

Основы веб-хакинга
Более 30 примеров уязвимостей

Peter Yaworski и Eugene Burmakin

Эта книга предназначена для продажи на
http://leanpub.com/white-hat-hacking-ru

Эта версия была опубликована на 2020-03-19

Это книга с Leanpub book. Leanpub позволяет авторам и
издателям участвовать в так называемом Lean Publishing -
процессе, при котором электронная книга становится
доступна читателям ещё до её завершения. Это помогает
собрать отзывы и пожелания для скорейшего улучшения
книги. Мы призываем авторов публиковать свои работы как
можно раньше и чаще, постепенно улучшая качество и
объём материала. Тем более, что с нашими удобными
инструментами этот процесс превращается в удовольствие.

© 2016 - 2020 Peter Yaworski и Eugene Burmakin

http://leanpub.com/white-hat-hacking-ru
http://leanpub.com/
http://leanpub.com/manifesto

Оглавление

Вступительное слово . 1

Введение . 3

Необходимые знания . 15

Уязвимости Открытого Редиректа (Open Redirect) . . 19
Описание . 19
Примеры . 20
Итоги . 26

HTTP Parameter Pollution 28
Описание . 28
Примеры . 33
Итоги . 40

Вступительное слово
Лучший способ научиться чему-либо — просто начать этим
заниматься. Именно так мы — Майкл Принс и Джоберт Абма
— научились хакингу.

Мы были молодыми. Как и все хакеры до нас, и все, кто будет
после нас, нас вело неконтролируемое, жгучее желание пони-
мать, как работают вещи. В основном мы играли в компью-
терные игры, а к 12 годам решили научиться создавать софт
самостоятельно. Мы научились программировать на Visual
Basic и PHP по библиотечным книгам и на практике.

Из нашего понимания разработки программного обеспечения
мы быстро обнаружили, что эти навыки позволяют нам нахо-
дить ошибки других разработчиков. Мы перешли от создания
к разрушению и с тех пор хакинг стал нашей страстью. Чтобы
отпраздновать наш выпуск из старшей школы, мы захватили
эфир телеканала, пустив в него поздравительный ролик для
нашего выпускного класса. Хотя в то время это было весело,
мы быстро поняли, что последствия неизбежны и это не тот
вид хакеров, которые нужнымиру. Телеканал ишкола не были
в восторге и мы провели все лето за мытьем окон, которое ста-
ло нашим наказанием. В колледже мы обратили наши навыки
в жизнеспособный консалтинговый бизнес, который, на своем
пике, имел клиентов в публичном и частном секторах по
всему миру. Наш хакинговый опыт привел нас к HackerOne,
компании, которую мы вместе основали в 2012. Мы хотели
позволить каждой компании во вселенной успешно работать
с хакерами и это продолжает быть миссией HackerOne и по
сей день.

Если вы читаете это, значит в вас есть то же любопытство,
необходимое для того, чтобы быть хакером и искателем багов.

Вступительное слово 2

Мы верим, что эта книга будет потрясающим руководством
на протяжении всего вашего пути. Она полна полноценных
примеров отчетов об уязвимостях из реального мира, эти
отчеты принесли их авторам реальные деньги. Так же в этой
книге вы найдете полезный анализ и обзор от Питера Яворски,
автора и хакера. Он ваш помощник на пути обучения, и это
бесценно.

Еще одна причина, по которой эта книга так важна, заключа-
ется в том, что она фокусируется на том, как стать этичным
хакером. Освоение искусства хакинга может быть чрезвы-
чайно мощным навыком, который, мы надеемся, будет ис-
пользован во благо. Самые успешные хакеры умеют во время
хакинга балансировать на тонкой линии между правильным
и неправильным. Многие люди могут ломать вещи, и даже
пытаются извлечь из этого быструю выгоду. Но только пред-
ставьте, вы можете сделать Интернет безопаснее, работать с
потрясающими компаниями со всего мира и даже получать
за все это деньги. Ваш талант потенциально может сохранить
миллиарды людей и их данные в безопасности. Мы надеемся,
что вы вдохновляетесь именно этим.

Мы бесконечно благодарны Питу за время, которое он потра-
тил на то, чтобы задокументировать все описанное с такой
тщательностью. Нам хотелось бы иметь подобный источник
знаний в те дни, когда мы только начинали свой путь. Книгу
Пита приятно читать благодаря информации, которая помо-
жет успешно начать путь хакера.

Приятного чтения и успешного хакинга!

И не забывайте применять свой навык с ответственностью.

Майкл Принс и Джоберт Абма, основатели HackerOne

Введение
Спасибо за покупку этой книги, я надеюсь, вы испытаете
такое же удовольствие от чтения, какое испытывал я при
проведении исследований и её написании.

“Основы веб-хакинга” — моя первая книга, и она предназначе-
на помочь вам ступить на путь хакера. Я начал писать её как
самиздатовское объяснение 30 уязвимостей, побочный про-
дукт моего собственного обучения. Она быстро превратилась
в нечто значительно большее.

Я надеюсь, что эта книга, как минимум, откроет ваши глаза
на огромный мир хакинга. В лучшем случае, мне хочется на-
деяться, что это будет вашим первым шагом по направлению
к тому, чтобы сделать веб более безопасным местом и заодно
получить за это некоторое вознаграждение.

Как все это началось

В конце 2015 я наткнулся на книгу Парми Олсон We Are
Anonymous: Inside the Hacker World of LulzSec, Anonymous and
the Global Cyber Insurgency и прочитал её за неделю. Однако,
закончив чтение, я так и не понял, как эти хакеры начали свой
путь.

Я жаждал большего, но я не просто хотел знать ЧТО делают
хакеры, я хотел знать, КАК они это делают. Поэтому я продол-
жил читать. Но каждый раз, когда я заканчивал читать следу-
ющую книгу, по-прежнему оставались без ответов следующие
вопросы:

• Как другие хакеры узнают об уязвимостях, которые они
находят?

Введение 4

• Где люди находят уязвимости?
• Как хакеры начинают процесс хакинга целевого сайта?
• Хакинг — это просто использование автоматических ин-
струментов?

• Как я могу начать находить уязвимости?

Но в поисках ответах лишь открывались все новые и новые
двери.

Примерно в то же время я проходил на Coursera курс по
разработке дляAndroid и искал другие интересные курсы.Мне
на глаза попался курс Coursera Cybersecurity, в частности, Курс
2, Software Security. К моей удаче, курс только начался (на
февраль 2016 он в состоянии “Coming Soon”) и я записался на
обучение.

После нескольких лекций я наконец понял, что такое перепол-
нение буфера и как его использовать. Я полностью ухватил
принцип эксплуатации SQL-инъекций, о которых я раньше
знал лишь то, что они опасны. Короче говоря, меня зацепило.
До этого момента я всегда подходил к безопасности веб-
приложений с точки зрения разработчика, понимая необходи-
мость экранирования значений и избегая нефильтрованного
пользовательского ввода. Теперь я начал понимать, как все это
выглядело с точки зрения хакера.

Я продолжал искать информацию о том, как взламывать и по-
пал на форумы Bugcrowd. К сожалению, активность там была
довольно слабой, но кто-то упомянул хакерскую активность
на HackerOne и дал ссылку на отчет. Пройдя по ссылке, я
испытал восторг. Я читал описание уязвимости, написанное
для компании, которая раскрыла его миру. Возможно, еще
более важным было то, что компания заплатила хакеру за то,
что он нашел уязвимость и описал её!

Это было поворотной точкой, я стал одержим. Особенно, когда
узнал, что Shopify, компания из моей родной Канады, была

Введение 5

лидером по раскрытию отчетов об уязвимостях на тот мо-
мент. Посмотрев профиль Shopify, я увидел, что их профиль
усыпан публичными отчетами. Я никак не мог начитаться.
Уязвимости включали межсайтовый скриптинг (XSS), баги в
аутентификации, CSRF, и это лишь пара примеров.

