo.

Sigamos adelante.

¿Por qué el Scripting?
¿Por qué un Shell?

Antes de sumergirnos en PowerShell, abordemos la importancia del
scripting y de la automatización, una faceta integral de PowerShell.

Probablemente usted conozca este XKCD comic⁵ o algo similar para
justificar el Scripting. Mientras que el ahorro de tiempo es sin duda
un factor importante del scripting y la automatización, no es la
única justificación.

Otros factores a considerar:

• Consistencia. Una solución de secuencias de comandos eje-
cutará siempre el mismo script de manera exacta. Sin riesgo
de errores tipográficos, o de olvidarse completar la tarea, o
haciendo la tarea incorrectamente. Reducir el error humano.

• Registros de auditoría. Hay muchas tareas en las que sería
útil tener un registro de auditoría, tal vez incluyendo qué
tarea se realizó, resultados importantes, errores que ocurrie-
ron, cuándo se ejecutó la tarea, quién la ejecutó y así suce-
sivamente. Los scripts pueden proporcionar estos registros,
y en PowerShell v5 y posteriores, el propio Shell cuenta con
amplias capacidades de registro.

• Códigomodular. Al principio usted podría pasar más tiempo
escribiendo una función particular de lo que justifique el
ahorro de tiempo, pero generalmente usted podrá reutilizar
o tomar prestadas ideas de ese mismo código más adelante.

• Documentación. ¿Se tiene documentación para la tarea?
¿Está actualizada? Un script bien escrito y comentado puede
servir como una base útil de documentación, que podría no

⁵http://xkcd.com/1205/

http://xkcd.com/1205/
http://xkcd.com/1205/

¿Por qué el Scripting? ¿Por qué un Shell? 5

existir para una tarea manual. En algunos casos, el script
puede documentar el proceso que automatiza, ayudando a
preservar el conocimiento institucional.

• Educación. Los administradores que pueden automatizar las
tareas, al final se vuelven expertos en tecnologías como
resultado de sus conocimientos. Eso los convierte en mejores
planificadores, arquitectos, solucionadores de problemas y
operadores, lo cual resulta beneficioso para la organización.

• Delegación. Con una solución basada en scripts, típicamente
se pueden delegar más funciones a los equipos mejor prepara-
dos. Con PowersShell v3 y posteriores, estos scripts permiten
la delegación de tareas de forma extremadamente granular,
ayudando al equipo a ser más eficiente y sensible.

La moraleja de la historia es que el Scripting y la automatización
son importantes, y se convierten en factores importantes y de alto
valor para aprender PowerShell.

¿Por qué PowerShell?
Microsoft describe PowerShell como “un shell de línea de comandos
basado en tareas con un lenguaje de scripting … construido en .NET
Framework”. ¿Qué es lo grandioso de PowerShell? ¿Por qué debería
usarlo?

PowerShell es un shell de línea de
comandos y un lenguaje de

secuencias de comandos (ambos)

“Apague incendios” rápidamente utilizando comandos existentes o
personalizados de PowerShell, sin necesidad de compilar el código.
Desarrolle sus soluciones desde la línea de comandos. Escriba
scripts rápidamente, los usará muchas veces. Cree scripts legibles y
documentados, capaces de ejecutarse en ambientes de producción.
Le ayudaran a mantener sus servicios/ambientes durante años.

¿Cuál es el costo de esta inversión? Aprender PowerShell. Bastante
razonable teniendo en cuenta que es probable que tenga que ha-
cerlo independientemente de su lenguaje actual de programación,
suponiendo que trabaja con el ecosistema de Microsoft.

PowerShell puede interactuar con
un sin número de tecnologías

.NET Framework, registro de Windows, COM, WMI, ADSI. Ex-
change, Sharepoint, System Center, Hyper-V, SQL. VMware vCen-
ter, Cisco UCS, Citrix XenApp y XenDesktop, REST APIs, XML,

¿Por qué PowerShell? 7

CSV, JSON, sitios Web, Excel, aplicaciones Office. C # y otros
lenguajes, DLLs y otros binarios, incluyendo Linux o herramientas
Unix. Un lenguaje que puede trabajar con estas diversas tecnologías
además de integrarlas puede ser increíblemente valioso.

