

Web

Programming
Client-Side Scripting

A

HTML, CSS and JS Guide

(with JS Applications, e-Commerce Design Using

Bootstrap, Theories of Computer Graphics, Photoshop &

Flash Animation)

Second Edition

Mamman A. Habeeb

Web

Programming
Client-Side Scripting

A

HTML, CSS and JS Guide

(with JS Applications, e-Commerce Design Using

Bootstrap, Theories of Computer Graphics, Photoshop &

Flash Animation)

Mamman A. Habeeb

Global Publishers/Independent Research Group

Africa Middle East U.K. U.S.A

MH7 Research Group- Reference Manual

 Global Publishers/Independent Research Group

MH7 Web Programming Client-Side Scripting A HTML, CSS and JS Guide

(with JS Applications, e-Commerce Design Using Bootstrap, Theories of

Computer Graphics, Photoshop & Flash Animation); Reference Manual
Published by MH7, a publishing and research group in collaboration with

Leanpub, Ruboss Technology Corp.

All rights reserved.

Copyright © 2019 by MH7-Global Publishers/Independent Research

Group, Inc.

Copyright © 2018 by MH7-Global Publishers/Independent Research

Group, Inc.

Copyright © 2016 by Joemaria Prints and Publish, Lagos-Nigeria

Library of Congress Catalogue, Nigeria
No part of this book may be reproduced, in any form or by any means

without the express permission of the publisher in writing.

ISBN 978-978-966-358-3

Habeeb, Mamman A.

MH7 Web Programming Client-Side Scripting A HTML, CSS and JS Guide

(with JS Applications, e-Commerce Design Using Bootstrap, Theories of

Computer Graphics, Photoshop & Flash Animation)/Mamman A. Habeeb

Published by Leanpub, Ruboss Technology Corp

PREFACE

The book ‘MH7 Web Programming Client-Side Scripting A HTML,

CSS and JS Guide (with JS Applications, e-Commerce Design Using

Bootstrap, Theories of Computer Graphics, Photoshop & Flash

Animation)’; is a new edition of the Internet Programming for

Beginners in Source Code Writing, conveys JavaScript Applications

and Bootstrap Concepts; and their effects in problem solving and web

3.0 (spiritual Computing) scenarios.

About the Book

This edition covers four chapters and three appendixes. It begins with

the basics of web programming and covers significant Web Scripting

Languages.

The characteristic chapters on HTML & HTML5, CSS, JavaScript, JS

sample Applications and e-commerce with bootstrap app have been

covered in an understandable and detailed manner.

The JS sample Applications alone is sufficient for an experience web

developer for the purpose of re-use. The book chapters concluded with

Theories of Computer Graphics, Photoshop & Flash Animation: where

the core importance is on the surface understanding of Computer

Graphics in theory and practice.

The book requires Reader’s introductory computing skills and

elementary programming background.

Web programming and computer programming differ in some aspects,

but not in others. Web programming is easier in that web programmers

are required to only implement tags and scripts. Of course, there are

also differences between the tools and platforms to use. Web

programming has a role to play in all areas.

This new edition includes a number of sample web apps to demonstrate

the concepts presented in various chapters.

All of the web apps are Client-side Based and the sample programs are

scripted in HTML and JS. These development tools will enhance the

students’ confidence in the subject and enable them to design the

sample web apps, either static or dynamic applications in their research

areas.

Origin of the Book

This edition evolved from books and research materials prepared by the

author for semester courses on “Web Based Information System and

Web Technologies,” offered to the undergraduate/Postgraduate students

in Computer Science and ICT.

Preface

An early version (Copyright © 2016) of the book, ‘MH7 Internet

Programming (HTML, CSS, JavaScript, PHP, E-Commerce Design,

ASP.net and Oracle 11g) for Beginners in Source Code Writing’ was

also used in a semester course on “Web Technologies and

Applications,” offered to the undergraduate students in the department

of Computer Science/ICT, ESEP-Le Berger Universite, Cotonou-Benin.

Acknowledgments

This new edition had many roots. The author gratefully acknowledges

the contributions of many people, who helped him in different ways to

complete the book.

All errors that remain, of course, are my responsibility. If you find an

error, please send it to me habeebmamman@gmail.com.

May 20, 2018

ESEP-Le Berger University

Cotonou-Benin Mamman A. Habeeb

mailto:habeebmamman@gmail.com

Contents at Glance

Chapter One: Introducing Web

Programming 1

Chapter Two: HTML 12

Chapter Three: CSS 8

Chapter Four: JS 101

References 135

Appendix A: JS Applications 137

Appendix B: Building an E-Commerce

Website with Bootstrap 163

Appendix C: Basic Computer Graphics,

Photoshop & Flash Animation 196

Index 309

Contacting MH7 Global Publishers 314

About the MH7 Global Publishers/

Independent Research Group 315

CONTENTS

Chapter One: Introducing Web Programming
Introduction 1

History. Intranet. Extranet. Internet Access.

Internet Services and Communication Protocol 3

Services on the Internet 3

World Wide Web (WWW). Current Servers. Domain. Uniform Resource

Locator (URL). Electronic Mail (e-mail).

Communications Protocols 6

Transmission Control Protocol, Internet Protocol, Domain Name

Service (DNS), User Datagram Protocol, Hypertext Transfer Protocol

(HTTP), E-mail Protocols, File Transfer Protocol (FTP), Real Time

Streaming Protocol (RTSP).

Network Model 9

Computer Network 10

Chapter Two: HTML
Basics of HTML and HTML5 12

The evolution of HTML. Requirements. HTML. HTML5 Structure.

Notes.

Overview of the HTML Elements 19

Document Head. Document Body. Form. Table. Reserved Character

Entities.

Formatting the Document Body 22

Attributes of the <BODY> Tag. Specifying Colors in HTML.

Backgrounds. Text Color. Link Color.

HTML Elements 25

Paragraph Tag. Other Block level elements. Declaring Document

Divisions.

Lists 27
Changing the Default Bullet Character. Changing the Numbering

Scheme. Changing the Numbering Sequence. Definition Lists. Menu

Lists. Directory Lists.

Quiz 31

Line Break. Inline Elements. Font Size and Color.

Images 33
Graphic Storage Formats. GIF. JPEG. IMG Tag. Alternate Text.

Displaying Images. Specifying the Size of an Image. Border. Space

around Your Image. ALIGN Attribute and Floating Images.

Contents

Top, Middle, and Bottom Alignment. Images as Hyperlink Anchors.
Images as Bullet Characters. Image Maps.

Hyperlinks 40

 Anchors and Hyperlinks. Hypertext Reference. Linking inside a HTML

Document. Email Links. Directories. Quiz. Inline Elements in Action.

Inline and Block Elements in Action. Image Maps.

Tables 45

Organizing Tables. TABLE Tag. Table Cell. Alignment. Other Table

Attributes. Caption. Width. Border. Spacing within a Cell. Spacing

between Cells. Spanning Multiple Rows or Columns. Table Cell

Elements.

Forms 53

Basics of Form Design. Method and Action. Forms and CGI. Creating

Forms. Form Tag. Named Input Fields. Input Tag. Text and Password

Fields. Check Boxes. Radio Buttons. Hidden Fields. Files. Multiple Line

Text Input. Menus. Action Buttons. Submit and Reset Buttons. Images

as Submit Buttons. Multiple Submit Buttons. Passing Form Data. URL

Encoding. HTTP Methods. Example Forms. Online Searches. Online

Registration. Creating a Custom Page. Online Shopping.

 Quiz.

HTML5 Specific Elements 69

Header & Footer. Navigation. Section, Article & Aside. The Meter

Element. Video. Video Formats. Hardware Options. Audio. Audio

Content Source. Audio Formats.

Additions to HTML 75

Expected Additions

Chapter Three: CSS 81
Basics of CSS. Definition of CSS. CSS Syntax. CSS Implementation.

Using Inline CSS. Color. Using Internal CSS. Using Ids and Classes.

Creating External CSS. Linking to External CSS. Inefficient Selectors.

Efficient Selectors. HTML Element State. CSS Background. CSS Box

Model. Fonts. Text Color. Quiz.

Chapter Four: JS
Introduction 101

Scripting Language

History

Contents

JavaScript

JavaScript Features

JavaScript Instructions Conventions 104

Hiding Your Scripts

Comments

Using <NOSCRIPT>

JavaScript Language 105

Identifiers

Functions, Objects and Properties

Built-In Objects and Functions

Properties

Array and Object Properties

Programming with JavaScript 108

Expressions
Operators

Assignment Operators

Math Operators

Comparison Operators

Logical Operators

String Operators

JavaScript Control Structures 113

Testing Conditions

Repeating Actions

Reserved Words 115

Other JavaScript Statements 116

break statement

continue statement

for loop

for...in loop

function statement

if...else statement

new statement

return statement

this statement

var statement

while statement

with statement

Contents

JavaScript and Web Browsers 122

Scripts Execution

Where to Put Your Scripts

JavaScript Applications 125

Manipulating Windows

References 135

Appendix A: JS Applications 137
Pull Down Menu 137

Install Information Validation 138
Multiple Users Login 139

Three Tries Login 141

Block IP Address from Your Page 142
Search Engine 143

Shopping Cart 147

Shopping Cart Instructions

BINDEX.htm

BITEM.htm

BMENU.htm

BBASKET.htm

BBUY.htm

BFINISH.htm

Appendix B: Building an E-Commerce Website with

Bootstrap
Introduction 163

Designing the ecommerce.html page 163

Designing the account.html web page 175

Designing the category.html web page 183

Designing the product.html web page 185

Appendix C: Basic Computer Graphics, Photoshop

& Flash Animation

Computer Graphics - Theory

Graphics Systems 196

Introduction

Goals of Computer Graphics

History of Computer Graphics

Application of Computer Graphics

Interactive Computer Graphics

Computer Graphics Requirements

Contents

Graphics Rendering Pipeline

Hardware, Software and Display Devices 204

Types of Input Devices

Graphics Software

OpenGL

Hardware

Display Hardware

Cathode Ray Tube (CRT) and others

Vector Displays

Interfacing between the CPU and the Display

Data Structures for Graphics 211

A Cube

Octrees

Quadtrees

K-d-Trees

BSP Trees

Characteristics of BSP Tree

Construction

Bounding Volume Hierarchies

Construction of BV Hierarchies

Color 217

Colour Theory

Color space

Light

The Electromagnetic spectrum

The Retina

Mapping from Reality to Perception

Colour Matching

Colour Gamuts

RGB Colour Cube

Colour Printing

Colour Conversion

Other Colour Systems

Geometry for Computer Graphics 224

Introduction

Coordinate Geometry

Mathematical View: Vector and Affine Spaces

Computer Science View

Geometric ADTs

Contents

Frames in OPENGL

Translation, Rotation and Scaling

Translation

Rotation

Scaling

Interfaces to Three-Dimensional Applications

Animation 236

Introduction

Concepts

Animation Techniques

Constraints.Scripting Systems.Traditional Animation (frame by frame).

Parametric Interpolation.Key framing. Procedural. Behavioral.

Performance Based (Motion Capture).Physically Based (Dynamics).

Key Frame.Image Interpolation and Morphing.Artificial Intelligence

control.

Virtual Reality 241

Introduction

VR Systems

Stereo Viewing

Shutter Glasses

Head Mounted Display

Head Tracking

Hand Tracking

Force Feedback

Applications

Entertainment.Augmented.Reality.Training.Remote

Robotics.Distributed collaboration.Visualization

Problems

Cost.Importance.Display Resolution.Update Speed

Photoshop –Practical Session

Introduction 247

Photoshop Panels and Tools 247

Workspaces

Tool Bar

Options Bar

Menu Bar

Basic Operations 253

Opening Files

Open.Open As.Open As Smart object.

Contents

Saving your work

File Formats

Popular and Useful File Formats

Creating a New Documents

Navigation and Zooming 259

Navigator Panel

Hand Tool

Zoom Tool

Useful Keyboard Shortcuts

Simple Global Adjustment 261

Levels

Hue Saturation

Layers 268

Aligning and Moving Layers

Layers Interactions

Blend Modes

Naming Layers

Simple Selections 275

Magic Wand Tool

Marquee Tools

Marquee Selection Modifier keys

Lasso Tools

Copying a Selected item to a New Layer

Choosing Colours 283

Foreground and Background colours

Changing the colours

Swatches Panel

Color Panel

Guides and Rulers 288

History

Snapshots

Keyboard shortcuts

History Brush & Fill History

Cropping 296

Basic Printing 297
Photoshop Print Dialogue Box

Flash Animation–Practical Session
Introduction 302

Installing Flash

Contents

Animation basics 303

New Document

Interface

Tools

Strokes and fills

Stage

Timeline
Symbols - Nested Timelines 305

Symbols – Tweening 307

Index 309
Contacting MH7 Global Publishers 314

About the MH7 Global Publishers/ Independent

Research Group 315

CHAPTER ONE

INTRODUCING WEB PROGRAMMING

Introduction

A network of networks, joining many government, university and

private computers together and providing an infrastructure for the use of

E-mail, bulletin boards, search for information over Internet, enjoy

Internet surfing , file archives, hypertext documents, databases and

other computational resources.

The internet is a network of networks that consists of millions of private,

public, academic, business, and government networks, of local to global

scope, that are linked by a broad array of electronic, wireless and

optical networking technologies.

The Internet carries a vast range of information resources and services,

such as the interlinked hypertext documents of the World Wide Web

(WWW) and the infrastructure to support electronic mail.

History

The Internet begins, as a four computer network called ARPAnet which

was designed by the U.S. Defense Department so that research

scientists could communicate. In approximately two years, ARPAnet

grew to about two-dozen sites and by 1981, consisted of more than two

hundred sites in 1990, ARPAnet was officially disbanded and the

network, which now consisted of hundred sites, came to be known.

The USSR's launch of Sputnik (artificial satellite-1957) spurred

(provoked) the United States to create the Advanced Research Projects

Agency (ARPA or DARPA) in February 1958 to regain a technological

lead.

ARPA created the Information Processing Technology Office (IPTO) to

further the research of the Semi Automatic Ground Environment

(SAGE) program, which had networked country-wide radar systems

together for the first time. The IPTO's purpose was to find ways to

address the US military's concern about survivability of their

communications networks, and as a first step interconnect their

computers at the Pentagon, Cheyenne Mountain, and Strategic Air

Command headquarters (SAC).

J. C. R. Licklider, a promoter of universal networking, was selected to

head the IPTO. Licklider moved from the Psycho-Acoustic Laboratory

2 Web Programming Client-Side Scripting

at Harvard University to (Massachusetts Institute of Technology) MIT

in 1950, after becoming interested in information technology.

In 1957 he became a Vice President at (Bolt, Beranek and Newman; an

American high tech company in Cambridge) BBN, where he bought the

first production (programmed data processor -1) PDP-1 computer and

conducted the first public demonstration of time-sharing.

At the IPTO, Licklider's successor Ivan Sutherland in 1965 got

Lawrence Roberts to start a project to make a network, and Roberts

based the technology on the work of Paul Baran, who had written an

exhaustive study for the United States Air Force that recommended

packet switching (opposed to circuit switching) to achieve better

network robustness and disaster survivability.

Sutherland's successor Robert Taylor convinced Roberts to build on his

early packet switching successes and come and be the IPTO Chief

Scientist. Once there, Roberts prepared a report called Resource

Sharing Computer Networks which was approved by Taylor in June

1968 and laid the foundation for the launch of the working ARPANET

the following year. In an early sign of future growth, there were already

fifteen sites connected to the young ARPANET by the end of 1971.

Intranet

The term “Intranet” is used to describe a network of personal computers

(PC) without any personal computers on the network connected to the

world outside of the Intranet. The Intranet resides behind a firewall; if it

allows access from the Internet, it becomes an Extranet. The firewall

helps to control access between the intranet and Internet so that only

authorised users will have access to the Intranet. Usually these people

are members of the same company or organisation. Like the Internet

itself, intranets are used to share information. Secure intranets are now

the fastest-growing segment of the Internet because they are much less

expensive to build and manage than private network based on

proprietary protocols.

Extranet

Extranets are becoming a very popular means for business partners to

exchange information. An Extranet is a term used to refer to an intranet

that is partially accessible to authorised outsiders. Privacy and security

are important issues in extranet use. A firewall is usually provided to

help control access between the Intranet and Internet. In this case, the

actual server will reside behind a firewall. The level of access can be set

to different levels for individuals or groups of outside users.

3 Introducing Web Programming

Internet Access

In order to have access to the vast resources on the Internet, you need to

connect your computer to a computer system that is already on the

Internet, usually one run by an Internet Service Provider (ISP). There

are four major ways of connecting a client (user) computer to the vast

resources on the Internet; these are by a dial-up connection using a

telephone line or an Integrated Services Digital Network (ISDN), a

Digital Subscriber Line (DSL), a cable TV connection or a satellite

connection. While rural users may consider installing a satellite dish for

Internet connections, urban users may have access to wireless

connections. In most offices, users connect their computers via a local

area network (LAN) connected to the Internet. Similarly, in many

home, users are beginning to connect their computers into Internet-

connected LANs, too. The Dial-up access gives a low speed connection

to the Internet. High-speed Internet connections, which include DSL,

ISDN, leased lines, cable Internet, and satellite, are called broadband

connections.

Internet Services and Communication Protocol

The Internet is a global system of interconnected computer networks

that use the standard Internet Protocol Suite (TCP/IP) to serve billions

of users worldwide. The Internet offers access to data graphics, sound,

software, text, to people through a variety of services and tools for

communications and data exchange.

Services on the Internet

The Internet carries a vast range of information resources and services,

such as the inter-linked hypertext documents of the World Wide Web

(WWW) and the infrastructure to support electronic mail.

World Wide Web (WWW)

The World Wide Web is a repository of information spread all over the

world and linked together for easy access. It is made up of documents

called pages that combine text, pictures, forms, sound, animation and

hypertext links into rich communication medium. For several users, The

World Wide Web is the most exciting aspect of the Internet, which has

accelerated the growth of the Internet by giving it an easy to use, point

and click, graphical interface. Users are attracted to the WWW because

of it interactive nature. The WWW project was initiated by CERN

(European Laboratory for Particle Physics) to create a system to handle

distributed resources necessary for scientific research as grown today to

become many things to millions of users.

4 Web Programming Client-Side Scripting

It is used as a business place, art gallery, social medium, broadcast

medium, library, community centre, school, religious centre, advertise

house, publishing house and so on.

WWW information is almost always retrieved using the Hypertext

Transfer Protocol (HTTP). In fact HTTP has been in use by the World

Wide Web since 1989, and its use has increased steadily over the years.

Today there are millions of Websites on the World Wide Web, all of

them using HTTP.

The internet consists of two types of computer Server and Client;

➢ Computers which offer information of be read are called

Server.

➢ Computers that read the information offered are called client.

Client-server computing or networking is a distributed application

architecture that partitions tasks or workloads between service providers

(servers) and service requesters, called clients.

Current Servers

 Google- http://www.google.com

 Info seek- http://guide.infoseek.com

 Alta Vista – http://www.altavista.digital.com

 Lycos – http://www.lycos.com

 Yahoo! – http://www.yahoo.com

 Domain

A domain is logical grouping of computers on a network. It may

include multiple networks. It may also just be a subset of a network

of computers.

5 Introducing Web Programming

The Top level domains

• com - for commercial entities

• edu - for four-year educational institutions

• gov - for non-military, United States federal government

institutions

• mil - for United States military organizations

• net - for network operations and Internet Service Providers

(ISP)

• org - for non-profit organizations

Uniform Resource Locator (URL)

Consists of 4 parts:

Protocol → Hyper Text Transfer Protocol (HTTP)

Domain Name → or Internet Protocol (IP) address

Directory

Filename

Specific document filename

index. (s) htm(l) or default.(s)htm(l)

Example: http://www.google.com

Electronic Mail (e-mail)

Electronic mail, commonly called email or e-mail, is a method of

exchanging digital messages from an author to one or more recipients.

E-mail operates across the Internet or other computer networks. An e-

mail message consists of three components namely: (i) the message

header (ii) the message envelop, and (iii) the message body.

The message header contains control information, including, minimally,

an originator's email address and one or more recipient addresses.

Usually descriptive information is also added, such as a subject header

field and a message submission date/time stamp. The message body

carries the data to be sent. The message’s body property usually

contains details associated with the message. In addition to the data

part, messages carry details that assist in distinguishing messages and

selectively receiving them. This detail is made up of a fixed number of

fields, which is referred to as the message envelope. These fields are

source destination tag communicator. To use email, you should have an

email address, which is created by an Internet Service Provider or on a

Website such as yahoo, Google, and hotmail. Most e-mail addresses are

set up in this manner: your username, followed by “@” (at) symbol, and

then a domain name (for instance, .com, .edu.,.net, or .org). When you

send e-mail to others, Simple Mail Transfer Protocol (SMTP) is used.

http://www.google.com/

6 Web Programming Client-Side Scripting

When you receive e-mail, Post Office Protocol (POP, currently POP3)

and Internet Message Access Protocol (IMAP) can be used.

Communications Protocols

Protocols are rules that describe how a client and a server communicate

with each other over a network. No single protocol makes the Internet

and Web work; rather a number of protocols with unique functions are

required. The most commonly used protocols are:

• Transmission Control/Internet Protocol (TCP/IP)

• File Transfer Protocol (FTP)

• Hypertext Transfer Protocol (HTTP)

• Email Protocol

Transmission Control Protocol

The Transmission Control Protocol (TCP) is one of the core protocols

of the Internet Protocol Suite. It provides reliable, ordered delivery of a

stream of bytes from a program on one computer to another program on

another computer. TCP is the protocol on which major Internet

applications such as the World Wide Web, email, remote administration

and file transfer rely on. Other applications, which do not require

reliable data stream service, may use the User Datagram Protocol

(UDP), which provides a datagram service that emphasises reduced

latency over reliability.

Internet Protocol

The Internet Protocol (IP) is a set of rules that are more concerned with

sending a message to the correct address than with whether the data

actually makes it to that receiver. It is therefore, a connectionless

protocol, which means that it is an unreliable protocol. IP works by

exchanging pieces of information called packets. A packet is a sequence

of octets and consists of a header followed by a body. The header

describes the packet's destination and, optionally, the routers to use for

forwarding until it arrives at its destination. The body contains the data

IP is transmitting.

Each device connected to the Internet has a unique numeric IP address.

These addresses consist of a set of four groups of numbers, called octet.

The current version IP, IPv4 uses 32 bits while IPv6 uses 128 bits. The

format of IPv4 is xxx.xxx.xxx.xxx where xxx is a value from 0 to 255.

The IP address may correspond to a domain name. The domain name

system (DNS) associate these IP address with text-based URLs and

domain names you type into a Web browser address box.

7 Introducing Web Programming

It may be easier to type the URL than the IP address. IPv6 is the latest

version of the IP routing protocol. It became necessary to introduce a

new protocol in order to accommodate the greater demands being

placed on the Internet by increasing user and device access.

Domain Name Service (DNS)

An alternative to using the IP address method for locating resources on

the Internet is by using the Domain Name Service (DNS) combined

with a site’s Uniform Resource Locator (URL). URLs are especially

formatted names like www.mammanhabeeb.com DNS is like a giant

phone book where you can find an IP address knowing the URL. On the

other hand, you can provide an IP address and the DNS server will like

it to the URL.

User Datagram Protocol

An alternative to TCP for communication in the Transport layer is User

Datagram Protocol (UDP), UDP is a connectionless protocol (like IP)

that operates at the transport layer. It can actually be faster than TCP in

some instances because, as a connectionless protocol, it does not have

to open a connection with the receiver, and it does not have to do any

error correction. Both of these functions are performed by TCP- a

connection-oriented, or reliable, protocol – and they take additional

overhead in the form of added steps, and they may slow down

transmission as a result. However, in cases of large message and faulty

connections, errors may occur and retransmission may ultimately make

TCP faster than UDP in the long run. UDP does no checks to ensure

receipts so it never does automatic retransmission. Missed messages

may therefore, result in slower communication over UDP.

Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) is a set of rules for exchanging

files such as text, graphics images, sound, video and other multimedia

files on the Web. Web browsers and Web Servers usually use this

protocol. HTTP is based on the client/server principle. HTTP allows

“computer A” (the client) to establish a connection with “computer B”

(the server) and make a request. The server accepts the connection

initiated by the client and sends back a response. An HTTP request

identifies the resources that the client is interested in and tells the server

the server what “action” to take on the resources. When the user of a

Web browser requests a file by typing a Web site address or clicking a

hyperlink, the browser builds an HTTP request and sends it to the

server.

http://www.mammanhabeeb.com/

8 Web Programming Client-Side Scripting

The Web server in the destination machine receives the request, does

any necessary processing, and responds with the requested file and any

associated media files. To retrieve a Web page, the browser sends a

request to a Web server using HTTP. On receiving the request, the

server interprets it, sometimes using a CGI script (see CGI - Common

Gateway Interface), and sends back data. This data can be just about

anything, including HTML, text, images, programs, and sound.

E-mail Protocols

Two main servers are required for e-mail messages to be sent and

delivered successfully. These are –incoming mail server and an

outgoing mail server. Incoming e-mail messages are sent to an e-mail

server that stores messages in the recipient's email box. The user

retrieves the messages with an e-mail client that uses one of a number

of e-mail retrieval protocols. Some clients and servers preferentially use

vendor- specific, proprietary protocols, but most support the Internet

standard protocols, Simple Mail Transport Protocol (SMTP) for sending

e-mail and Post Office Protocol (POP) and Internet Message Access

Protocol (IMAP) for retrieving e-mail, allowing interoperability with

other servers and clients.

SMTP - Simple Mail Transport Protocol

 SMTP controls the transfer of e-mail messages on the Internet.

SMTP defines the interaction between Internet hosts that participate

in forwarding e-mail from a sender to its destination.

POP - Post Office Protocol

POP allows you to fetch email that is waiting in a mail server

mailbox. POP defines a number of operations for how to access and

store email on your server.

IMAP - Internet Message Access Protocol

IMAP - Internet Message Access Protocol is an Internet protocol

that allows an e-mail client to access email on a remote mail server.

File Transfer Protocol (FTP)

File Transfer Protocol (FTP) is a set of rules that allows files to be

exchanged between computers on the Internet. The File Transfer

Protocol (FTP) is used widely on the Internet for transferring files to

and from a remote host. FTP is commonly used for uploading pages to a

Web site and for providing online file archives. Unlike HTTP, which is

used by Web browser to request Web pages and their associated files in

order to display a Web page, FTP is used simply to move files from one

computer to another.

9 Introducing Web Programming

Web developers commonly use FTP to transfer Web page files from

their computers to Web servers. FTP is also used to download programs

and files from other servers to individual computers. Access to FTP

servers can be open or closed. Open access allows anyone to login to

the site and download files. This is called anonymous access and it is

used frequently for public file archives. Closed access requires that the

user provide a username and password to download and upload files.

This is the mode of operation for uploading Web pages to a Web site.

FTP uses two well-known TCP ports: port 21 is used for the control

connection, while port 20 is used for the data connection.

Real Time Streaming Protocol (RTSP)

The Real Time Streaming Protocol (RTSP) is a network control

protocol designed for use in entertainment and communications systems

such as webcasting to control streaming media servers. Webcasting is

the delivery of multimedia data in streaming format across the Internet.

Essentially, webcasting is “broadcasting” over the Internet. A webcast

can be used to deliver live or on-demand educational and training

content or facilitate collaborative applications such as streaming, or chat

within an organisation. RTSP is used for establishing and controlling

media sessions between end points. Clients of media servers issue

Video cassette recorder (VCR)-like commands, such as play and pause,

to facilitate real-time control of playback of media files from the server.

The transmission of streaming data itself is not a task of the RTSP

protocol. To stream data from one location to another simply means that

when data is accessed from a source or upon initiation of a data

transmission from a source, not all of the data is delivered to the

recipient before the data can begin to be viewed at the destination.

Steaming utilizes underlying transport and control protocol such as

Real-time Transport Protocol (RTP), UDP, and Real-Time Transport

Control Protocol (RTCP). RTCP provides out-of-band statistics and

control information for an RTP flow. It is similar to the RTP in the

delivery and packaging of multimedia data, but does not transport any

media streams itself. RTSP is much like HTTP, except that where

HTTP will deliver a file from a Web server and then release the

connection until the next file is requested, RTSP maintain the

connection between a streaming server and the client that is receiving

the streamed data.

Network Model

A client may be a program running on the local machine requesting

service from a server. A client program is started by the user or another

10 Web Programming Client-Side Scripting

application program and terminates when the service is complete. A

server – can sometimes be a program running on the remote machine

providing service to the clients. When it starts, it opens the door for

incoming request from clients, but it never initiates a service until it is

requested to do so.

A network of networks or “Internet” refers to a group of two or more

networks that are interconnected and physically capable of

communication, share data and act together as a single network.

Machine on one network can communicate with machines on other

networks, and data, file and other information back and forth. For this to

work, the systems must follow some set of rules or protocols. This is a

“language” or software that enables different types of machines on

separate network to communicate and exchange information. The

Internet uses the TCP/IP protocol. The Internet offers access to data,

graphics, sound, software, text, and people through a variety of services

and tools for communications and data exchange. Some services

available on the Internet are as follows:

• Remote login (telnet)

• File transfer (ftp)

• Electronic mail (e-mail)

• News (USENET or network news)

• Hypertext (www)

Computer Network

A network consists of two or more computers connected for the purpose

of communicating and sharing resources. There are many types of

computer networks, including:

Local-area networks (LANs): This describes the network of

computers that are geographically close together (that is, in the same

building).

Wide-area networks (WANs): This describes the network of

computers that are farther apart and are connected by telephone lines

or radio waves.

Campus-area networks (CANs): This describes the network of

computers that are within a limited geographic area, such as a

university campus or military base.

Metropolitan-area networks MANs): This describes data network

designed for a town or city.

Home-area networks (HANs): This describes a network contained

within a user's home. Computers on a network are sometimes called

nodes.

11 Introducing Web Programming

The common components of a network are:

• Server

• Client workstation computer(s)

•Shared devices such as printers

• Networking devices (hub) and the media that connect them

(For More Information on Networks, See ‘MH7 Intelligent

Data/Telecommunication Networks’ Book)

WHAT’s NEXT?

CHAPTER TWO

HTML

The Basics of HTML and HTML5

HTML stands for Hyper Text Markup Language.

HTML is not a programming language, it is a markup language.

A markup language is a set of markup tags.

HTML uses markup tags to describe web pages.

HTML Tags

HTML Markup tags are usually called HTML tags.

HTML tags are keywords surrounded by angle brackets like <html>.

HTML tags normally come in pairs like and .

The first tag in a pair is the start tag, the second tag is the end tag,

Start and end tags are also called opening tags and closing tags.

HTML Documents = Web Pages

• HTML documents describe web pages

• HTML documents contain HTML tags and plain text

• HTML documents are also called web pages

The purpose of a web browser (like Internet Explorer or Firebox) is to

read HTML documents and display them as web pages. The browser

does not display the HTML tags, but uses the tags to interpret the

content of the page:
<html>

<body>

<h1>My First Heading</h1>

<p>My first paragraph</p> </body>

</html>

The Evolution of HTML

The World-Wide Web Committee (W3C) has developed the following

important versions of HTML:

• 1997: HTML 4 as an SGML-based language,

• 2000: XHTML 1 as an XML-based clean-up of HTML 4,

• 2014: (X)HTML5 in cooperation (and competition) with the

WHAT working group [http://en.wikipedia.org/wiki/WHATWG]

supported by browser vendors.

13 Web Programming Client-Side Scripting

As the inventor of the Web, Tim Berners-Lee developed a first version

of HTML in 1990. In the following years, HTML has been used and

gradually extended by a growing community of early WWW adopters.