Признаю, в тот момент я пытался понять, что описывали
отчеты. Некоторые уязвимости и методы их эксплуатации
было тяжело понять.

Поиски в Google в попытках понять один конкретный отчет
привели меня на дискуссию на Github, посвященную одной
старой уязвимости, связанной с дефолтным параметром Ruby
on Rails (это описано в главе “Уязвимости логики приложе-
ний”), о которой сообщил Егор Хомяков. Это имя привело
меня на блог Егора, который содержит описание некоторых
действительно сложных уязвимостей.

Читая о его опыте, я понял, что мир хакинга может получить
пользу от объяснения реальных уязвимостей простым языком.
И так уж получилось, что я учусь лучше, когда учу других.

Так появились “Основы веб-хакинга”.

Всего 30 примеров и моя первая продажа

Я решил начать с простой цели, найти и объяснить простым
языком 30 веб-уязвимостей, легких для понимания.

Я понял, что в худшем случае, исследование и написание тек-
стов об уязвимостях поможет мне изучить хакинг. В лучшем
случае, я продам миллион копий, стану гуру самиздата и
рано уйду на пенсию. Последнее пока не случилось, а первое
временами кажется неосуществимым до конца.

Примерно после 15 объясненных уязвимостей я решил опуб-
ликовать свой черновик, чтобы его можно было купить -
платформа, которую я выбрал, Leanpub (через которую вы,

Введение 6

скорее всего, и приобрели книгу) позволяет вам публиковать
итеративно, предоставляя покупателям доступ ко всем обнов-
лениям. Я отправил твит, чтобы поблагодарить HackerOne и
Shopify за их открытые отчеты и чтобы рассказать миру о
своей книге. Я не ожидал ничего особенного.

Но через считанные часы первый покупатель приобрел мою
книгу.

Окрыленный мыслью, что кто-то по-настоящму заплатил за
мою книгу (что-то, созданное мной и чему я отдал тонны
усилий), я вошел на Leanpub, чтобы узнать, могу ли я что-то
узнать о своем таинственном покупателе. Ничего. Но затем
мой телефон завибрировал, я получил твит отМайкла Принса,
в котором он говорил, что ему понравилась книга и попросил
оставаться на связи.

Кто блин такой Майкл Принс? Я проверил его профиль на
Twitter и узнал, что он один из со-основателей HackerOne.
Черт. Часть меня думала, что ребята из HackerOne не будут
рады тому, что я полагаюсь на содержимое их сайта. Я попы-
тался оставаться позитивным, Майкл казался доброжелатель-
ным и попросил оставаться на связи, что, вероятно, не должно
ничем грозить.

Вскоре после первой продажи состоялась вторая и я понял, что
что-то происходит. Так совпало, что примерно в то же время я
получил уведомление с Quora о вопросе, который, возможно,
мог бы меня заинтересовать, Как мне стать успешным этич-
ным хакером?

Благодаря своему опыту начинающего, я знал, каково это, и,
также ведомый эгоистичным желанием рассказать о своей
книге, я решил написать ответ. Примерно на полпути я понял,
что единственный ответ, кроме моего, оставил Джоберт Абма,
второй из двух со-основателей HackerOne. Довольно автори-
тетный голос в хакинге. Черт.

Я уже думал не отправлять свой ответ, но решил переписать

Введение 7

его таким образом, чтобы основываться на ответе Джоберта,
поскольку я не мог соревноваться с ценностью его совета. Я
нажал “Отправить” и больше об этом не думал. Но затем я
получил интересное письмо:

Привет, Питер, я видел твой ответ на Quora и видел,
что ты пишешь книгу об этичном хакинге. Я был
бы рад узнать об этом больше.

С наилучшими пожеланиями,

Мартен CEO, HackerOne

Тройное Черт. Куча мыслей пронеслась в моей голове в этот
момент, ни одна из которых не была позитивной, и практи-
чески все были нерациональными. В двух словах, я понял, что
единственная причина, по которой Мартен мог написать мне,
была в том, чтобы опустить кувалду на мою книгу. К счастью,
это было невероятно далеко от истины.

Я ответил ему, объяснив, кто я такой и что я делаю - что я пы-
таюсь научиться хакингу и помочь другим в этом непростом
деле. Оказалось, что ему очень нравится эта идея. Он объяс-
нил, что HackerOne заинтересован в росте сообщества и под-
держивает хакеров в их обучении, поскольку это выгодно для
всех вовлеченных. В общем, он предложил помощь. И, черт,
он помог. Эта книга, вероятно, не была бы в том состоянии, в
котором она сегодня, или включала бы половину содержимого
без постоянной поддержки и мотивации со стороны Мартена
и HackerOne.

С того первого письма, я продолжал писать и Мартен продол-
жал интересоваться прогрессом.Майкл иДжоберт читали чер-
новики, предлагали изменения и даже написали некоторые
части текста.Мартен даже покрыл расходы на профессиональ-
но оформленную обложку (прощай, простая желтая обложка
с белой ведьминской шляпой, выглядевшая так, словно тебя

Введение 8

рисовал четырехлетний ребенок). В мае 2016, Адам Бакус при-
соединился к HackerOne и на свой пятый день в компании он
прочитал книгу, предложил внести правки и объяснил, каково
быть по другую сторону — получателем отчетов об уязвимо-
стях, и теперь это описано в главе о написании отчетов.

Я пишу обо всем этом потому, что на протяжении всего пути
HackerOne никогда не просили ничего взамен. Они просто
хотели поддержать соообщество и эта книга оказалась хо-
рошим способом это сделать. Как для новичка в хакерском
сообществе, это тронуло меня и я надеюсь, что тронет и вас.
Я, лично, предпочитаю быть частью отзывчивого и под-
держивающего сообщества.

Итак, с тех пор эта книга значительно увеличилась, став на-
много больше, чем я изначально рассчитывал. И с этой пере-
меной изменилась и целевая аудитория.

Для кого написана эта книга

Я написал эту книгу, помня о тех, кто только начинает путь
хакинга. Не важно, являетесь ли вы веб-разработчиком, веб-
дизайнером, домохозяйкой, вам 10 лет или 75. Я хочу, чтобы
эта книга была надёжным справочником для понимания раз-
личных типов уязвимостей, того, как их обнаруживать, как
сообщать о них, как получать за это деньги, и даже как писать
код, позволяющий их предотвратить.

Таки образом, я не пишу эту книгу, чтобы обратиться к мас-
сам. На самом деле это книга о совместном обучении. А
значит, я делюсь успехамиИ некоторыми своими заметными
(и постыдными) неудачами.

Эта книга так же не обязательно должна быть прочитана от
корки до корки, если вы нашли интересующую вас часть,
свободно читайте её первой. В некоторых случаях я ссылаюсь
на описанные ранее главы, но делая это, я пытаюсь связать их,

Введение 9

чтобы вы могли пролистать вперед и назад. Я хочу, чтобы эта
книга стала чем-то, что вы держите открытым, пока занимае-
тесь хакингом.

Каждая глава, посвященная типам уязвимостей, структуриро-
вана одинаково:

• Начало с описанием типа уязвимости;
• Обзор примеров уязвимости; и
• Заключение с подведением итогов.