Windows no está basado en texto. Tarde o temprano tendrá que
hacer algo que no puede hacer con las herramientas de NIX y
otros lenguajes basados en texto. Muchas de las tecnologías con las
que PowerShell puede interactuar simplemente no tienen interfaces
basadas en texto, y ni siquiera pueden ser accesibles directamente
desde lenguajes más formales como Perl o Python.

El mensaje aquí es que PowerShell es el mejor “pegamento” queMi-
crosoft nos ha proporcionado para unir sistemas diversos. Es mejor
que las anteriores Shells basadas en Windows porque entiende y
funciona con la naturaleza del API de Windows en sí, lo cual es
muy diferente de lo que hicieron los Shells anteriores basados en
texto.

PowerShell está basado en objetos

Esto nos da una flexibilidad increíble. Filtrar, clasificar, medir,
agrupar, comparar o tomar otras acciones sobre objetos a medida
que pasan a través de la tubería (pipeline). Trabaje con propiedades
y métodos en lugar de texto en bruto.

Si ha pasado tiempo programando y “descifrando” una salida
basada en texto, sabe lo frustrante que puede ser. ¿Cuál delimitador
utilizo? ¿Hay un delimitador? ¿Qué pasa si un resultado en particu-
lar tiene una entrada en blanco para una columna? ¿Necesito contar
los caracteres en cada columna? ¿Este conteo variará dependiendo
de la salida? Con objetos todo eso está resuelto, y hace que sea
muy sencillo encadenar comandos y datos a través de diversas
tecnologías.

¿Por qué PowerShell? 8

PowerShell llegó para quedarse

Microsoft está poniendo todo su empeño detrás de PowerShell.

El soporte de PowerShell es un requisito en los criterios comunes
de ingeniería de Microsoft, y un producto de servidor no se puede
liberar sin una interfaz de PowerShell. Eso significa que muy pocos
productos de servidor de Microsoft no pueden ser manejados desde
PowerShell - y los pocos que no pueden, podrán hacerlo pronto.

Otros proveedores de tecnologías Microsoft también tienen soporte
para PowerShell. Esto incluye IBM, Cisco, Citrix, VMware, NetApp,
Dell, y docenas más.

En muchos casos Microsoft utiliza PowerShell para construir las
consolas de administración GUI para sus productos. Algunas tareas
no se pueden realizar en el GUI y sólo se pueden completar desde
PowerShell. Esto podría ser un problema: en un número cada
vez mayor de situaciones, no se puede administrar el producto
totalmente a menos que utilice PowerShell. Y esto se extiende a
ofertas basadas en la nube como Azure y Office 365, también.

Consolidar y multiplicar su
aprendizaje

Su recompensa por aprender PowerShell es una habilidad mejorada
para controlar y automatizar las muchas tecnologías con las que se
integra. Puede usar el mismo conjunto de comandos para filtrar,
exportar, redireccionar, modificar, extender y realizar acciones
contra la salida para todas estas tecnologías. Puede aprovechar
esas mismas habilidades de PowerShell y llevarlas en cualquier
dirección que necesite: Hyper-V, vCenter, SQL, AD, XenApp y más.

Su recompensa por aprender herramientas específicas o ejecutables
como net.exe o schtasks.exe, es la capacidad de trabajar con esas

¿Por qué PowerShell? 9

herramientas. Ni más, ni menos. En cambio, con PowerShell su
inversión en el aprendizaje se convierte en un enorme ecosistema
de múltiples capacidades.

En Windows, PowerShell realmente
es la única opción

VBScript está obsoleto, y su desarrollo se detuvo hace mucho.
VBScript ya era anémico en términos de las cosas que podría
“tocar”, lo que lo convierte en un “pegamento” pobre para conectar
sistemas y procesos.

Y nada más se acercó a las capacidades de VBScript. Python,
Perl, <ponga el nombre que desee aquí> - son grandes en Linux,
predominantemente basados en sistemas operativos orientados a
texto, pero poco útiles en Windows, ya que no podían acceder a los
muchos y variados usos de las APIs de Windows para su gestión.

PowerShell consolida todos esos APIs en una única interfaz, en gran
medida coherente, que se centra en las operaciones de sistemas y
su administración.