This evolution of HTML, which has led to a messy set of elements and

attributes (called "tag soup"), has been mainly controlled by browser

vendors and their competition with each other. The development of

XHTML in 2000 was an attempt by the W3C to clean up this mess, but

it neglected to advance HTML's functionality towards a richer user

interface, which was the focus of the WHAT working group led by Ian

Hickson who can be considered as the mastermind and main author of

HTML5 and many of its accompanying JavaScript APIs that made

HTML fit for mobile apps. language. But HTML4 has a lot of purely

presentational elements such as font. XHTML has been taking HTML

back to its roots, dropping presentational elements and defining a

simple and clear syntax, in support of the goals of;

• device independence,

• accessibility, and

• usability.

We adopt the symbolic equation

Requirements

There are absolutely no requirements to start learning HTML, but you

will need some tools to help you along the way. There are two tools that

are essential to becoming an efficient and professional Web Developer.

Firstly, you will need a Text Editor. Windows users, you can get an

awesome text editor from notepad-plusplus.org. As you have probably

guessed from the name of the URL, this text editor is Notepad ++ and

includes some friendly syntax highlighting! Personally I use Text

Notepad.

Mac fans, you can get a text editor from Bare Bones. This handy text

editor-Text wrangler also supports syntax highlighting for a range of

programming languages.

Linux lovers, you can use the default gnome text editor- gedit. If it’s not

already installed, you can get it over here at gnome.org.

Syntax highlighting

Syntax highlighting allows you to easily see certain elements of your

code in a designated color. For example, when using a WYSIWYG

14 HTML

(what you see is what you get) editor with syntax highlighting some

editors may render the HTML structure as blue, comments as grey and

attributes and values as different colors. This allows you to easily

distinguish between the sections of code, elements and comments.

Secondly, you will need a browser to render your code. I recommend

Firefox or Internet Explorer. For the purpose of this Book, go ahead

and download and install Mozilla's Firefox (Cross-platform) Browser

and the Firebug add-on for Firefox. The Firebug add-on will be your

new best friend as a learned web developer.

The Fire-bug Firefox add-on provides the ability to closely "inspect" the

elements of an HTML document and see what’s going on behind the

scenes this will play a big part in your web development career!

Alternatively you can use any other browser that supports HTML5-

including Safari, Google’s Chrome and Opera.

HTML

HTML stands for Hyper Text Mark-up Language. HTML is the basis

for all things Web and is a necessary skill for any Web Developer.

Almost every website is comprised of HTML whether that is a variation

of HTML or plain old HTML.

Structure

A document's structure is established through the use of four tags:

• The <!DOCTYPE> tag

• The <HTML> container tag

• The <HEAD> container tag

• The <BODY> container tag

The <!DOCTYPE> Declaration

The stand-alone <!DOCTYPE> tag is an optional element to use to

declare which level of HTML you're using to author your document. To

indicate that you're using HTML 3.2 tags, the first line of your

document should be:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML

3.2//EN">

This indicates to the browsers that they should use the HTML 3.2 DTD,

as specified by the W3C, to parse the document.

You can declare earlier versions of HTML as well. Again, the

<!DOCTYPE> tag is optional so no browser chokes on a file that

doesn't have one.

15 Web Programming Client-Side Scripting

Basic HTML5 structure:

Instruction:

Type out the above code into a new text file > Save the file with

an .html extension (i.e. structure.html) >Open the html file with

your Browser and expect No Output.

The browser would not show us any content (output), as we have not

yet told the html document to output anything to the browser. All we

have told the browser is that we have an HTML document.

Validation

Even though all we have created is a HTML structure and we are not

seeing any results (yet), the HTML document we have should validate

with W3C's online HTML validation tool. W3C is the World Wide Web

Consortium- they set the standards for HTML (and many other Web

Based Languages) to provide a similar cross-browser experience;

meaning that web browsers will be more inclined to output (or render)

data in a similar fashion.

Instruction:

1. Go to W3C's online HTML validation tool,

2. Select the third tab along- "Validate by Direct Input",

3. Copy and paste your HTML5 document code into the window and

click

'Check'.

4. Notice how the document passed validation with three warnings.

Let's fix these warnings:

1) The warning- "Using Experimental Feature- HTML5

Conformance Checker" is basically telling us that all major browsers

do not officially support HTML5 yet.

2) The next warning- 'No character encoding declared at document

level'- this is because we haven’t declared our character encoding

within the HTML structure.

16 HTML

3) The final warning is telling us that no matter what our character

encoding is set to within our HTML document that we are

validating, it is going to assume and treat is as (Unicode

Transformation Format) UTF-8. The logical way to overcome this

last warning is to use the file upload tool, rather than the Direct

Input.

Now, let’s try and use the W3C validation tool to upload our HTML

document, by selecting the second tab on the W3C's online HTML

validation tool page and uploading our HTML document.

If you notice we still have our 'Using Experimental Feature- HTML

conformance checker' warning (which is perfectly fine, as we are using

HTML5 and it is not yet fully supported by all browsers), the other 2

warnings are related to our character encoding and so is the Error we

are now seeing.

Let’s fix this, by declaring our Character Set. We will be using the

UTF-8 Character encoding and we can do this by adding some simple

mark-up to our head section.

We have just added our first HTML Meta tag!

This Meta tag lets the browser know that we are using UTF-8 character

encoding. UTF-8 is the most commonly used character encoding,

basically it provides a standard format (encoding) for text (code) that

will assist against the problems of endianness, which could result in

incorrect or invalid characters displaying

(http://en.wikipedia.org/wiki/Endianness).

Tags inside the head element of a HTML document are often used to

tell the browser information about the HTML document that we don't

need to output as part of our content, such as our HTML title and

character encoding.

17 Web Programming Client-Side Scripting

Comments

In every programming language comments are widely used to help

remind other developers what is happening in the code, to make note of

extra code that will be added to the web application at a later date and

notes to others who may be working on the same project.

In HTML, comments are easily added to the document, by adding the

opening and closing comment tags.
<! - -

This text will not be rendered by the browser

--!>

Our browser will not render anything placed inside the comment tag.

Example of Comments

HTML5 Structure

Let’s go through our HTML document and talk about the structure step-

by-step, using comments.

18 HTML

Nothing is going to be output by the Browser, as we have used

comments to explain the structure and have not yet added any “real”

content.

Instruction:

1. Open up the Fire-bug Firefox add-on. You can do this by right

clicking on the Firefox Browser window and selecting “Inspect

Element with Fire Bug”.

2. Notice how we can see exactly what we have typed into our

HTML document on the left-hand side of the Firebug window.

To tell the browser to output some data

It's actually quite simple. But before we add any content to the

document, let's talk about the title tag. The title tag allows us to specify

the name of the website- more specifically, the web page. It is good

practice to be as relevant as you can when giving your web page a title.

As you can see in the previous examples, the title tag is inserted into the

head section of the HTML document.

If we load up this HTML document in our Browser now, we won’t see

any changes to the webpage. But, have a look at the top of your browser

window or current tab- this is where the Title of your HTML document

is shown.

Adding Content

We can add our content in-between our body tags like so:

19 Web Programming Client-Side Scripting

Test the above script and make sure you alter it in your own way.

HTML Notes:

• All versions of HTML require the basic HTML structure, but the

version of HTML depicts a vast difference in the required elements and

doc type declarations. HTML4.01, XHTML and HTML5.

• Notice how every tag is closed in order of which they were opened?

This is a very important element to valid HTML.

• HTML5 is not currently supported by all major browsers, but provides

plenty of extra features for us to work with and stay ahead of the curve.

Although all major browsers do not support HTML5, Google's Chrome,

Opera and FireFox are currently the most useful tools for Modern Web

Development.

• If you are not seeing this "Inspect Element with Fire-bug" option in

the dropdown menu, when you right 'click' on your browsers main area-

Take a look at this helpful documentation at mozillaZine.

Overview of the HTML Elements

Tables 2.1 through 2.5 provide an overview of all standard HTML

elements-both tags and entities. Tables describing tags indicate whether

the tag is a container or a stand-alone tag and what the tag's purpose is.

Proper tag syntax, including the use of attributes, is discussed over the

next several chapters. The entity tables list characters and their

associated entities.

Table 2.1 HTML Tags Allowable in the Document Head

Tag Type Purpose

<BASE>
Stand-

alone
Defines document baseline information

<HEAD> Container Denotes the start of the document head

<ISINDEX>
Stand-

alone

Indicates that the document is a searchable

index

<LINK>
Stand-

alone

Establishes linking relationships with other

documents

<META>
Stand-

alone
Supplies document meta-information

<SCRIPT> Container Contains code for a client-side script

<STYLE> Container Supplies style sheet information

20 HTML

<TITLE>

Container

Gives the document a descriptive title

Table 2.2 HTML Tags Allowable in the Document Body

Tag Type Purpose

<A> Container Establishes an anchor

<ADDRESS> Container Denotes an address (postal or e-mail)

<APPLET> Container Embeds a Java applet in a document

<AREA>
Stand-

alone

Defines clickable regions in a client-

side image map

 Container Produces boldface text

<BIG> Container Renders text in a larger font size

<BLOCKQUOTE> Container Denotes a quoted passage

<BODY> Container Denotes the start of the document body

Stand-

alone
Inserts a line break

<CENTER> Container Centers contained items on the page

<CITE> Container
Indicates the name or title of a cited

work

<CODE> Container Denotes computer code

<DD> Container Denotes a term definition

<DIR> Container Initiates a directory listing

<DIV> Container
Denotes the start of a document division

(chapter, appendix, etc.)

<DL> Container Initiates a definition list

<DT> Container Denotes a term to be defined

 Container Signifies text to be emphasized

 Container

Modifies font characteristics (size and

color)

<H1> Container Denotes a level 1 heading

<H2> Container Denotes a level 2 heading

<H3> Container Denotes a level 3 heading

<H4> Container Denotes a level 4 heading

<H5> Container Denotes a level 5 heading

21 Web Progra

<H6>

mming

Container

Client-Side Scripting

Denotes a level 6 heading

<HR>
Stand-

alone
Places a horizontal line (rule) on a page

<I> Container Produces italicized text

Stand-

alone
Places an image on a page

<KBD> Container Denotes keyboard input

Stand-

alone
Denotes the start of a list item

<MAP> Container
Contains definitions of clickable

regions for a client-side image map

<MENU> Container Initiates a menu list

 Container Initiates an ordered (numbered) list

<P> Container Denotes the start of a new paragraph

<PRE> Container
Signifies text to be treated as

preformatted

<SAMP> Container Denotes sample or literal text

<SMALL> Container Renders text in a smaller font

<STRIKE> Container Produces strikethrough text

 Container Denotes text to be strongly emphasized

<SUB> Container Renders text as a subscript

<SUP> Container Renders text as a superscript

<TT> Container
Renders text in a fixed-width font

(typewriter text)

 Container Initiates an unordered (bulleted) list

<VAR> Container Denotes a variable name

Table 2.3 HTML Tags Allowable in a Form.

Tag Type Purpose

<FORM> Container Denotes the start of a form

<INPUT>
Stand-

alone
Specifies a user input field

<OPTION>
Stand-

alone
Defines a form menu option

<SELECT> Container Contains options in a form menu

22 HTML

<TEXTAREA>

Container

Establishes a window for multiline text

input

Table 2.4 HTML Tags Allowable in a Table

Tag Type Purpose

<CAPTION> Container Denotes a table caption

<TABLE> Container Denotes the start of a table

<TD> Container Signifies the start of a new table data element

<TH> Container Signifies the start of a new table header

<TR> Container Signifies the start of a new table row

Table 2.5 Reserved Character Entities

Character Entity

Ampersand (&) &

Greater than sign (>) >

Less than sign (<) <

Non-breaking space

Quotation marks (") "

Copyright symbol (©) ©

Registered symbol (®) ®

Formatting the Document Body

Attributes of the <BODY> Tag

The <BODY> tag is much more than just the element that marks the

beginning of the document body. <BODY> takes any or all of the

attributes shown in Table 2.6. Note how these attributes allow you to

specify many global characteristics of the page including background

and text colors.

Table 2.6: Attributes of the <BODY> Tag

Attribute Function

BACKGROUND
Provides the URL of the image used as the document

background

BGCOLOR Sets the document background color

TEXT Colors the body text

LINK Colors unvisited hypertext links

23 Web Programming Client-Side Scripting

VLINK Colors visited hypertext links

ALINK Colors active hypertext links

As you can see from the table, you receive much control over colors.

Specifying Colors in HTML

Computer monitors produce color on the screen by using varying

amounts of the primary colors: red, green, and blue. When you

specify a color in an HTML document, you need to tell the

browser how much of each color to use.

Colors are quantified on computers by using values between 0

and 255.

Table 2.7 Allowable English Language Color Names

Color name Color name

Aqua Navy

Black Olive

Blue Purple

Fuchsia Red

Gray Silver

Green Teal

Lime White

Maroon Yellow

Table 2.8: RGB Hexadecimal Triplets for Popular Colors

Color name RGB Triplet

Bright Gold #D9D919

Copper #B87333

Coral #FF7F00

Dusty Rose #856363

Forest Green #238E23

Khaki #9F9F5F

Midnight Blue #2F2F4F

Neon Pink #FF6EC7

Salmon #6F4242

Tan #DB9370

24 HTML

Backgrounds

You have two options when choosing a background for your page. You

can set it to a solid color or you can load in an image that tiles to fill the

background.

Colors

The BGCOLOR attribute of the <BODY> tag changes the browser's

default background color-usually a shade of gray-to whatever color you

specify. Set the background color on a Web page to teal with the tag:
 <BODY BGCOLOR="teal">

If you want to use a color that does not have an English language name,

you'll have to find out its RGB hexadecimal triplet and set the

BGCOLOR attribute accordingly:
 <BODY BGCOLOR="DF0A82">

Images

You can also use the BACKGROUND attribute to read in an image for

your document background. BACKGROUND is set equal to the URL of

the image file:
 <BODY BACKGROUND="images/MH7.gif">

Colors and Images Together

 <BODY BGCOLOR="black" BACKGROUND="MH7.jpg">

Text Color

The TEXT attribute of the <BODY> tag changes the body text color

from its default value (usually black). Like BGCOLOR, TEXT can be set

equal to an English language color name or an RGB hexadecimal

triplet.

Link Color

Hypertext links come in three varieties:

• An unvisited link is one that the user has yet to click.

• A visited link is one that the user has clicked.

• An active link is one that the user is clicking at a given moment.

Once the user releases the mouse button, the link switches from

active to visited.

You can control the color of unvisited, visited, and active links using

the LINK, VLINK, and ALINK attributes of the <BODY> tag,

respectively. Just as with the other color-related attributes, LINK,

VLINK, and ALINK can be set equal to an English language color name

or an RGB hexadecimal triplet.

25 Web Programming Client-Side Scripting

HTML Elements

Paragraph tag

In HTML, the paragraph tag is part of the block level elements group.

Block level elements will generally start on a new line and any Mark-up

under or after the block level element will also start on a new line.

Here is an example of a paragraph tag in HTML, followed by some text

after the ending paragraph tag. Even though all of the text is on one

line, the paragraph tag (block level element) will place the text after the

closing paragraph tag on a new line.

Output:

Other Block Level Elements

There are a variety of other block level elements available in HTML;

including Headings, logical (or document) divisions, horizontal rules,

ordered lists and unordered lists.

So, let’s check out some of these block level elements in action.

26 HTML

Output:

Declaring Document Divisions

The <DIV> container tag was introduced as part of HTML 3.2 to

contain the different logical divisions-such as chapters, appendices, and

27 Web Programming Client-Side Scripting

bibliographies-within a document. When it was introduced, however,

the <DIV> tag was only allowed to take the ALIGN attribute. Just as

with the <P> tag, ALIGN can be set to LEFT, CENTER, or RIGHT.

W3C plans to expand the list of attributes that <DIV> takes to make it a

more useful tag. The proposed attributes and their functions are shown

in Table 2.9.

Table 2.9: Proposed Attributes of the <DIV> Tag

Attribute Function

CLASS

Denotes the type of document division

being marked up (chapter, appendix, and

so on).

NOWRAP

Turns off auto-wrapping within the

division; line breaks are explicitly placed

with
 tags.

CLEAR=LEFT|RIGHT|ALL
Starts the division with empty left, right,

or both margin(s).

Lists

HTML supports the following five types of lists:

• Unordered or bulleted lists

• Ordered or numbered lists

• Definition lists

• Menu lists

• Directory lists

Changing the Default Bullet Character

The tag takes the COMPACT attribute which instructs a browser

to minimize the spacing between list items. Both and take

the TYPE attribute. TYPE changes the bullet character that the browser

places in front of each list item and sets to DISC for a solid disc,

CIRCLE for an open circle, and SQUARE for a square.

Consider the HTML below. It produces the same three-item list,

but each with a different bullet character.
<UL TYPE="DISC">

One

Two

Three

<HR>

<UL TYPE="CIRCLE">

28 HTML

One

Two

Three

<HR>

<UL TYPE="SQUARE">

One

Two

Three

Changing the Numbering Scheme

Both the and tags take the TYPE attribute, giving you

control over what numbering scheme to use in your ordered list. TYPE

can be set to the values you see in Table 2.10. TYPE="1" is the default

setting.

Table 2.10: Values of the TYPE Attribute in an Ordered List

Value Numbering scheme

TYPE="1" Counting numbers (1, 2, 3, ...)

TYPE="A" Uppercase letters (A, B, C, ...)

TYPE="a" Lowercase letters (a, b, c, ...)

TYPE="I" Uppercase Roman numerals (I, II, III, ...)

TYPE="I" Lowercase Roman numerals (I, ii, iii, ...)

You can specify a TYPE for the entire list by placing it in the tag

or for a given list item by placing it in the item's tag.

Changing the Numbering Sequence

In addition to being able to change the numbering scheme, you can also

change the value at which the numbering starts by using the START

attribute of the tag. This is useful in situations where an ordered

list is "interrupted" by another element on a page. When you resume the

ordered list (by starting with a new tag), you can set START

equal to the appropriate starting value so that it looks like the list is

picking up where it left off.

An "interrupted" ordered list gets back on track by using the START

attribute of the tag.

START is always set equal to a number, regardless of the chosen

numbering scheme. The browser maps your START value against the

numbering scheme it's using and chooses the correct value.

Example: This list could be embedded in another list

29 Web Programming Client-Side Scripting

Other employer-paid benefits include:

<OL TYPE="A" START=3>

Long-term disability

Health club membership

Tuition reimbursement

A browser automatically determines which character to start

numbering with, based on the TYPE and START values you provide.

Changing the value of the numbering sequence in the middle of an

ordered list is possible by using the VALUE attribute in an tag.

An example of one useful application of VALUE would be a list of

numbers going in descending order. To accomplish this, you'd need a

VALUE attribute in each like this:

<LI VALUE=3>French hens

<LI VALUE=2>Turtle doves

<LI VALUE=1>Partridge in a pear tree

Definition Lists

Many documents that are full of technical terms require a glossary so

that a user can look up a term if it is not understood. Definition lists

make it easy to replicate the term/definition structure found in a

glossary.

All terms and definitions in a definition list are found between the

<DL> and </DL> tags. Inside of these tags, you mark up a term with

<DT> and </DT> tags and a definition with <DD> and </DD> tags.

Definitions are indented from the terms above them. The HTML to

produce it follows:
<DL>

<DT>Isosceles triangle</DT>

<DD>A triangle having two equal sides</DD>

<DT>Equilateral triangle</DT>

<DD>A triangle having three equal

sides</DD>

<DT>Right triangle</DT>

<DD>A triangle having one right angle</DD>

</DL>

Definition lists replicate dictionary entries and make it easy to read

each term and definition.

30 HTML

Apart from the indenting of definitions, neither terms nor definitions

format in any special way. Use the COMPACT attribute in the <DL> tag

to decrease the spacing between adjacent terms and definitions.

Menu Lists

Menu lists were originally created for producing menus of short (less

than one line) options. Presumably, the menu items would be hypertext

links that would take the user to another part of a site.

The options in a menu list are found between the <MENU> and

</MENU> container tags. Each list item is again contained between

 and tags. The <MENU> tag takes the COMPACT attribute

to reduce inter-item spacing.

Menus look like unordered lists on a browser screen. The different

options in a menu list appear with bullets in front of them. The

distinction between an unordered list and a menu list is more for the

browser than for the end user. In the future, browsers may be

programmed to render menu lists in a special format. Additionally, by

using style sheets, end users should be able to create their own

configurations for the <MENU> tag. For now, though, menu lists look

like what you see in the code below. The corresponding HTML is:
<MENU>

What's New!

Press Releases

Job Opportunities

Contact Information

</MENU>

Directory Lists

Directory lists are another type of specialty list without special browser

support. Directory lists are intended for lists of short (less than 24

characters) items that are to be displayed in rows. This is like directory

listings in UNIX or in DOS with the /W show (a multiple column view

of the file names). Like menu lists, however, most browsers simply

render a directory list as an unordered list.

The <DIR> container tag creates a directory list. List items are

contained by and tags. The COMPACT attribute in the

<DIR> tag packs the list into a smaller space by reducing the spacing

between items. A sample directory list follows:
<H1>Employee Directory</H1>

<DIR>

Lona Dallessandro, x297

31 Web Programming Client-Side Scripting

Bob Leidich, x324

Carolyn McHale, x313

</DIR>

Until they're programmed with special formatting instructions,

browsers will continue to display directory lists just like unordered lists.

Quiz

i. Change the content of the code to be about your favourite books.

ii. Add an extra ordered list (containing 7 list items) and a logical

division (containing a paragraph element) to the end of the page.

iii. Save the html document as “block_level_elements.html”.

iv. Open the document with your browser and make sure it appears

as intended.

v. Upload the html document to the online validator and correct

any warnings using the skills you have learned thus far.

Line Breaks vs. Paragraphs

The break element or tag in HTML (as you can guess) provides a line

break (or new line). Some people may like to 'over-use' this element,

but I suggest using the paragraph element when dealing with text

(where possible), to provide formatting and appropriate spacing.

We could do the same thing with the paragraph tag, but with a better

format.

32 HTML

Inline Elements

Now we have an understanding of what block level elements are, it’s

time to move on to some inline elements.

Text Modifiers- Introducing the strong and em tags.

As you may have guessed, the strong tag is used to define important

text and will render text as bold.

The em tag is a little harder to guess. The em tag renders text as Italic

and is used to 'emphasize' text. The Strong and em tags are both part of

the Text Modifiers group.

Example:

Text modifiers can be a simple way to make certain text stand out or

add character to a document. Just like this!

Font Size and Color

The container tag was adopted as part of HTML 3.2 standard

to give authors control over the size and color of individual characters.

33 Web Programming Client-Side Scripting

The SIZE attribute of the tag modifies the font size in use and

the COLOR attribute controls the font color.

SIZE can be used in one of two ways. You can set SIZE equal to a

value between 1 and 7, where 1 is the smallest size. The default font

size is 3, so changing to a size less than 3 makes text smaller and

changing to a size greater than 3 makes text larger. The other way you

can use SIZE is to set it equal to the amount of change relative to the

current font size. To change to a size two sizes smaller than the current

size, for example, use:
 smaller text

Similarly, to change to a size one size bigger than the current size, use:
 bigger text

A popular effect is to create "small caps" with the SIZE attribute. To

make the first letter of a word bigger than the rest, you can use the

following HTML:
 NETSCAPE

The COLOR attribute changes the color of the text contained by the

 and tags from the default text color, or the text

color specified in the TEXT attribute of the <BODY> tag. COLOR can be

set equal to an English language color name or a hexadecimal triplet.

This is useful in drawing attention to a particular word in a sentence:
WARNING! The document

you have selected is not secure.

Images

Images are an important part of any form of content, especially

websites. As a web developer, you will find it very helpful and

necessary to be able to place images onto a web page.

Graphic Storage Formats (Pls See Appendix C)

Technically, Web graphics can be stored in any format, but only two

formats display inline through today's popular graphical browsers: GIF

and JPEG. Other graphics formats have to be displayed by a helper

application, lauched by the browser when it detects a format it can't

display. Some browser supports the inline display of Windows Bitmap

(.BMP).

GIF

GIF (Graphics Interchange Format) was originally developed for users

of CompuServe as a standard for storing image files. The GIF standards

have undergone a couple of revisions since their inception.

34 HTML

Graphics stored in GIF are limited to 256 colors. Because full-color

photos require many more colors to look sharp, you shouldn't store full-

color photos as GIFs. GIF is best used with line art, logos, and icons. If

you do store a full-color photo as a GIF, it reduces to just 256 colors

and will not look as good on your Web page.

JPEG

JPEG (an acronym for "Joint Picture Experts Group") refers to a set of

formats that support full-color images and stores them in a compressed

form. JPEG is a 24-bit storage format that allows for 224 or 16,777,216

colors! With that much color data, it's easy to see why some form of

compression is necessary.

While JPEG is great for full-color images, it does not permit some of

the nice effects that GIF does. Transparency is not possible with JPEG

images because the compression tends to make small changes to the

image data. If a pixel, originally colored with the transparent color, is

given another color, or if a non-transparent pixel is assigned the

transparency color, the on-screen results are disastrous.

IMG Tag

Once you have an image stored and ready to be posted on the Web, you

need to use the HTML tag to place the image on a page.

 is a stand-alone tag that takes the attributes shown in Table

2.11. According to the HTML, only SRC is mandatory, but you'll

quickly find yourself wanting to use many of them.

Table 2.11 Attributes of the Tag

Attribute Purpose

ALT Supplies a text-based alternative for the image

ALIGN Controls alignment of text following the image

35 Web Programming Client-Side Scripting

BORDER Specifies the size of the border to place around the image

HEIGHT Specifies the height of the image in pixels

HSPACE
Controls the amount of white space to the left and right of the

image

ISMAP
Denotes an image to be used as part of a server-side

imagemap

SRC Specifies the URL of the file where the image is stored

USEMAP Specifies a client-side imagemap to use with the image

VSPACE
Controls the amount of white space above and below the

image

WIDTH Specifies the width of the image in pixels

Your basic tag then should look like:
<IMG SRC="URL_of_image_file" WIDTH=width_in_pixels

HEIGHT=height_in_pixels

ALT="alternative_text_description">

<IMG SRC="whatever.gif" WIDTH=116 HEIGHT=80

ALT="Reduced image">

We would then put the URL for our image inside the src (source)

attribute. The URL could be relative or absolute.

Here is an example of using an absolute URL with the src attribute of

the img tag:

When working in a Live or Development environment it is good

Practice to use relative file Paths, rather than absolute or full file Paths.

• A relative file Path can be defined as being a localised link;

using the current directory Structure as a means of navigation

between files.

• An absolute file Path is a direct link or URL to a file.

36 HTML

If we had an image titled 'logo.png' in the same folder or directory as

our Current html file, we could simply link to that file just by using the

files name:

If our image or file were in a directory titled "images" inside our

Current folder or directory we would then link to The Image using

Sometimes we need to navigate downwards (as opposed to upwards) in

our directory Structure. If our directory Structure looked something

like:

/home/html/Public/Current/

And our Current html document is in our "current” folder; we could link

to our Image (which Could be located at /home/html/Public/Images/) by

using:

../images/ basically tells the browser to navigate one directory down and

then into our Images directory.

Alternate Text

When an image is unable to be displayed by a browser we need a

fallback method.

So the alt (alternate text) can be used as our fallback method- meaning

we will have some descriptive text to display if the image itself is

unable to be displayed for any reason.

An example of an image not displaying could be a HTML email (Gmail

will, by default hide any images and ask the user if they want to show

images) or the results in a search engine. Search Engines cannot “read”

images, so they can only render “alternate” text in Search Engine Result

Pages (SERPs).

It is good to be descriptive and short with the alt attribute, like so:

Displaying an Image

So let’s try out our image tag with a real image!

37 Web Programming Client-Side Scripting

Output:

Specifying the Size of an Image

We can specify both height and width attributes inside our image tag

like so:

Note: The height and width values are in px (pixels).

So, let’s try out this image with the height and width attributes

specified!

Border

The BORDER attribute gives you a simple way to instruct the browser

to place a border around an image. BORDER is set equal to the number

of pixels wide you want the border to be. Borders create a framed look

around photographs.

38 HTML

Space around Your Image

White space around an image is called gutter space or runaround.

Putting a little extra space around an image is a good way to give it

some more breathing room on the page and make it stand out better.

Run around is controlled by the HSPACE and VSPACE attributes. Each

is set to the number of pixels of extra space to leave to the right and left

of an image (HSPACE) or above and below an image (VSPACE).

ALIGN Attribute and Floating Images

The ALIGN attribute of the tag can take on one of the five

different values summarized in Table 2.12. TOP, MIDDLE, and

BOTTOM refer to how text should be aligned following the image.

LEFT and RIGHT create floating images in either the left or right

margins.

Table 2.12 Values of the ALIGN Attribute in the Tag

Value Purpose

TOP Aligns the top of subsequent text with the top of the image

MIDDLE
Aligns the baseline of subsequent text with the middle of the

image

BOTTOM
Aligns the baseline of subsequent text with the bottom of the

image

LEFT
Floats the image in the left margin and allows text to wrap

around the right side of the image

RIGHT
Floats the image in the right margin and allows text to wrap

around the left side of the image

Top, Middle, and Bottom Alignment

One important thing to note with TOP and MIDDLE alignments is that

once the text reaches a point where it needs to break, it breaks at a point

below the image and leaves some white space between the lines of text.

The tags to place the floating images have ALIGN=LEFT or

ALIGN=RIGHT attributes.

Images as Hyperlink Anchors

In the next section you will learn how to use the <A> container tag to

create hypertext anchors. By clicking the hypertext, you instruct your

browser to load the resource at the URL specified in the HREF attribute

of the <A> tag.

There's no law that says that hyperlink anchors can only be text. Very

often you'll find images serving as anchors as well. By linking images

39 Web Programming Client-Side Scripting

to other Web pages, you create a button-like effect-the user clicks the

button and the browser loads a new page.

To use a graphic as a hyperlink anchor, put the tag that places

the graphic between <A> and tags:

 <IMG SRC="images/books.gif"

WIDTH=50 HEIGHT=50 ALT="Library">

<IMG SRC="mh7.gif" WIDTH=422 HEIGHT=284 ALT="Photo of

MH7">

Images as Bullet Characters

Some people opt to create their own bullet characters for bulleted lists

rather than using the characters that browsers provide. To do this, you

need to place the bullet graphic with an tag and follow it with a

list item:

List

item 1

List

item 2

List

item 3

Image Maps

With a graphical browser, you've probably noticed that many major

Websites have a large clickable image on their main page. These

images are different from your run-of-the-mill hyperlinked graphic in

that your browser loads a different document, depending on where you

click. The image is somehow "multiply linked" and can take you to a

number of different places. Such a multiply linked image is called an

Image map.

The challenge in preparing an image map is defining which parts of the

image are linked to which URLs. Linked regions in an image map are

called hot regions and each hot region is associated with the URL of the

document that is to be loaded when the hot region is clicked. Once you

decide the hot regions and their associated URLs, you need to

determine whether the Web server or the Web client will make the

"decision" about which document to load, based on the user's click. This

choice is the difference between server-side image maps and client-side

image maps. Either approach is easy to implement once you know the

information needed to define the hot regions. Readers that interested in

Image maps should mail the author.

40 HTML

Hyperlinks

Anchor Tags/ Hyperlinks

Now, let’s move on to the ever-so important anchor tags.

We use an anchor tags like so:

The above code will render as:

Let's try a simple link to Google:

The above example will render:

Type out the above code and Try it out, notice that the browser will now

load

Google’s homepage when you click on the link.

We have covered how to link to a page, but what if we want our users to

go to our linked page, but in a new window (so they don't leave our

interesting website)?

We can do just this by using the target attribute of the anchor tag and

passing in a value of ‘_blank’.

41 Web Programming Client-Side Scripting

Opening in a New Window:

The above example will render:

Type out the above code and Try it out!

Notice that the browser will now load Google’s homepage in a new

window when you click on the link.

Hypertext Reference

The most important attribute for the anchor tag is the href attribute. The

href (Hypertext Reference) attribute will tell the anchor tag where to

link to, or where to send the user once clicked on.