Подобным образом, каждый пример внутри этих глав струк-
турирован в едином стиле и включает:

• Мои оценки сложности обнаружения уязвимости
• url, связанный с местом, где была обнаружена уязви-
мость

• Ссылку на отчет или описание
• Дату публикации отчета об уязвимости
• Сумму, выплаченную за отчет
• Понятное описание уязвимости
• Выводы, которые вы можете использовать в собственных
исследованиях

Наконец, хотя это и не является обязательным требованием
для хакинга, вероятно, будет хорошей идеей иметь хотя бы
беглое знакомство с HTML, CSS, Javascript и, возможно, иметь
некоторый опыт программирования. Это не значит, что вы
должны быть способны с нуля создавать страницы, но пони-
мание базовой структуры веб-страницы, как CSS определяет
внешний вид и ощущения, и чего можно достичь с помощью
Javascript, помогут вам в нахождении уязвимостей и в осо-
знании потенциальной опасности, которую они могут нести.
Опыт в программировании полезен, когда вы ищете уязвимо-
сти в логике приложения. Если вы можете поставить себя на

Введение 10

место программиста и предположить, как он мог реализовать
что-либо или прочитать его код, если он доступен, вы будете
иметь преимущество в этой игре.

Для этого я рекомендую посмотреть бесплатные курсыUdacity
Intro to HTML and CSS и Javascript Basics, ссылки на которые
я включил в главу “Ресурсы”. Если вы не знакомы с Udacity, их
миссия заключена в предоставлении доступного, недорогого,
увлекательного и высокоэффективного высшего образования
всему миру. Они имеют партнерство с такими компаниями,
как Google, AT&T, Facebook, Salesforce, и многими другими, и
это партнерство позволяет им создавать программы и предла-
гать курсы онлайн.

###Обзор глав

Глава 2 является введением в то, как работает Интернет, вклю-
чая HTTP-запросы и ответы, а так же HTTP-методы.

Глава 3 описывает Open Redirects, интересную уязвимость,
которая включает в себя использование целевого сайта для
перенаправления пользователей на другой сайт, что позволяет
хакеру воспользоваться доверием пользователя на этом уязви-
мом сайте.

Глава 4 описывает загрязнение параметровHTTP (HTTP Parameter
Pollution) и в ней вы научитесь находить системы, которые
уязвимы к передаче небезопасного ввода сайтам третьих сто-
рон.

Глава 5 описывает уязвимости, позволяющие подмену меж-
сайтовых запросов, или CSRF (Cross-Site Request Forgery), а
примеры покажут, как можно обмануть пользователей, заста-
вив их (без их ведома) отправить информацию на сайты, на
которых они залогинены.

Глава 6 описывает HTML-инъекции (HTML Injections) и в ней
вы научитесь внедрять HTML в веб-страницу и использовать
его в своих целях. Один из наиболее интересных выводов -

Введение 11

то, как вы можете использовать закодированные значения,
чтобы обмануть сайт, заставить принять их и отрендерить
отправленный вами HTML, минуя фильтры.

Глава 7 описывает инъекции CLRF (Carriage Return Line Feed
Injections) и в ней рассмотрены примеры отправки символов
переноса строки сайтам и их влияние на отображаемое содер-
жимое.

Глава 8 описывает межсайтовый скриптинг (XSS), крупную
тему с огромным количеством способов найти уязвимость.
Межсайтовый скриптинг предоставляет множество возмож-
ностей и ему одному можно посвятить целую книгу. Здесь
будет куча примеров и я попытаюсь сосредоточиться на самых
интересных и полезных для изучения.

Глава 9 описывает Server Side Template Injection, а так же инъ-
екции со стороны клиента. Эти типы уязвимостей используют
невнимательность разработчиков, которые вставляют пользо-
вательский ввод напрямую в страницы при отправке с исполь-
зованием синтаксиса шаблона. Опасность этих уязвимостей
зависит от того, где они находятся, но часто могут вести к
удаленному исполнению кода.

Глава 10 описывает SQL-инъекции, которые включают мани-
пулирование запросами баз данных для извлечения, измене-
ния или удаления информации с сайта.

Глава 11 описывает серверную подмену запроса (SSRF, Server
Side Request Forgery), которая позволяет хакеру использовать
удаленный сервер для отправки последующихHTTP-запросов
от имени хакера.

Глава 12 описывает XML External Entity уязвимости, появля-
ющиеся в результате работы сайтов, парсящих расширяемый
язык разметки (XML). Этот тип уязвимостей может включать
такие вещи, как чтение приватных файлов, удаленное испол-
нение кода и многие другие.

Введение 12

Глава 13 описывает удаленное выполнение кода (RCE, Remote
Code Execution), или ситуацию, когда атакующий может вы-
полнить произвольный код на сервере жертвы. Этот тип уяз-
вимости — один из самых опасных, поскольку хакер может
получить контроль над выполняемым кодом. Вознаграждает-
ся, соответственно, высоко.

Глава 14 описывает уязвимости, относящиеся к памяти, этот
тип уязвимости может быть непросто найти и, как правило,
он относится к низкоуровневым языкам программирования.
Однако, обнаружение этого типа багов может привести к неко-
торым весьма серьезным уязвимостям.

Глава 15 описывает захват поддоменов, кое-что, о чем я много
узнал, работая над исследованиями для этой книги, за что я
благодарен Матиасу, Франсу и команде Dectetify. Суть в том,
что сайт ссылается на поддомен, который размещен на сер-
висе третьей стороны, при этом не требуя корректного адреса
от этого сервиса. Это позволяет атакующему зарегистрировать
адрес со стороны этого третьего сервиса и весь траффик, кото-
рый поступает на домен жертвы, на деле поступает на домен
злоумышленника.

Глава 16 описывает Race Conditions, уязвимость, которая вклю-
чает два или более процесса, выполняющих действие, осно-
ванное на условиях, которые должны позволять выполниться
лишь одному процессу. Например, представьте перевод денег
между банковскими счетами, у вас не должно быть возможно-
сти осуществить два перевода по $500, когда ваш баланс равен
всего $500. Однако, уязвимость race condition (или “состояние
гонки”) позволяет выполнить такой перевод.

Глава 17 описывает уязвимости InsecureDirect Object Reference
(небезопасная прямая ссылка на объект), где хакер может про-
читать или обновить объекты (записи в базе данных, файлы,
и так далее), к которым он не должен иметь доступа.

Глава 18 описывает уязвимости, основанные на логике при-

Введение 13

ложений. Эта глава является собранием всех уязвимостей,
которые я рассматриваю как связанные с недостатками логики
программирования. Я считаю, что нахождение этого типа уяз-
вимостей может быть несложным для новичков, по крайней
мере, проще, чем попытки найти странный и креативный
способ отправить вредные значения на сайт.

Глава 19 описывает, то, с чего стоит начинать. Эта глава
призвана помочь вам рассмотреть возможные точки атаки и
поиска уязвимостей. Она основана на моем опыте и на том,
как я подхожу к поиску уязвимостей.

Глава 20 справедливо считается одной из самых важных глав
в книге, поскольку содержит советы по тому, как написать эф-
фективный отчет. Весь хакинг в мире не значит ничего, если
вы не можете надлежащим образом сообщить о найденной
уязвимости соответствующей компании. Таким образом, я об-
ратился к нескольким крупным компаниям, выплачивающим
вознаграждение за найденные уязвимости, спросил их совета,
как лучше всего сообщить об уязвимости, и получил ответ
от HackerOne. Убедитесь, что уделили этой главе должное
внимание.

Глава 21 посвящена инструментам. Здесь мы узнаем о реко-
мендуемых хакерских инструментах. В первый черновик этой
главы внес значительный вклад Майкл Принс из HackerOne.
С тех пор это растущий и изменяющийся список полезных
инструментов, которые я нашел и использую сам.

Глава 22 посвящена тому, чтобы помочь вам вывести ваш на-
вык хакинга на следующий уровень. Здесь я расскажу о неко-
торых замечательных ресурсах, которые помогут продолжить
обучение. Опять же, рискну показаться заевшей пластинкой,
но поблагодарю Майкла Принса за вклад в этот список.