La historia de negocio
Si usted ha ignorado PowerShell hasta ahora o estaba escéptico al
respecto, vamos a ver lo que Microsoft ha hecho.

En la versión 1, PowerShell surgió como la primera interfaz de
gestión diseñada específicamente para la automatización adminis-
trativa.

En la versión 2, PowerShell ganó capacidades nativas de adminis-
tración remota, permitiendo la administración remota de cualquier
servidor o cliente que ejecute PowerShell. El “alcance” de PowerS-
hell se extendió a cientos deAPIs de administración, lo que permitió
una gestión del mundo real. El producto también maduró en un
lenguaje de escritura increíblemente simple y potente que se puede
utilizar para construir scripts profesionales de automatización.

En la versión 3, PowerShell mejoro al permitir ejecutar tareas de
larga duración de manera desconectada, apátrida - llamada flujos
de trabajo (Workflows). El alcance del producto se extendió aún
más, cubriendo todas las principales plataformas de servidores de
Microsoft, apoyando las ofertas de Microsoft de la nube. Para esta
versión, PowerShell era una cosa muy real, tanto es así que muchos
GUIs de Microsoft comenzaron a usar PowerShell “bajo el capó”.

En la versión 4, PowerShell extendió su “alcance” al integrarse
con una nueva tecnología: La configuración de estado deseada
(Desired State Configuration). DSC permite a los administradores
describir en un archivo de texto, cómo debe configurarse un equipo.
Aprovechando la inversión existente en PowerShell, DSC pone la
máquina en un estado configurado y la mantiene allí.

En la versión 5, PowerShell maduró DSC y amplió sus capacidades
de “fabricación de herramientas” en el espacio de desarrollador
profesional. Con soporte en Visual Studio, DSC comenzó a abarcar

La historia de negocio 11

un espectro mucho más amplio de usuarios, desde administradores
de nivel básico hasta desarrolladores avanzados.

El punto es que Microsoft ha estado ampliando las capacidades de
PowerShell claramente desde el lanzamiento de la versión 1 en 2006.
Lo ha hecho como nunca antes en lenguajes como VBScript, y lo ha
hecho manteniendo su consistencia y eficiencia.

Adicional a todo esto, PowerShell ha inspirado todo un ecosistema
de proveedores de soporte, y una comunidad global bastante en-
tusiasta. Los administradores hoy son, más que nunca, capaces de
obtener asistencia, respuestas e incluso soluciones producidas por
vendedores y por la propia comunidad.

¿Dónde se puede
aprender más?

Hay una gran cantidad de información sobre PowerShell.

• Empiece en powershell.org⁶, un sitio web propiedad de la
comunidad que alberga un foro bastante popular de Q&A.
La organización también ofrece numerosos libros electrónicos
gratuitos⁷, dirige el evento anual PowerShell Summit⁸ en
América del Norte y Europa, además de un repositorio de
DSC en GitHub, También organiza un concurso anual de
juegos de scripting y muchas cosas más.

• Cualquier persona con experiencia en desarrollo o secuencias
de comandos debería leer PowerShell in Action v2⁹. Está
escrito por el co-diseñador y autor principal de PowerShell,
Bruce Payette, y es la referencia estándar. Proporciona la
mejor narración que obtendrá de artículos cortos pero deta-
llados en la Web, y da una idea de algunas de las decisiones
de diseño detrás del lenguaje. Es perfectamente aplicable
hoy a pesar de estar escrito para PowerShell v2. Windows
PowerShell for Developers¹⁰ es una buena lectura para los
más experimentados.

• Aquellos que no tienen experiencia en secuencias de coman-
dos o desarrollo pueden querer empezar con una lectura
más ligera, como Learn Windows PowerShell in a Month of
Lunches¹¹.