This example is slightly different to the previous examples:

Linking inside a HTML document

Basically, the '#' symbol can also act as a page anchor, when nothing is

assigned to the '#' in the href attribute of an anchor tag- when the user

clicks on it, as the link does not have a specific location- it will

generally go nowhere.

Now, we can assign id attributes to some of our elements, to use our

anchor tags to link to specific parts in our HTML, rather than just

having the '#' symbol, we would use:

42 HTML

I have added a logical or document division at the start of the above

example with an id of top.

Ids are a very useful feature of HTML, but for now we are just going to

use it for an anchor link (something to link to). We could assign our div

with any id value, as long as we reference it in our href attribute of our

anchor tag.

Email Links

In HTML we can create a matilto: link, when the user clicks on this link

their email client will open and the mailto: value (our email address)

will be added to the TO: field.

This makes it easy and enticing for a user to quickly send us some

email, regarding our web page.

You may have noticed that I have added '?Subject=Email', this will add

“Email” to the subject field within the email. You can change the mailto

and Subject values to suit your needs.

Directories

You will often be using a folder structure. The folder structure is a

crucial part of good coding practice and helps to tidy up our files

43 Web Programming Client-Side Scripting

(an images folder and an html folder).

A basic html folder structure would look similar to this:

Note: When working with folder in Web Development, we refer to

folders as directories.

As you can see we have a few html files in different locations. We have

our index.html file, which; when working in a server environment will

automatically load once we navigate or load the specific folder that

index.html resides in. As we are not working in a server environment

this is not required knowledge at this point in time.

We have an about.html and a contact.html file in our “html” directory.

The content of these two files are irrelevant at this point in time. The

purpose of the following exercise is to make sure you have a grasp of

'navigating the directory structure'.

Example of linking to the about.html page from index.html:

Quiz

1. Create three new html documents named; about.html, contact.html

and index.html.

2. Create the same directory structure as shown above and place your

new html files in the appropriate directories.

3. Give each html file an appropriate title tag and a level 1 heading (h1).

4. Add a paragraph of appropriate text to each of our html pages and a

mailto: link to the contact page.

5. Now that we have some text and a heading for each html document,

we need place an image (you can use any image you would like) on

each page.

44 HTML

6. Using you skills, you can add an image under the paragraph tag to

each html document and a link to each other html document in the

directory structure under the image.

7. Test out your html documents by saving them with the same names

as detailed above. Make sure the images in your html documents are

appearing in the browser and when you click the links under the images,

you are taken to the respective html document (i.e. a link to about.html

should take you to the about.html page when you click on the link) in

your browser.

8. Now that you have completed your three html pages, go ahead and

validate them with the online validator and fix any errors that appear.

Inline Elements in Action

Let's check out these inline elements in action.

Output:

Notice how the contents of the strong, em, anchor and image tags are

being displayed on the same line, rather than being displayed on

separate lines- like the block level elements.

Inline and Block Elements in Action

So, let’s try some block level and inline elements together.

45 Web Programming Client-Side Scripting

Output:

Tables

Sometimes when we have some information to display on our web

page, it makes sense to display that information or data in a table.

Tables in HTML are relatively simple. We have the Opening Table Tag

and The closing Table tag. Inside of our Table element, we have table

rows. Inside the table rows we have tabular data or cells. But, for our

table headers, we will be using the table header tags inside our table

row.

46 HTML

Organizing Tables

If you can keep this breakdown in mind as you read the next few

sections, the syntax of the table tags will make much more sense to you.

Remember:

• Cells are the basic units of a table; they can contain data elements

or column headers.

• Cells are grouped together into rows.

• Rows are grouped together to produce an entire table.

TABLE Tag

All table-related tags occur between the <TABLE> and </TABLE>

container tags. Any table-related tags occurring outside of these tags

will be ignored.

A good habit you should get into immediately is putting the </TABLE>

tag into your HTML file when you put the <TABLE> tag in. If you

don't have a </TABLE> tag and you go to a browser to preview your

work, the browser won't render the table. This is because browsers read

through all of the code to produce a table before rendering it. It has to

do this to compute how much space it needs for the table. Once the

amount of space is known and allocated, the browser goes back and fills

in the cells. Without a </TABLE> tag, a browser can't know that it's hit

the end of a table and therefore won't render any of it.

Table Row

Tables are made up out of rows, so now you need to know how to

define a row. The <TR> and </TR> tags are used to contain the HTML

tags that define the individual cells. You can place as many <TR> and

</TR> tag pairs as you need inside a table, each pair accounting for

one row.

So far, then, the code for a basic HTML table with m rows looks like:
<TABLE>

 <TR> ... </TR> <!-- Row 1 -->

47 Web Programming Client-Side Scripting

 <TR> ... </TR> <!-- Row 2 -->

 ...

 <TR> ... </TR> <!-- Row m -->

</TABLE>

Table Cell

Table cells come in two varieties: header cells for headers that appear

over a column of data and data cells for the individual entries in the

entries of the table.

Header Cells

A table header cell is defined with the <TH> and </TH> tag pair. The

contents of a table header cell are automatically centered and appear in

boldface, so you typically don't need to format them further.

In a standard table, headers usually comprise the first row so that each

column in the table has some type of heading over it. If the basic table

you're developing has n columns of data, the HTML for the table would

look like:
<TABLE>

 <TR> <!-- Row 1 -->

 <TH>Header 1</TH>

 <TH>Header 2</TH>

 ...

 <TH>Header n</TH>

 </TR>

 <TR> ... </TR> <!-- Row 2 -->

 ...

 <TR> ... </TR> <!-- Row m -->

</TABLE>

Data Cells

Data cells usually make up the bulk of the table and are defined by

<TD> and </TD> tags. Text in data cells is left justified by default.

Any special formatting like boldface or italics has to be done by

including the appropriate formatting tags inside the <TD> and </TD>

pairs.

If we let data cells constitute the rest of the basic table we're

constructing, we have the following HTML:
<TABLE>

 <TR> <!-- Row 1 -->

 <TH>Header 1</TH>

 <TH>Header 2</TH>

48 HTML

 ...

 <TH>Header n</TH>

 </TR>

 <TR> <!-- Row 2 -->

 <TD>Data element 1</TD>

 <TD>Data element 2</TD>

 ...

 <TD>Data element n</TD>

 </TR>

 ...

 <TR> <!-- Row m -->

 <TD>Data element 1</TD>

 <TD>Data element 2</TD>

 ...

 <TD>Data element n</TD>

 </TR>

</TABLE>

The HTML above makes for a nice template that you can use whenever

starting a table. By filling in the headers and data elements with some

genuine information, we can produce a nice table.

<TABLE>

 <TR> <!-- Row 1 -->

 <TH>Player</TH>

 <TH>Goals</TH>

 <TH>Assists</TH>

 <TH>Points</TH>

 </TR>

 <TR> <!-- Row 2 -->

 <TD>Anne</TD>

 <TD>7</TD>

 <TD>12</TD>

 <TD>19</TD>

 </TR>

 <TR> <!-- Row 3 -->

 <TD>Eric</TD>

 <TD>4</TD>

 <TD>11</TD>

 <TD>15</TD>

 </TR>

 <TR> <!-- Row 4 -->

 <TD>Jim</TD>

 <TD>10</TD>

 <TD>14</TD>

49 Web Programming Client-Side Scripting

 <TD>24</TD>

 </TR>

</TABLE>

Displaying hockey team statistics or any other type of information

presented in columns is a good use of HTML tables.

Alignment

The beauty of HTML tables is the precise control you get over the

alignment of content in individual cells and over the table itself. There

are two types of alignment that you can specify:

• Horizontal alignment refers to the alignment of an element

across the width of something; for example, the alignment of a

header across the width of a cell or the alignment of a table across

the width of the page. Horizontal alignment is controlled by the
ALIGN attribute. You can set ALIGN equal to LEFT, CENTER, or
RIGHT.

• Vertical alignment refers to the alignment of an element

between the top and bottom of a cell. You control the vertical

alignment of cell contents by setting the VALIGN attribute to TOP,
MIDDLE, or BOTTOM.

Aligning the Entire Table

You can use the ALIGN attribute in the <TABLE> tag to specify how

the table should be aligned relative to the browser window. Setting

ALIGN to LEFT or RIGHT floats the table in the left or right margin,

respectively. Floating tables behave much like floating images in that

you can wrap text around them.

Alignment within a Row

If you want the vertical or the horizontal alignment to be the same for

every cell in a given row, you can use the VALIGN and ALIGN

attributes in the row's <TR> tag. Any alignment specified in a <TR> tag

will override all default alignments.

Alignment within a Cell

HTML permits alignment control all the way down to the cell level.

You can prescribe vertical or horizontal alignments in both header and

data cells by using the VALIGN or ALIGN attributes in <TH> or <TD>

tags. Any alignment specified at the cell level overrides any default

alignments and any alignments specified in a <TR> tag.

50 HTML

Setting alignments in individual cells represents the finest level of

control you get over table alignment. In theory, you could manually

specify vertical and horizontal alignments in every single cell of your

tables if you needed to! Unfortunately, it's easy to get lost among all of

those VALIGN and ALIGN attributes, especially when it comes to

deciding which will take precedence. If you're having trouble mastering

table alignment, just remember the following hierarchy:

• Alignments specified in <TD> or <TH> tags override all other

alignments, but apply only to the cell being defined.

• Alignments specified in a <TR> tag override default alignments

and apply to all cells in a row, unless overridden by an

alignment specification in a <TD> or <TH> tag.

• In the absence of alignment specifications in <TR>, <TD>, or

<TH> tags, default alignments are used.

Other Table Attributes

These include:

• Captions

• Width of the table

• Borders

• Spacing within and between cells

• How many rows or columns a cell should occupy

Caption

To put a caption on your table, enclose the caption text between the

<CAPTION> and </CAPTION> tags. Captions appear centered over

the table and the text may be broken to match the table's width. You can

also use physical style tags to mark up your caption text. Try the HTML

below:
<TABLE>

 <CAPTION>Team Statistics - 1996-97

Season</CAPTION>

 <TR> <!-- Row 1 -->

 <TH>Player</TH>

 <TH>Goals</TH>

 <TH>Assists</TH>

 <TH>Points</TH>

 </TR>

 <TR> <!-- Row 2 -->

 <TD>Anne</TD>

 <TD>7</TD>

51 Web Programming Client-Side Scripting

 <TD>12</TD>

 <TD>19</TD>

 </TR>

 <TR> <!-- Row 3 -->

 <TD>Eric</TD>

 <TD>4</TD>

 <TD>11</TD>

 <TD>15</TD>

 </TR>

 <TR> <!-- Row 4 -->

 <TD>Jim</TD>

 <TD>10</TD>

 <TD>14</TD>

 <TD>24</TD>

 </TR>

</TABLE>

A caption helps give readers a context for the information in your

tables.

Width

The WIDTH attribute of the <TABLE> tag enables you to specify how

wide the table should be in the browser window. You can set WIDTH to

a specific number of pixels or to a percentage of the available screen

width.

WIDTH is often used to force a table to occupy the entire width of the

browser window. If we change the <TABLE> tag in the HTML code in

the previous section to:
 <TABLE WIDTH=100%>

the table is rendered. The statistics are centered in their columns for

easier readability.

Border

You can place a border around your table by using the BORDER

attribute of the <TABLE> tag. BORDER is set to the number of pixels

wide you want the border to be. A version of our team statistics table

with a two pixel border can be acheived. The modified <TABLE> tag

that accomplishes this effect is:
 <TABLE WIDTH=100% BORDER=2>

Using a border explicitly separates neighboring columns and makes a

table more readable.

52 HTML

You can also set BORDER equal to zero. This means that no border will

be used and that the browser should give back any space it has reserved

to put in a border.

Spacing within a Cell

The distance between an element in a cell and the boundaries of the cell

is called cell padding. The CELLPADDING attribute of the <TABLE>

tag lets you modify the amount of cell padding used in your tables.

Typically, Web page authors increase the cell padding from its default

value of 1 to put a little extra white space between the contents and the

edges of a cell. This has effect of giving the whole table a bit more

"room to breathe." The <TABLE> tag used to produce cell padding is:
 <TABLE WIDTH=100% BORDER=2 CELLPADDING=6>

You can open your table up with some extra white space by increasing

the cell padding.

Spacing between Cells

You also have control over the space between cells. By increasing the

value of the CELLSPACING attribute of the <TABLE> tag, you can

open a table up even further. Note that the border used between the cells

gets accordingly larger as well. The <TABLE> tag used for cellspacing

is: <TABLE WIDTH=100% BORDER=2 CELLSPACING=6>

Spacing between adjacent cells is controlled by the CELLSPACING

attribute.

Spanning Multiple Rows or Columns

By default, a cell occupies or spans one row and one column. For most

tables, this is usually sufficient. When you start to use tables for layout

purposes though, you'll encounter instances where you want a cell to

span more than one row or column. HTML supports attributes of the

<TH> and <TD> tags that permit this effect.

Using the COLSPAN Attribute

The COLSPAN attribute inside of a <TH> or <TD> tag instructs the

browser to make the cell defined by the tag take up more than one

column. You set COLSPAN equal to the number of columns the cell is

to occupy.

COLSPAN is useful when one row of the table is forcing the table to be

a certain number of columns wide while the content in other rows could

be accommodated in a smaller number of columns.

53 Web Programming Client-Side Scripting

The COLSPAN attribute lets rows with fewer elements (like the row with

the Name field) occupy as many columns as rows with more elements.

Using the ROWSPAN Attribute

ROWSPAN works in much the same way as COLSPAN, except that it

allows a cell to take up more than one row.

Table Cell Elements

HTML tables were developed with the intent of presenting columns of

information, but that information does not necessarily have to be text-

based. There are many types of page elements that you can place in a

given table cell:

• Text: Text is the most obvious thing to put in a table cell, but don't

forget that you can format the text with physical and logical styles,

heading styles, list formatting, line and paragraph breaks, and

hypertext anchor formatting.

• Images You can place an image in a table cell by enclosing an

 tag between the <TD> and </TD> tags that define the cell.

This is useful for designing page layout with tables since you aren't

constrained to just text.

• Blank Space Sometimes it's useful to put a blank cell in a table.

You can accomplish this by putting nothing between the cell's

defining tags (<TD></TD>) or by placing a non-breaking space

between the tags (<TD> </TD>). Using the non-breaking

space is preferable because if you have borders turned on, a cell

with a non-breaking space picks up a 3D effect that makes it

appear to rise up out of the table.
• Form Fields The ability to place form fields inside of a table cell

is very important, especially when you consider that the prompting

text in front of form fields are of varying lengths. By putting

prompting text and form fields in a table, you're able to align them

all nicely and make the form much more attractive.

• Other Tables You can embed one table inside another, though this

can induce quite a headache in most people!

Forms

Basics of Form Design

One of the many things you may have noticed on a web page is a

contact form for example. We can create a form in HTML by using the

form opening and closing tags.

54 HTML

Inside of our Form element we have inputs and a submit button. Some

of our inputs will be of type text and our submit button will actually be

an input of type submit.

When we work with HTML forms in the real world, there are two

attributes that we need to add to our opening form tag.

Method and Action:

For the action attribute, you will enter in the destination of the Form

data. The method will take either a POST or GET value. POST and

GET are used with server-side processing.

For the action attribute, you would enter in the destination of the Form

data.

The method will take either a POST or GET value. You would

generally be using POST to submit most forms of data. The main

difference between POST and GET is that POST sends data to the

server 'behind the scenes', whereas GET will form a query string. A

query string consists of name attribute values and the values input by

the user. As you can imagine, if we were submitting sensitive data to

the server we would definitely not use GET; in the case that we did, all

information input by the user would be clearly visible in the URL

address bar.

For the purpose of this book, we will be taking a look at forming a

query string, using GET.

Type out the following code and select some values from the form and

click the submit button. Take a look in your URL Address bar; this is

called a query string- the part following the '?'.

55 Web Programming Client-Side Scripting

Again, type out the following code, load it up in your browser, enter

some text into the inputs in the form and click the submit button. Take a

look in your URL Address bar.

The label tag allows us to add descriptive text regarding the input

expected from the user and when the user clicks the label text, focus

will be drawn to the input.

To use labels properly, you must give the label a ‘for’ attribute and a

value of the ‘for’ attribute that corresponds to the input’s id.

56 HTML

When you use an input of type password, you may think that because

the input entered renders as dots that it must be secured. This is a

common misconception.

The dots that render for password inputs are only a masking

mechanism. Meaning that the input is actually still just the plain text

that the user enters, but the password field will mask this to prevent

prying eyes when a user is entering in a password. By using GET, you

have just seen (in the query string) that the input entered into a

password field remains plain text.

Forms and CGI

Forms are the visible or "front-end" portion of interactive pages. Users

enter information into form fields and click a button to submit the data.

The browser then packages the data, opens an HTTP connection, and

sends the data to a server. Things then move to the transparent or "back-

end" part of the process.

Web servers are programs that know how to distribute Web pages. They

are not programmed to be able to process data from every possible

form, so the best they can do is to hand off the form data to a program

that does know what to do with it. This hand-off occurs with the help of

the Common Gateway Interface or CGI-a set of standards by which

servers communicate with external programs.

The program that processes the form data is typically called a CGI

script or a CGI program. The script or program performs some

manipulation of the data and composes a response-typically an HTML

page. The response page is handed back to the server (via CGI) which,

in turn, passes it along to the browser that initiated the request.

Forms and CGI are opposite sides of the same coin. Both are essential

to create interactive pages, but it is the forms side of the coin that the

user sees.

When a CGI script or program composes an HTML page, it is said to be

generating HTML on-the-fly. The ability to generate pages on-the-fly is

what makes custom responses to database and forms submission

possible.

Creating Forms

HTML's form support is simple and complete. A handful of HTML tags

creates the most popular elements of modern graphical interfaces,

including text windows, check boxes and radio buttons, pull-down

menus, and push buttons.

Composing HTML forms might sound like a complex task, but you

need to master surprisingly few tags to do it.

57 Web Programming Client-Side Scripting

All form-related tags occur between the <FORM> and </FORM>

container tags. If you have more than one form in an HTML document,

the closing </FORM> tag is essential for distinguishing between the

multiple forms.

Adding a </FORM> tag immediately after creating a <FORM> tag is a

good practice; then you can go back to fill in the contents. Following

this procedure helps you avoid leaving off the closing tag once you've

finished.

Each HTML form has three main components: the form header, one or

more named input fields, and one or more action buttons.

<FORM> Tag
The form header and the <FORM> tag are actually one in the same. The

<FORM> tag takes the three attributes shown in Table 2.13. The

ACTION attribute is required in every <FORM> tag.

Table 2.13: Attributes of the <FORM> Tag

Attribute Purpose

ACTION Specifies the URL of the processing script

ENCTYPE Supplies the MIME type of a file used as form

input

METHOD=GET|POST Tells the browser how it should send the form

data to the server

ACTION

ACTION is set equal to the URL of the processing script so that the

browser knows where to send the form data once it is entered. Without

it, the browser would have no idea where the form data should go.

The ACTION URL can also contain extra path information at the end of

it. The extra path information passes on to the script so that it can

correctly process the data. The extra path information is not found

anywhere on the form so it is transparent to the user. Allowing for the

possibility of extra path information, an ACTION URL has the

following form:

• protocol://server/path/script_file/extra_path_info

You can use the extra path information to pass an additional file name

or directory information to a script. For example, on some servers, the

image map facility uses extra path information to specify the name of

the map file. The name of the map file follows the path to the image

map script.

58 HTML

A sample URL might be http://www.your_firm.com/cgi-

bin/imagemap/homepage.

The name of the script is imagemap, and homepage is the name of

the map file used by image map.

METHOD=GET|POST

METHOD specifies the HTTP method to use when passing the data to

the script and can be set to values of GET or POST. When you're using

the GET method, the browser appends the form data to the end of the

URL of the processing script. The POST method sends the form data to

the server in a separate HTTP transaction.

METHOD is not a mandatory attribute of the <FORM> tag. In the absence

of a specified method, the browser uses the GET method.

Caution

Some servers may have operating environment limitations that prevent

them from processing an URL that exceeds a certain number of

characters-typically 1 kilobyte of data. This limitation can be a problem

when you're using the GET method to pass a large amount of form data.

Because the GET method appends the data to the end of the processing

script URL, you run a greater risk of passing an URL that's too big for

the server to handle. If URL size limitations are a concern on your

server, you should use the POST method to pass form data.

ENCTYPE

The ENCTYPE attribute was introduced by Netscape for the purpose of

providing a file name to be uploaded as form input. You set ENCTYPE

equal to the MIME type expected for the file being uploaded. ENCTYPE

does not create the input field for the file name; rather, it just gives the

browser a heads-up as to what kind of file it is sending. When

prompting for a file to upload, you'll need to use an <INPUT> tag with

TYPE set equal to FILE.

As an example of the three <FORM> tag attributes, examine the

following HTML:
<FORM ACTION="process_it.cgi" METHOD=POST

ENCTYPE="text/html">

Enter the name of the HTML file to validate:

<INPUT TYPE="FILE" NAME="html_file">

<INPUT TYPE="SUBMIT" VALUE="Validate it!">

</FORM>

59 Web Programming Client-Side Scripting

The form header of this short form instructs the server to process the

form data using the program named process_it.cgi. Form data is

passed using the POST method and the expected type of file being

submitted is an HTML file.

Named Input Fields

The named input fields typically comprise the bulk of a form. The fields

appear as standard GUI controls such as text boxes, check boxes, radio

buttons, and menus. You assign each field a unique name that

eventually becomes the variable name used in the processing script.

Warning

If you are not coding your own processing scripts, be sure to sit down

with your programmer to agree on variable names. The names used in

the form should exactly match those used in coding the script.

You can use several different GUI controls to enter information into

forms. The controls for named input fields appear in Table 2.14.

Table 2.14: Types of Named Input Fields

Field Type HTML Tag

Text Box <INPUT TYPE="TEXT">

Password Box <INPUT TYPE="PASSWORD">

Checkbox <INPUT TYPE="CHECKBOX">

Radio Button <INPUT TYPE="RADIO">

Hidden Field <INPUT TYPE="HIDDEN">

Images <INPUT TYPE="IMAGE">

File <INPUT TYPE="FILE">

Text Window <TEXTAREA>...</TEXTAREA>

Menu <SELECT>...<OPTION>...</SELECT>

<INPUT> Tag
You'll note in Table 2.14 that the <INPUT> tag handles the majority of

named input fields. <INPUT> is a stand-alone tag that, thanks to the

many values of its TYPE attribute, can place most of the fields you need

on your forms. <INPUT> also takes other attributes, depending on

which TYPE is in use. These additional attributes are covered for each

type, as appropriate, over the next several sections.

Note

60 HTML

The <INPUT> tag and other tags that produce named input fields just

create the fields themselves. You, as the form designer, must include

some descriptive text next to each field so that users know what

information to enter. You may also need to use line breaks, paragraph

breaks, and non-breaking space to create the spacing you want between

form fields.

Text and Password Fields

Text and password fields are simple data entry fields. The only

difference between them is that text typed into a password field

appears on-screen as asterisks (*).

Caution

Using a password field may protect users' passwords from the people

looking over their shoulders, but it does not protect the password as it

travels over the Internet. To protect password data as it moves from

browser to server, you need to use some type of encryption or similar

security measure. Authentication of both the server and client by using

signed digital certificates are two other steps you can take to keep

Internet transactions secure.

The most general text or password field is produced by the HTML

(attributes in square brackets are optional):
<INPUT TYPE="{TEXT|PASSWORD}" NAME="Name"

[VALUE="default_text"]

[SIZE="width"] [MAXLENGTH="wmax_idth"]>

The NAME attribute is mandatory because it provides a unique identifier

for the data entered into the field.

The optional VALUE attribute allows you to place some default text in

the field, rather than have it initially appear blank. This capability is

useful if a majority of users will enter a certain text string into the field.

In such cases, you can use VALUE to put the text into the field, thereby

saving most users the effort of typing it.

The optional SIZE attribute gives you control over how many

characters wide the field should be. The default SIZE is typically 20

characters, although this number can vary from browser to browser.

MAXLENGTH is also optional and allows you to specify the maximum

number of characters that can be entered into the field.

Note

Previously, the SIZE attribute took the form SIZE="width,height",

61 Web Programming Client-Side Scripting

where setting a height (other than 1) produced a multiline field. With

the advent of the <TEXTAREA>...</TEXTAREA> tag pair for creating

multiline text windows, height has become something of a remnant

and is ignored by most browsers.

Text and password fields enable you to create a login page for your

site.

Check Boxes

Check boxes are used to provide users with several choices. Users can

select as many choices as they want. An <INPUT> tag to produce a

check box option has the following syntax:
<INPUT TYPE="CHECKBOX" NAME="Name"

VALUE="Value" [CHECKED]>

Each check box option is created by its own <INPUT> tag and must

have its own unique NAME. If you give multiple check box options the

same NAME, the script has no way to determine which choices the user

actually made.

The VALUE attribute specifies what data is sent to the server if the

corresponding check box is chosen. This information is transparent to

the user. The optional CHECKED attribute pre-selects a commonly

selected check box when the form is rendered on the browser screen.

When designing your garden at www.garden.com, you can choose what

color flowers and leaves you want and when the plants will bloom.

Each flower and leaf color preference is placed on the page with its

own <INPUT> tag with TYPE="CHECKBOX".

Note

If they are selected, check box options show up in the form data sent to

the server. Options that are not selected do not appear.

Radio Buttons

When you set up options with a radio button format, you should make

sure that the options are mutually exclusive so that a user won't try to

select more than one.

The HTML code to produce a set of three radio button options is as

follows:

<INPUT TYPE="RADIO" NAME="Name" VALUE="VALUE1"

[CHECKED]>Option 1<P>

<INPUT TYPE="RADIO" NAME="Name"

VALUE="VALUE2"> Option 2<P>

62 HTML

<INPUT TYPE="RADIO" NAME="Name"

VALUE="VALUE3">Option 3<P>

The VALUE and CHECKED attributes work exactly the same as they do

for check boxes, although you should have only one pre-selected radio

button option. A fundamental difference with a set of radio button

options is that they all have the same NAME. This is permissible because

the user can select only one of the options.

Looking for the closest authorized Adobe reseller? You can choose

which type of reseller you want from a set of radio buttons on the

search page.

Each radio button option is created by an <INPUT> tag with TYPE set

to RADIO.

Hidden Fields

Technically, hidden fields are not meant for data input. You can send

information to the server about a form without displaying that

information anywhere on the form itself. The general format for

including hidden fields is as follows:

<INPUT TYPE="HIDDEN" NAME="name" VALUE="value">

One possible use of hidden fields is to allow a single general script to

process data from several different forms. The script needs to know

which form is sending the data, and a hidden field can provide this

information without requiring anything on the part of the user.

Another application of hidden fields is for carrying input from one form

to another. This lets you split a long form up into several smaller forms

and still keep all of the user's input in one place.

Note

Because hidden fields are transparent to users, it doesn't matter where

you put them in your HTML code. Just make sure they occur between

the <FORM> and </FORM> tags that define the form that contains the

hidden fields.

Files

You can upload an entire file to a server by using a form. The first step

is to include the ENCTYPE attribute in the <FORM> tag. To enter a file

name in a field, the user would need the <INPUT> tag with TYPE set

equal to FILE:
<FORM ACTION="whatever.cgi"

ENCTYPE="application/x-www-form-urlencoded">

63 Web Programming Client-Side Scripting

What file would you like to submit: <INPUT

TYPE="FILE" NAME="your_file">

...

</FORM>

Being able to send an entire file is useful when submitting a document

produced by another program-for example, an Excel spreadsheet, a

resumé in Word format, or just a plain Notepad text file.

Multiple Line Text Input

Text and password boxes are used for simple, one-line input fields. You

can create multiline text windows that function in much the same way

by using the <TEXTAREA> and </TEXTAREA> container tags. The

HTML syntax for a text window is as follows:

<TEXTAREA NAME="Name" [ROWS="rows"]

[COLS="columns"]>

Default_window_text

</TEXTAREA>

The NAME attribute gives the text window a unique identifier just as it

does with the variations on the <INPUT> tag. The optional ROWS and

COLS attributes allow you to specify the dimensions of the text window

as it appears on the browser screen. The default number of rows and

columns varies by browser.

The text that appears between the <TEXTAREA> and </TEXTAREA>

tags shows up in the input window by default. To type in something

else, users need to delete the default text and enter their text.

Multiline text windows are ideal for entry of long pieces of text such as

feedback comments or e-mail messages. Some corporate sites on the

Web that collect information on potential employees may ask you to

copy and paste your entire resumé into multiline text windows!

Menus

The final technique for creating a named input field is to use the

<SELECT> and </SELECT> container tags to produce pull-down or

scrollable option menus. The HTML code used to create a general

menu is as follows:
<SELECT NAME="Name" [SIZE="size"] [MULTIPLE]>

<OPTION [SELECTED]>Option 1</OPTION>

<OPTION [SELECTED]>Option 2</OPTION>

<OPTION [SELECTED]>Option 3</OPTION>

...

64 HTML

<OPTION [SELECTED]>Option n</OPTION>

</SELECT>

In the <SELECT> tag, the NAME attribute again gives the input field

a unique identifier. The optional SIZE attribute lets you specify

how many options should be displayed when the menu renders on

the browser screen. If you have more options than you have space

to display them, you can access them either by using a pull-down

window or by scrolling through the window with scroll bars. The

default SIZE is 1. If you want to let users choose more than one

menu option, include the MULTIPLE attribute. When MULTIPLE is

specified, users can choose multiple options by holding down the

Control key and clicking the options they want.

Note

If you specify the MULTIPLE attribute and SIZE=1, a one-line

scrollable list box displays instead of a drop-down list box. This box

appears because you can select only one item (not multiple items) in a

drop-down list box.

Each option in the menu is specified inside of its own <OPTION>

container tag. If you want an option to be pre-selected, include the

SELECTED attribute in the appropriate <OPTION> tag. The value

passed to the server is the menu item that follows the <OPTION>

tag unless you supply an alternative using the VALUE attribute. For

example:
<SELECT NAME="STATE">

<OPTION VALUE="NY">New York</OPTION>

<OPTION VALUE="DC">Washington, DC</OPTION>

<OPTION VALUE="FL">Florida</OPTION>

...

</SELECT>

In the menu above, the user clicks a state name, but it is the state's

two-letter abbreviation that passes to the server.

Action Buttons

The handy <INPUT> tag returns to provide an easy way of creating the

form action buttons you see in many of the preceding figures. Buttons

can be of two types: Submit and Reset. Clicking a Submit button

instructs the browser to package the form data and send it to the server.

Clicking a Reset button clears out any data entered into the form and

sets all the named input fields back to their default values.

65 Web Programming Client-Side Scripting

Submit and Reset Buttons

Any form you compose should have a Submit button so that users can

submit the data they enter. The one exception to this rule is a form

containing only one input field. For such a form, pressing Enter

automatically submits the data. Reset buttons are technically not

necessary but are usually provided as a user courtesy.

To create Submit or Reset buttons, use the <INPUT> tags as follows:

<INPUT TYPE="SUBMIT" VALUE="Submit Data">

<INPUT TYPE="RESET" VALUE="Clear Data">

Use the VALUE attribute to specify the text that appears on the button.

You should set VALUE to a text string that concisely describes the

function of the button. If VALUE is not specified, the button text reads

Submit Query for Submit buttons and Reset for Reset buttons.

Images as Submit Buttons

You can create a custom image to be a submit button for your forms

and set up the image so that clicking it instructs the browser to submit

the form data. To do this, you set TYPE equal to IMAGE in your

<INPUT> tag and provide the URL of the image you want to use with

the SRC attribute:
<INPUT TYPE="IMAGE"

SRC="images/submit_button.gif">

You can also use the ALIGN attribute in this variation of the <INPUT>

tag to control how text appears next to the image (TOP, MIDDLE, or

BOTTOM) or to float the image in the left or right margins (LEFT or

RIGHT).