Глава 23 завершает книгу и описывает некоторые ключевые
термины, которые вы должны знать, занимаясь хакингом.
Хотя большинство из них обсуждаются в других главах, неко-

Введение 14

торые вы увидите впервые, так что рекомендую все же прочи-
тать эту главу.

Слово предупреждения и просьба

Прежде, чем вы отправитесь в восхитительный мир хакинга,
я хочу кое-что прояснить. Пока я учился, читая публичные
отчеты, глядя на деньги, которые люди получали (и получа-
ют), мне казалось, что это легкий способ быстро разбогатеть.
Это не так. Хакинг может быть чрезвычайно прибыльным, но
непросто найти истории о неудачах, постигающих на этом
пути (разве что здесь, где я делюсь некоторыми довольно
постыдными историями). В результате, поскольку вы буде-
те слышать в основном истории успеха, вы можете вырабо-
тать нереалистичные ожидания в отношении успеха. И может
быть вы быстро его добьетесь. Но если нет, продолжайте
работать! Все станет проще, а принятый отчет об уязвимости
приносит несравненное чувство удовлетворения.

Теперь я хочу попросить вас об услуге. По мере чтения, по-
жалуйста, пишите мне в Twitter @yaworsk и расскажите мне,
как ваши дела. Успешно или неуспешно, я хотел бы узнать
об этом. Поиск багов может быть одинокой работой, если вы
застряли, но это также приятно праздновать друг с другом.
И может быть вы найдете что-то, что мы сможем включить
в следующее издание.

Удачи!!

Необходимые знания
Если вы начинаете с нуля, как начинал я, и эта книга — один
из первых совершенных вами шагов в мир хакинга, для вас
важно будет понимать, как работает интернет. Прежде, чем вы
перевернете эту страницу, я хочу сказать, что имею ввиду то,
как URL, который вы набираете в адресной строке, связывается
с доменом, который направляется на IP-адрес, и так далее.

Одним предложением: Интернет — это множество систем,
которые связаны вместе и отправляют друг другу сообщения.
Некоторые принимают только определенные типы сообще-
ний, другие принимают сообщения только от ограниченного
списка других систем, но каждая система в интернете имеет
адрес, чтобы люди могли отправлять ей сообщения. Каждая
система решает, что ей делать с сообщением и как она будет
отвечать.

Чтобы определить структуру этих сообщений, люди задо-
кументировали то, как некоторые из этих систем должны
общаться в Requests for Comments (RFC). Например, взгляните
на HTTP. HTTP определяет протокол того, как ваш интернет-
браузер общается с веб-сервером. Поскольку ваш интернет-
браузер и веб-сервер действуют в соответствии с одним и тем
же протоколом, они могут общаться.

Когда вы вводите http://www.google.com в адресной строке сво-
его браузера и нажимаете enter, следующие шаги описывают
то, что происходит на высшем уровне:

• Вашбраузер извлекает имя домена изURL,www.google.com.
• Ваш компьютер отправляет DNS запрос к DNS-серверам,
описанным в конфигурации вашего компьютера. DNS

Необходимые знания 16

может помочь определить IP-адрес для доменного име-
ни, в этом случае он равен 216.58.201.228. Подсказка: вы
можете использовать dig A www.google.com из своего
терминала, чтобы узнать IP-адрес для домена.

• Ваш компьютер пытается установить TCP-соединение с
IP-адресом на порту 80, который используется для пере-
дачи и получения HTTP-трафика. Подсказка: вы можете
установить TCP-соединение, выполнив nc 216.58.201.228
80 из своего терминала

• Если соединение успешно установлено, ваш браузер от-
правит HTTP-запрос, подобный этому:

1 GET / HTTP/1.1

2 Host: www.google.com

3 Connection: keep-alive

4 Accept: application/html, */*

• Теперь он будет ждать ответа от сервера, который будет
выглядеть примерно так:

1 HTTP/1.1 200 OK

2 Content-Type: text/html

3

4 <html>

5 <head>

6 <title>Google.com</title>

7 </head>

8 <body>

9 ...

10 </body>

11 </html>

Необходимые знания 17

• Ваш браузер прочтет и отрисует возвращенный HTML,
CSS и Javascipt. В этом случае, на экране появится главная
страница Google.com.

Теперь, когда мы закончили с браузером, интернетом иHTML,
как упомянуто ранее, существует сообщение о том, как эти
сообщения будут отправляться, включая конкретные исполь-
зуемые методы, и требования к заголовку-запросу для всех
HTTP/1.1 запросов, как обозначено в пункте 4. Описанные
методы включают GET, HEAD, POST, PUT, DELETE, TRACE,
CONNECT и OPTIONS.

Метод GET означает запрос произвольной информации, обо-
значенной URI (Uniform Request Identifier). Термин URI может
быть непонятным, особенно в сочетании с указанным ранее
URL, но для целей этой книги просто знайте, что URL — это
как адрес человека, и является типом URI, который подобен
имени человека (спасибо, Wikipedia). Хотя HTTP-полиции не
существует, обычно GET-запросы не должны быть ассоцииро-
ваны с какими-либо функциями, изменяющими данные, они
просто извлекают и предоставляют информацию.

Метод HEAD идентичен GET, с единственным отличием: сер-
вер не должен возвращать тело сообщения в ответе. Обычно
вы не встретите случаев, когда он применяется, но он нередко
служит для тестирования гипертекстовых ссылок на валид-
ность, доступность и недавние изменения.

Метод POST используется для вызова некоторой функции,
которая будет выполнена на сервере способом, определенным
этим сервером. Другими словами, обычно на бэкенде будет
выполнено некоторое действие, такое, как создание коммен-
тария, регистрация пользователя, удаление аккаунта, и так да-
лее. Действие, выполняемое сервером в ответ на POST, может
варьироваться и не обязательно вызывается в результате за-
проса. Например, если в процессе обработки запроса возникла
ошибка.

Необходимые знания 18

Метод PUT используется при вызове какой-либо функции,
но относится к уже существующей сущности. Например, при
обновлении вашего аккаунта, обновлении поста в блоге, и так
далее. Опять же, выполняемое действие может варьироваться
и не обязательно вызывается в результате запроса.

Метод DELETE, как несложно догадаться, используется для
вызова запроса на удаление ресурса, идентифицированного
через URI, обращенного к серверу.

Метод TRACE — еще один необычный метод, в этот раз
используемый для отражения сообщения запроса к тому, кто
его запросил. Это позволяет отправителю увидеть, что было
получено сервером и использовать эту информацию для те-
стирования и диагностики.

МетодCONNECT зарезервирован для использования с прокси
(прокси обычно является сервером, который передает запросы
к другим серверам).

МетодOPTIONS используется для запроса с сервера информа-
ции о доступных способах общения. Например, запросOPTIONS
может показать, что сервер принимаетGET, POST, PUT, DELETE
и OPTIONS, но не HEAD или TRACE.

Теперь, вооруженные базовым пониманием того, как работает
интернет, мы можем ознакомиться с разными типами уязви-
мостей, которые могут быть в нем найдены.