⁶http://powershell.org
⁷http://powershell.org/wp/ebooks
⁸http://powershellsummit.org
⁹http://www.manning.com/payette2/
¹⁰http://shop.oreilly.com/product/0636920024491.do
¹¹http://manning.com/jones3/

http://powershell.org/
http://powershell.org/wp/ebooks
http://powershell.org/wp/ebooks
http://powershellsummit.org/
http://www.manning.com/payette2/
http://shop.oreilly.com/product/0636920024491.do
http://shop.oreilly.com/product/0636920024491.do
http://manning.com/jones3/
http://manning.com/jones3/
http://powershell.org/
http://powershell.org/wp/ebooks
http://powershellsummit.org/
http://www.manning.com/payette2/
http://shop.oreilly.com/product/0636920024491.do
http://manning.com/jones3/

¿Dónde se puede aprender más? 13

• ¿Quiere aprender sobre la marcha? PowerShell incluye todo
lo que se necesita para aprender directamente desde el shell.
Get-Command, Get-Help, Get-Member, y Select-Object le
ayudarán a explorar y aprender PowerShell.

• ¿Prefiere videos? Los inventores del producto Jeffrey Sno-
ver y Jason Helmick organizaron dos sesiones gratuitas de
PowerShell que han demostrado ser muy populares: Getting
Started with PowerShell 3.0¹² y Advanced Tools and Scripting
with PowerShell 3.0¹³. O echa un vistazo al canal de YouTube
de PowerShell.org¹⁴, donde se destacan vídeos técnicos y
registros de sesión de cada evento PowerShell Summit.

¹²http://channel9.msdn.com/Series/GetStartedPowerShell3
¹³http://channel9.msdn.com/Series/advpowershell3
¹⁴http://youtube.com/powershellorg

http://channel9.msdn.com/Series/GetStartedPowerShell3
http://channel9.msdn.com/Series/GetStartedPowerShell3
http://channel9.msdn.com/Series/advpowershell3
http://channel9.msdn.com/Series/advpowershell3
http://youtube.com/powershellorg
http://youtube.com/powershellorg
http://channel9.msdn.com/Series/GetStartedPowerShell3
http://channel9.msdn.com/Series/advpowershell3
http://youtube.com/powershellorg

¿Por qué PowerShell
Remoting? (Mientras

respondemos otros “por
qué”…)

Una pregunta común es, “¿por qué deberíamos habilitar PowerShell
Remoting?”

Antes de responder hay que entender un par de cosas - va a parecer
un poco grosero. Lo siento.

• PowerShell Remoting ha existido desde 2008. Si usted se está
preguntando esto hasta ahora, entonces usted está haciendo
un trabajo “modesto” en la gestión de su entorno. En 2008
también aparecieron los relojes inteligentes, Microsoft (antes
Windows) Azure, el Roadster de Tesla, “Frozen” de Disney,
las bombillas led con precios razonables, y los modelos de
iPhone 3G, 3GS, 4, 4S, 5, 5S, y 6. Sólo en caso de que se los
haya perdido también.

• Las tecnologías de la información son una industria en cons-
tante cambio. Las decisiones perfectamente razonables que
tomó en 2003 van a necesitar ser revisadas periódicamente,
debido al cambio mencionado anteriormente.

Una vez aclarado esto, vamos a hablar brevemente de …

¿Por qué PowerShell Remoting? (Mientras respondemos otros “por qué”…) 15

¿Qué es PowerShell Remoting?

Remoting es simplemente una manera en que las herramientas de
administración en una computadora se hablan con servicios en otra
computadora, de modo que pueda administrar remotamente esos
servicios.

Remoting se basa en http, y utiliza un protocolo llamado WS-
Management (WS-MAN). Requiere que los servidores tengan un
único puerto abierto para enrutar todo el tráfico de gestión entrante
a través de ese puerto. El tráfico de WS-MAN puede ser registrado,
puede ser enviado a través de un Proxy, a través de servidores de se-
guridad (proporcionados por terceros), y puede ser completamente
cifrado por medio de SSL.

Como todo el tráfico es http, Remoting es esencialmente un trans-
misor de texto de ida y vuelta. Remoting simplemente especifica
la forma de intercambiar un texto (generalmente una variante de
XML) para que las herramientas y servicios puedan entenderse
mutuamente.

El control remoto no afecta enmodo alguno la seguridad de la red ni
las configuraciones predeterminadas. Por defecto, no se transmiten
nombres de usuario o contraseñas, estén cifrados o no. En un
entorno que no sea de dominio, puede crear una variante en el que
se transmitirán contraseñas, pero si usted quisiera cifrarlas por SSL,
puede utilizar https.