Some sites lets you search for flight information by clicking an image

rather than a regular submit button.

An <INPUT> tag with TYPE set to IMAGE is the key to creating your

own submit button.

Multiple Submit Buttons

It's possible to have more than one submit button on a form, although

there is not yet consistent browser support for multiple submit buttons.

You distinguish between submit buttons by using the NAME attribute in

the <INPUT> tags used to create the buttons. For example, you might

have:
<INPUT TYPE="SUBMIT" NAME="SEARCH"

VALUE="Conduct Search">

66 HTML

<INPUT TYPE="SUBMIT" NAME="ADD" VALUE="Add to

Database">

to produce buttons that allow users to search the information they've

entered or add the information they've entered to a database.

Because there is only tentative support for multiple submit buttons, you

may want to hold off on implementing them until they are standard.

Passing Form Data

Once a user enters some form data and clicks a submit button, the

browser does two things. First, it packages the form data into a single

string, a process called encoding. Then it sends the encoded string to

the server by either the GET or POST HTTP method.

URL Encoding

When a user clicks the Submit button on a form, his or her browser

gathers all the data and strings together in NAME=VALUE pairs, each

separated by an ampersand (&) character. This process is called

encoding. It is done to package the data into one string that is sent to

the server.

Consider the following HTML code:

<FORM ACTION="http://www.habeebmamman.com/cgi-

bin/form.cgi" METHOD="POST">

 <INPUT TYPE="TEXT" NAME="first">

 <INPUT TYPE="TEXT" NAME="last">

 <INPUT TYPE="SUBMIT">

</FORM>

If a user named Joe Schmoe enters his name into the form produced by

the preceding HTML code, his browser creates the following data string

and sends it to the CGI script:
 first=Joe&last=Schmoe

If the GET method is used instead of POST, the same string is appended

to the URL of the processing script, producing the following encoded

URL:
http://www.server.com/cgi-

bin/form.cgi?first=Joe&last=Schmoe

A question mark (?) separates the script URL from the encoded data

string.

Storing Encoded URLs

As you learned in the previous discussion of URL encoding, packaging

form data into a single text string follows a few simple formatting rules.

67 Web Programming Client-Side Scripting

Consequently, you can fake a script into believing that it is receiving

form data without using a form. To do so, you simply send the URL

that would be constructed if a form were used. This approach may be

useful if you frequently run a script with the same data set.

For example, suppose you frequently search the Web index Yahoo for

new documents related to the scripting language JavaScript. If you are

interested in checking for new documents several times a day, you

could fill out the Yahoo search query each time. A more efficient way,

however, is to store the query URL as a bookmark. Each time you select

that item from your bookmarks, a new query generates as if you had

filled out the form. The stored URL would look like the following:

• http://search.yahoo.com/bin/search?p=JavaScript

Further encoding occurs with data that is more complex than a single

word. Such encoding simply replaces spaces with the plus character and

translates any other possibly troublesome character (control characters,

the ampersand and equal sign, some punctuation, and so on) to a

percent sign followed by its hexadecimal equivalent. Thus, the

following string:
I love HTML!

becomes:
 I+love+HTML%21

HTTP Methods

You have two ways to read the form data submitted to a CGI script,

depending on the METHOD the form used. The type of METHOD the

form used-either GET or POST-is stored in an environment variable

called REQUEST_METHOD, and based on that, the data should be read

in one of the following ways:

• If the data is sent by the GET method, the input stream is stored

in an environment variable called QUERY_STRING. As noted

previously, this input stream usually is limited to only about 1

kilobyte of data. This is why GET is losing popularity to the more

flexible POST.
• If the data is submitted by the POST method, the input string

waits on the server's input device, with the available number of

bytes stored in the environment variable CONTENT_LENGTH.
POST accepts data of any length, up into the megabytes, although

it is not very common yet for form submissions to be that large.

http://search.yahoo.com/bin/search?p=JavaScript

68 HTML

Example Forms

Web designers have discovered many ways to use forms to enhance

users' experiences. This chapter closes with a quick look at some

examples of creative uses of Web forms.

Online Searches

Google, Yahoo or Alta Vista has quickly become one of the most

prolific online search indexes on the Web. Alta Vista searches

frequently return tens of thousands of results and can include Web

documents and posts to Usenet newsgroups.

Online Registration

If you went to Macromedia's User Conference in September 1996, you

might have registered using a form. The extensive form collects

attendee information, which registration option you'd like, what seminar

you want to attend, and how you want to pay.

Many technology industry conferences now permit online registration

via a Web form.

Creating a Custom Page

Microsoft and other companies now offer customized pages each time

users visit their sites. Users can supply information on how to configure

the page and the company's server uses this information to generate a

fresh and tailored page to the user at each visit.

Online Shopping

As Web surfers gain more confidence in the security of business

transactions over the Internet, you'll see more and more online stores

cropping up. (Please See Appendix-B for Sample e-Commerce

Website)

Quiz

1. Create a new .html file titled tables-forms.html.

2. Add a table (4x7) and type in 4 of your favourite bands and seven of

their best songs, to fill out the table. By doing this simple exercise, you

will learn how to create a HTML table of any size.

3. Under the new table that you have created; add a form.

4. This form will have 4 radio inputs, 3 Check boxes, 1 text and 1

password input field.

5. Appropriately name each input and test that you have done so

correctly by entering in text/ making selections and submitting the form

(clicking 'submit').

Pay close attention to the query string that has formed in your URL

address bar.

69 Web Programming Client-Side Scripting

6. Create some new inputs of type: color, number, URL, date and email

and test them out in your browser!

HTML5 Specific Elements

So far we have only really learned about general HTML tags and

elements, now it's time to get into some HTML5 specific elements. As

you may notice when you start to work with HTML and build some of

your own web pages, it would be really helpful if there was a logical

way to define the header and footer of our web page With HTML5, we

can just that with the header and footer tags:

Header & Footer

The header element defines a header for our html document. We could

also have multiple headers in our html document, to define headers for

different parts of our html.

The footer element defines footer for our html document; just as we can

with the header element we can also have multiple footer elements

within our html document defining footers for different parts of our

html.

Along with these new header and footer elements, there are also a few

more important elements that have been introduced with HTML5.

Navigation

We can now define a navigational element with the nav tag:

We would use this element to hold our main navigational content.

Section

We can now define a ‘section’ of our HTML document. Do keep in

mind that the contents of a section should be related.

Article

We can now define an 'article' within our HTML document. Within a

section, we could have several articles:

70 HTML

Aside

We can now define an 'aside'; a part of our HTML content that is 'aside'

from our main content, but is still related:

The Meter Element

One of the really cool things with HTML5 is the ability to add meters.

We define the meter element with the opening and closing meter tags.

The HTML5 meter tag will take a few attributes, min, max and value.

The Min and Max values will define a range in which our value will be

compared. For example, with a min of 0 and a max of 100, a value of 50

will show a ‘gauge’ that is 50% complete:

The text that I have entered in between the opening and closing meter

tag is fallback text. This fallback text will be rendered in older browsers

that do not yet support the meter tag.

71 Web Programming Client-Side Scripting

The new HTML5 Elements in Action

Video

One of the greatest features of HTML5 is the ability to implement a

fully featured Video with Controls.

We start out with the opening Video tag, passing in a height & width

and the controls attribute, so the video player will have controls. Next

we need to add the source tag and actually add the Video URL to the

src attribute of the source tag. Again this can be an absolute or relative

URL.

Along with our actual video src, we need to tell the browser the mime-

type. A mimetype basically lets the browser know what kind of format

or media type to expect.

To provide a similar cross-browser experience you will need to supply

multiple formats, contained within separate source tags.

Here we have the video Element set to 640x480px with controls

displayed; some fallback text (to display some text in a browser that

doesn’t support the video element) and two sources- each have a

different format and mime-type.

72 HTML

Video Formats

The most important aspect of video formats is deciding which file

format to use. Depending on the format you select, it is possible that

you will block out potential users of your site. Another important

consideration is that some video file formats are more efficient than

others at storing video segments. Consequently, the more efficient

formats create much smaller file sizes than inefficient formats.

Table 2.15: A Comparison of Video File Formats

File Format Extension File Size

QuickTime QT, MOV Medium

MPEG MPEG, MPE, MPG Small

Indeo AVI Large

MPEG

MPEG (Moving Picture Expert Group) is a group of people who are

trying to create a standard for digital video. Much of MPEG's work

takes it outside the reach of the Internet; however, the group did create

the MPEG standard. This standard is, by far, the most efficient way to

store video clips. MPEG files are usually 3-10% smaller than files in

other formats.

QuickTime

The QuickTime digital video format was developed by Apple

computers. This format generally creates moderate sized files for video

clips. This is probably the most rapidly spreading video format on the

Internet. While not as efficient as MPEG, QuickTime offers reasonable

file size and video playback performance.

AVI

AVI, or Intel Indeo, is another popular video file format. As you might

have guessed, AVI is created and maintained by Intel, but is supported

by other companies. This means Intel defines the specifications for

AVI. However, it is left up to Microsoft, and others, to implement those

specs.

73 Web Programming Client-Side Scripting

Hardware Options

There are a number of different ways to get a video image into the

computer. Some people may already have this ability built into their

computers, but now know it. Others will need to buy some video

equipment and, after purchasing such equipment, will probably have to

buy an expensive expansion card. This card enables the computer to

create video clips.

There are four basic approaches to transforming a video sequence into a

computer-usable format. The first approach is to use a video camera and

digitize the video segment directly off the video feed. The second

approach is to use a VCR to convert a video playback into digital form.

The third approach is to purchase a digital camera that automatically

stores video segments in a computer file. The fourth, and easiest,

approach is to purchase a computer with the necessary equipment

already included.

You can also try

HTML EMBED tag and specify the SRC attribute to point to your Web

page. You can treat the EMBED tag as a generic catch-all version of the

graphic image IMG tag. You can add any sort of video clip by putting

the following in your Web page:
 <EMBED SRC="filename.ext">

You can also specify the height and width of the clip by using the

HEIGHT and WIDTH attributes.

Microsoft proposed an attribute extension, namely the DYNSRC

attribute. This attribute behaves just like the SRC one, except that the

file specified for it is a video clip.

Audio

As you have just learned about HTML5 Video, HTML5 Audio isn’t

going to be all that difficult to grasp. HTML5 audio isn’t all that

different from HTML5 Video (apart from the fact that it’s audio and not

video). With the audio element, we do not need to set the size, but it is

ALWAYS good practise to use the controls attribute so your users can

actually operate the Audio Player.

Just as we can have multiple sources in our video element, we do the

same thing with our audio element; passing in audio files and

appropriate mime-types.

74 HTML

Audio Content Source

The Internet

By using any search engine and key words such as "audio clips," "MIDI

files," and "aiff Beetles," you will quickly find many pages with the

type of music that you want, already in the proper format.

CDs or DAT tapes

A wealth of music is available on CD. There are many musicians and

music compilation houses that will sell you a CD full of public domain

music.

Recorded from "Live Sources"

Narration, of course, is something that you can record yourself. Make

sure that it meets the quality standards that people throughout your

target audience will find acceptable. Creating professional quality audio

is a complicated business.

Your Own Music

If you are a musician, any of the previous concerns become less

important. You can create your own music with old fashioned analog

instruments, and then have the music digitized for use on your Web site.

Audio Formats

There are many file formats available to choose from. Common formats

are: Au, Aiff, Wav, MPEG, MIDI, MOD etc.

You can also try

You can include an audio file as a hyperlink, just like any other type of

file. To include audio make sure that the audio clip is in a format that

can be played by all important browsers.

Include the audio clip's name in the <HREF> tag example:

Opening Door Sound

Effect

Make sure that the audio clip loads and plays properly on different

platforms and with the versions of browsers that you are targeting.

You can include an audio file as a Background,

75 Web Programming Client-Side Scripting

 <BGSOUND SRC="myvoice.wav">

The EMBED tag can be used to play an audio file in the background by

including it like this:
<EMBED

SRC="http://www.habeebmamman.com/audiofile.aif

f" HIDDEN=TRUE AUTOSTART=TRUE>

In the above example, SRC points to the files URL, the argument

HIDDEN=TRUE indicates that there will be no controls present, and

AUTOSTART=TRUE indicates that the audio will start playing in the

background as soon as the file is loaded.

To add an audio control panel to your Web page, use the following tag:
<EMBED SRC="URL to audio file" HEIGHT=60

WIDTH=144 CONTROLS=CONSOLE>

An actual control panel is implemented like this:
<EMBED SRC="moonlight.aiff" HEIGHT=60

WIDTH=144 CONTROLS=CONSOLE>

You can also add a smaller control console with the following

line:
<EMBED SRC="moonlight.aiff" HEIGHT=15 WIDTH=144

CONTROLS=SMALLCONSOLE AUTOSTART=TRUE>

Additions to HTML

HTML has been continuously evolving since its introduction in the late

1980s. The HTML standard is an open standard which means, in part,

that members of the entire Internet community are welcome to submit

proposals for additional HTML tags.

Many individuals and corporations are making proposals to the World

Wide Web Consortium (W3C) for consideration in future releases of

the standard. Some of these include the following:

• Spyglass

• Sun Microsystems

• Novell

• SoftQuad

• IBM

Expected Additions

• Better indexing

Tags to define search ranges within a document will make it easier for

Web robots to index your documents.

76 HTML

The <RANGE> tag was proposed for HTML 3.0, but was not made part

of the HTML 3.2 standard. According to the proposal, placing a

<RANGE> tag in the document head allows you to set up a range in the

document for searching. <RANGE> takes the CLASS attribute, which

is set equal to SEARCH to set up a search range, and the FROM and

UNTIL attributes, which designate the beginning and end of the search

range. A sample <RANGE> tag might look like the following:

<RANGE CLASS=SEARCH FROM="start" UNTIL="finish">

The "start" and "finish" markers are set up in the body of the document

using the <SPOT ID="start"> and <SPOT ID="finish"> tags at the

points where you want the search range to begin and end, respectively.

• Creating tab stops

As HTML adds more support for layout control, you may see tags that

enable you to define your own tab stops on a browser screen.

Proposed the addition of a <TAB> tag, which allows you to set up

your own tab stops in a document. To use a tab stop, you need

first to define it using the ID attribute:

My first tab stop is <TAB ID="first">here, followed

by some other text.

The preceding HTML sets up the first tab stop in front of the

letter "h" in the word "here." To use the tab stop, you use the

<TAB> tag with the TO attribute:

<TAB TO="first">This sentence starts below the word

"here."

On the browser screen, the "T" in the word "This" is aligned

directly below the "h" in the word "here."

With the implementation of cascading style sheets, which permit

good control over indentation and other layout attributes, it is

unclear as to whether the <TAB> tag will receive consideration

for later standards.

• New logical styles

Expanded logical style tags allow you to better describe the nature of

your content.

While there are no new logical styles in HTML 3.2, several of them

were proposed as part of HTML 3.0. The styles are shown in Table

2.16. Because many of these proposals are still under consideration, it's

still possible that you'll see any or all of these tags used in the future.

77 Web Programming Client-Side Scripting

All of the tags shown in Table 2.16 are container tags. The closing tags

are left off in the interest of space.

Table 2.16: New Logical Styles Proposed in HTML 3.0

Style Name Tag

Abbreviation <ABBREV>

Acronym <ACRONYM>

Author's name <AU>

Deleted text

Inserted text <INS>

Person's name <PERSON>

Short quotation <Q>

• Creating non-scrolling regions

You can have content on the browser screen all of the time if you place

it as a banner-a region on the page that does not scroll.

Banners are defined as regions in a document that should not scroll.

You could reference externally defined banners by using the <LINK>

tag in the document head. The REL attribute is set to BANNER and the

HREF attribute is set to the URL of the document containing the banner

information. For example:

<LINK REL="BANNER"

HREF="http://www.your_firm.com/navigation.html">

Referencing an external banner provides the advantage of only having

to update one file if changes need to be made.

You could also define a banner right in your document by using the

<BANNER> and </BANNER> tags. Any text or graphics between

these two tags become banner elements for your page.

• Placing larger graphics

The proposed <FIG> tag enables you to place captions and credits

around a large image graphic and supports its own version of client-side

image mapping.

The <FIG> tag was proposed as an alternative to the tag for

larger graphics. As you might expect, <FIG> requires the SRC attribute

to specify the URL of the image file to be loaded. <FIG> can also take

the attributes shown in Table 2.17. The BLEEDLEFT and

BLEEDRIGHT values of the ALIGN attribute align the figure all the

way to the left and right edges of the browser window, respectively.

78 HTML

Table 2.17: Attributes of the <FIG> Tag

Attribute Purpose

SRC="url"
Gives the URL of the image file to

load

NOFLOW
Disables the flow of text around the

figure

ALIGN=LEFT|RIGHT|C

ENTER|JUSTIFY|BLEE

DLEFT|BLEEDRIGHT

Specifies an alignment for the

figure

UNITS=unit of

measure

Specifies a unit of measure for the

WIDTH and HEIGHT attributes

(default is pixels)

WIDTH=width

Specifies the width of the image in

units designated by the UNITS

attribute

HEIGHT=height

Specifies the height of the image in

units designated by the UNITS

attribute

IMAGEMAP Denotes the figure as an image map

The <FIG> tag is different from the tag in that it has a

companion </FIG> tag. Together, <FIG> and </FIG> can contain text,

including captions and photo credits, which are rendered with the

figure. Captions are enclosed with the <CAPTION> and </CAPTION>

tags, and photo credits are enclosed with the <CREDIT> and

</CREDIT> tags. Regular text found between the <FIG> and </FIG>

tags wraps around the figure unless the NOWRAP attribute is specified.

Another feature proposed for the <FIG> and </FIG> tag pair is the

capability to overlay two images. This is accomplished with the

<OVERLAY> tag, which specifies a second image to overlay the image

given in the <FIG> tag. HTML to produce an overlay might look like

the following:

<FIG SRC="main_image.gif" WIDTH=250 HEIGHT=186

ALIGN=LEFT>

 <OVERLAY SRC="overlay.gif">

 <P>The image to the left is actually two

images, one on top of the other.</P>

</FIG>

79 Web Programming Client-Side Scripting

According to the proposal, the <FIG> tag provides another method for

implementing client-side image maps. The key to using the <FIG> and

</FIG> tags for a client-side image map is that these tags can contain

text that acts as an alternative to the image being placed by them. Thus,

any text between the <FIG> and </FIG> tags is much like text assigned

to the ALT attribute of the tag. For example, the HTML:

<IMG SRC="logo.gif" ALT="Company Logo" WIDTH=120

HEIGHT=80>

and
<FIG SRC="logo.gif" WIDTH=120 HEIGHT=80>

Company Logo

</FIG>

essentially do the same thing.

• Publishing mathematical content

After special tags and entities are accepted into standard HTML, much

of the headache of publishing mathematical documents to the Web will

disappear.

The rendering of mathematical symbols and equations has always been

tricky on the Web. Authors used to have to place symbols, Greek

letters, and other mathematical characters as separate images. When

you consider that a browser has to open a separate HTTP connection to

download an image, it becomes easy to imagine how long it might take

to download a page with heavy mathematical content. Clearly, then, a

better way to publish mathematical documents on the Web is needed.

Mathematical Tags

All mathematical content is enclosed between the <MATH> and

</MATH> tags. <MATH> can take the CLASS attribute if the

mathematical content is restricted to a certain mathematical sub-

discipline:
 <MATH CLASS="ALGEBRA.LINEAR">

Or it can take the CLASS attribute if the content is restricted to another

branch of scientific study:
 <MATH CLASS="PHYSICS">

A number of other tags are valid inside the and

tags. These are summarized in Table 2.18.

80 HTML

Table 2.18: Mathematical HTML Tags

Tag Purpose

<ABOVE> Places a line, arrow, or symbol over an expression

<ARRAY> Used to create matrices

<BAR> Places a bar over an expression

<BELOW> Places a line, arrow, or symbol under an expression

<BOX> Used for hidden grouping symbols

<DOT> Places a single dot over an expression

<DDOT> Places a double dot over an expression

<HAT> Places a hat (^) over an expression

<OVER> Places one expression over another

<ROOT> Used to render a root other than the square root

<SQRT> Used to render a square root sign

<SUB> Used to create a subscript

<SUP> Used to create a superscript

<TEXT> Inserts plain text inside a math element

<TILDE> Places a tilde (~) over an expression

<VEC>
Denotes an expression as a vector by placing an arrow over

it

Additionally, there are tags you can use to override the default text

formatting inside the and tags. The container

tag renders its contents in boldface and the <T> container tag renders its

contents in an upright font. <BT> combines the effects of the and

<T> tags.

One of the greater obstacles to rendering mathematical content on a

browser screen is all of the special characters needed.

Each of these special characters has an HTML entity proposed to

represent it in an HTML document. Recall that entities begin with an

ampersand (&) and end with a semicolon (;).

For example, you could use the HTML:
 ∫2x - 1 dx = x^2 - x + c

to produce
 2x - 1 dx = x^2 - x + c

WHAT’s NEXT?

CHAPTER THREE

CSS

Basics of CSS

Cascading Style Sheets are now the standard way to define the

presentation of your HTML pages, from fonts and colours to the

complete layout of a page. They are much more efficient than using

HTML on every page to define the look of your site.

CSS is becoming a more important language to know every day.

There are two competing forces in Web page authoring: content and

presentation. When HTML was first released, the tags were largely

focused on content and they descriptively defined the various parts of a

document: a heading, a paragraph, a list, and so on. Over time,

instructions were added to help with presentation issues at the font

level. These instructions included tags for boldface, italics, and

typewriter styles.

Then, as graphical browsers became standard equipment, there was a

greatly magnified focus on presentation. In particular, Netscape began

introducing proprietary extensions to HTML that only its browser could

render properly. These extensions generally produced attractive effects

on pages and users began using Netscape together. This compelled

content authors to write to the Netscape Navigator browser-a practice

that often produced dreadful results on other browsers.

Not to be left out, Microsoft began producing its own browser-Internet

Explorer-and its own proprietary HTML extensions with it. This started

the ever-escalating battle between Netscape and Microsoft, each trying

to outdo the other in each new beta release of its browser. The content

authors watching the battle were frequently left confused and frustrated

since it was hard to tell which browser to write for and how long it

would be before the next new set of bells and whistles became

available.

As designers push for more control over page attributes like margins

and line spacing, the evolution of HTML stands at a division in the

road. One path sees the continued introduction of proprietary tags by

the people making the browsers-a path that will lead HTML into even

muddier waters. The other path sees an explicit separation of content

and presentation by introducing HTML style sheets-documents that

provide specifications for how content should look on screen.

82 Web Programming Client-Side Scripting

By separating these two otherwise competing forces, HTML is free to

evolve as a language that describes document content and will be less

susceptible to seemingly endless extensions by browser software

companies.

The World Wide Web Consortium is already pushing the idea of style

sheets. It has reserved a tag for embedding style information within an

HTML document. It is also considering proposals for a general style

sheet language that could be used to describe how a document should

look just as HTML describes what the page contains. This chapter

surveys the approaches to style sheets as they have been proposed and

implemented.

Definition of CSS

CSS stands for Cascading Style Sheets and provides HTML with layout

and design. Along with making things pretty and aesthetically pleasing,

CSS also provides a general structure to HTML.

Some of the most important CSS properties are:

♠ Color - specifying text color.

♠ Font-family - specifying font type.

♠ Font-size - specifying font size.

♠ Text-decoration - specifying text decorations, such as underline.

♠ Font-style - specifying font styling, such as italics.

♠ Font-weight - specifying font weight, such as bold.

♠ Width - specifying the width of an element.

♠ Height - specifying the height of an element.

♠ Background - specifying the background.

♠ Border - specifying a border.

♠ Text-shadow - specifying a shadow for our text.

♠ Float - specifying the float of an element, such as left or right.

♠ Position - specifying the position of an element, such as absolute

or relative.

♠ Z-index - specifying the z-index of an element, such as 999; which

would put that styled element 'on-top' of all other elements that

either have a negative z-index specified or no z-index specified.

♠ Padding - specifying padding inside an element, such as padding

around text.

♠ Margin - specifying the margin between elements.

CSS Syntax

A CSS rule has two main parts: a selector, and one or more

declarations:

83 CSS

The selector is normally the HTML element you want to style.

Each declaration consists of a property and a value.

The property is the style attribute you want to change. Each property

has a value.

Example:

 CSS declarations always end with a semicolon, and declaration groups

are surrounded by curly brackets:
<html> <head>

<style type="text/css">

P {

color:red;

text-align:center;

}

</style>

</head>

<body>

<p>Hello World!</p>

<p>This paragraph is styled with CSS.</p>

</body>

</html>

CSS Implementation

CSS can be implemented in three different ways to our HTML:

1. Inline

2. Internal

3. External

Using Inline CSS

So, let’s use some inline CSS to change a few things in our HTML

structure.

84 Web Programming Client-Side Scripting

Output:

Color

As you have probably noticed, we have used the English word for the

color that we want to use. But there are two other ways we can define

colors in CSS; the rgb color values and something called Hexadecimal.

All three types of defining colors in CSS are acceptable; you can read

more about colors in CSS here:

http://www.w3schools.com/cssref/css_colors.asp.

We will be using a mixture of the three different ways to define colors in

CSS.

CSS has several options for defining colors of both text and background

areas on your pages. These options can entirely replace the color

http://www.w3schools.com/cssref/css_colors.asp

85 CSS

attributes in plain HTML. In addition, you get new options that you just

didn't have in plain HTML.

Value Description

color <color>

background-color transparent <color>

background-image none url(<URL>)

background-repeat

repeat

repeat-x

repeat-y

no-repeat

background-attachment Scroll fixed

background-position

<percentage>

<length>

top

center

bottom

left

right

background

<background-color>

<background-image>

<background-repeat>

<background-

attachment>

<background-position>

color <color>

background-color
transparent

<color>

background-image None url(<URL>)

background-repeat

repeat

repeat-x

repeat-y

no-repeat

86 Web Programming Client-Side Scripting

Example Program

<html><head>

<style type="text/css">

body{

background-color:#d0e4fe;}

h1

{

color:orange;

text-align:center;

}

p{

font-family:"Times New Roman";

font-size:20px;

}</style></head>

<body>

<h1>CSS example!</h1>

<p>This is a paragraph.</p>

</body></html>

Using Internal CSS

As you can see, our inline CSS is very effective, but perhaps not very

efficient. Inline CSS is good for adding slight changes or specifying

colors for different text elements, but it starts to get a little 'wordy' and

messy.

When we add CSS to HTML either; externally or in the head section, we

can use selectors.

Selectors allow us to 'select' or 'point' to a specific element of our

HTML. CSS can use HTML elements as selectors, such as the

paragraph, anchor, em and strong tags. If we referred to these elements

as selectors in our CSS we would be styling every paragraph, anchor,

em and strong element in our HTML.

Let’s try the same thing, but this time adding our CSS to the head

section of our HTML document and using selectors.

87 CSS

I have added an additional em tag, to demonstrate using classes as

selectors in CSS.

Using Ids in CSS

As you may have guessed, we are using a class to identify our bottom

em tag. The dot notation before the class name allows us to select or

target an element in our HTML by its class name.

88 Web Programming Client-Side Scripting

We can use ids like so:

All we have to do is change 'class' to 'id' for the element we are

referring to, and change the '.' in front of our CSS selector (in the head

element) to the '#' symbol.

The # symbol (when not used as href attribute) is generally used to

signify an id within the HTML. The major different between using

classes and id's is; classes can be re-used time and time again in the

89 CSS

same HTML document, whereas id's can only be used once in a single

HTML document. You can think of a class as a group or multiple items,

and an id as a single identification.

The output of the above code is the same (we have also set a font-size

for the #bottom em tag) as the output for the previous code example, we

are getting the same results as we are basically telling the browser the

same thing, just in a different way.

There are several ways to make selectors 'unique' or point to only 'some'

parts of the HTML.

A class is an effective way of referencing a specific part of our HTML;

we can basically pinpoint the section of our code that contains the

content we wish to style.

Note: When using em in CSS it's slightly different to the em tag in

HTML. In HTML the em tag renders italic text. In CSS the em value can

be used as a unit of measurement. A font size with a value greater than

1em will generate text larger than the default for that web page or User

Agent, but does not render text as italic.

Ids must be unique, we can only use the same id only once in our HTML

page.

With classes, we can 'reuse' the class several times in our HTML page.

Creating External CSS

To add an external CSS to our HTML, we need to tell the HTML all

about it- what relation it has to our HTML, the type of file it is and its

location and name.

Remember the Meta tags from before?

Well this is implemented in the same way (completely different

concepts), by adding a line of code into our head section of our HTML

document. We use a rel value to tell HTML what the CSS file's relation

is to the HTML, a type value to tell the HTML the type of file it is and a

href value telling the HTML where the file is located and its name.

Note: CSS files have a file extension of .css

We can add an external style sheet to our HTML by using link tag.

So, let’s create a small CSS file, to use externally.

90 Web Programming Client-Side Scripting

Go ahead and save the above styling into a new CSS file, titled

style.css.

Linking to External CSS

If our style sheet (CSS) were located in the same directory (or folder) as

our HTML file, we would add the tag to the head section of the HTML

document, like so:

91 CSS

Just as our CSS example before, no matter of its location (inline,

internal and external), the CSS will tell the browser to render the styles

for our HTML in the same way.

Inefficient Selectors

Let’s have a look at some inefficient CSS selectors with some external

CSS:

The advantages of using external CSS include the ability to completely

separate the HTML from the CSS, to reduce individual file size and

length, make things more readable and use effective selectors; meaning

selectors that target multiple elements where necessary. Rather than

having a large portion of CSS repeating and applying the same styling

to different elements, we could ‘join’ the selectors together to create a

smaller file size or to simply be more efficient with our use of CSS.

We can target or select multiple elements by separating the selectors

with a comma in the CSS.

92 Web Programming Client-Side Scripting

Efficient Selectors

HTML Element State

With our new CSS abilities, we are able to style a HTML element,

based on its 'state'. HTML Element state refers to the 'state' that the

elements are in; some of these include: Hover and Active.

You may have noticed that when you hover over a link on a web page,

that the link will change color (among other aspects). We can do this

with almost any HTML elements.

In the above example we have styled all 'hovered' over articles and the

anchor tags, when the article is being 'hovered' over with a background

of red and a text color of white.

93 CSS

Along with defining hover style, we can define active style. Active is

defined by an element that is 'actively' being clicked on, i.e. if you are

clicking a button, that button's state is now active.

In the above example, an article that is 'active' will have a background

color of almost black.

CSS Background

CSS background properties are used to define the background effects of

an element.

CSS properties used for background effects are:

background-color

background-image

background-repeat

background-attachment

background-position

Background Color

The background-color property specifies the background color of an

element.
body {background-color:#b0c4de;}

Background Image

The background-image property specifies an image to use as the

background of an element. By default, the image is repeated so it covers

the entire element.
body {background-image:url('paper.gif');

Background Image - Repeat Horizontally or Vertically

By default, the background-image property repeats an image both

horizontally and vertically. Some images should be repeated only

horizontally or vertically, or they will look strange, like this:
body

{

background-image:url('gradient2.png');

}

94 Web Programming Client-Side Scripting

CSS Background Properties

Property Description Values

background Sets all the background

properties in one

declaration

background-color

background-

image

background-

repeat

background-

attachment

background-

position

inherit

background-

attachment

Sets whether a

background image is

fixed or scrolls with the

rest of the page

scroll

fixed

inherit

background-color Sets the background

color of an element

color-rgb

color-hex

color-name

transparent

inherit

background-image Sets the background

image for an element

url(URL)

none

inherit

background-

position

Sets the starting position

of a background image

top left

top center

top right

center left

center center

center right

bottom left

bottom center

bottom right

x% y%

xpos ypos

inherit

95 CSS

background-repeat Sets if/how a

background image will

be repeated

repeat

repeat-x

repeat-y

no-repeat

inherit

CSS Box Model

One of the fundamental understandings of CSS is the Box Model. The

Box model helps us to understand the layout and design of HTML and

CSS.