Уязвимости Открытого
Редиректа (Open

Redirect)

Описание

Уязвимость открытого редиректа возникает, когда жертва по-
сещает определенный URL сайта и этот сайт перенаправляет
браузер жертвы на совершенно другой URL, на отдельном
домене. Например, представьте, что Google перенаправляет
пользователей на Gmail с помощью следующего URL:

https://www.google.com?redirect_to=https://www.gmail.com

Посетив этот URL, Google получит GET HTTP-запрос и ис-
пользует значение параметра redirect_to для определения, ку-
да должен быть перенаправлен браузер пользователя. После
этого Google вернет ответ 302, заставляя браузер пользовате-
ля совершить GET-запрос на https://www.gmail.com, значение
параметра redirect_to. Теперь представьте, что мы изменили
исходный URL на этот:

https://www.google.com?redirect_to=https://www.attacker.com

Если бы Google не проверял, является ли значение параметра
redirect_to одним из его собственных сайтов, куда Google мог
бы отправлять пользователей (в нашемпримере https://www.gmail.com),
он мог бы быть уязвим к открытому редиректу и вернул бы
HTTP-ответ, заставляющий браузер жертвы совершить GET-
запрос на https://www.attacker.com.

OpenWeb Application Security Project (OWASP), чье комьюнити

Уязвимости Открытого Редиректа (Open Redirect) 20

занимается безопасностью приложений и курирует список са-
мых критичных брешей в безопасности веб-приложений, по-
местил эту уязвимость в свой список 10 самых опасных уязви-
мостей 2013 года. Открытые редиректы используют доверие к
определенному домену, в нашемпримере https://www.google.com/,
чтобы заманить жертву на вредоносный сайт. Это может быть
использовано для фишинговых атак, чтобы заставить пользо-
вателя поверить, что он вводит свои данные на сайте, кото-
рому можно доверять, хотя на деле он отправился бы на вре-
доносный сайт. Это так же позволяет хакерам распространять
вирусы с вредоносного сайта или красть токены OAuth (эту
тему мы затронем в одной из последующих глав).

При поиске уязвимостей этого типа стоит смотреть на GET-
запросы с параметром, отвечающим за направление редирек-
та, отправляемые с тестируемого сайта.

Примеры

1. Открытое перенаправление при
установке темы оформления для Shopify

Сложность: Низкая

Url: app.shopify.com/services/google/themes/preview/supply–blue?domain_-
name=XX

Ссылка на отчет: https://hackerone.com/reports/101962¹

Дата отчета: 25 ноября 2015

Выплаченное вознаграждение: $500

Описание:
¹https://hackerone.com/reports/101962

https://hackerone.com/reports/101962
https://hackerone.com/reports/101962

Уязвимости Открытого Редиректа (Open Redirect) 21

Наш первый пример — открытый редирект, найденный на
Shopify, платформе, которая позволяет пользователям созда-
вать онлайн-магазиныдля продажи товаров. Платформа Shopify
позволяет администраторам настраивать внешний вид своих
магазинов, и одним способом кастомизации является установ-
ка новых тем оформления. Ранее Shopify предоставлял воз-
можность предпросмотра темы с использованием URL, кото-
рый включал в себя параметр редиректа. URL переадресации
похож на следующий, я отредактировал его для читабельно-
сти:

https://app.shopify.com/themes/preview/blue?domain_name=example.com/admin

Часть URL для предпросмотра темы оформления включала
в себя параметр domain_name в конце ссылки, и этот пара-
метр содержал другой URL, который использовался для пе-
реадресации. Shopify не валидировал этот параметр, так что
его значение можно было использовать для перенаправления
жертвы на http://example.com/admin, где хакер мог разместить
фишинговую форму.

Выводы
Не все уязвимости являются сложными. Открытая
переадресация в данном случае просто требова-
ла изменения параметра domain_name на внеш-
ний сайт, что могло привести у перенаправлению
пользователя на этот внешний сайт.

2. Открытое перенаправление входа в
Shopify

Сложность: Средняя

Url: http://mystore.myshopify.com/account/login

Уязвимости Открытого Редиректа (Open Redirect) 22

Ссылка на отчет: https://hackerone.com/reports/103772²

Дата отчета: 6 декабря 2015

Выплаченное вознаграждение: $500

Описание:

Этот случай очень похож на первый пример с Shopify, пара-
метр Shopify не редиректил пользователя на домен, указан-
ный в параметре URL, но вместо этого добавлял значение па-
раметра в конец поддомена Shopify. Обычно это использова-
лось бы редиректа пользователя на страницу этого магазина.
После того, как пользователь логинился в Shopify, платформа
использует параметр checkout_url для перенаправления поль-
зователя. Например, если жертва посещает:

http://mystore.myshopify.com/account/login?checkout_url=.attacker.com

то она будет перенаправлена на

http://mystore.myshopify.com.attacker.com

который не является доменом Shopify, поскольку заканчивает-
ся на .attacker.com.DNSищет самыйправый домен, .attacker.com
в этом примере. Поэтому, когда браузер пытается перейти на

http://mystore.myshopify.com.attacker.com

он попадет на attacker.com, который не принадлежит Shopify
или myshopify.com.

Поскольку Shopify соединял URL магазина, в этом случае
http://mystore.myshopify.com, с параметром checkout_url, ха-
кер не мог свободно отправить жертву куда ему вздумается.
Но хакер мог отправить пользователя на другой домен, если
он знает, что URL редиректа имеет тот же самый поддомен.

²https://hackerone.com/reports/103772

https://hackerone.com/reports/103772
https://hackerone.com/reports/103772

Уязвимости Открытого Редиректа (Open Redirect) 23

Выводы
Параметры редиректа не всегда очевидны,
поскольку параметры будут именоваться
по-разному на разных сайтах, или даже в
рамках одного сайта. В некоторых случаях вы
можете обнаружить, что параметры имеют имя,
состоящее всего из одного символа, вроде r= или
u=. При поиске открытых редиректов обращайте
внимание на параметры URL, которые содержат
слова URL, redirect, next, и так далее, и которые
могут определять путь, по которому сайт
направит пользователей.

Кроме того, если выможете контролировать лишь
часть конечного URL, возвращаемого сайтом, на-
пример, только значение параметра checkout_url,
и видите, что параметр комбинируется с захард-
коженным URL на бэкенде сайта, например, с
URL магазина http://mystore.myshopify.com, по-
пробуйте добавить специальные символы URL,
такие, как точка или @ чтобы изменить значение
URL и перенаправить пользователя на другой до-
мен.

3. Промежуточное перенаправление
HackerOne

Сложность: Средняя

Url: Недоступен

Ссылка на отчет: https://hackerone.com/reports/111968³

Дата отчета: 20 января 2016

Выплаченное вознаграждение: $500

³https://hackerone.com/reports/111968

https://hackerone.com/reports/111968
https://hackerone.com/reports/111968

Уязвимости Открытого Редиректа (Open Redirect) 24

Описание:

Промежуточная страница — это страница, которая показыва-
ется перед ожидаемым контентом. Использование таких стра-
ниц — известная практика для защиты против уязвимости
открытого редиректа, поскольку каждый раз при редиректе
пользователя на URL вы можете показывать промежуточную
страницу с сообщением, объясняющим пользователю, что он
покидает домен, на котором он находится. Таким образом,
если страница редиректа показывает фейковую форму логина
или пытается притвориться доверенным доменом, пользо-
ватель узнает о том, что был перенаправлен. Этот подход
используется HackerOne при переходе на большинство URL
вне сайта HackerOne, например, при переходе по ссылкам в
отправленых отчетах. Хотя промежуточные страницыисполь-
зуются для устранения уязвимостей, связанных с редиректом,
сложности в том, как сайты взаимодействуют друг с другом
все еще могут привести к переходу на вредоносные сайты.

HackerOne использует Zendesk, систему поддержки пользо-
вателей, на их поддомене. Когда следом hackerone.com идет
/zendesk_session, пользователи перенаправляются с платфор-
мы HackerOne на платформу HackerOne Zendesk без проме-
жуточной страницы, поскольку HackerOne доверяет ссылкам,
содержащим hackerone.com. Кроме того, Zendesk позволяет
пользователям переходить на другие аккаунты Zendesk с по-
мощьюпараметра /redirect_to_account?state= также без при-
менения промежуточной страницы.