Remoting no le otorga a nadie privilegios especiales. La tecnología
literalmente no permite que alguien haga algo que no tiene per-
miso para hacer, a menos que haya pasado por una configuración
bastante compleja conocida como administración delegada. En ese
caso, puede habilitar a usuarios específicos para realizar tareas
específicas que normalmente no podrían hacerlo, pero sólo a través
del canal específico y la interfaz que ha configurado.

¿Por qué PowerShell Remoting? (Mientras respondemos otros “por qué”…) 16

Comparando Remoting con sus
antecesores

Antes de Remoting, la mayoría de la administración remota de
Windows se gestionaba a través de llamadas remotas de procedi-
miento (Remote Procedure Calls), o RPCs. Estas llamadas solían
utilizar un puerto de hopping, por lo que era increíblemente difícil
su gestión a través de un firewall. En contraste, con PowerShell
Remoting usted solo tiene que ocuparse de un único puerto.

Muchas organizaciones hoy en día simplemente instalan herra-
mientas de administración en servidores y luego usan el escritorio
remoto para “administrar de forma remota”.En realidad es una
muy mala idea, y es una de las principales razones por las que
un servidor de Windows requiere tantos parches, tantos reinicios,
y está expuesto a otras tantas cosas. El código necesario para
soportar un GUI completo, y por lo tanto RDP, es enorme - y eso
significa que los parches son inevitables. Ejecutar herramientas de
administración en el servidor, normalmente bajo credenciales de
administrador, deja abierta la puerta a un ataque.

En pocas palabras, la mayoría de las organizaciones parecen estar
preocupadas por las “implicaciones” de seguridad de la conexión
remota de PowerShell. Las implicaciones son significativas: la co-
municación remota esmuchomás segura de lo que usted ha estado
haciendo. También es más eficiente, impone menos sobrecarga en
los servidores y permite que los estos funcionen con un sistema
operativo más “delgado” que requiera menos parches, menos reini-
cios y menos Service Packs. Esos servidores también arrancarán
más rápido, ejecutarán menos procesos, ejecutarán menos servicios
y consumirán menos espacio de almacenamiento para el sistema
operativo. También, esos servidores demandarán menos sobrecarga
de memoria para el sistema operativo, lo que significa que usted
podrá empaquetar más de ellos en un host de virtualización. Suena
horrible, ¿verdad?

¿Por qué PowerShell Remoting? (Mientras respondemos otros “por qué”…) 17

Pero esta es la mejor razón

Simplemente, la principal razón para habilitar Remoting es que
usted no tiene ninguna otra opción. Microsoft se ha movido firme-
mente en esta dirección, y ahora Remoting viene habilitado por de-
fecto en Windows Server 2012 y posteriores. La compañía también
está desactivando el escritorio remoto de forma predeterminada, lo
que debería indicarle algo.

Además, en los servidores Nano, el registro en la consola no es ni
siquiera una opción, ya sea que utilice el escritorio remoto o no.
No hay ningún inicio de sesión local. Remoting es literalmente su
única opción para administrar el servidor. Y así será en el futuro.

Ejecutar un entorno de Windows sin habilitar Remoting - al menos
en los servidores - es como conducir un coche sin querer presionar
el acelerador. No es muy divertido, y no vas a llegar muy lejos.

	Tabla de contenidos
	¿Por qué PowerShell?
	Una breve reseña
	¿Por qué el Scripting? ¿Por qué un Shell?
	¿Por qué PowerShell?
	PowerShell es un shell de línea de comandos y un lenguaje de secuencias de comandos (ambos)
	PowerShell puede interactuar con un sin número de tecnologías
	PowerShell está basado en objetos
	PowerShell llegó para quedarse
	Consolidar y multiplicar su aprendizaje
	En Windows, PowerShell realmente es la única opción

	La historia de negocio
	¿Dónde se puede aprender más?
	¿Por qué PowerShell Remoting? (Mientras respondemos otros ``por qué''…)
	¿Qué es PowerShell Remoting?
	Comparando Remoting con sus antecesores
	Pero esta es la mejor razón