The CSS Box model is made up of content, Padding, Borders and

Margins.

So, what are Padding, Margins and Borders?

As you can see, padding is the space that surrounds our content;

borders are what surround the padding and margins are what surround

the borders.

By definition:

-The padding is the area that separates the content from the border.

-The border is the area that separates the padding from the margin.

-The margin is the area that separates our box from surrounding

elements.

96 Web Programming Client-Side Scripting

How do we define these?

In the above example, we have set the padding for the top and bottom of

the element to 50px and the left and right to 30px. The margin has been

set to 0px for the top and bottom and the left and right margin is set to

auto. When we set a value of auto in our margins, it will basically

'centre' the element within the containing or parent element.

As you may have noticed, we have also set our border. Our border is

1px wide for each side, is solid and has a color of black.

The above code renders the following output:

97 CSS

Note that the rendered output will be 152px in height (top and bottom

padding, plus the width of our borders and the specified height of our

element) and 562px in width (left and right padding, plus the width of

our borders and the specified width of our element).

Fonts

When using CSS we can change the font-family of our text. We can

specify multiple font-families for any given element. If the user has the

first specified font on their system; that is the font that will be used. If

the user does not have our first specified font on their system, the

browser will attempt to render the next font and so on until one of the

fonts are located on the users system. These font-families are separated

with a comma and the proceeding fonts are referred to as fallback fonts.

In the above example we are saying that our header should have a font-

family of Helvetica Neue, if that is not located on the users system, we

will try Helvetica. If Helvetica is not located on the user's system, we

will 'fall-back' to a generic sans-serif font.

You can find out more about sans-serif fonts here:

http://en.wikipedia.org/wiki/Sansserif.

Text Color

The color property is used to set the color of the text. The color can be

specified by:

name - a color name, like "red"

RGB - an RGB value, like "rgb(255,0,0)"

Hex - a hex value, like "#ff0000"

Example
body {color:blue;}

h1 {color:#00ff00;}

h2 {color:rgb(255,0,0);

http://en.wikipedia.org/wiki/Sansserif

98 Web Programming Client-Side Scripting

Property Description Values

color Sets the color of a text color

direction Sets the text direction ltr

rtl

line-height Sets the distance between lines normal

number

length

letter-spacing Increase or decrease the space

between characters

normal

length

text-align Aligns the text in an element left

right

center

justify

text-

decoration

Adds decoration to text none

underline

overline

line-through

blink

text-indent Indents the first line of text in an

element

length

%

text-shadow none

color

length

text-transform Controls the letters in an element none

capitalize

uppercase

lowercase

unicode-bidi normal

embed

bidi-override

http://www.w3schools.com/css/pr_text_color.asp
http://www.w3schools.com/css/pr_text_direction.asp
http://www.w3schools.com/css/pr_dim_line-height.asp
http://www.w3schools.com/css/pr_text_text-align.asp
http://www.w3schools.com/css/pr_text_text-decoration.asp
http://www.w3schools.com/css/pr_text_text-decoration.asp
http://www.w3schools.com/css/pr_text_text-indent.asp
http://www.w3schools.com/css/pr_text_text-transform.asp

99 CSS

Font Families

In CSS, there are two types of font family names:generic family - a

group of font families with a similar look (like "Serif" or "Monospace")

font family - a specific font family (like "Times New Roman" or

"Arial").

Example

Property Description Values

font-family Specifies the font family for text family-name

generic-family

inherit

font-size Specifies the font size of text xx-small

x-small

small

medium

large

x-large

xx-large

smaller

larger

length

%

inherit

vertical-align Sets the vertical alignment of an

element

baseline

sub

super

top,text-top

middle

bottom

text-bottom

length

%

white-space Sets how white space inside an

element is handled

normal

pre,nowrap

word-spacing Increase or decrease the space

between words

normal

length

http://www.w3schools.com/css/pr_font_font-size.asp
http://www.w3schools.com/css/pr_pos_vertical-align.asp
http://www.w3schools.com/css/pr_text_white-space.asp
http://www.w3schools.com/css/pr_text_word-spacing.asp

100 Web Programming Client-Side Scripting

font-style Specifies the font style for text normal

italic

oblique

inherit

font-variant Specifies whether or not a text

should be displayed in a small-

caps font

normal

small-caps

inherit

font-weight Specifies the weight of a font normal

bold

Example Program

<html> <head>

<style type="text/css">

p.normal {font-weight:normal;}

p.light {font-weight:lighter;}

p.thick {font-weight:bold;}

p.thicker {font-weight:900;}

</style></head>

<body>

<p class="normal">This is a paragraph.</p>

<p class="light">This is a paragraph.</p>

<p class="thick">This is a paragraph.</p>

<p class="thicker">This is a paragraph.</p>

</body></html>

Quiz

1. Create a new HTML file and an external Style sheet.

2. Using all of the techniques, concepts and code that you have

learned; create your first Website. This exercise is to get you started

with HTML5 and CSS- in the real world!

WHAT’s NEXT?

http://www.w3schools.com/css/pr_font_font-style.asp
http://www.w3schools.com/css/pr_font_font-variant.asp
http://www.w3schools.com/css/pr_font_weight.asp

CHAPTER FOUR

JS

Introduction

JS (JavaScript) allows you to embed commands in an HTML page.

When a compatible Web browser downloads the page, your JavaScript

commands are loaded by the Web browser as a part of the HTML

document. These commands can be triggered when the user clicks on

page items, manipulates gadgets and fields in an HTML form, or moves

through the page history list.

Some computer languages are compiled; you run your program through

a compiler, which performs a one-time translation of the human-

readable program into a binary that the computer can execute.

JavaScript is an interpreted language; the computer must evaluate the

program every time it's run. You embed your JavaScript commands

within an HTML page, and any browser that supports JavaScript can

interpret the commands and act on them.

JavaScript is powerful and simple. If you've ever programmed in

BASIC or Visual Basic, you'll find JavaScript easy to pick up.

Scripting Language

HTML provides a good deal of flexibility to page authors, but HTML

by itself is static; once written, HTML documents can't interact with the

user other than by presenting hyperlinks. Creative use of CGI scripts

(which run on Web servers) has made it possible to create more

interesting and effective interactive sites, but some applications really

demand programs or scripts that are executed by the client.

JavaScript allows Web authors to write small scripts that execute on the

users' browsers instead of on the server. For example, an application

that collects data from a form and then posts it to the server can validate

the data for completeness and correctness before sending it to the

server. This can greatly improve the performance of the browsing

session since users don't have to send data to the server until it's been

verified as correct.

Another important use of Web browser scripting languages like

JavaScript comes as a result of the increased functionality being

introduced for Web browsers in the form of Java applets, plug-ins,

ActiveX Controls, and VRML objects and worlds. Each of these things

can be used to add extra functions and interactivity to a Web page.

Scripting languages act as the glue that binds everything together. A

Web page might use an HTML form to get some user input and then set

102 Web Programming Client-Side Scripting

a parameter for an ActiveX Control based on that input. It is a script

that will usually actually carry this out.

History

JavaScript was developed in 10 days in May 1995 by Brendan Eich,

then working at Netscape, as the HTML scripting language for their

browser Navigator 2. Brendan Eich said (at the O'Reilly Fluent

conference in San Francisco in April 2015): "I did JavaScript in such a

hurry; I never dreamed it would become the assembly language for the

Web".

JavaScript is a dynamic functional object-oriented programming

language that can be used for:

1. Enriching a web page by

• generating browser-specific HTML content or CSS styling,

• inserting dynamic HTML content,

• producing special audio-visual effects (animations).

2. Enriching a web user interface by

• implementing advanced user interface components,

• validating user input on the client side,

• automatically pre-filling certain form fields.

3. Implementing a front-end web application with local or remote data

storage, as described in the book Building Front-End Web Apps with

Plain JavaScript [http://web-engineering.info/JsFrontendApp-Book].

4. Implementing a front-end component for a distributed web

application with remote data storage managed by a back-end

component, which is a server-side program that is traditionally written

in a server-side language such as PHP, Java or C#, but can nowadays

also be written in JavaScript with NodeJS.

5. Implementing a complete distributed web application where both the

front-end and the back-end components are JavaScript programs. The

version of JavaScript that is currently supported by web browsers is

called "ECMAScript 5.1", or simply "ES5", but the next two versions,

called "ES6" and "ES7" (or "ES 2015" and "ES 2016", as new versions

are planned on a yearly basis), with lots of added functionality and

improved syntaxes, are around the corner (and already partially

supported by current browsers and back-end JS environments).

JavaScript

JavaScript provides a fairly complete set of built-in functions and

commands, allowing you to perform math calculations, manipulate

103 JS

strings, play sounds, open up new windows and new URLs, and access

and verify user input to your Web forms.

Code to perform these actions can be embedded in a page and executed

when the page is loaded. You can also write functions containing code

that is triggered by events you specify. For example, you can write a

JavaScript method that is called when the user clicks the Submit button

of a form, or one that is activated when the user clicks a hyperlink on

the active page.

JavaScript can also set the attributes, or properties, of ActiveX

Controls, Java applets, and other objects present in the browser. This

way, you can change the behavior of plug-ins or other objects without

having to rewrite them. For example, your JavaScript code could

automatically set the text of an ActiveX Label Control based on what

time the page is viewed. JavaScript and VB Script are very similar, with

similar syntax and capabilities.

However, JavaScript and VB Script are different languages and you

should be careful not to mix them up when you are programming.

JavaScript Features

JavaScript commands are embedded in your HTML documents.

Embedding JavaScript in your pages requires only one new HTML

element: <SCRIPT> and </SCRIPT>. The <SCRIPT> element takes

the attributes LANGUAGE, which specifies the scripting language to use

when evaluating the script.

JavaScript itself resembles many other computer languages. If you're

familiar with C, C++, Pascal, HyperTalk or Visual Basic, you'll

recognize the similarities. If not, don't worry-the following are some

simple rules that will help you understand how the language is

structured:

• JavaScript is case-sensitive.

• JavaScript is pretty flexible about statements. A single

statement can cover multiple lines and you can put multiple

short statements on a single line-just make sure to add a

semicolon at the end of each statement.

• Braces (the { and } characters) group statements into blocks; a

block may be the body of a function or a section of code that

gets executed in a loop or as part of a conditional test.

If you're a Java, C, or C++ programmer, you might be puzzled when

looking at JavaScript programs-sometimes, each line ends with a

semicolon, sometimes not. In JavaScript, unlike those other languages,

the semicolon is not required at the end of each line.

104 Web Programming Client-Side Scripting

JavaScript Instructions Conventions

Even though JavaScript is a simple language, it's quite expressive. Here,

you learn a small number of simple rules and conventions that will ease

your learning process and speed your use of JavaScript.

Hiding Your Scripts

You'll probably be designing pages that may be seen by browsers that

don't support JavaScript. To keep those browsers from interpreting your

JavaScript commands as HTML-and displaying them-wrap your scripts

as follows:

<SCRIPT LANGUAGE="JavaScript">

<!-- This line opens an HTML comment

document.write("You can see this script's

output, but not its source.")

<!-- This line opens and closes a comment -->

</SCRIPT>

The opening <!-- comment causes Web browsers that do not support

JavaScript to disregard all text they encounter until they find a matching

-->, so they don't display your script. You do have to be careful with the

<SCRIPT> tag, though; if you put your <SCRIPT> and </SCRIPT>

block inside the comments, the Web browser will ignore them also.

Comments

Including comments in your programs to explain what they do is

usually good practice-JavaScript is no exception. The JavaScript

interpreter ignores any text marked as comments, so don't be shy about

including them. You can use two types of comments: single-line and

multiple-line.

Single-line comments start with two slashes (//), and they're limited to

one line. Multiple-line comments must start with /* on the first line and

end with */ on the last line. Here are a few examples:
 // this is a legal comment

/ illegal -- comments start with two slashes

/* Multiple-line comments can

 be spread across more than one line, as long

as they end. */

/* illegal -- this comment doesn't have an end!

/// this comment's OK, because extra slashes are

ignored //

105 JS

Using <NOSCRIPT>

You can improve the compatibility of your JavaScript Web pages

through the use of the <NOSCRIPT>...</NOSCRIPT> HTML tags.

Any HTML code that is placed between these container tags will not

appear on a JavaScript-compatible Web browser but will be displayed

on one that is not able to understand JavaScript. This allows you to

include alternative content for your users that are using Web browsers

that don't understand JavaScript. At the very least, you can let them

know that they are missing something, as in this example:
<NOSCRIPT>

<HR>If you are seeing this text, then your Web

browser

 doesn't speak JavaScript!<HR>

</NOSCRIPT>

JavaScript Language

JavaScript was designed to resemble Java, which in turn looks a lot like

C and C++. The difference is that Java was built as a general-purpose

object language, while JavaScript is intended to provide a quicker and

simpler language for enhancing Web pages and servers. In this section,

you learn the building blocks of JavaScript and how to combine them

into legal JavaScript programs. JavaScript was developed by the

Netscape Corporation, which maintains a great set of examples and

documentation for it.

Identifiers

An identifier is just a unique name that JavaScript uses to identify a

variable, method, or object in your program. As with other

programming languages, JavaScript imposes some rules on what names

you can use. All JavaScript names must start with a letter or the

underscore character, and they can contain both upper- and lowercase

letters and the digits 0 through 9.

JavaScript supports two different ways for you to represent values in

your scripts: literals and variables. As their names imply, literals are

fixed values that don't change while the script is executing, and

variables hold data that can change at any time.

Literals and variables have several different types; the type is

determined by the kind of data that the literal or variable contains. The

following are some of the types supported in JavaScript:

• Integers: Integer literals are made up of a sequence of digits

only; integer variables can contain any whole-number value. Octal

106 Web Programming Client-Side Scripting

(base 8) and hexadecimal (base 16) integers can be specified by

prefixing them with a leading "0" or "0x," respectively.

• Floating-point numbers: The number 10 is an integer, but 10.5

is a floating-point number. Floating-point literals can be positive or

negative and they can contain either positive or negative exponents

(which are indicated by an e in the number). For example,

3.14159265 is a floating-point literal, as is 6.023e23 (6.023[times]

1023 or Avogadro's number).

• Strings: Strings can represent words, phrases, or data, and

they're set off by either double or single quotation marks. If you

start a string with one type of quotation mark, you must close it

with the same type. Special characters, such as \n and \t, can also

be utilized in strings.

• Booleans: Boolean literals can have values of either TRUE or

FALSE; other statements in the JavaScript language can return

Boolean values.

Functions, Objects and Properties

JavaScript is modelled after Java, an object-oriented language. An

object is a collection of data and functions that have been grouped

together. A function is a piece of code that plays a sound, calculates an

equation, or sends a piece of e-mail, and so on. The object's functions

are called methods and its data are called its properties. The JavaScript

programs you write will have properties and methods and will interact

with objects provided by the Web browser, its plug-ins, Java applets,

ActiveX Controls, and other things.

Though the terms function and method are often used interchangeably,

they are not the same. A method is a function that is part of an object.

For instance, writeln is one of the methods of the object document.

Built-In Objects and Functions

Individual JavaScript elements are objects. For example, string literals

are string objects and they have methods that you can use to change

their case, and so on. JavaScript can also use the objects that represent

the Web browser in which it is executing, the currently displayed page,

and other elements of the browsing session.

You access objects by specifying their name. For example, the active

document object is named document. To use document's properties or

methods, you add a period and the name of the method or property you

want. For example, document.title is the title property of the

107 JS

document object, and explorer.length calls the length member of

the string object named explorer. Remember, literals are objects, too.

Properties

Every object has properties, even literals. To access a property, just use

the object name followed by a period and the property name. To get the

length of a string object named address, you can write the following:
 address.length

You get back an integer that equals the number of characters in the

string. If the object you're using has properties that can be modified,

you can change them in the same way. To set the color property of a

house object, just use the following line:
 house.color = "blue"

You can also create new properties for an object just by naming them.

For example, say you define a class called customer for one of your

pages. You can add new properties to the customer object as follows:
customer.name = "Joe Smith"

customer.address = "123 Elm Street"

customer.zip = "90210"

Finally, knowing that an object's methods are just properties is

important. You can easily add new properties to an object by writing

your own function and creating a new object property using your own

function name. If you want to add a Bill method to your customer

object, you can do so by writing a function named BillCustomer and

setting the object's property as follows:
 customer.Bill = BillCustomer;

To call the new method, you use the following:
 customer.Bill()

Array and Object Properties

JavaScript objects store their properties in an internal table that you can

access in two ways. You've already seen the first way-just use the

properties' names. The second way, arrays, allows you to access all of

an object's properties in sequence. The following function prints out all

the properties of the specified object:

function DumpProperties(obj, obj_name) {

 result = "" // set the result string to

blank

 for (i in obj)

 result += obj_name + "." + i + " = " +

obj[i] + "\n"

108 Web Programming Client-Side Scripting

return result

}

So not only can you access all of the properties of the document object,

for instance, by property name, using the dot operator (for example,

document.href), you can also use the objects property array (for

example, document[1], though this may not be the same property

as document.href). JavaScript provides another method of array

access that combines the two, known as associative arrays. An

associative array associates a left- and right-side element, and the value

of the right side can be used by specifying the value of the left side as

the index. Objects are set up by JavaScript as associative arrays with the

property names as the left side, and their values as the right. So the

href property of the document object could be accessed using
document["href"].

Programming with JavaScript

JavaScript has a lot to offer page authors. It's not as flexible as C or

C++, but it's quick and simple. Most importantly, it's easily embedded

in your WWW pages so that you can maximize their impact with a little

JavaScript seasoning. This section covers a detailed explanation of the

language's features.

Expressions
An expression is anything that can be evaluated to get a single value.

Expressions can contain string or numeric literals, variables, operators,

and other expressions, and they can range from simple to quite

complex. For example, the following are expressions that use the

assignment operator to assign numerical or string values to variables:
x = 7;

str = "Hello, World!";

By contrast, the following is a more complex expression whose final

value depends on the values of the quitFlag and formComplete

variables:
(quitFlag == TRUE) & (formComplete == FALSE)

Operators

Operators do just what their name suggests: they operate on variables

or literals. The items that an operator acts on are called its operands.

Operators come in the two following types:

- Unary operators: These operators require only one operand and the

operator can come before or after the operand. The -- operator, which

109 JS

subtracts one from the operand, is a good example. Both --count and

count-- subtract one from the variable count.

- Binary operators: These operators need two operands. The four

math operators (+ for addition, - for subtraction, * for multiplication,

and / for division) are all binary operators, as is the = assignment

operator you saw earlier.

Assignment Operators

Assignment operators take the result of an expression and assign it to a

variable. JavaScript doesn't allow you to assign the result of an

expression to a literal. One feature of JavaScript that is not found in

most other programming languages is that you can change a variable's

type on the fly. Consider the HTML document shown in Listing below.

Var-fly.htm-JavaScript Allows You to Change the Data Type of

Variables
<HTML>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Hide this script from incompatible Web

browsers!

function typedemo() {

 var x;

 document.writeln("<HR>");

 x = Math.PI;

 document.writeln("x is " + x + "
");

 x = FALSE;

 document.writeln("x is " + x + "
");

 document.writeln("<HR>");

}

<!-- -->

</SCRIPT>

<TITLE>Changing Data Types on the Fly!</TITLE>

</HEAD>

<BODY BGCOLOR=#FFFFFF>

If your Web browser doesn't support JavaScript,

this is all you will see!

<SCRIPT LANGUAGE="JavaScript">

<!-- Hide this script from incompatible Web

browsers!

typedemo();

<!-- -->

110 Web Programming Client-Side Scripting

</SCRIPT>

</BODY>

</HTML>

This short program first prints the (correct) value of pi in the variable x.

In most other languages, though, trying to set a floating-point variable

to a Boolean value would either generate a compiler error or a runtime

error. JavaScript happily accepts the change and print x's new value:

FALSE (see output).

Output

Because JavaScript variables are loosely typed, not only their value can

be changed, but also their data type.

Table 4.1: Assignment Operators that Provide Shortcuts to Doing

Assignments and Math Operations at the Same Time

The most common assignment operator, =, simply assigns the value of

an expression's right side to its left side. In the previous example, the

variable x got the integer value 7 after the expression was evaluated.

For convenience, JavaScript also defines some other operators that

combine common math operations with assignment; they're shown in

Table 4.1.

Operator What It Does Two Equivalent Expressions

+= Adds two values x+=y and x=x+y

 Adds two strings
string += "HTML" and string =

string + "HTML"

-= Subtracts two values x-=y and x=x-y

= Multiples two values a=b and a=a*b

/= Divides two values e/=b and e=e/b

111 JS

Math Operators

The preceding sections gave you a sneak preview of the math operators

that JavaScript furnishes. You can either combine math operations with

assignments, as shown in Table 4.1, or use them individually. As you

would expect, the standard four math functions (addition, subtraction,

multiplication, and division) work just as they do on an ordinary

calculator. The negation operator, -, is a unary operator that negates the

sign of its operand. Another useful binary math operator is the modulus

operator, %. This operator returns the remainder after the integer

division of two integer numbers. For instance, in the expression
 x = 13%5;

the variable x would be given the value of 3.

JavaScript also adds two useful unary operators: -- and ++, called,

respectively, the decrement and increment operators. These two

operators modify the value of their operand, and they return the new

value. They also share a unique property: they can be used either before

or after their operand. If you put the operator after the operand,

JavaScript returns the operand's value and then modifies it. If you take

the opposite route and put the operator before the operand, JavaScript

modifies it and returns the modified value. The following short example

might help clarify this seemingly odd behavior:
x = 7; // set x to 7

a = --x; // set x to x-1, and return the new

x; a = 6

b = a++; // set b to a, so b = 6, then add 1

to a; a = 7

x++; // add one to x; ignore the returned

value

Comparison Operators

Comparing the value of two expressions to see whether one is larger,

smaller, or equal to another is often necessary. JavaScript supplies

several comparison operators that take two operands and return TRUE

if the comparison is TRUE, and FALSE if it's not. (Remember, you can

use literals, variables, or expressions with operators that require

expressions.) Table 4.2 shows the JavaScript comparison operators.

112 Web Programming Client-Side Scripting

Table 4.2: Comparison Operators That Allow Two JavaScript

Operands to Be Compared in a Variety of Ways

Operator Read It As Returns TRUE When

== Equals The two operands are equal

!= Does not equal The two operands are unequal

< Less than
The left operand is less than the right

operand

<= Less than or The left operand is

 equal to less than or equal to

 the right operand

> Greater than
The left operand is greater than the

right operand

>= Greater than or The left operand is

 equal to greater than or equal

 to the right operand

Thinking of the comparison operators as questions may be helpful.

When you write the following:
(x >= 10)

you're really saying, "Is the value of variable x greater than or equal to

10?" The return value answers the question, TRUE or FALSE.

Logical Operators

Comparison operators compare quantity or content for numeric and

string expressions, but sometimes you need to test a logical value, like

whether a comparison operator returns TRUE or FALSE. JavaScript's

logical operators allow you to compare expressions that return logical

values. The following are JavaScript's logical operators:

- &&, read as "and." The && operator returns TRUE if both its input

expressions are TRUE. If the first operand evaluates to FALSE, &&

returns FALSE immediately, without evaluating the second operand.

Here's an example:

x = TRUE && TRUE; // x is TRUE

x = FALSE && FALSE; // x is FALSE

x = FALSE && TRUE; // x is FALSE

113 JS

- ||, read as "or." This operator returns TRUE if either of its operands is

TRUE. If the first operand is TRUE, || returns TRUE without evaluating

the second operand. Here's an example:

x = TRUE || TRUE; // x is TRUE

x = FALSE || TRUE; // x is TRUE

x = FALSE || FALSE; // x is FALSE

- !, read as "not." This operator takes only one expression, and it

returns the opposite of that expression, so !TRUE returns FALSE, and

!FALSE returns TRUE.

Note that the "and" and "or" operators don't evaluate the second

operand if the first operand provides enough information for the

operator to return a value. This process, called short-circuit evaluation,

can be significant when the second operand is a function call. For

example,
keepGoing = (userCancelled == FALSE) &&

(theForm.Submit())

If userCancelled is TRUE, the second operand, which submits the

active form, isn't called.

String Operators

A few of the operators that were listed above can be used for string

manipulation as well. All of the comparison operators can be used on

strings, too; the results depend on standard lexicographic ordering, but

comparisons aren't case-sensitive. Additionally, the + operator can also

be used to concatenate strings. The expression
 str = "Hello, " + "World!";

assigns the resulting string Hello, World! to the variable str.

JavaScript Control Structures

Some scripts are plain; they'll execute the same way every time, once

per page. For example, if you add a JavaScript to play a sound when

users visit your home page, it doesn't need to evaluate any conditions or

do anything more than once. More sophisticated scripts might require

that you take different actions under different circumstances. You might

also want to repeat the execution of a block of code-perhaps by a set

number of times, or as long as some condition is TRUE. JavaScript

provides constructs for controlling the execution flow of your script

based on conditions, as well as repeating a sequence of operations.

114 Web Programming Client-Side Scripting

Testing Conditions

JavaScript provides a single type of control statement for making

decisions: the if...else statement. To make a decision, you supply

an expression that evaluates to TRUE or FALSE; which code is

executed depends on what your expression evaluates to.

The simplest form of if...else uses only the if part. If the specified

condition is TRUE, the code following the condition is executed; if not,

it's skipped. For example, in the following code fragment, the message

appears only if the condition (that the lastModified.year

property of the document object says it was modified before 1995) is

TRUE:

if (document.lastModified.year < 1995)

 document.write("Danger! This is a mighty old

document.")

You can use any expression as the condition. Since expressions can be

nested and combined with the logical operators, your tests can be pretty

sophisticated. For example:

if ((document.lastModified.year >= 1995) &&

(document.lastModified.month >= 10))

 document.write("This document is reasonably

current.")

The else clause allows you to specify a set of statements to execute

when the condition is FALSE, for instance
if ((document.lastModified.year >= 1995) &&

(document.lastModified.month >= 10))

 document.write("This document is reasonably

current.")

else

 document.write("This document is quite old.")

Repeating Actions

JavaScript provides two different loop constructs that you can use to

repeat a set of operations. The first, called a for loop, executes a set

of statements some number of times. You specify three expressions: an

initial expression that sets the values of any variables you need to use, a

condition that tells the loop how to see when it's done, and an increment

expression that modifies any variables that need it. Here's a simple

example:

for (count=0; count < 100; count++)

115 JS

 document.write("Count is ", count);

This loop executes 100 times and prints out a number each time. The

initial expression sets the counter, count, to zero. The condition tests to

see whether count is less than 100 and the increment expression

increments count.

You can use several statements for any of these expressions, as follows:
for (count=0, numFound = 0; (count < 100) &&

(numFound < 3); count++)

 if (someObject.found()) numFound++;

This loop either loops 100 times or as many times as it takes to "find"

three items-the loop condition terminates when count >= 100 or when

numFound >= 3.

The second form of loop is the while loop. It executes statements as

long as its condition is TRUE. For example, you can rewrite the first for

loop in the preceding example as follows:

count = 0

while (count < 100) {

 if (someObject.found()) numFound++;

 document.write("Count is ", count)

}

Which form you use depends on what you're doing; for loops are useful

when you want to perform an action a set number of times, and while

loops are best when you want to keep doing something as long as a

particular condition remains TRUE. Notice that by using curly braces,

you can include more than one command to be executed by the while

loop (this is also TRUE of for loops and if...else constructs).

Reserved Words

JavaScript reserves some keywords for its own use. You cannot define

your own methods or properties with the same name as any of these

keywords; if you do, the JavaScript interpreter complains.

JavaScript's reserved keywords are shown in Table 4.3.

Table 4.3: JavaScript Reserved Keywords Should Not Be Used in Your

JavaScripts

abstract double instanceof super

boolean else int switch

break extends interface synchronized

byte FALSE long this

116 Web Programming Client-Side Scripting

case final native throw

catch finally new throws

char float null transient

class for package TRUE

const function private try

continue goto protected var

default if public void

do import

static

implements

short

return

with

while

Because JavaScript is still being developed and refined, the list of

reserved keywords might change or grow over time. Whenever a new

version of JavaScript is released, it might be a good idea to look over its

new capabilities with an eye towards conflicts with your JavaScript

programs.

Other JavaScript Statements

This section provides a quick reference to some of the other JavaScript

commands. The commands are listed in alphabetical order-many have

examples. Here's what the formatting of these entries mean:

-All JavaScript keywords are in italics font.

- Words in italics represent user-defined names or statements.

- Any portions enclosed in square brackets ([and]) are optional.

- {statements} indicates a block of statements, which can consist

of a single statement or multiple statements enclosed by curly

braces.

break statement

The break statement terminates the current while or for loop and

transfers program control to the statement following the terminated

loop.

Syntax
 break

Example

The following function scans the list of URLs in the current document

117 JS

and stops when it has seen all URLs or when it finds a URL that

matches the input parameter searchName:

function findURL(searchName) {

 var i = 0;

 for (i=0; i < document.links.length; i++) {

 if (document.links[i] == searchName) {

 document.writeln(document.links[i] +

"
")

 break;

 }

 }

}

continue statement

The continue statement stops executing the statements in a while or for

loop, and skips to the next iteration of the loop. It doesn't stop the loop

altogether like the break statement; instead, in a while loop, it jumps

back to the condition, and in a for loop, it jumps to the update

expression.

Syntax
 continue

Example

The following function prints the odd numbers between 1 and x; it has a

continue statement that goes to the next iteration when i is even:
function printOddNumbers(x) {

 var i = 0

 while (i < x) {

 i++;

 if ((i % 2) == 0) // the % operator

divides & returns the remainder

 continue

 else

 document.write(i, "\n")

 }

}

for loop

A for loop consists of three optional expressions, enclosed in

parentheses and separated by semicolons, followed by a block of

statements executed in the loop. These parts do the following:

118 Web Programming Client-Side Scripting

- The starting expression, initial_expr, is evaluated before the loop

starts. It is most often used to initialize loop counter variables, and

you're free to use the var keyword here to declare new variables.

- A condition is evaluated on each pass through the loop. If the

condition evaluates to TRUE, the statements in the loop body are

executed. You can leave the condition out, and it always evaluates to

TRUE. If you do so, make sure to use break in your loop when it's

time to exit.

- An update expression, update_expr, is usually used to update or

increment the counter variable or other variables used in the

condition. This expression is optional; you can update variables as

needed within the body of the loop if you prefer.

- A block of statements are executed as long as the condition is

TRUE. This block can have one or multiple statements in it.

Syntax
for ([initial_expr;] [condition;]

[update_expr]) {

 statements

}

Example

This simple for statement prints out the numbers from 0 to 9. It starts by

declaring a loop counter variable, i, and initializing it to zero. As long

as i is less than 9, the update expression increments i, and the statements

in the loop body are executed.
for (var i = 0; i <= 9; i++) {

 document.write(i);

}

 for...in loop

The for...in loop is a special form of the for loop that iterates the

variable variable-name over all the properties of the object named

object-name. For each distinct property, it executes the statements in the

loop body.

Syntax
for (var in obj) {

 statements

}

Example

119 JS

The following function takes as its arguments an object and the object's

name. It then uses the for...in loop to iterate through all the object's

properties, and writes them into the current Web page.
function dump_props(obj,obj_name) {

 for (i in obj)

 document.writeln(obj_name + "." + i

+ " = " + obj[i] + "
");

}

function statement

The function statement declares a JavaScript function; the function may

optionally accept one or more parameters. To return a value, the

function must have a return statement that specifies the value to return.

All parameters are passed to functions by value-the function gets the

value of the parameter but cannot change the original value in the caller.

Syntax
function name([param] [, param] [...,

param]) {

 statements

}

Example
function PageNameMatches(theString) {

 return (document.title == theString)

}

if...else statement

The if...else statement is a conditional statement that executes the

statements in block1 if condition is TRUE. In the optional else clause, it

executes the statements in block2 if condition is FALSE. The blocks of

statements can contain any JavaScript statements, including further

nested if statements.