Махмуд Джамал в своем отчете описывает следующее: он со-
здал аккаунт в Zendesk с поддоменом, http://compayn.zendesk.com,
и добавил следующий Javascript код в заголвок файла с помо-
щью редактора тем Zendesk, который позволяет администра-
торам настраивать внешний вид их сайтов Zendesk:

<script>document.location.href = "http://evil.com";</script>

Здесь Махмуд использует Javascript, чтобы сообщить браузе-

Уязвимости Открытого Редиректа (Open Redirect) 25

ру, что он должен перейти на http://evil.com. Детали работы
Javascript здесь описаны не будут, но тег <script> использу-
ется, чтобы обозначить код в HTML, documentозначает весь
HTML-документ, возвращаемый Zendesk и являющийся со-
держимым страницы. Точки и имена, следующие за document

являются его свойствами. Свойства содержат информацию и
значения, которые либо описывают объект, чьими свойствами
они являются, или могут быть использованы для изменения
объекта. Свойство location может быть использовано для кон-
троля страницы, котору вы видите в своем браузере, а под-
свойство href (которое является свойством location) перена-
правляет браузер на определенный сайт. Таким образом, по-
сещение ссылки перенаправил жертву на поддомен Махмуда
на Zendesk, что заставит браузер жертвы выполнить скрипт
Махмуда и перенаправит его на http://evil.com (обратите
внимание, URL был отредактирован для читабельности):

https://hackerone.com/zendesk_session?return_to=https://support.hackerone.com/ping/redirect?state=compayn:/

Поскольку ссылка содеожит домен hackerone, промежуточная
страница не будет показана и пользователь не узнает, что
страница, которую он посещает, небезопасна. Что интересно,
Махмуд изначально описал эту проблему Zendesk, но они не
сочли её важной и не пометили как уязвимость. Поэтому он,
разумеется, продолжил искать применение этой уязвимости.

Уязвимости Открытого Редиректа (Open Redirect) 26

Выводы
Как и при поиске уязвимостей, примите к сведе-
нию, что каждый из сторонних сервисов, исполь-
зуемых сайтом, представляет собой новый вектор
атаки. При этом, указанная в примере уязвимость
была возможна благодаря сочетанию использова-
ния HackerOne с Zendesk и знанием о том, какие
перенаправления они позволяют совершать.

Кроме того стоит учесть, что когда вы находите
ошибки и уязвимости, до момента их исправле-
ния может пройти много времени, прежде чем
ваш отчёт о найденной уязвимости прочитают,
поймут, и на него отреагируют. Вот почему у
меня есть глава “Отчеты об уязвимостях”, кото-
рая описывает детали, которые нужно включить
в отчет, как построить отношения с компаниями
и содержит другую информацию. Более тщатель-
ная работа, а также детализированность и вежли-
вость в вашем отчёте поможет обеспечить более
глубокое понимание вопроса тем, кто занимается
вопросами защиты информации, и как следствие
более быструю реакцию.

Но некоторые компании даже не смотря на то, о
чём я говорил, будут с вами не согласны. Если
это так, смело продолжайте копать, как это сде-
лал Махмуд. Вы можете доказать существование
реальной угрозы безопасности эксплуатацией и
демонстрацией возможности этой уязвимости на
деле.

Итоги

Открытое перенаправление - интересная уязвимость. Она поз-
воляет злоумышленнику перенаправлять ничего не подозре-

Уязвимости Открытого Редиректа (Open Redirect) 27

вающих людей на вредоносные сайты. Нахождение этих уяз-
вимостей, как показывают примеры, часто требуют наблю-
дательности. Иногда параметры редиректа легко найти по
именам вроде redirect_to=, domain_name=, checkout_url=, и
подобным. Однако, иногда они будут иметь мене очевидные
имена, такие, как r=, u= и другие.

Этот тип уязвимости полагается на использование доверия,
когда жертвы посещают сайт хакера, думая, что они посетят
знакомый сайт. Встретив потенциально уязвимые параметры,
тщательно протестируйте их и попробуйте добавить специ-
альные символы, такие, как точка, если часть URL поступает
с бэкенда.

Кроме того, промежуточное перенаправление от HackerOne
показывает важность того, что и инструменты и сервисы веб-
сайтов могут содержать уязвимости, и что иногда необходимо
проявить настойчивость, наглядно демонстрировать уязви-
мость, прежде чем она будет признана и принята для выплаты
вознаграждения.

HTTP Parameter
Pollution

Описание

Уязвимостью HTTP Parameter Pollution, или HPP, называет-
ся манипулирование тем, как сайт обрабатывает параметры,
получаемые им в процессе обработки HTTP-запросов. Уязви-
мость возникает, когда параметры внедряются и считаются
безопасными уязвимым сайтом, что ведет к отклонению от
ожидаемого поведения. Это может произойти на бэкенде, сер-
верной стороне, где сервер сайта, который вы посещаете, об-
рабатывает информацию, не показывая вам процесс. А может
— на клиентской стороне, где вы можете увидеть эффект своих
действий на клиенте, которым обычно является ваш браузер.

Серверная уязвимость HPP

Когда вы делаете запрос к сайту, сервер этого сайта обрабаты-
вает запрос и возвращает ответ, как было описано в Главе 1.
В некоторых случаях сервер не просто возвращает страницу,
но так же и выполняет некоторый код, руководствуясь инфор-
мацией, полученной вместе с URL, по которому вы перешли.
Этот код выполняется только на сервере и процесс невидим
для вас, вы можете лишь увидеть отправленную вами инфор-
мацию и результат, который получаете в ответ. Поскольку вы
не можете увидеть, как функционирует серверный код сайта,
серверная уязвимость HPP зависит от определения потенци-
ально уязвимых параметров и экспериментирования с ними.

Пример серверной HPP: она может произойти, если ваш банк

HTTP Parameter Pollution 29

инициирует трансфер через свой сайт, который работает на
его серверах, обрабатывая параметры URL. Например, вы мо-
жете отправить деньги, заполнив три значения URL: откуда,
куда и сколько вы хотите отправить, определив номер счета
отправителя, номер счета получателя и переводимую сумму,
в конкретном порядке. URL с этими параметрами, делающий
запрос на перевод $5000 со счета 12345 на счет 67890 может
выглядеть так:

https://www.bank.com/transfer?from=12345&to=67890&amount=5000

Возможно, банк мог бы предположить, что он будет получать
только один параметр “откуда”. Но что произойдет, если вы
отправите два, как в следующем URL:

https://www.bank.com/transfer?from=12345&to=67890&amount=5000&from=ABCDEF

Этот URL изначально структурирован так же, как и первый,
но к нему добавлен дополнительный параметр from, кото-
рый устанавливает другой счет-отправитель, ABCDEF. Как
вы могли предположить, если приложение уязвимо к HPP,
взломщик сможет совершить трансфер со счета, который ему
не принадлежит в случае, если банк доверяет последнему
параметру from, который он получает. Вместо перевода $5000
со счета 12345 на счет 67890, серверный код использует второй
параметр и отправит деньги с ABCDEF на 67890.

И клиентская и серверная уязвимости HPP зависят от того,
как сервер ведет себя при получении нескольких параметров
с одним и тем же именем. Например, PHP/Apache исполь-
зует последний параметр, Apache Tomcat использует первый
параметр, ASP/IIS использует все параметры, и так далее. В
результате, не существует одного гарантированного процес-
са обработки нескольких отправленных параметров с одним
именем и нахождение HPP требует некоторого количества
экспериментов, чтобы узнать, как именно работает сайт, ко-
торый вы проверяете.