Syntax
if (condition) {

 statements

}

[else {

 statements}]

Example
if (Message.IsEncrypted()) {

 Message.Decrypt(SecretKey);

120 Web Programming Client-Side Scripting

}

else {

 Message.Display();

}

new statement

The new statement is the way that new objects are created in JavaScript.

For instance, if you defined the following function to create a house

object
function house (rms,stl,yr,garp) { // define a

house object

 this.room = rms; // number of rooms

(integer)

 this.style = stl; // style (string)

 this.yearBuilt = yr; // year built

(integer)

 this.hasGarage = garp; // has garage?

(boolean)

}

you could then create an instance of a house object using the new

statement, as in the following:

var myhouse = new

house(3,"Tenement",1962,false);

A few notes about this example. First, note that the function used to

create the object doesn't actually return a value. The reason it is able to

work is that it makes use of the this object, which always refers to the

current object. Second, while the function defines how to create the

house object, none is actually created until the function is called using

the new statement.

return statement

The return statement specifies the value to be returned by a function.

Syntax
return expression;

Example

The following simple function returns the square of its argument, x,

where x is any number.
function square(x) {

 return x * x;

}

121 JS

this statement

You use this to access methods or properties of an object within the

object's methods. The this statement always refers to the current object.

Syntax
this.property

Example

If setSize is a method of the document object, then this refers to the

specific object whose setSize method is called:
function setSize(x,y) {

 this.horizSize = x;

 this.vertSize = y;

}

This method sets the size for an object when called as follows:
document.setSize(640,480);

var statement
The var statement declares a variable varname, optionally initializing it

to have value. The variable name varname can be any JavaScript

identifier, and value can be any legal expression (including literals).

Syntax

var varname [= value] [, var varname [=

value]] [..., var varname [= value]]

Example

var num_hits = 0, var cust_no = 0;

while statement

The while statement contains a condition and a block of statements. The

while statement evaluates the condition; if condition is TRUE, it

executes the statements in the loop body. It then re-evaluates condition

and continues to execute the statement block as long as condition is

TRUE. When condition evaluates to FALSE, execution continues with

the next statement following the block.

Syntax
while (condition) {

 statements

}

122 Web Programming Client-Side Scripting

Example

The following simple while loop iterates until it finds a form in the

current document object whose name is "OrderForm", or until it runs

out of forms in the document:
x = 0;

while ((x < document.forms[].length) &&

(document.forms[x].name

[ic:ccc]!= "OrderForm")) {

 x++

}

with statement

The with statement establishes object as the default object for the

statements in block. Any property references without an object are then

assumed to be for object.

Syntax
with object {

 statements

}

Example
with document {

 write "Inside a with block, you don't need to

specify the object.";

 bgColor = gray;

}

JavaScript and Web Browsers

The most important thing you will be doing with your JavaScripts is

interacting with the content and information on your Web pages, and

through it, with your user. JavaScript interacts with your Web browser

through the browsers object model. Different aspects of the Web

browser exist as different objects, with properties and methods that can

be accessed by JavaScript. For instance, document.write() uses

the write method of the document object. Understanding this Web

browser object model is crucial to using JavaScript effectively. Also,

understanding how the Web browser processes and executes your

scripts is also necessary.

123 JS

Scripts Execution

When you put JavaScript code in a page, the Web browser evaluates the

code as soon as it's encountered. Functions, however, don't get executed

when they're evaluated; they just get stored for later use. You still have

to call functions explicitly to make them work. Some functions are

attached to objects, like buttons or text fields on forms, and they are

called when some event happens on the button or field. You might also

have functions that you want to execute during page evaluation. You

can do so by putting a call to the function at the appropriate place in the

page.

Where to Put Your Scripts

You can put scripts anywhere within your HTML page, as long as

they're surrounded with the <SCRIPT>...</SCRIPT> tags. One good

system is to put functions that will be executed more than once into the

<HEAD> element of their pages; this element provides a convenient

storage place. Since the <HEAD> element is at the beginning of the

file, functions and VB Script code that you put there will be evaluated

before the rest of the document is loaded. Then you can execute the

function at the appropriate point in your Web page by calling it, as in

the following:

<SCRIPT language="JavaScript">

<!-- Hide this script from incompatible

Web browsers!

myFunction();

<!-- -->

</SCRIPT>

Another way to execute scripts is to attach them to HTML elements that

support scripts. When scripts are matched with events attached to these

elements, the script is executed when the event occurs. This can be done

with HTML elements, such as forms, buttons, or links. Consider code

below, which shows a very simple example of attaching a JavaScript

function to the onClick attribute of a HTML forms button (see Figure

4.1).

Code: Button1.htm-Calling a JavaScript Function with the Click of a

Button
<HTML>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

124 Web Programming Client-Side Scripting

<!-- Hide this script from incompatible

Web browsers!

function pressed() {

 alert("I said Don't Press Me!");

}

<!-- -->

</SCRIPT>

<TITLE>JavaScripts Attached to HTML

Elements</TITLE>

</HEAD>

<BODY BGCOLOR=#ffffff>

<FORM NAME="Form1">

 <INPUT TYPE="button" NAME="Button1"

VALUE="Don't Press Me!"

 onClick="pressed()">

</FORM>

</BODY>

</HTML>

JavaScript also provides you with an alternate way to attach functions to

objects and their events. For simple actions, you can attach the

JavaScript directly to the attribute of the HTML form element, as

shown in code below. Each of these listings will produce the output

shown in Figure 4.1 above.

Figure 4.1

JavaScript functions can be attached to form fields through several

different methods.

125 JS

Code: Button2.htm-Simple VB Scripts Can Be Attached Right to a Form

Element
<HTML>

<HEAD>

<TITLE>JavaScripts Attached to HTML

Elements</TITLE>

</HEAD>

<BODY BGCOLOR=#FFFFFF>

<FORM NAME="Form1">

 <INPUT TYPE="button" NAME="Button1"

VALUE="Don't Press Me!"

 onClick="alert('I said Don\'t

Press Me!')">

</FORM>

</BODY>

</HTML>

Sometimes, though, you have code that shouldn't be evaluated or

executed until after all the page's HTML has been parsed and displayed.

An example would be a function to print out all the URLs referenced in

the page. If this function is evaluated before all the HTML on the page

has been loaded, it misses some URLs, so the call to the function should

come at the page's end. The function itself can be defined anywhere in

the HTML document; it is the function call that should be at the end of

the page.

JavaScript code to modify the actual HTML contents of a document (as

opposed to merely changing the text in a form text input field, for

instance) must be executed during page evaluation.

JavaScript Applications

A common example scripting application generally involves interaction

with HTML forms in order to perform client-side validation of the

forms data before submission. JavaScript can perform this function very

well.

Manipulating Windows

This example shows how it is possible to create an HTML forms-based

control panel that uses JavaScript to load and execute other JavaScripts

in their own windows. This is done through the use of the window Web

browser object, its properties and methods.

The next Code shows the "main program", the top-level HTML

document giving access to the control panel (see Figure 4.2).

126 Web Programming Client-Side Scripting

The JavaScript in this example is very simple, and is included in the

onClick attribute of the forms <input> tag. Clicking on the button

executes the JavaScript window method open:
window.open('cp.htm','ControlPanel','width=300

,height=250')

This creates a window named "ControlPanel" that is 300[ts]250 pixels

in size, and loads the HTML document Cp.htm.

Code: Cpmain.htm-A JavaScript Attached Right to a forms Button Will

Create a New Window when Clicked
<HTML>

<HEAD>

<TITLE>JavaScript Window Example</TITLE>

</HEAD>

<BODY BGCOLOR=#FFFFFF>

<CENTER><H3>Activate the control panel by

clicking below</H3></CENTER>

<HR>

<FORM>

<CENTER>

<TABLE>

<TR><TD><INPUT TYPE="button"

NAME="ControlButton" VALUE="Control Panel"

onClick="window.open('cp.htm','ControlPanel',

'width=300,height=250')"></TD></TR>

</TABLE>

</CENTER>

</FORM>

</BODY>

</HTML>

127 JS

Figure 4.2

The Control Panel button calls a JavaScript and creates a new

browser window.

When the button is clicked, Cp.htm is loaded into its own window, as

shown in Figure 4.2 (note that in this figure and the next, the windows

have been manually rearranged so that they all can be seen). This

HTML document uses an interface of an HTML form organized in a

table to give access through this control panel to other JavaScript

applications, namely a timer and a real-time clock. The next Code

shows Cp.htm. The JavaScript functions openTimer(), openClock(),

closeTimer(), and closeClock() are used to open and close windows for

a JavaScript timer and clock, respectively. These functions are attached

to forms buttons that make up the control panel. Note that JavaScript

variables timerw and clockw because they are defined outside of any of

the functions, they can be used anywhere in the JavaScript document.

They are used to remember whether or not the timer and clock windows

are opened.

Code: Cp.htm-This HTML form Calls JavaScripts to Create and

Destroy Windows for a Timer and or a Real-Time Clock
<HTML>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Hide this script from incompatible Web

browsers!

var timerw = null;

var clockw = null;

function openTimer() {

 if(!timerw)

128 Web Programming Client-Side Scripting

 timerw =

open("cptimer.htm","TimerWindow","width=300,he

ight=100");

}

function openClock() {

 if(!clockw)

 clockw =

open("cpclock.htm","ClockWindow","width=50,hei

ght=25");

}

function closeTimer() {

 if(timerw) {

 timerw.close();

 timerw = null;

 }

}

function closeClock() {

 if(clockw) {

 clockw.close();

 clockw = null;

 }

}

<!-- -->

</SCRIPT>

</HEAD>

<BODY BGCOLOR=#EEEEEE>

<FORM>

<CENTER>

<TABLE>

<TR><TD>To Open Timer...</TD>

 <TD ALIGN=CENTER>

 <INPUT TYPE="button"

NAME="ControlButton" VALUE="Click Here!"

 onClick="openTimer()"></TD></TR>

<TR><TD>To Close Timer...</TD>

 <TD ALIGN=CENTER>

 <INPUT TYPE="button"

NAME="ControlButton" VALUE="Click Here!"

 onClick="closeTimer()"></TD></TR>

<TR><TD>To Open Clock...</TD>

 <TD ALIGN=CENTER>

129 JS

 <INPUT TYPE="button" NAME="ControlButton"

VALUE="Click Here!"

 onClick="openClock()"></TD></TR>

<TR><TD>To Close Clock...</TD>

 <TD ALIGN=CENTER>

 <INPUT TYPE="button"

NAME="ControlButton" VALUE="Click Here!"

 onClick="closeClock()"></TD></TR>

<TR><TD>To Open Both...</TD>

 <TD ALIGN=CENTER>

 <INPUT TYPE="button"

NAME="ControlButton" VALUE="Click Here!"

 onClick="openTimer();openClock();"></TD></TR>

<TR><TD>To Close Both...</TD>

 <TD ALIGN=CENTER>

 <INPUT TYPE="button"

NAME="ControlButton" VALUE="Click Here!"

onClick="closeTimer();closeClock();"></TD></TR

>

<TR><TD></TD></TR>

<TR><TD>To Close Everything...</TD>

 <TD ALIGN=CENTER>

 <INPUT TYPE="button"

NAME="ControlButton" VALUE="Click Here!"

onClick="closeTimer();closeClock();self.close(

);"></TD></TR>

</TABLE></CENTER></FORM></BODY></HTML>

Figure 4.3

130 Web Programming Client-Side Scripting

JavaScript can create new Web browser windows, with definable

widths and heights.

Codes below show cptimer.htm and cpclock.htm, the HTML documents

to implement the JavaScript timer and real-time clock. Note that each

uses the properties of the JavaScript Date object to access time

information. Figure 4.4 shows the Web page with the control panel,

timer, and real-time clock windows all open.

Code: Cptimer.htm-The JavaScript Date Object Can Be Used to Keep

Track of Relative Time
<HTML>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Hide this script from incompatible

Web browsers!

var timerID = 0;

var tStart = null;

function UpdateTimer() {

 if(timerID) {

 clearTimeout(timerID);

 clockID = 0;

 }

 if(!tStart)

 tStart = new Date();

 var tDate = new Date();

 var tDiff = tDate.getTime() -

tStart.getTime();

 var str;

 tDate.setTime(tDiff);

 str = ""

 if (tDate.getMinutes() < 10)

 str += "0" + tDate.getMinutes() +

":";

 else

 str += tDate.getMinutes() + ":";

 if (tDate.getSeconds() < 10)

 str += "0" + tDate.getSeconds();

 else

 str += tDate.getSeconds();

 document.theTimer.theTime.value = str;

131 JS

 timerID = setTimeout("UpdateTimer()",

1000);

}

function Start() {

 tStart = new Date();

 document.theTimer.theTime.value =

"00:00";

 timerID = setTimeout("UpdateTimer()",

1000);

}

function Stop() {

 if(timerID) {

 clearTimeout(timerID);

 timerID = 0;

 }

 tStart = null;

}

function Reset() {

 tStart = null;

 document.theTimer.theTime.value =

"00:00";

}

<!-- -->

</SCRIPT>

</HEAD>

<BODY BGCOLOR=#AAAAAA

onload="Reset();Start()"

onunload="Stop()">

<FORM NAME="theTimer">

<CENTER>

<TABLE>

<TR><TD COLSPAN=3 ALIGN=CENTER>

 <INPUT TYPE=TEXT NAME="theTime"

SIZE=5></TD></TR>

<TR><TD></TD></TR>

<TR><TD><INPUT TYPE=BUTTON NAME="start"

VALUE="Start"

 onclick="Start()"></TD>

 <TD><INPUT TYPE=BUTTON NAME="stop"

VALUE="Stop"

 onclick="Stop()"></TD>

132 Web Programming Client-Side Scripting

 <TD><INPUT TYPE=BUTTON NAME="reset"

VALUE="Reset"

 onclick="Reset()"></TD>

 </TR>

</TABLE>

</CENTER>

</FORM>

</BODY>

</HTML>

Code: Cpclock.htm The Date Object Can Also Be Used to Access the

Real-Time Clock of the Client System

<HTML>

<HEAD>

<TITLE>Clock</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!-- Hide this script from incompatible

Web browsers!

var clockID = 0;

function UpdateClock() {

 if(clockID) {

 clearTimeout(clockID);

 clockID = 0;

 }

 var tDate = new Date();

 var str;

 str = "";

 if (tDate.getHours() < 10)

 str += "0" + tDate.getHours() + ":";

 else

 str += tDate.getHours() + ":";

 if (tDate.getMinutes() < 10)

133 JS

 str += "0" + tDate.getMinutes() +

":";

 else

 str += tDate.getMinutes() + ":";

 if (tDate.getSeconds() < 10)

 str += "0" + tDate.getSeconds();

 else

 str += tDate.getSeconds();

 document.theClock.theTime.value = str;

 clockID = setTimeout("UpdateClock()",

1000);

}

function StartClock() {

 clockID = setTimeout("UpdateClock()",

500);

}

function KillClock() {

 if(clockID) {

 clearTimeout(clockID);

 clockID = 0;

 }

}

<!-- -->

</SCRIPT>

</HEAD>

<BODY BGCOLOR=#CCCCCC

onload="StartClock()"

onunload="KillClock()">

<CENTER>

<FORM NAME="theClock">

 <INPUT TYPE=TEXT NAME="theTime" SIZE=8>

</FORM>

</CENTER>

</BODY>

</HTML>

134 Web Programming Client-Side Scripting

Figure 4.4

Multiple browser windows can be created by JavaScript, each running

its own JavaScripts and performing its functions independently.

For More JS Apps See Appendix A!!!

WHAT’s NEXT?

REFERENCES

Andrew Glassner, Computer Graphics, Microsoft Research, Olin

Lathrop, Cognivision, Inc.

Andrew H. Watt, Jinjer L. Simon, Jonathan Watt: Teach Yourself

JavaScript in 21 Days, Pearson Education, ISBN 0672322978.

Copyright 2015.

Angel, Edward, 2012, Interactive computer graphics: a top-down

approach with shader-based OpenGL /Edward Angel, David

Shreiner.—6th ed.p. cm. ISBN-13: 978-0-13-254523-5 (alk. paper)

Animation, https://www.brownbagfilms.com/labs/entry/flash-

animation-tutorial-part-1

 Ashley Menhennett, Pablo Farias Navarro, ‘A Guide to HTML5

and CSS3’ Copyright ZENVA 2014.

Chris Bates, “Web Programming, Building Internet applications”,

2nd edition, WILEY Dreamtech, Copyright 2013.

Daniel Schuller 2011, C# Game Programming: For Serious Game

Creation, Course Technology, a part of Cengage Learning 20

Channel Center Street Boston.

Danny Goodman, Scott Markel, “JavaScript and DHTML”,

Cookbook, O'Reilly & Associates, ISBN 0596004672. Copyright

2015.

Gerd Wagner, “JavaScript Front-End Web App Tutorial” e-book

Retrieved February 2016.

Jim O'Donnell, Web Design Book –JavaScript e-book Retrieved

2012.

JS history: http://en.wikipedia.org/wiki/Brendan_Eich.

JS history:

http://www.w3.org/community/webed/wiki/A_Short_History_of_Ja

vaScript.

JS https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInte

ger.

http://en.wikipedia.org/wiki/Brendan_Eich
http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

136 Web Programming Client-Side Scripting

JSON:

https://developer.mozilla.org/en/JavaScript/Reference/Global_Obje

cts/JSON.

K.Dharmarajan M.Sc, M.Phil., Asst Professsor, Web

Technology Notes. Vels University, Chennai-117.

Michael Bailey, Introduction to Computer Graphics, Course Notes

for SIGGRAPH ’99, Course Organizer University of California at

San Diego, and San Diego Supercomputer Center.

Norman I. Badler , Computer Animation Techniques, Platinum

Edition, e-book.

Russell Chun, Adobe Flash Professional CC Classroom in a Book

(2014 release) 2015 Adobe Systems Incorporated and its licensors.

All rights reserved.

Steve Bark, An Introduction to Adobe Photoshop Copyright 2012

ISBN 978-87-403-0016-1

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/JSON

APPENDIX A

JS Applications

PULL DOWN MENU

Pull down menu that’ll load content on the

parent window

<script>

<!--

var

win3=window.open("remote2.htm","","width=300,hei

ght=30,resizable")

win3.creator=self

//-->

</script>

<html>

<head>

<title>Remote Control</title>

</head>

<script>

<!--

function gogo()

{

creator.location=document.combo.go.options[docum

ent.combo.go.selectedIndex].value

}

//-->

</script>

<body bgcolor="#FFFFFF">

<form name="combo">

 <p><select name="go" size="1"

onChange="gogo()">

 <option selected

value="../javaindex.htm">JavaScript

Tutorials</option>

 <option value="../howto/webbuild.htm">Web

Building Tutorials</option>

 <option value="../cutpastejava.htm">Free

JavaScripts</option>

138 Web Programming Client-Side Scripting

 <option value="../java/javafront.htm">Free

Java Applets</option>

 <option value="../frontpage.htm">FrontPage

Tutorials</option>

 <option value="../backgr.htm">Web

Graphics</option>

 </select> <input type="button" value="Go"

onClick="gogo()"> <input type="button"

 value="Close" onClick="window.close()"> </p>

</form>

</body>

</html>

INSTALL INFORMATION VALIDATION

<!-- TWO STEPS TO INSTALL INFORMATION

VALIDATION:

1. Paste the coding into the HEAD of your HTML

document

2. Put the last code into the BODY of your HTML

document -->

<!-- STEP ONE: Copy this code into the HEAD of

your HTML document -->

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- This script and many more are available

online from -->

<!-- The JavaScript Source!!

http://javascriptsource.com -->

139 JS Solutions

<!-- Begin

function validate(){

var digits="0123456789"

var temp

if (document.testform.Name.value=="") {

alert("No Name !")

return false

}

if (document.testform.age.value=="") {

alert("Invalid Age !")

return false

}

for (var

i=0;i<document.testform.age.value.length;i++){

temp=document.testform.age.value.substring(i,i+1

)

if (digits.indexOf(temp)==-1){

alert("Invalid Age !")

return false

 }

 }

return true

}

// End -->

</SCRIPT>

<!-- STEP TWO: Copy this code into the BODY of

your HTML document -->

<BODY>

<FORM name="testform" onSubmit="return

validate()">

Name:<input type="text" size=30 name="Name">

Age:<input type="text" size=3 name="age">

<input type="submit" value="Submit">

</FORM>

MULTIPLE USERS LOGIN

<!-- TWO STEPS TO INSTALL MULTIPLE USERS:

 1. Copy the first code into the HEAD of your

HTML document

140 Web Programming Client-Side Scripting

 2. Put the last coding into the BODY of your

HTML document -->

<!-- STEP ONE: Copy this code into the HEAD of

your login HTML document -->

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!--Total Java Scripts 99 - Next Step Software--

>

<!-- Begin

function Login(){

var done=0;

var username=document.login.username.value;

username=username.toLowerCase();

var password=document.login.password.value;

password=password.toLowerCase();

if (username=="millenium" &&

password=="millenium") {

window.location="page1.htm"; done=1; }

if (username=="member2" &&

password=="password2") {

window.location="page2.htm"; done=1; }

if (username=="member3" &&

password=="password3") {

window.location="page3.htm"; done=1; }

if (done==0) { alert("Invalid login!"); }

}

// End -->

</SCRIPT>

<!-- STEP TWO: Paste this code into the BODY of

your HTML document -->

<BODY>

<center>

<form name=login>

<table width=225 border=1 cellpadding=3>

<tr><td colspan=2><center><font

size="+2">Members-Only

Area!</center></td></tr>

<tr><td>Username:</td><td><input name=username

></td></tr>

141 JS Solutions

<tr><td>Password:</td><td><input name=password

></td></tr>

<tr><td colspan=2 align=middle><input

type=button value="Login!"

onClick="Login()"></td></tr>

</table>

</form>

</center>

<P>

<!-- Script Size: 1.60 KB --></P>

<P>Username: millenium</P>

<P><FONT style="BACKGROUND-COLOR:

#ffffff">Password: millenium

</P>

THREE TRIES LOGIN

<!-- TWO STEPS TO INSTALL THREE TRIES:

 1. Put the first code into the BODY of your

HTML document

 2. Change protectedpage.html to your

protected filename -->

<!-- STEP ONE: Copy this code into the BODY of

your HTML document -->

<BODY>

<SCRIPT LANGUAGE="JavaScript">

<!-- This script and many more are available

online from -->

<!-- The JavaScript Source!!

http://javascriptsource.com -->

<!-- Begin

function password() {

var testV = 1;

var pass1 = prompt('Please Enter Your

Password','');

while (testV < 3) {

if (!pass1)

history.go(-1);

if (pass1 == "password") {

142 Web Programming Client-Side Scripting

alert('You Got it Right!');

// Change the following URL to your protected

filename

window.open('protectedpage.html');

break;

}

testV+=1;

var pass1 =

prompt('Access Denied - Password Incorrect,

Please Try Again.','Password');

}

if (pass1!="password" & testV ==3)

history.go(-1);

return " ";

}

document.write(password());

</SCRIPT>

<CENTER>

<FORM>

<input type="button" value="Enter Password

Protected Area" onClick="password()">

</FORM>

</CENTER>

BLOCK IP ADDRESS FROM YOUR PAGE

<html>

<body bgcolor=ffffff>

<script language="javascript">

var ip = '24.0.217.223'

if (ip == '206.186.23.178') {

alert("STOP! You are viewing this page from an

IP address that is not allowed!");

alert("Why can't you guys just leave me

alone?");

if (confirm("Do you want to leave peacefully? Or

will I have to help you?"))

{location.href="http://www.mydesktop.com" } else

{ ("OK you choose I don't care! Bye bye! Don't

143 JS Solutions

come back!");

{location.href="http://www.mydesktop.com" }} }

</SCRIPT>

</body>

</html>

SEARCH ENGINE

<script language="javascript">

 var key = "";

 function makeEntry (){

 this.Date = "";

 this.Name="";

 this.URL = "";

 this.Desc = "";

 this.Category = "";

 return this;

 }

 function makeArray(n) {

 this.length = n;

 for (var k = 1; k <= n; k++) {

 this[k] = "";

 }

 return this;

 }

 function makeLinks(size) {

 this.length = size;

 for (var r=1; r<= size; r++)

{

this[r] = new makeEntry();

this[r].Date = datesArray[r];

this[r].Name = namesArray[r];

this[r].URL = urlsArray[r];

this[r].Desc = descArray[r];

}

 return this;

 }

var linksize=0

datesArray = new makeArray(linksize);

144 Web Programming Client-Side Scripting

namesArray = new makeArray(linksize);

urlsArray = new makeArray(linksize);

descArray = new makeArray(linksize);

var arraycount=0

arraycount += 1

datesArray[arraycount] = "1/1/97 "

urlsArray[arraycount] = "http://www.yahoo.com"

namesArray[arraycount] = "Yahoo"

descArray[arraycount] = "An excellent search

engine available free on the web"

//alert(arraycount)

arraycount += 1

datesArray[arraycount] = "1/1/97 "

urlsArray[arraycount] = "http://www.lycos.com"

namesArray[arraycount] = "Lycos"

descArray[arraycount] = "An extensive search

engine, great alternative to Yahoo"

//alert(arraycount)

arraycount += 1

datesArray[arraycount] = "1/1/97 "

urlsArray[arraycount] =

"http://www.webcrawler.com"

namesArray[arraycount] = "Webcrawler"

descArray[arraycount] = "A great search engine

from the makers of AOL"

//alert(arraycount)

arraycount += 1

datesArray[arraycount] = "1/1/97 "

urlsArray[arraycount] = "http://www.search.com"

namesArray[arraycount] = "Search.com"

descArray[arraycount] = "A collection of

hundreds of search engines; from Yahoo to a

seach engine which looks up phone numbers."

//alert(arraycount)

arraycount += 1

datesArray[arraycount] = "1/1/97 "

urlsArray[arraycount] =

"http://altavista.digital.com"

namesArray[arraycount] = "AltaVista"

145 JS Solutions

descArray[arraycount] = "This search engine has

the largest database of websites of all search

engines on the web"

//alert(arraycount)

linksize = arraycount;

// ----end data -------

function showAll(linkobj) {

 for (var s=1; s<= linkobj.length; s++) {

showLink(linkobj,s);

 }

 }

function showLink (links, index) {

 //document.write("<table border>");

 document.write("<tr><td>" +

links[index].Date +"</td>");

 document.write("<td><a href=" +

links[index].URL +">" + links[index].Name +

"</td>");

 document.write("<td>" +

links[index].Desc + "</td></tr>");

 //document.write("</table>");

 }

function searchLinks(links, keyword){

 document.write("Search results for keyword:"

+keyword +"
");

 document.write("<table border>");

 for (var q=1; q<=links.length; q++) {

 //document.write(q+".")

 if (links[q].URL.indexOf(keyword) != -1){

 //

document.write("Search Results for keyword:

"+keyword+ "
" +links[q].Name +"<p>")

 //document.write("Search

Results for keyword: "+keyword+ "
");

showLink(links,q);

 continue;

 }

 if (links[q].Desc.indexOf(keyword) != -1) {

 showLink(links,q);

146 Web Programming Client-Side Scripting

 continue;

 }

 if (links[q].Date.indexOf(keyword) != -1) {

showLink(links,q);

 continue;

 }

 if (links[q].Name.indexOf(keyword) != -1) {

showLink(links,q);

 continue;

 }

 }

 document.write("</table>");

 }

// final stuff

// the main program ---

jsi = new makeLinks(linksize);

document.write("<title>Search</title><body

bgcolor=white>");

searchLinks(jsi, prompt("Please enter keywords:)

\rSearch everywhere for :","try typing search

engine"));

document.write("<hr>");

document.write("This searches all areas (Date,

Name, URL, and Description) for matches ");

document.write("and returns a list of hits. The

keyword is case sensitive. This script can be

easily modified to fit your needs. ");

document.write("Click search again for

another search. <hr>");

document.write("<form><input type=button

onClick='history.go(0)' value='Search

Again'></form>");

// show all the links

//document.write("<table border>");

//showAll(jsi);

//document.write("</table>");

</script>

147 JS Solutions

SHOPPING CART

Shopping Cart Instructions

Edited JShop by MH7 2018 is built around six HTML files as follows:

bindex.htm - sets up the two frames needed for the shopping basket

bmenu.htm - menu of options for the shopping basket (bottom frame)

bitem.htm - a page containing some dummy items (more about this in a

minute).

bbasket.htm - page which displays the contents of the basket etc.

bbuy.htm - first stage of ordering, this then should go to another page

on a secure server for entering credit card details etc.

bfinish.htm - the final ordering page which would normally reside on a

secure server for the user to enter their credit card details.

The index file sets up two frames, the bottom one called 'menu' (which

should be left as menu in order for the JavaScript routines to work) and

a top one called 'main'. At the moment index.htm is set up to load

bmenu.htm into the bottom frame (which should not be changed) and

bitem.htm into the top frame (this can be changed if you wish).

bitem.htm calls routines for adding items to the shopping basket from

bmenu.htm. Whatever way you set up your items on these pages the

function you need to call in order to add items to the shopping basket is

buyItem(). It can either be used as a link:
<A HREF="javascript:top.menu.buyItem(product,

price,quantity)"> Buy

148 Web Programming Client-Side Scripting

or as an onClick statement on a form button:

<INPUT TYPE=BUTTON
onClick="javascript:top.menu.buyItem(prod,price,

quant)">

You'll notice in the code that quantities are picked up from a form box.

For instance, the quantity box for the first item is called cbtquant. So

all you have to do is pick up the value in that box when you call

buyItem().
top.menu.buyItem('Chemical Brothers T-Shirt',

'15.95', document.itemsform.cbtquant.value)

Finally, in bbuy.htm and bfinish.htm you'll have to amend the FORM

tag in order to point to your correct form mailing script. Contact your

web space provider for more details if you're not sure or contact us and

we'll try and help you out.

And that's really all there is to it. There is some commenting in the code

to help you understand what's happening.

BINDEX.htm

<HTML>

<!-- JShop Edited by MH7 2018 -->

<!-- by MH7 @ (www.habeebmamman.com) -->

<!-- FRAME SETUP -->

<!-- bottom frame is called 'menu' -->

<!-- top frame is called 'main' -->

<HEAD>

<TITLE>MH7Shop (January 2018)</TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

</SCRIPT>

<frameset rows="80%,20%">

<frame src="bitem.htm" name="main">

<frame src="bmenu.htm" name="menu" scrolling=no>

</frameset>

<BODY>

</BODY>

</HTML>

view-source:file:///C:/Users/mr%20habeeb%20Abdullahi/Desktop/lectnotes/2017/internet%20programming/advance%20web%20tools4me%20%28PROGRAMM-7252A8%29/miscellanious/cart/jshop/bitem.htm
view-source:file:///C:/Users/mr%20habeeb%20Abdullahi/Desktop/lectnotes/2017/internet%20programming/advance%20web%20tools4me%20%28PROGRAMM-7252A8%29/miscellanious/cart/jshop/bmenu.htm

149 JS Solutions

BITEM.htm

<HTML>

<!-- JShop Edited by MH7 2018 -->

<!-- by MH7 @ (www.habeebmamman.com) -->

<!-- ITEM PAGE

-->

<!-- you can have as many item pages as you

like, simply -->

<!-- use the same methods to call the buyItem

function -->

<!-- NOTE: buyItem function is in bmenu.htm and

is called -->

<!-- by referencing the frame it's in, -->

<!-- e.g. top.menu.buyitem() -->

<HEAD>

<TITLE>Shopping Items</TITLE>

</HEAD>

<BODY>

<h2>Shopping Items...</h2>

<p>

<FORM NAME="itemsform">

<!-- Put items in a table -->

150 Web Programming Client-Side Scripting

<table>

<tr><th

align=left>Item</th><th>Quantity</th></tr>

<tr><td>Chemical Brother's T-Shirt</td><td>

<!-- Display quantity box -->

<INPUT TYPE="value" NAME="cbtquant" VALUE="1"

SIZE=3>

</td><td>

<!-- Display button that calls buyItem() -->

<INPUT TYPE="button" NAME="cbtadd" VALUE="Add"

onclick="top.menu.buyItem('Chemical Brothers T-

Shirt','0.45',

document.itemsform.cbtquant.value)">

</td></tr>

<!-- Same as above for any other items, just

remember to -->

<!-- change the input names etc. -->

<tr><td>Prodigy 'Keith' Doll</td><td>

<INPUT TYPE="value" NAME="pkdquant" VALUE="1"

SIZE=3>

</td><td>

<INPUT TYPE="button" NAME="pkdadd" VALUE="Add"

onclick="top.menu.buyItem('Prodigy Keith

Doll','24.44',

document.itemsform.pkdquant.value)">

</td></tr>

<tr><td>A Positive Life</td><td>

<INPUT TYPE="value" NAME="aplquant" VALUE="1"

SIZE=3>

</td><td>

<INPUT TYPE="button" NAME="apladd" VALUE="Add"

onclick="top.menu.buyItem('A Positive Life',

'1000.45', document.itemsform.aplquant.value)">

</td></tr>

</TABLE>

</BODY>

</HTML>

151 JS Solutions

BMENU.htm

<HTML>

<!-- JShop Edited by MH7 2018 -->

<!-- by MH7 @ (www.habeebmamman.com) -->

<!-- BASKET MENU

-->

<HEAD>

<TITLE>Shopping Menu</TITLE>

</HEAD>

<BODY>

<center>

<SCRIPT LANGUAGE="JavaScript">

 function alterError(value) {

 if (value<=0.99) {

 newPounds = '0';

 } else {

 newPounds = parseInt(value);

 }

newPence = parseInt((value+.0008 - newPounds)*

100);

 if (eval(newPence) <= 9)

newPence='0'+newPence;

152 Web Programming Client-Side Scripting

newString = newPounds + '.' + newPence;

 return (newString);

 }

 // buyItem - adds an item to the shooping

basket

 function buyItem(newItem, newPrice,

newQuantity) {

 if (newQuantity <= 0) {

 rc = alert('The quantity

entered is incorrect');

 return false;

 }

if (confirm('Add '+newQuantity+' x '+newItem+'

to basket')) {

index = document.cookie.indexOf("TheBasket");

 countbegin =

(document.cookie.indexOf("=", index) + 1);

 countend = document.cookie.indexOf(";", index);

 if (countend == -1) {

 countend = document.cookie.length;

 }

document.cookie="TheBasket="+document.cookie.sub

string(countbegin,

countend)+"["+newItem+","+newPrice+"#"+newQuanti

ty+"]";

 }

 return true;

 }

 //resetShoppingBasket - resets to shopping

basket to empty

 function resetShoppingBasket() {

index = document.cookie.indexOf("TheBasket");

 document.cookie="TheBasket=.";

 }

</SCRIPT>

Shopping

Items |

Check

Basket |

153 JS Solutions

Buy

Goods

JShop Edited

by MH7 is ©2018, <a href="http://www.

habeebmamman.com/" target="_top">MH7

</form>

<script

language="JavaScript">resetShoppingBasket()</SCR

IPT>

</center>

</BODY>

</HTML>

BBASKET.htm

<HTML>

<!-- JShop Edited by MH7 2018 -->

<!-- by MH7 @ (www.habeebmamman.com) -->

<!-- SHOPPING BASKET

-->

<HEAD>

<TITLE>Shopping Basket</TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

 // showItems() - displays shopping basket

in a table

 function showItems() {

 index =

document.cookie.indexOf("TheBasket");

 countbegin =

(document.cookie.indexOf("=", index) + 1);

 countend =

document.cookie.indexOf(";", index);

 if (countend == -1) {

 countend = document.cookie.length;

154 Web Programming Client-Side Scripting

}

 fulllist =

document.cookie.substring(countbegin, countend);

 totprice = 0;

 document.writeln('<TABLE BORDER>');

document.writeln('<TR><TD>Item</TD><TD>Quantity</TD><TD>Cost

Each</TD><td>Total

Cost<TD>Action</TD></TR>');

 itemlist = 0;

 for (var i = 0; i <= fulllist.length;

i++) {

 if (fulllist.substring(i,i+1) == '[') {

 itemstart = i+1;

 } else if

(fulllist.substring(i,i+1) == ']') {

 itemend = i;

 thequantity =

fulllist.substring(itemstart, itemend);

 itemtotal = 0;

 itemtotal = (eval(theprice*thequantity));

 temptotal = itemtotal * 100;

 totprice = totprice + itemtotal;

 itemlist=itemlist+1;

document.writeln('<tr><td>'+theitem+'</td><td

align=right>'+thequantity+'</td><td

align=right>'+theprice+'</td><td

align=right>'+top.menu.alterError(itemtotal)+'</

td><td>Remov

e</td></tr>');

 } else if

(fulllist.substring(i,i+1) == ',') {

theitem = fulllist.substring(itemstart, i);

 itemstart = i+1;

 } else if

(fulllist.substring(i,i+1) == '#') {

theprice = fulllist.substring(itemstart, i);

 itemstart = i+1;

 }

 }

155 JS Solutions

document.writeln('<tr><td colspan=3>Total

</td><td

align=right>'+top.menu.alterError(totprice)+'</t

d><td></td></tr>');

 document.writeln('</TABLE>');

 }

 function removeItem(itemno) {

 newItemList = null;

 itemlist = 0;

 for (var i = 0; i <= fulllist.length;

i++) {

 if (fulllist.substring(i,i+1) == '[') {

 itemstart = i+1;

 } else if

(fulllist.substring(i,i+1) == ']') {

 itemend = i;

 theitem =

fulllist.substring(itemstart, itemend);

 itemlist=itemlist+1;

 if (itemlist != itemno) {

 newItemList =

newItemList+'['+fulllist.substring(itemstart,

itemend)+']';

 }

 }

 }

index = document.cookie.indexOf("TheBasket");

 document.cookie="TheBasket="+newItemList;

 top.frames[0].location = "bbasket.htm";

 }

// clearBasket() - removes all items from the

basket

 function clearBasket() {

 if (confirm('Are you sure you wish to

clear the basket')) {

index = document.cookie.indexOf("TheBasket");

 document.cookie="TheBasket=.";

 top.frames[0].location = "bbasket.htm";

 }

 }

</SCRIPT>

156 Web Programming Client-Side Scripting

<BODY>

<center>

<h2>Check Basket...</h2>

<p>

<!-- all these next few line do is call

showItems() which -->

<!-- just creates a table - do what you like

with the -->

<!-- presentation around it! -->

<SCRIPT LANGUAGE="JavaScript">

 showItems();

</SCRIPT>

<p>

<form>

<input type="button" name="clear" value="Clear

Basket" onClick="clearBasket()">

</form>

</center>

</BODY>

</HTML>

BBUY.htm

<HTML>

<!-- JShop Edited by MH7 2018 -->

<!-- by MH7 @ (www.habeebmamman.com) -->

157 JS Solutions

<!-- BUY GOODS -->

<HEAD>

<TITLE>Shopping Buy</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

 function alterError(value) {

 if (value<=0.99) {

 newPounds = '0';

 } else {

 newPounds = parseInt(value);

 }

newPence = parseInt((value+.0008 - newPounds)*

100);

 if (eval(newPence) <= 9)

newPence='0'+newPence;

 newString = newPounds + '.' + newPence;

 return (newString);

 }

 // showItems () - creates a table of items

in the basket and

 // creates the start of a form which sets

information for

 // basket items.

 function showItems() {

index = document.cookie.indexOf("TheBasket");

 countbegin = (document.cookie.indexOf("=",

index) + 1);

 countend = document.cookie.indexOf(";",

index);

 if (countend == -1) {

 countend = document.cookie.length;

 }

 fulllist =

document.cookie.substring(countbegin, countend);

 totprice = 0;

 document.writeln('<FORM

action="bfinish.htm" target="_top">');

 document.writeln('<TABLE BORDER COLS=4>');

158 Web Programming Client-Side Scripting

document.writeln('<TR><TD>Item</TD><TD>Quantity</TD><TD>Cost

Each</TD><td>Total Cost</TR>');

 itemlist = 0;

 for (var i = 0; i <= fulllist.length; i++)

{

 if (fulllist.substring(i,i+1) == '[') {

 itemstart = i+1;

 } else if

(fulllist.substring(i,i+1) == ']') {

 itemend = i;

thequantity =

fulllist.substring(itemstart, itemend);

 itemtotal = 0;

itemtotal = (eval(theprice*thequantity));

 temptotal = itemtotal * 100;

 totprice = totprice + itemtotal;

 itemlist=itemlist+1;

document.writeln('<tr><td>'+theitem+'</td><td

align=right>'+thequantity+'</td><td

align=right>'+theprice+'</td><td

align=right>'+alterError(itemtotal)+'</td></tr>'

);

 document.writeln('<INPUT

TYPE="hidden" NAME="item'+itemlist+'"

VALUE="'+theitem+'" SIZE="40">');

 document.writeln('<INPUT TYPE="hidden"

NAME="quantity'+itemlist+'"

VALUE="'+thequantity+'" SIZE="40">');

 document.writeln('<INPUT

TYPE="hidden" NAME="price each'+itemlist+'"

VALUE="'+theprice+'" SIZE="40">');

 document.writeln('<INPUT TYPE="hidden"

NAME="total cost'+itemlist+'"

VALUE="'+alterError(itemtotal)+'" SIZE="40">');

 } else if

(fulllist.substring(i,i+1) == ',') {

theitem = fulllist.substring(itemstart, i);

 itemstart = i+1;

 } else if

(fulllist.substring(i,i+1) == '#') {

159 JS Solutions

theprice = fulllist.substring(itemstart, i);

 itemstart = i+1;

 }

 }

 document.writeln('<tr><td

colspan=3>Total</td><td

align=right>'+alterError(totprice)+'</td></tr>')

;

 document.writeln('<INPUT TYPE="hidden"

NAME="Goods Total"

VALUE="'+alterError(totprice)+'" SIZE="40">');

 document.writeln('</TABLE>');

 }

</SCRIPT>

</SCRIPT>

<center>

<h2>Buy Goods...</h2>

<!-- call showItems to show items in basket -->

<SCRIPT LANGUAGE="JavaScript">

 showItems();

</SCRIPT>

<!-- finish off the form with other details and

a /FORM tag -->

<table cols=2>

<tr><td>Email address</td><td><input type=text

name="email" size=40></td></tr>

<tr><td>Street</td><td><input type=text

name="street" size=40></td></tr>

<tr><td>Town/City</td><td><input type=text

name="towncity" size=30></td></tr>

<tr><Td>County</td><td><input type=text

name="county" size=30></td></tr>

<tr><td>Postcode</td><td><input type=text

name="postcode" size=20></td></tr>

<tr><td>Country</td><td><input type=text

name="country" size=20></td></tr>

<tr><td>Telephone</td><td><input type=text

name="telephone" size=30></td></tr>

</table>

160 Web Programming Client-Side Scripting

<!-- Insert field for email recipient (use your

email address-->

<INPUT TYPE=HIDDEN NAME="recipient"

VALUE="cartdemo@generate74.com">

<!-- Insert field to redirect page to the secure

server to take credit card details -->

<INPUT TYPE=HIDDEN NAME="redirect"

VALUE="https://www.generate74.com/cart/bfinish.h

tm">

<!-- Insert field for referrer and agent details

-->

<input type=hidden name="env_report"

value="REMOTE_HOST,HTTP_USER_AGENT">

<input type="submit" value="Proceed">

<input type="reset" value="Reset">

</center>

</form>

</BODY>

</HTML>

BFINISH.htm

161 JS Solutions

<HTML>

<!-- JShop Edited by MH7 2018 -->

<!-- by MH7 @ (www.habeebmamman.com) -->

<!-- SHOPPING BASKET -->

<HEAD>

<TITLE>JShop - Credit Card Details (should

reside on secure server really!)</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<center>

<form action="edemo.htm">

<input type="hidden" name="subject"

value="Shopping Cart Demo - Ordering Part 2">

<input type="hidden" name="recipient"

value="cartdemo@generate74.com">

<input type="hidden" name="pgpuserid"

value="securer">

<center>

<table width=600><td><center><h2>Shopping Basket

Order Form - Section Two</h2></center>

<table cols=4><tr><td colspan=4

bgcolor="F4F4F4">

To complete your order please fill in the

required details on the form below.

<p>

Once you submit the form you will be redirected

to a confirmation web page which indicates that

your details have been successfully forwarded to

the email recipient.

</td></tr><p>

<tr><td colspan=2align=left><font

size=+1>Credit Card details:

</td></tr>

<tr><td>Name on Card</td><td>Card

Type</td><td>Card Number</td><td>Expiry

Date</td></tr>

<tr><td><input type=text name="Name_on_card"

size=15></td>

<td><select

name="type"><option>Visa<option>Mastercard</sele

ct></td>

162 Web Programming Client-Side Scripting

<td><input type=text name="Card_Number"

size=15></td>

<td><input type=text name="Expiry_Date"

size=15></td></tr>

<tr><td colspan=4 align=center><p><input

type="submit" value="Send

Order"></form></td></tr></table>

</table>

</BODY>

</HTML>

APPENDIX B

BUILDING AN E-COMMERCE WEBSITE WITH

BOOTSTRAP

Introduction

In this appendix, we will create an e-commerce website that will help

you get to grips with web designing using Bootstrap. Initially, we will

build the parts step by step and increase the level of difficulty gradually

so that you do not get overwhelmed with an information overload. We

will first build the ecommerce.html page and then create the other pages

such as category.html, account.html, and product.html, resulting in a

responsive website.

With Notepad, you cannot determine whether each <div> element has

been closed, resulting in an incorrect output. It is a good practice to use

Notepad++ or any advanced editor for your projects, as it streamlines

your web designing experience.

Designing the ecommerce.html page

Create four web pages, namely ecommerce.html, category.html,

account.html, and product.html for the e-commerce, product categories,

account, and the product pages respectively.

Initially, we will look at ecommerce.html.

For now, let's paste the following basic Bootstrap code in the

ecommerce.html file:

164 Web Programming Client-Side Scripting

As you can see, we have also added respond.min.js, the jQuery

file, and HTML shiv along with the Bootstrap files.

We will now create a navbar for the web page.

Similar to the process of creating a navbar in the preceding chapters,

you define the navbar between the <body> tags. We define navbar-

brand as Bootstrap Store and use the .navbar-inverse class, resulting in a

black background and white text for the navbar:

165 E-Commerce Website with Bootstrap

The output of the code on execution will be as follows:

Further on, we will add the categories and navigation links to this

navbar. The code has to be inserted after the <!-- Collect the nav links,

forms, and other content for toggling --> comment and before the <div>

element containing the <!-- /.navbar-collapse --> comment.

In the code, we define the Categories link in addition to the other

navigation links. We create a dropdown for the Categories link,

wherein we define the various types of products by their genre such as

baby products, electronics, and shoes.

Take a look at the following code to understand it better:

166 Web Programming Client-Side Scripting

The output of the code will be as follows:

Thus, we have defined the Categories menu and the drop-down menu,

which is visible on clicking the caret.

Now, we add the Sign in link, user account link, and the shopping cart

with a badge to the right-hand side of the navbar and specify

Glyphicons for them. Remember that this snippet needs to be added

after the links defined prior to it and before the <div> element

containing the <!-- /.navbar-collapse --> comment:

167 E-Commerce Website with Bootstrap

The output of the added code on execution will result in the

following screenshot:

For the Sign in part, we will create a modal that will be displayed by

clicking on the Sign in link.

The following code snippet needs to be added after the closed </nav>

element:

168 Web Programming Client-Side Scripting

If you click on the Sign in link, the following dialog box will be

displayed:

169 E-Commerce Website with Bootstrap

From the preceding code and the output, you can see that we have

defined a form to get the user authentication input and have inserted it

inside the code for the modal.

We will now create a carousel for the web page. After the modal code

has been defined, we define the page content. We start with the <!--

Page Content --> comment for easy readability, which indicates that the

entire content will be defined within the <div> element using the

.container class and content as the ID for it.

Further on, we define the carousel within that container using the

following code snippet:

170 Web Programming Client-Side Scripting

Now that we have defined the carousel, the output of the code upon

execution will be as follows:

Let's now define the product categories after the carousel code using the

following code snippet:

171 E-Commerce Website with Bootstrap

After all the code we have written so far, let's create a footer for the web

page by defining the <div> element using the .container class only.

Take a look at the following code snippet to understand it better:

The output of the code on adding the product categories and the footer

will be as follows:

172 Web Programming Client-Side Scripting

Now we will proceed further and add the products along with a brief

description so that they are reflected on your web page. The <div>

element with the categories was defined with the .col-sm-4 col-md-3

class, and it occupies three columns of the web page on the left-hand

side on a medium-sized display screen and four columns on a small-

screen device. Since it is a 12-column grid, the remaining space will be

used to display individual products.

Therefore, after the categories have been defined, let's add the following

code to it:

Insert the following code in the preceding nested <div> element with

the .row class to add a product to the right-hand side of the Categories

menu:

173 E-Commerce Website with Bootstrap

The output after defining the product is as follows:

174 Web Programming Client-Side Scripting

Copy the code several times and paste it to get a grid of replicated

products. On execution of the code, you can see the following screen

below the carousel:

175 E-Commerce Website with Bootstrap

Therefore, we have succeeded in building a web page with the navbar

with links, categories to the left-hand side, and products ranging from

the center to the right-hand side of the page. We defined a carousel and

also defined a modal, wherein a dialog box comes into the picture on

clicking on the Sign in option.

Now, let's look at the next steps wherein we create the remaining three

pages, that is, account.html, category.html, and product.html, so that

you have a real-time scenario.

Designing the account.html web page

The account.html web page looks like this:

176 Web Programming Client-Side Scripting

Similar to the procedure followed in the ecommerce.html page, we

define the page content. Note that you need to add the page content by

inserting the code snippet after the modal code and before the <div>

element with the .container class that encloses the footer of the web

page. For code clarity and readability, we add the <!-- Page

Content --> comment and then define a <div> element with the

.container class and #content as the ID, and add a </div> element for it.

Now our entire code needs to be inserted between these specific <div>

elements.

Take a look at the following code snippet to understand it better:

We then create a <div> element with the .row class, wherein we will

include the account menu. Let's create a Manage Order section and

enclose it within three columns for a medium-sized device. Then, we

define a list group of items and define the different options, namely, All

Order, Manage Feedback, My Coupons, and My Shipping Address:

The output of the code upon execution will be:

177 E-Commerce Website with Bootstrap

Let's define a <div> element with the .thumbnail class and create

another <div> element within it with a .row class. Thereafter, we add

the product names, the number of orders, prices, the track buttons, and

the messages for the latest status of the products.

We will use the following code snippet to understand this better:

On executing the code, you can see the following output:

178 Web Programming Client-Side Scripting

Now that we have a single product defined and the order status for that

product, let's replicate the products five times. We customize the status

of the products by specifying different amounts of messages, prices, and

the latest updates of some of the products so as to determine whether

the status is Cancelled or Completed (or a Track button to determine

whether it is on its way).

Thus, to create a wide array of order status' for different products, we

use the following code snippet:

179 E-Commerce Website with Bootstrap

180 Web Programming Client-Side Scripting

181 E-Commerce Website with Bootstrap

The output of the code upon execution will be as follows:

182 Web Programming Client-Side Scripting

Let's further enhance the web page by adding a .pagination class so that

your website users can scroll for different products on different web

pages.

Take a look at the following code snippet to understand it better:

The output of the executed code will have pagination at the bottom of

the page displayed as follows:

183 E-Commerce Website with Bootstrap

Designing the category.html web page

Just like the account.html web page, the category.html web page looks

like the following screenshot due to the common code containing the

navigation links, the modal, and the various Glyphicons:

Similar to the e-commerce web page, we then create a page content

section after the modal. We add a <div> element with the .container

class and #content as the ID and close it with its corresponding </div>

element. Within these specific <div> elements, we create a category

menu using the list-group items attribute. It is the same code snippet

used to create a category menu on the left-hand side of the web page.

We do not use a carousel here as is the case with the ecommerce.html

web page. Then, we add the products in the same way we defined the

products in the ecommerce.html web page.

The category.html web page will look like this:

184 Web Programming Client-Side Scripting

Add the following .pagination class to the code for it to reflect on

different pages. It is similar to the code we used for pagination for the

account.html web page.

Take a look at the following code to understand it better:

Now, the lower half of your category.html page will look like this:

185 E-Commerce Website with Bootstrap

We have defined the account.html and category.html pages so far. Next,

we proceed to the final part, the product.html web page.

Designing the product.html web page

Similar to category.html, we create a Categories menu on the left-hand

side of the screen below the navbar.

Suppose we want to add a particular product to the web page. Initially,

we define the column width for the product. In this case, we have

defined the .col-md-9 class as the space to be particularly assigned to

the product, meaning that the product details can be viewed on the

right-hand side of the Categories menu. Then, we define the graphic

186 Web Programming Client-Side Scripting

image for the product by defining the .thumbnail class. Next, we nest

four small different images in the same .thumbnail class.

Take a look at the following code to understand it better:

The output of the code upon execution will be as follows:

187 E-Commerce Website with Bootstrap

Next, we define the product name and a short description that will be

displayed to the right-hand side of the main image. In the code, we have

defined the .col-sm-6 class to determine the space assigned for the

product name and the short description.

Therefore, we add the following code for this purpose:

The output of the code will be as follows:

Now, we write the code for a form, wherein we specify the color,

number of products to be ordered, and size, while also adding the

Contact Seller and Add to Cart buttons.

Take a look at the following code to understand it better:

188 Web Programming Client-Side Scripting

The output of the code on execution will be as follows:

189 E-Commerce Website with Bootstrap

Let's also add the product's detailed description while also defining the

reviews section. We specify the number of ratings and use Glyphicons

to create the stars to rate the review. Using a .wells class, we create a

shaded space to house the Leave a Review text.

Take a look at the following code snippet to understand this:

190 Web Programming Client-Side Scripting

The lower half of the product.html web page will be as follows:

Now, let's just add some reviews to enhance the layout and make it look

like an authentic web page. Do this by adding the following code

snippet:

191 E-Commerce Website with Bootstrap

192 Web Programming Client-Side Scripting

The addition of reviews results in the following output that is displayed

on the lower-half of the page as we scroll down the screen:

In real-time scenarios, on an e-commerce website, we can sometimes

view the Similar Products section or Other things to Buy suggestions,

which are kind of related to the showcased product. So in our following

code snippet, we will take a look at the procedure to showcase similar

products so that you can implement it in your web designing projects.

Take a look at the following code to understand it better:

193 E-Commerce Website with Bootstrap

194 Web Programming Client-Side Scripting

On execution of the code, the following page is displayed when you

scroll down the web page:

195 E-Commerce Website with Bootstrap

From the preceding code and the output, you can see that we have

defined the suggested products and assigned the same space for all of

them. We defined the .col-sm-6 col-md-4 class for 1st Product, 2nd

Product, and 3rd Product respectively, due to which you see the

products displayed when you scroll down the product page.

In the preceding code example, we have linked all the products to the

product.html page. Thus, by clicking on any product in the web page,

you will be directed to the same product.html page. In real-time

scenarios, you can link the products to their respective web pages to see

more information and order the products if need be.

WHAT’s NEXT?

APPENDIX C

BASIC COMPUTER GRAPHICS, PHOTOSHOP AND FLASH

ANIMATION

Computer Graphics

Graphics Systems

Introduction

Computer graphics is not a machine. It is not a computer, nor a group of

computer programs. It is not the know-how of a graphic designer, a

programmer, a writer, a motion picture specialist, or a reproduction

specialist. Computer graphics is all these –a consciously managed and

documented technology directed toward communicating information

accurately and descriptively.

Figure C1: Computer Graphics Elements

• Using a computer as a rendering tool for the generation (from

models) and manipulation of images is called computer graphics.

• More precisely: image synthesis.

 • Display those images on screens or hardcopy devices

 • Image processing

 • Others: GUI, Haptics (of the sense of touch), Displays (VR)...

Figure C2: Image Processing

197 Web Programming Client-Side Scripting

Goals of Computer Graphics

• Generate synthetic images.

• Do it in a practical way and scientifically sound.

• In real time.

• And make it look easy.

History of Computer Graphics

The Age of Sutherland

In the early 1960's IBM, Sperry-Rand, Burroughs and a few other

computer companies existed. The computers of the day had a few

kilobytes of memory, no operating systems to speak of and no graphical

display monitors. The peripherals were Hollerith punch cards, line

printers, and roll-paper plotters. The only programming languages

supported were assembler, FORTRAN, and Algol. Function graphs and

“Snoopy'' calendars were about the only graphics done.

In 1963 Ivan Sutherland presented his paper Sketchpad at the Summer

Joint Computer Conference. Sketchpad allowed interactive design on a

vector graphics display monitor with a light pen input device. Most

people mark this event as the origins of computer graphics.

The Middle to Late '60's

Software and Algorithms

Jack Bresenham taught us how to draw lines on a raster device (CRTs,

TV, monitors). He later extended this to circles. Anti-aliased lines and

curve drawing is a major topic in computer graphics. Larry Roberts

pointed out the usefulness of homogeneous coordinates, matrices and

hidden line detection algorithms. Steve Coons introduced parametric

surfaces and developed early computer aided geometric design

concepts. The earlier work of Pierre Bézier on parametric curves and

surfaces also became public.

Author Appel at IBM developed hidden surface and shadow algorithms

that were pre-cursors to ray tracing. The fast Fourier transform was

discovered by Cooley and Tukey. This algorithm allows us to better

understand signals and is fundamental for developing antialiasing

techniques. It is also a precursor to wavelets.

Hardware and Technology

Doug Englebart invented the mouse at Xerox PARC. The Evans &

Sutherland Corporation and General Electric started building flight

simulators with real-time raster graphics. The floppy disk was invented

at IBM and the microprocessor was invented at Intel. The concept of a

research network, the ARPANET, was developed.

198 Graphics, Photoshop and Flash Animation

The Early '70's

The state of the art in computing was an IBM 360 computer with about

64 KB of memory, a Tektronix 4014 storage tube, or a vector display

with a light pen (but these were very expensive).

Software and Algorithms

Rendering (shading) were discovered by Gouraud and Phong at the

University of Utah. Phong also introduced a reflection model that

included specular highlights. Keyframe based animation for 3-D

graphics was demonstrated. Xerox PARC developed a ``paint'' program.

Ed Catmull introduced parametric patch rendering, the z-buffer

algorithm, and texture mapping. BASIC, C, and Unix were developed at

Dartmouth and Bell Labs.

Hardware and Technology

An Evans & Sutherland Picture System was the high-end graphics

computer. It was a vector display with hardware support for clipping

and perspective. Xerox PARC introduced the Altos personal computer,

and an 8 bit computer was invented at Intel.

The Middle to Late '70's

Software and Algorithms

Turned Whitted developed recursive ray tracing and it became the

standard for photorealism, living in a pristine world. Pascal was the

programming language everyone learned.

Hardware and Technology

The Apple I and II computers became the first commercial successes for

personal computing. The DEC VAX computer was the mainframe

(mini) computer of choice. Arcade games such as Pong and Pac Mac

became popular. Laser printers were invented at Xerox PARC.

The Early '80's

Hardware and Technology

The IBM PC was marketed in 1981 The Apple MacIntosh started

production in 1984, and microprocessors began to take off, with the

Intel x86 chipset, but these were still toys. Computers with a mouse,

bitmapped (raster) display, and Ethernet became the standard in

academic and science and engineering settings.

The Middle to Late '80's

Software and Algorithms

Jim Blinn introduces blobby (primitive shapes i.e. cylinder) models and

texture mapping concepts. Binary space partitioning (BSP) trees were

introduced as a data structure, but not many realized how useful they

199 Web Programming Client-Side Scripting

would become. Loren Carpenter starting exploring fractals in computer

graphics. Postscript was developed by John Warnock and Adobe was

formed. Steve Cook introduced stochastic sampling to ray tracing. Paul

Heckbert taught us to ray trace Jello (this is a joke;) Character

animation became the goal for animators. Radiosity was introduced by

the Greenberg and folks at Cornell. Photoshop was marketed by Adobe.

Video arcade games took off, many people/organizations started

publishing on the desktop. Unix and X windows were the platforms of

choice with programming in C and C++, but MS-DOS was starting to

rise.

Hardware and Technology

Sun workstations, with the Motorola 680x0 chipset became popular as

advanced workstation a in the mid 80's. The Video Graphics Array

(VGA) card was invented at IBM. Silicon Graphics (SGI) workstations

that supported real-time raster line drawing and later polygons became

the computer graphicists desired. The data glove, a precursor to virtual

reality, was invented at NASA. VLSI for special purpose graphics

processors and parallel processing became hot research areas.

The Early '90's

The computers we have then was an SGI workstation with at least 16

MB of memory, at 24-bit raster display with hardware support for

Gouraud shading and z-buffering for hidden surface removal. Laser

printers and single frame video recorders were standard. Unix, X and

Silicon Graphics GL were the operating systems, window system and

application programming interface (API) that graphicist used. Shaded

raster graphics were starting to be introduced in motion pictures. PCs

started to get decent, but still they could not support 3-D graphics, so

most programmer's wrote software for scan conversion (rasterization)

used the painter's algorithm for hidden surface removal, and developed

“tricks”' for real-time animation.

Software and Algorithms

Mosaic, the first graphical Internet browser was written by xxx at the

University of Illinois, National Center for Scientific Applications

(NCSA). MPEG standards for compressed video began to be

promulgated. Dynamical systems (physically based modeling) that

allowed animation with collisions, gravity, friction, and cause and

effects were introduced. In 1992 OpenGL became the standard for

graphics APIs In 1993, the World Wide Web took off. Surface

subdivision algorithms were rediscovered. Wavelets begin to be used in

computer graphics.

200 Graphics, Photoshop and Flash Animation

Hardware and Technology

Hand-held computers were invented at Hewlett-Packard about 1991.

Zip drives were invented at Iomega. The Intel 486 chipset allowed PC

to get reasonable floating point performance. In 1994, Silicon Graphics

produced the Reality Engine: It had hardware for real-time texture

mapping. The Ninetendo 64 game console hit the market providing

Reality Engine-like graphics for the masses of games players. Scanners

were introduced.

The Middle to Late '90's

The PC market erupts and supercomputers begin to wane. Microsoft

grows, Apple collapses, but begins to come back, SGI collapses, and

lots of new startups enter the graphics field.

Software and Algorithms

Image based rendering became the area for research in photo-realistic

graphics. Linux and open source software become popular.

Hardware and Technology

PC graphics cards, for example 3dfx and Nvidia, were introduced.

Laptops were introduced to the market. The Pentium chipset makes PCs

almost as powerful as workstations. Motion capture, begun with the

data glove, becomes a primary method for generating animation

sequences.

3-D video games become very popular: DOOM (which uses BSP trees),

Quake, Mario Brothers, etc. Graphics effects in movies becomes

pervasive: Terminator 2, Jurassic Park, Toy Story, Titanic, Star Wars I.

Virtual reality and the Virtual Reality Meta (Markup) Language

(VRML) become hot areas for research. PDA's, the Palm Pilot, and flat

panel displays hit the market.

The '00's

Today most graphicist want an Intel PC with at least 256 MB of

memory and a 10 GB hard drive. Their display should have graphics

board that supports real-time texture mapping. A flatbed scanner, color

laser printer, digital video camera, DVD, and MPEG encoder/decoder

are the peripherals one wants. The environment for program

development is most likely Windows and Linux, with Direct 3D and

OpenGL, but Java 3D might become more important. Programs would

typically be written in C++ or Java.

What will happen in the near future --difficult to say, but high definition

TV (HDTV) is poised to take off (after years of hype). Ubiquitous,

untethered (not tied down), wireless computing should become

201 Web Programming Client-Side Scripting

widespread, and audio and gestural input devices should replace some

of the functionality of the keyboard and mouse.