Хотя наш пример пока использовал очевидные параметры,

HTTP Parameter Pollution 30

иногда уязвимости HPP являются результатом скрытого сер-
верного поведения, которое может быть не видимым для вас
напрямую. Например, скажем, наш банк переработал свой
способ обработки трансферов и изменил серверный код так,
чтобы он не принимал параметр from из URL, а вместо этого
принимал список, который содержит в себе несколько значе-
ний.

На этот раз наш банк принимает два параметра: номер счета-
получателя и сумму перевода. Номер счета-отправителя у
него уже есть. Пример ссылки может выглядеть так:

https://www.bank.com/transfer?to=67890&amount=5000

Обычно серверный код для нас загадка, но нам повезло и мы
украли часть их исходного кода и знаем, что их (совершенно
ужасный, просто для этого примера) серверный код на Ruby
выглядит так:

1 user.account = 12345

2

3 def prepare_transfer(params)

4 params << user.account

5 transfer_money(params) #user.account (12345) becomes pa\

6 rams[2]

7 end

8

9 def transfer_money(params)

10 to = params[0]

11 amount = params[1]

12 from = params[2]

13 transfer(to,amount,from)

14 end

Этот код создает две функции, prepare_transfer и transfer_-

money. Функция prepare_transfer получает массив (список)
под названием params, который содержит параметры to и

HTTP Parameter Pollution 31

amount, полученные из URL. Массив будет выглядеть как
[67890,5000], его значения помещенымежду квадратными скоб-
ками и разделены запятой. Первая строка функции добавляет
номер счета пользователя, который был определен ранее, в ко-
нецмассива, и в результате получается массив [67890,5000,12345],
в затем он отправляется в функцию transfer_money.

Вы заметите, что в отличии от параметров, массивы в Ruby
не имеют имен, ассоциированных со значениями, так что
код зависит от того, чтобы все значения располагались в
определенном порядке, который выглядит так: первым идет
номер счета-получателя, затем сумма перевода, и последний
— номер счета-отправителя. В transfer_money это становится
очевидно, функция назначает каждое значение в массиве со-
ответствующей переменной. Нумерация элементов в массиве
начинается с 0, поэтому params[0] содержит первое значение
массива, которое в этом случае равно 67890, и назначает его
переменной to. Другие значения так же назначаются пере-
менным в следующих двух строках и затем эти переменные
передаются функции трансфера, которая не показана в нашем
коде, но она принимает значения и осуществляет перевод
денег.

В идеале параметрыURL всегда будут форматированы так, как
ожидает код. Однако, взломщик может изменить результат
этой логики, отправив параметр from в params, как в следу-
ющем URL:

https://www.bank.com/transfer?to=67890&amount=5000&from=ABCDEF

В этом случае параметр from так же включен в массив params,
переданный функции prepare_transfer, и этот массив стано-
вится равен [67890,5000,ABCDEF], и добавление счета отправи-
теля уже превратит его в такой: [67890,5000,ABCDEF,12345]. В
результате, в функции transfer_money, вызванной в prepare_-

transfer, переменная from примет третий параметр, ожидая
значение user.account равным 12345, но получит переданное

HTTP Parameter Pollution 32

хакером значение ABCDEF.

Клиентская уязвимость HPP

С другой стороны, клиентские уязвимости HPP позволяют
внедрять параметры в URL, что, в свою очередь, отражается
на странице, которую видит пользователь.

Лука Кареттони и Стефано ди Паола, два исследователя, рас-
сказывавшие об этой уязвимости в 2009, продемонстриро-
вали это поведение в своей презентации, используя теоре-
тический URL http://host/page.php?par=123%26action=edit и
следующий серверный код:

1 <? $val=htmlspecialchars($_GET['par'],ENT_QUOTES); ?>

2 <a href="/page.php?action=view&par='.<?=$val?>.'">View Me\

3 !

Здесь код генерирует новый URL, основываясь на введённом
пользователем. Сгенерированный URL включает параметры
action и par, второй определён пользовательским URL. В тео-
ретическом URL хакер передаёт значение 123%26action=edit
как значение для par в URL. %26 в URL является закодирован-
ным значением, которое интерпретируется как &. Это добав-
ляет дополнительный параметр к сгенерированному адресу
ссылки без добавления явного параметра action. Используй
они вместо этого 123&action=edit, это было бы интерпретиро-
вано как два отдельных параметра, так что par было бы равно
123, а параметр action был бы равен edit. Но поскольоку этот
сайт ищет и использует только параметр par чтобы сгенери-
ровать новый URL, параметр action будет проигнорирован.
Чтобы обойти это, используется %26, в результате, action из-
начально не распознаётся как отдельныйпараметр, а значение
параметра par становится равным 123%26action=edit.

Теперь par (с & закодированным как %26) будет передан в
функцию htmlspecialchars. Эта функция конвертирует специ-

HTTP Parameter Pollution 33

альные символы вроде %26 в их кодированные значенияHTML
и %26 становится &. Конвертированное значение далее сохра-
няется в $val. Затем генерируется новая ссылка с добавлением
к значению href параметра $val. Сгенерированная ссылка те-
перь выглядит так:

Проделав это, хакер сумел добавить дополнительный пара-
метр action=edit в целевой URL, который может вести к уяз-
вимости в зависимости от того, как сервер обрабатывает по-
лучение двух параметров action.

Примеры

1. Кнопки социальных сетей HackerOne

Сложность: Низкая

Url: https://hackerone.com/blog/introducing-signal-and-impact

Ссылка на отчет: https://hackerone.com/reports/105953⁴

Дата отчета: 18 декабря 2015

Выплаченное вознаграждение: $500

Описание:

В блоге HackerOne есть ссылки для шаринга контента через
популярные социальные сети, такие как Twitter, Facebook и
прочие. Эти ссылки создают контент, который пользователь
может опубликовать в социальных сетях, с обратной ссылкой
на оригинальный пост в блоге. Ссылки на создание постов со-
держат параметры, которые при клике перенаправляют поль-
зователя на этот пост.

⁴https://hackerone.com/reports/105953

https://hackerone.com/reports/105953
https://hackerone.com/reports/105953

HTTP Parameter Pollution 34

Обнаруженная уязвимость позволяла хакеру подставить дру-
гие параметры URL в ссылку, что отразилось бы на расша-
риваемой ссылке и привело бы к тому, что ссылка, которой
поделились в социальной сети, вела бы произвольный сайт.
сайт. Пример, используемый в этом отчёте об уязвимости
включает ссылку:

https://hackerone.com/blog/introducing-signal

куда затем добавляется следующее

&u=https://vk.com/durov

Если бы посетителиHackerOne нажали на обновленную таким
образом ссылку, пытаясь поделиться контентом через соци-
альные сети, вредоносная ссылка выглядела бы так:

https://www.facebook.com/sharer.php?u=https://hackerone.com/blog/introducing-signal?&u=https://vk.com/durov

Если на обновленную таким образом ссылку нажал бы посе-
титель HackerOne, пытаясь поделиться контентом через соци-
альные сети, последний параметр u имел бы приоритет над
первым и, соответственно, был бы использован в публика-
ции на Facebook. Это привело бы к тому, что пользователи
Facebook при клике на ссылку были бы перенаправлены на
https://vk.com/durov вместо HackerOne.

Кроме того, при публикации в Twitter, предложенный стан-
дартный текст также мог бы быть изменен. Это достигается
добавлением &text= в url:

https://hackerone.com/blog/introducing-signal?&u=https://vk.com/durov&text=another_-

site:https://vk.com/durov

При клике на эту ссылку появился бы попап твита, который
имел бы текст another_site: https://vk.com/durov вместо того,
что предоставляет целевой пост на HackerOne.

HTTP Parameter Pollution 35

Выводы
Обращайте внимание на случаи, когда сайты
принимают контент и взаимодействуют с другим
веб-сервисом, таким, как сайты социальных се-
тей.

В этих ситуациях может быть возможна отправка
переданного содержимого без надлежащих про-
верок его безопасности.

2. Уведомления об отмене подписки в
Twitter

Сложность: Низкая

Url: twitter.com

Ссылка на отчет: blog.mert.ninja/twitter-hpp-vulnerability⁵

Дата отчета: 23 августа 2015

Выплаченное вознаграждение: $700

Описание:

В августе 2015 хакер Мерт Таски, отменяя подписку на полу-
чение уведомлений от Twitter, заметил интересный URL:

https://twitter.com/i/u?iid=F6542&uid=1134885524&nid=22+26

(Я сократил его немного для книги). Вы заметили параметр
UID? Оказалось, что это UID пользовательского аккаунта в
Twitter. Заметив это, он сделал то, что, как я полагаю, сделали
бы большинство хакеров, он попытался изменить UID на
чужой и… ничего. Твиттер вернул ошибку.

⁵http://www.blog.mert.ninja/twitter-hpp-vulnerability

http://www.blog.mert.ninja/twitter-hpp-vulnerability
http://www.blog.mert.ninja/twitter-hpp-vulnerability

HTTP Parameter Pollution 36

Многие сдались бы, но Мерт был настроен решительно и
попробовал добавить второй параметр UID к URL, который
теперь выглядел так (опять же, я сократил):

https://twitter.com/i/u?iid=F6542&uid=2321301342&uid=1134885524&nid=22+26

и… УСПЕХ! Он сумел отменить подписку на уведомления для
другого пользователя. Оказалось, Твиттер был уязвим к HPP
при отмене этой подписки.

Выводы
Хоть описание и короткое, попытки Мерта де-
монстрируют важность настойчивости и знаний.
Если бы он оставил попытки после неудачи с под-
становкой чужого UID в качестве единственного
параметра, или если бы он не знал об уязвимостях
типа HPP, он бы не получил вознаграждение в 700
долларов.

Также, внимательно относитесь к параметрам
вроде UID, которые включены в HTTP-запросы,
поскольку за время моих исследований я видел
множество отчетов, которые включали манипу-
лирование их значениями и веб-приложения де-
лали неожиданные вещи.

3. Twitter Web Intents

Сложность: Низкая

Url: twitter.com

Ссылка на отчет: Parameter Tamperting Attack on Twitter Web
Intents⁶

Дата отчета: Ноябрь 2015

⁶https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents

https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents
https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents
https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents

HTTP Parameter Pollution 37

Выплаченное вознаграждение: Не раскрыто

Описание:

TwitterWeb Intents предоставляет попапы для работы с пользо-
вательскими твитами, ответами, ретвитами, лайками и кноп-
ками Follow в контексте сторонних сайтов. Они позволяют
пользователям взаимодействовать с контентом Твиттера, не
покидая страницу или не требуя авторизоваться в приложе-
нии для простого взаимодействия. Вот как выглядит пример
такого попапа:

Twitter Intent

Тестируя эту возможность, хакер Эрик Рафалофф обнаружил,

HTTP Parameter Pollution 38

что все четыре типа “интентов”, фолловинг пользователя, лайк
твита, ретвит и твит, были уязвимы к HPP. Twitter создавал
каждый такой “интент” с помощью GET запроса с использо-
ванием параметров, подобным следующим:

https://twitter.com/intent/intentType?paramter_name=paramterValue

Этот URL будет включать intentType и один или более пара-
метров с парами ключ-значение, например, пользовательский
юзернейм в Твиттере и id твита. Twitter будет использовать
эти параметры, чтобы создать попап интента, который будет
показан пользователю, чтобы он мог лайкнуть твит или за-
фолловить пользователя. Эрик обнаружил, что если он создаст
URL с двумя параметрами screen_name для интента на follow,
то вместо одиночного screen_name, вроде

https://twitter.com/intent/follow?screen_name=twitter&screen_-

name=ericrtest3

Твиттер обработает запрос, отдав приоритет при генериро-
вании кнопки второму значению screen_name (ericrtest3), а
не первому, а пользователь, пытаясь зафолловить официаль-
ный аккаунт Твиттера, обманется, зафолловив вместо этого
тестовый аккаунт Эрика. Посещение URL, созданного Эри-
ком, создаст следующую HTML-форму с двумя параметрами
screen_name, сгенерированную бэкендом Твиттера:

1 <form class="follow" id="follow_btn_form" action="/intent\

2 /follow?screen_name=ericrtest3" method="post">

3 <input type="hidden" name="authenticity_token" value=".\

4 ..">

5 <input type="hidden" name="screen_name" value="twitter">

6 <input type="hidden" name="profile_id" value="783214">

7 <button class="button" type="submit" >

8 Follow

9 </button>

10 </form>

HTTP Parameter Pollution 39

Твиттер подтянул быинформацию с первого параметра screen_-
name, который ассоциирован с официальным аккаунтомТвит-
тера, поэтому жертва увидит корректный профиль пользова-
теля, которого она собиралась зафолловить, потому что пер-
вый параметр screen_name использовался для заполнения
двух значений в полях ввода. Однако, по клику на кнопку
жертва зафолловила бы аккаунт ericrtest3, потому что пара-
метр action в форме использовал бы значение второго screen_-
name, переданное в исходный URL:

https://twitter.com/intent/follow?screen_name=twitter&screen_-

name=ericrtest3

Аналогично, экспериментируя с интентами для лайков, Эрик
обнаружил, что может включить второй параметр screen_-
name, несмотря на то, что он не имеет никакого отношения
к лайку твита. Например, он мог создать URL:

https://twitter.com/intent/like?tweet_id=6616252302978211845&screen_-

name=ericrtest3

Нормальный лайк нуждается лишь в параметре tweet_id, но
Эрик вставил параметр screen_name в конец URL. Лайк такого
твита привёл бы к ситуации, в которой жертва поставила бы
лайк правильному твиту, но кнопка Follow, расположенная
рядом с корректным твитом и профилем, вела бы на некор-
ректный профиль пользователя ericrtest3.

HTTP Parameter Pollution 40

Выводы
Это похоже на предыдущую уязвимость в Твит-
тере, касающуюся UID. Неудивительно, что когда
сайт уязвим к вещам вроде HPP, это может быть
индикатором более широкой системной пробле-
мы. Иногда, если вы находите подобную уязви-
мость, стоит потратить время на исследование
платформы в целом, чтобы убедиться, что вы не
обнаружите (или обнаружите) другие области, в
которых можно будет использовать похожий сце-
нарий.

Итоги

Риски, которые открывает использованиеHTTP Parameter Pollution
сильно зависят от действий, выполняемых бэкендом сайта и
тем, куда будут отправлены вредоносные параметры.

Обнаружение уязвимостей такого вида очень зависит от экс-
периментов, больше, чем другие уязвимости, поскольку дей-
ствия бэкенда сайта могут быть полностью неизвестны хакеру.
Чаще всего, исследуя наличие этой уязвимости, вы будете
иметь очень малое представление о том, какие действия при-
нимает сервер после получения отправленных вами данных.

Через трудности и ошибки, вы сможете обнаружить подобные
уязвимости. Ссылки на социальные сети обычно являются
хорошим первымшагом, но не забывайте продолжать поиски
и думать о HPP при тестировании других уязвимостей вроде
замены параметров.

	Оглавление
	Вступительное слово
	Введение
	Необходимые знания
	Уязвимости Открытого Редиректа (Open Redirect)
	Описание
	Примеры
	Итоги

	HTTP Parameter Pollution
	Описание
	Примеры
	Итоги