You should expect 3-D modeling and video editing for the masses,

computer vision for robotic devices and capture facial expressions, and

realistic rendering of difficult things like a human face, hair, and water.

With any luck C++ will fall out of favor.

Application of Computer Graphics

● Movie Industry

– Leaders in quality and artistry

– Not slaves to conceptual purity

– Big budgets and tight schedules

– Reminder that there is more to CG than technology

● Game Industry

– The newest driving force in CG

● Why? Volume and Profit

● This is why we have commodity GPUs (Graphics

Processing Unit)

– Focus on interactivity

– Cost effective solutions

– Games drive the baseline

● Medical Imaging and Scientific Visualization

– Tools for teaching and diagnosis

● No cheating or tricks allowed

– New data representations and modalities

– Drive issues of precision and correctness

– Focus on presentation and interpretation of data

– Construction of models from acquired data

Computer graphics makes vast quantities of data accessible.

Numerical simulations frequently produce millions of data

values. Similarly, satellite-based sensors amass data at rates

beyond our abilities to interpret them by any other means than

visually. Mathematicians use computer graphics to explore

abstract and high-dimensional functions and spaces. Physicists

can use computer graphics to transcend the limits of scale. With

it they can explore both microscopic and macroscopic world.

● Computer Aided Design

– Mechanical, Electronic, Architecture…etc.

– Drives the high end of the hardware market

– Integration of computing and display resources

– Reduced design cyles == faster systems, sooner

202 Graphics, Photoshop and Flash Animation

Computer graphics has had a dramatic impact on the design

process. Today, most mechanical and electronic designs are

executed entirely on computer. Increasingly, architectural and

product designs are also migrating to the computer. Automated tools

are also available that verify tolerances and design constraints

directly from CAD designs. CAD designs also play a key role in a

wide range of processes from the design of tooling fixtures to

manufacturing.

• Graphical User Interfaces (GUIs)

Computer graphics is an integral part of everyday computing.

Nowhere is this fact more evident than the modern computer interface

design.

Graphical elements such as windows, cursors, menus, and icons are so

common place it is difficult to imagine computing without them. Once

graphics programming was considered a speciality. Today, nearly all

professional programmers must have an understanding of graphics in

order to accept input and present output to users.

• Entertainment

If you can imagine it, it can be done with computer graphics.

Obviously, Hollywood has caught on to this. Each summer, we are

amazed by state-of- the-art special effects. Computer graphics is

now as much a part of the entertainment industry as stunt men and

makeup. The entertainment industry plays many other important

roles in the field of computer graphics.

Interactive Computer Graphics

User controls contents, structure, and appearance of objects and their

displayed images via rapid visual feedback.

Basic components of an interactive graphics system input (e.g., mouse,

tablet and stylus, force feedback device, scanner, live video streams…),

processing (and storage), display/output (e.g., screen, paper-based

printer, video recorder, non-linear editor.

Computer Graphics Requirements

In computer graphics we work with points and vectors defined in terms

of some coordinate frame (a positioned coordinate system). We also

need to change coordinate representation of points and vectors, hence to

transform between different coordinate frames. Hence a mathematical

background of geometry and algebra is very essential and also a

knowledge of simple programming in C language or its likes.

203 Web Programming Client-Side Scripting

Graphics Rendering Pipeline

• What is an image?

– Distribution of light energy on 2D “film”.

• How do we represent and store images?

– Sampled array of “pixels”: p[x, y].

• How do we generate images from scenes?

– Input: 3D description of scene, camera etc

– Project to camera’s viewpoint

– Illumination

Figure C3: Image Synthesis

Rendering is the conversion of a scene into an image:

Figure C4: Rendering

The scene composed of models in three space. Models composed of

primitives supported by the rendering system. Models are entered by

hand or created by a program.

Today, models are already generated. The images drawn on monitor,

printed on laser printer, or written to a raster in memory or a file. These

different possibilities require us to consider device independence.

204 Graphics, Photoshop and Flash Animation

Classically, “model” to “scene”' to “image” conversion are broken into

finer steps, called the graphics pipeline commonly implemented in

graphics hardware to get interactive speeds. At a high level, the

graphics pipeline usually looks like;

Figure C5: Graphics Pipeline

Each stage refines the scene, converting primitives in modelling space

to primitives in device space, where they are converted to pixels

(rasterized).

A number of coordinate systems are used:

MCS: Modelling Coordinate System.

WCS: World Coordinate System.

VCS: Viewer Coordinate System.

NDCS: Normalized Device Coordinate System.

DCS or SCS: Device Coordinate System or equivalently the Screen

Coordinate System.

Keeping these straight is the key to understanding a rendering system.

Transformation between two coordinate systems represented with

matrix. Derived information may be added (lighting and shading) and

primitives may be removed (hidden surface removal) or modified

(clipping).

Quiz

1. Identify the Ethical issues of computer graphics.

Hardware, Software and Display Devices

Computer graphics don’t work in isolation. They require Hardware- the

physical component that houses the software. The software tools to

create graphics applications are also needed and display devices for

205 Web Programming Client-Side Scripting

effective output are not left. These and their functionalities, we shall

discuss in this section.

Types of Input Devices

Devices can be described either by

- Physical properties

· Mouse

· Keyboard

· Trackball

- Logical Properties

· What is returned to program via API

A position

An object identifier

Figure C6: A Graphics system

Input Devices are also categorized as follows:

String: produces string of characters. (e.g keyboard)

Valuator: generates real number between 0 and 1.0 (e.g.knob)

Locator: User points to position on display (e.g. mouse)

Pick: User selects location on screen (e.g. touch screen in restaurant,

ATM)

Graphics Software

Graphics software (that is, the software tool needed to create graphics

applications) has taken the form of subprogram libraries. The libraries

contain functions to do things like: draw points, lines, polygons apply

transformations fill areas with color handle user interactions. An

important goal has been the development of standard hardware

independent libraries such as:

CORE GKS (Graphical Kernel Standard)

PHIGS (Programmer’s Hierarchical Interactive Graphics System)

X Windows OpenGL

Hardware vendors may implement some of the OpenGL primitives in

hardware for speed.

206 Graphics, Photoshop and Flash Animation

OpenGL

Every computer has special graphics hardware that controls what you

see on the screen. OpenGL tells this hardware what to do.

The Open Graphics Library is one of the oldest, most popular graphics

libraries graphic creators have. It was developed in 1992 by Silicon

Graphics Inc. (SGI) but only really got interesting for graphic creators

when it was used for GLQuake in1997. The GameCube, Wii,

PlayStation 3, and the iPhone all base their graphics libraries on

OpenGL. The alternative to OpenGL is Microsoft’s DirectX. DirectX

encompasses a larger number of libraries, including sound and input. It

is more accurate to compare OpenGL to the Direct3D library in

DirectX.

gl: basic graphics operations

glu: utility package containing some higher-level modelling capabilities

(curves, splines)

glut: toolkit. adds platform-independent functions for window

management, mouse and keyboard interaction, pull-down menus

glui: adds support for GUI tools like buttons, sliders, etc.

Open Inventor. An object-oriented API built on top of OpenGL.

VRML. Virtual Reality Modeling Language. Allows creation of a

model which can then be rendered by a browser plug-in.

Java3d. Has hierarchical modeling features similar to VRML.

POVray. A ray-tracing renderer

Hardware

Modern graphics hardware is very good at processing vast sums of

vertices, making polygons from them and rendering them to the screen.

This process of going from vertex to screen is called the pipeline. The

pipeline is responsible for positioning and lighting the vertices, as well

as the projection transformation.

This takes the 3D data and transforms it to 2D data so that it can be

displayed on your screen. A projection transformation may sound a

little complicated, but the world’s painters and artists have been doing

these transformations for centuries, painting and drawing the world

around them on to a flat canvas.

“Vector graphics” Early graphic devices were line-oriented. For

example, a “pen plotter” from H-P. Primitive operation is line drawing.

“Raster graphics” Today’s standard. A raster is a 2-dimensional grid of

pixels (picture elements). Each pixel may be addressed and illuminated

independently. So the primitive operation is to draw a point; that is,

207 Web Programming Client-Side Scripting

assign a color to a pixel. Everything else is built upon that. There are a

variety of raster devices, both hardcopy and display.

Hardcopy:

Laserprinter

Ink-jet printer

Film recorder

Electrostatic printer

Pen plotter

Display Hardware

An important component is the “refresh buffer” or “frame buffer”

which is a random-access memory containing one or more values per

pixel, used to drive the display. The video controller translates the

contents of the frame buffer into signals used by the CRT to illuminate

the screen. It works as follows:

i. The display screen is coated with “phosphors” which emit light

when excited by an electron beam. (There are three types of

phosphor, emitting red, green, and blue light.) They are arranged in

rows, with three phosphor dots (R, G, and B) for each pixel.

ii. The energy exciting the phosphors dissipates quickly, so the entire

screen must be refreshed 60 times per second.

iii. An electron gun scans the screen, line by line, mapping out a

scan pattern. On each scan of the screen, each pixel is passed over

once.

Using the contents of the frame buffer, the controller controls the

intensity of the beam hitting each pixel, producing a certain color.

Figure C7: Pipelining

208 Graphics, Photoshop and Flash Animation

Cathode Ray Tube (CRT) and others

Until recently, the dominant type of display (or monitor) was the

cathode-ray tube (CRT). A simplified picture of a CRT is shown in

Figure C8. When electrons strike the phosphor coating on the tube, light

is emitted. The direction of the beam is controlled by two pairs of

deflection plates. The output of the computer is converted, by digital-to-

analog converters, to voltages across the x and y deflection plates. Light

appears on the surface of the CRT when a sufficiently intense beam of

electrons is directed at the phosphor.

Figure C8: The cathode-ray tube (CRT)

Figure C9: Shadow-mask CRT

Although CRTs are still common display devices, they are rapidly being

replaced by flat-screen technologies. Flat-panel monitors are inherently

raster based. Although there are multiple technologies available,

including light-emitting diodes (LEDs), liquid-crystal displays (LCDs),

and plasma panels, all use a two-dimensional grid to address individual

light-emitting elements. Figure C10 shows a generic flat-panel monitor.

The two outside plates each contain parallel grids of wires that are

oriented perpendicular to each other. By sending electrical signals to the

proper wire in each grid, the electrical field at a location, determined by

209 Web Programming Client-Side Scripting

the intersection of two wires, can be made strong enough to control the

corresponding element in the middle plate.

The middle plate in an LED panel contains light-emitting diodes that

can be turned on and off by the electrical signals sent to the grid. In an

LCD display, the electrical field controls the polarization of the liquid

crystals in the middle panel, thus turning on and off the light passing

through the panel. A plasma panel uses the voltages on the grids to

energize gases embedded between the glass panels holding the grids.

The energized gas becomes glowing plasma.

Most projection systems are also raster devices. These systems use a

variety of technologies, including CRTs and digital light projection

(DLP). From a user perspective, they act as standard monitors with

similar resolutions and precisions. Hard-copy devices, such as printers

and plotters, are also raster based but cannot be refreshed.

Figure C10: Generic flat-panel display

Vector Displays

Oscilloscopes were some of the 1st computer displays.Used by both

analog and digital computers. Computation results used to drive the

vertical and horizontal axis (X-Y). Intensity could also be controlled

(Z-axis). Used mostly for line drawings. Called vector, calligraphic

or affectionately stroker displays. Display list had to be constantly

updated (except for storage tubes).

Vector Architecture

210 Graphics, Photoshop and Flash Animation

Raster Architecture

Raster display stores bitmap/pixmap in refresh buffer, also known as

bitmap, frame buffer; be in separate hardware (VRAM) or in CPU’s

main memory (DRAM) Video controller draws all scan-lines at

Consistent >60 Hz; separates update rate of the frame buffer and refresh

rate of the CRT.

Interfacing between the CPU and the Display

In a simple system, there may be only one processor, the central

processing unit (CPU) of the system, which must do both the normal

processing and the graphical processing. The main graphical function of

the processor is to take specifications of graphical primitives (such as

lines, circles, and polygons) generated by application programs and to

assign values to the pixels in the frame buffer that best represent these

entities. For example, a triangle is specified by its three vertices, but to

display its outline by the three line segments connecting the vertices,

the graphics system must generate a set of pixels that appear as line

segments to the viewer. The conversion of geometric entities to pixel

colors and locations in the frame buffer is known as rasterization, or

scan conversion.

A typical video interface card contains a display processor, a frame

buffer, and a video controller. The frame buffer is a random access

memory containing some memory (at least one bit) for each pixel,

indicating how the pixel is supposed to be illuminated. The depth of the

frame buffer measures the number of bits per pixel. A video controller

then reads from the frame buffer and sends control signals to the

monitor, driving the scan and refresh process. The display processor

processes software instructions to load the frame buffer with data.

211 Web Programming Client-Side Scripting

(Note: In early PCs, there was no display processor. The frame buffer

was part of the physical address space addressable by the CPU. The

CPU was responsible for all display functions.)

Some Typical Examples of Frame Buffer Structures:

i. For a simple monochrome monitor, just use one bit per pixel.

ii. A gray-scale monitor displays only one color, but allows for a range

of intensity levels at each pixel. A typical example would be to use 6-8

bits per pixel, giving 64-256 intensity levels. For a color monitor, we

need a range of intensity levels for each of red, green, and blue. There

are two ways to arrange this.

iii. A color monitor may use a color lookup table (LUT). For example,

we could have a LUT with 256 entries. Each entry contains a color

represented by red, green, and blue values. We then could use a frame

buffer with depth of 8. For each pixel, the frame buffer contains an

index into the LUT, thus choosing one of the 256 possible colors. This

approach saves memory, but limits the number of colors visible at any

one time.

iv. A frame buffer with a depth of 24 has 8 bits for each color, thus 256

intensity levels for each color. 224 colors may be displayed. Any pixel

can have any color at any time. For a 1024x1024 monitor we would

need 3 megabytes of memory for this type of frame buffer. The display

processor can handle some medium-level functions like scan conversion

(drawing lines, filling polygons), not just turn pixels on and off. Other

functions: bit block transfer, display list storage.

Use of the display processor reduces CPU involvement and bus traffic

resulting in a faster processor. Graphics processors have been

increasing in power faster than CPUs, a new generation every 6-9

months.

Example: 10 3E. NVIDIA GeForce FX

· 125 million transistors (GeForce4: 63 million)

· 128MB RAM

· 128-bit floating point pipeline

One of the advantages of a hardware-independent API like OpenGL is

that it can be used with a wide range of CPU-display combinations,

from software-only to hardware-only. It also means that a fast video

card may run slowly if it does not have a good implementation of

OpenGL.

Data Structures for Graphics

Requirements for this section in the appendix are good programming

skills in C++, Java, C or its likes; an understanding of basic data

212 Graphics, Photoshop and Flash Animation

structures (linked lists, trees); and a simple knowledge of linear algebra

and trigonometry. The mathematical backgrounds of computer science

students, whether undergraduates or graduates, vary considerably.

Models, including the geometric objects, lights, cameras, and material

properties, are placed in a data structure called a scene graph that is

passed to a renderer or game engine.

The representation structures used for an object model may be either

declarative or procedural. In a declarative representation, the model is

explicitly embedded in a standard computational data structure. In a

procedural scheme, the model is embedded into any convenient

computational procedure, such as a formula, implicit equation, or

arbitrary code. In the former, data is retrieved by search, indexing, or

pointer chasing; in the latter, data is obtained by invoking a procedure

with passed parameters or sending a message to an object which then

executes a response.

A Cube

We could now describe a cube through a set of vertex specifications.

For example, we could use a two-dimensional array of positions
point3 faces[6][4];

or we could use a single array of 24 vertices
point3 cube_vertices[24];

where cube_vertices[i]contains the x, y, z coordinates of the ith

vertex in the list. Both of these methods work, but they both fail to

capture the essence of the cube’s topology, as opposed to the cube’s

geometry. If we think of the cube as a polyhedron, we have an object—

the cube—that is composed of six faces. The faces are each

quadrilaterals that meet at vertices; each vertex is shared by three faces.

In addition, pairs of vertices define edges of the quadrilaterals; each

edge is shared by two faces. These statements describe the topology of a

six-sided polyhedron. All are true, regardless of the location of the

vertices—that is, regardless of the geometry of the object.

213 Web Programming Client-Side Scripting

Figure C11: Vertex-list representation of a cube

Throughout this section, we will see that there are numerous advantages

to building for our objects data structures that separate the topology

from the geometry. In this example, we use a structure, the vertex list

that is both simple and useful.

The data specifying the location of the vertices contain the geometry

and can be stored as a simple list or array, such as in vertices[8]—

the vertex list. The top level entity is a cube; we regard it as being

composed of six faces. Each face consists of four ordered vertices. Each

vertex can be specified indirectly through its index. This data structure

is shown in Figure C11. One of the advantages of this structure is that

each geometric location appears only once, instead of being repeated

each time it is used for a facet. If, in an interactive application, the

location of a vertex is changed, the application needs to change that

location only once, rather than searching for multiple occurrences of the

vertex.

Octrees

Octrees are one of the data structures used for volumetric models that

tessellate a given 3D space. The original volume, say a cube, is

partitioned into 8 cubes if it is non-empty. Recursively, each sub-cube is

partitioned whenever non-empty, until some minimum size element is

reached. Since empty cubes are not sub-divided, the storage space

efficiency is increased. The major use of octrees appears to be an

indexing scheme for access efficiency in a large 3D array.

Quadtrees

A partition of the plane into four quadrants, each of which may be

recursively subdivided into quadrants to the desired level of object

214 Graphics, Photoshop and Flash Animation

detail or pixel size.

There are a variety of data structures possible. Groups of polygons are

stored in lists, tables, or linked structures to facilitate traversal of

connected faces, the edge network, etc.

A quadtree is a rooted tree so that every internal node has four children.

Every node in the tree corresponds to a square. If a node v has children,

their corresponding squares are the four quadrants, as shown

Quadtrees can store many kinds of data. The quadtree consists of a root

node v, Q is stored at v. In the following, let Q(v) denote the square

stored at v. Furthermore v has four children:

The X-child is the root of the quadtree of the set PX, where X is an

element of the set {NE, NW, SW, SE}.

Uses

Quadtrees are used to partition 2-D space, while octrees are for 3-D.

The two concepts are nearly identical, and i think it is unfortunate that

they are given different names.

Handling Observer-Object Interactions:

Subdivide the quadtree/octree until each leaf’s region intersects only a

small number of objects.

Each leaf holds a list of pointers to objects that intersect its region.

Find out which leaf the observer is in. We only need to test for

interactions with the objects pointed to by that leaf.

• Inside/Outside Tests for Odd Shapes

The root node represents a square containing the shape.

If a node’s region lies entirely inside or entirely outside the shape, do

not subdivide it.

Otherwise, do subdivide (unless a predefined depth limit has been

exceeded).

Then the quadtree or octree contains information allowing us to check

quickly whether a given point is inside the shape.

• Sparse Arrays of Spatially-Organized Data

Store array data in the quadtree or octree.

215 Web Programming Client-Side Scripting

Only subdivide if that region of space contains interesting data.

This is how an octree is used in the BLUI sculpt (virtual reality of

shaping figures) program.

K-d-Trees

The k-d-tree is a natural generalization of the one dimensional search

tree.

BSP Trees

BSP trees (short for binary space partitioning trees) can be viewed as a

generalization of k-d trees. Like k-d trees, BSP trees are binary trees,

but now the orientation and position of a splitting plane can be chosen

arbitrarily. The figure below depicts the feeling of a BSP tree.

A Binary Space Partition tree (BSP tree) is a very different way to

represent a scene, Nodes hold facets, the structure of the tree encodes

spatial information about the scene. It is useful for HSR (Hidden

Surface Removal) and related applications.

Characteristics of BSP Tree

A BSP tree is a binary tree.

Nodes can have 0, 1, or two children.

Order of child nodes matters, and if a node has just 1 child, it matters

whether this is its left or right child.

• Each node holds a facet.

This may be only part of a facet from the original scene.

When constructing a BSP tree, we may need to split facets.

• Organization:

Each facet lies in a unique plane. In 2-D, a unique line.

For each facet, we choose one side of its plane to be the “outside”.

(The other direction is “inside”.)

This can be the side the normal vector points toward.

Rule: For each node,

216 Graphics, Photoshop and Flash Animation

• Its left descendant subtree holds only facets “inside” it.

• Its right descendant subtree holds only facets “outside” it.

Construction

• To construct a BSP tree, we need:

A list of facets (with vertices).

An “outside” direction for each.

• Procedure:

Begin with an empty tree. Iterate through the facets, adding a new

node to the tree for each new facet. The first facet goes in the root

node.

For each subsequent facet, descend through the tree, going left or

right depending on whether the facet lies inside or outside the facet

stored in the relevant node.

• If a facet lies partially inside & partially outside, split it along

the plane [line] of the facet.

• The facet becomes two “partial” facets. Each inherits its

“outside” direction from the original facet.

• Continue descending through the tree with each partial facet

separately.

Finally, the (partial) facet is added to the current tree as a leaf.

Bounding Volume Hierarchies

Like the previous hierarchical data structures, bounding volume

hierarchies (BVHs) are mostly used to prevent performing an operation

exhaustively on all objects. Like with previously discussed hierarchical

data structures, one can improve a huge range of applications and

queries using BVHs, such as ray shooting, point location queries,

nearest neighbor search, view frustum and occlusion culling,

geographical data bases, and collision detection (the latter will be

discussed in more detail below). Often times, bounding volume (BV)

hierarchies are described as the opposite of spatial partitioning schemes,

such as quadtrees or BSP trees: instead of partitioning space, the idea is

to partition the set of objects recursively until some leaf criterion is met.

Here, objects can be anything from points to complete graphical

objects.

With BV hierarchies, almost all queries, which can be implemented

with space partitioning schemes, can also be answered, too. Example

queries and operations are ray shooting, frustum culling, occlusion

culling, point location, nearest neighbor, collision detection.

217 Web Programming Client-Side Scripting

Construction of BV Hierarchies

Essentially, there are 3 strategies to build BV trees:

• bottom-up,

• top-down,

• insertion

From a theoretical point of view, one could pursue a simple top-down

strategy, which just splits the set of objects into two equally sized parts,

where the objects are assigned randomly to either subset.

Asymptotically, this usually yields the same query time as any other

strategy. However, in practice, the query times offered by such a BV

hierarchy are by a large factor worse.

During construction of a BV hierarchy, it is convenient to forget about

the graphical objects or primitives, and instead deal with their BVs and

consider those as the atoms.

Color

Color is one of the most interesting aspects of both human perception

and computer graphics. Full exploitation of the capabilities of the

human visual system using computer graphics requires a far deeper

understanding of the human anatomy, physiology, and psychophysics.

A visible color can be characterized by a function C(λ) that occupies

wavelengths from about 350 to 780 nm, as shown in Figure C12. The

value for a given wavelength λ in the visible spectrum gives the

intensity of that wavelength in the color. Although this characterization

is accurate in terms of a physical color whose properties we can

measure, it does not take into account how we perceive color.

Figure C12: A color distribution

Colour Theory

To get color, people have come up with some strange practices and

overcoming difficulties. Our eyes work by focusing light through an

elastic lens, onto a patch at the back of our eye called the retina. The

retina contains light sensitive rod and cone cells that are sensitive to

218 Graphics, Photoshop and Flash Animation

light, and send electrical impulses to our brain that we interpret as a

visual stimulus. Given this biological apparatus, we can simulate the

presence of many colours by shining Red, Green and Blue light into the

human eye with carefully chosen intensities. This is the basis on which

all colour display technologies (CRTs, LCDs, TFTs (Thin-film

Transistor used in flatscreen displays), Plasma, Data projectors)

operate. Inside our machine (TV, Computer, Projector) we represent

pixel colours using values for Red, Green and Blue (RGB triples) and

the video hardware uses these values to generate the appropriate amount

of Red, Green and Blue light.

Color space

A color model is an abstract mathematical model describing the way

colors can be represented as tuples of numbers, typically as three or

four values or color components (e.g. RGB and CMYK are color

models).

Adding a certain mapping function between the color model and a

certain reference color space results in a definite "footprint" within the

reference color space. This "footprint" is known as a gamut, and, in

combination with the color model, defines a new color space. For

example, Adobe RGB and SRGB are two different absolute color

spaces, both based on the RGB model.

Light

From a physical perspective, a surface can either emit light by self-

emission, as a light bulb does, or reflect light from other surfaces that

illuminate it. Some surfaces may both reflect light and emit light from

internal physical processes. When we look at a point on an object, the

color that we see is determined by multiple interactions among light

sources and reflective surfaces. These interactions can be viewed as a

recursive process.

Light as we perceive it is electromagnetic radiation from a narrow band

of the complete spectrum of electromagnetic radiation called the visible

spectrum. The physical nature of light has elements that are like particle

(when we discuss photons) and as a wave. Recall that wave can be

described either in terms of its frequency, measured say in cycles per

second, or the inverse quantity of wavelength. The electro-magnetic

spectrum ranges from very low frequency (high wavelength) radio

waves (greater than 10 centimeter in wavelength) to microwaves,

infrared, visible light, ultraviolet and x-rays and high frequency (low

wavelength) gamma rays (less than 0.01 nm in wavelength). Visible

219 Web Programming Client-Side Scripting

light lies in the range of wavelengths from around 400 to 700 nm,

where nm denotes a nanometer, or 10−9 of a meter.

Physically, the light energy that we perceive as color can be described

in terms of a function of wavelength λ, called the spectral distribution

function or simply spectral function, f(λ). As we walk along the

wavelength axis (from long to short wavelengths), the associated colors

that we perceive varying along the colors of the rainbow red, orange,

yellow, green, blue, indigo, violet. (Remember the “Roy G. Biv”

mnemonic.) Of course, these color names are human interpretations,

and not physical divisions.

The Electromagnetic spectrum

The Retina

The retina has both rods and cones, as shown below. It is the cones

which are responsible for colour perception.

220 Graphics, Photoshop and Flash Animation

There are three types of cones, referred to either as B, G, and R, or

equivalently as S, M, and L, respectively. Their peak sensitivities are

located at approximately 430nm, 560nm, and 610nm for the "average"

observer. Animals exist with both fewer and more types of cones. The

photo-pigments in rods and cones are stimulated by absorbed light,

yielding a change in the cell membrane potential. The different types of

cells have different spectral sensitivities:

Mapping from Reality to Perception

Different spectra can be perceptually identical to the eye. Such spectra

are called metamers. Our perception of colour is related only to the

stimulation of three types of cones. If two different spectra stimulate the

three cone types in the same way, they will be perceptually

indistinguishable.

Colour Matching

In a typical system, there might be a 1280 × 1024 array of pixels, and

each pixel might consist of 24 bits (3 bytes): 1 byte for each of red,

green, and blue. With present commodity graphics cards having up to

12GB of memory, there is no longer a problem of storing and

displaying the contents of the frame buffer at video rates.

In order to define the perceptual 3D space in a "standard" way, a set of

experiments can (and have been) carried by having observers try and

match colour of a given wavelength, lambda, by mixing three other pure

wavelengths, such as R=700nm, G=546nm, and B=436nm in the

following example. Note that the phosphors of colour TVs and other

CRTs do not emit pure red, green, or blue light of a single wavelength,

as is the case for this experiment.

221 Web Programming Client-Side Scripting

The above scheme can tell us what mix of R,G,B is needed to reproduce

the perceptual equivalent of any wavelength. A problem exists,

however, because sometimes the red light needs to be added to the

target before a match can be achieved. This is shown on the graph by

having its intensity, R, take on a negative value.

In order to achieve a representation which uses only positive mixing

coefficients, the CIE ("Commission Internationale d'Eclairage") defined

three new hypothetical light sources, x, y, and z, which yields positive

matching curves:

If we are given a spectrum and wish to find the corresponding X, Y, and

Z quantities, we can do so by integrating the product of the spectral

power and each of the three matching curves over all wavelengths. The

weights X,Y, Z form the three-dimensional CIE XYZ space, as shown

below.

Often it is convenient to work in a 2D colour space. This is commonly

done by projecting the 3D colour space onto the plane X+Y+Z=1,

222 Graphics, Photoshop and Flash Animation

yielding a CIE chromaticity diagram. The projection is defined as given

below, and produces the following chromaticity diagram:

Colour Gamuts

The chromaticity diagram can be used to compare the "gamuts" of

various possible output devices (i.e., monitors and printers). Note that a

colour printer cannot reproduce all the colours visible on a colour

monitor.

RGB Colour Cube

The additive colour model used for computer graphics is represented by

the RGB colour cube, where R, G, and B represent the colours produced

by red, green and blue phosphours, respectively.

223 Web Programming Client-Side Scripting

The colour cube sits within the CIE XYZ colour space as follows.

Colour Printing

Green paper is green because it reflects green and absorbs other

wavelengths. The following table summarizes the properties of the four

primary types of printing ink.

To produce blue, one would mix cyan and magenta inks, as they both

reflect blue while each absorbing one of green and red. Black ink is

used to ensure that a high quality black can always be printed, and is

often referred to as to K. Printers thus use a CMYK colour model.

Colour Conversion

Monitors are not all manufactured with identical phosphors. To convert

from one colour gamut to another is a relatively simple procedure (with

the exception of a few complicating factors!). Each phosphor colour can

be represented by a combination of the CIE XYZ primaries, yielding

the following transformation from RGB to CIE XYZ:

224 Graphics, Photoshop and Flash Animation

Other Colour Systems

Several other colour models also exist. Models such as HSV (hue,

saturation, value) and HLS (hue, luminosity, saturation) are designed

for intuitive understanding. Using these colour models, the user of a

paint program would quickly be able to select a desired colour.

Geometry for Computer Graphics

Introduction

In computer graphics, we work with sets of geometric objects, such as

lines, polygons, and polyhedra. Such objects exist in a three-

dimensional world and have properties that can be described using

concepts such as length and angles. Our fundamental geometric object

is a point. In a three-dimensional geometric system, a point is a location

in space. The only property that a point possesses is that point’s

location; a mathematical point has neither a size nor a shape. Real

numbers—and complex numbers, which we will use occasionally—are

examples of scalars. We need one additional type—the vector—to

allow us to work with directions.

Physicists and mathematicians use the term vector for any quantity with

direction and magnitude. Physical quantities, such as velocity and force,

are vectors. A vector does not, however, have a fixed location in space.

In computer graphics, we often connect points with directed line

segments, as shown in Figure C13a. A directed line segment has both

magnitude—its length— and direction—its orientation—and thus is a

vector. Because vectors have no fixed position, the directed line

segments shown in Figure C13b are identical because they have the

same direction and magnitude. We will often use the terms vector and

directed line segment synonymously.

Figure C13: a. Directed line segment b. Vectors that connects points

225 Web Programming Client-Side Scripting

Coordinate Geometry

Points exist in space regardless of any reference or coordinate system.

Thus, we do not need a coordinate system to specify a point or a vector.

This fact may seem counter to your experiences, but it is crucial to

understanding geometry and how to build graphics systems. Consider

the two-dimensional example shown in Figure C14. Here we see a

coordinate system defined by two axes, an origin, and a simple

geometric object, a square. We can refer to the point at the lower-left

corner of the square as having coordinates (1, 1) and note that the sides

of the square are orthogonal to each other and that the point at (3, 1) is 2

units from the point at (1, 1). Now suppose that we remove the axes as

shown in Figure C15. We can no longer specify where the points are.

But those locations were relative to an arbitrary location of the origin

and the orientation of the axes. What is more important is that the

fundamental geometric relationships are preserved. The square is still a

square, orthogonal (perpendicular) lines are still orthogonal, and

distances between points remain the same.

Figure C14: Object and Figure C15: Object without

coordinate system coordinate system

Mathematical View: Vector and Affine Spaces

If we view scalars, points, and vectors as members of mathematical

sets, then we can look at a variety of abstract spaces for representing

and manipulating these sets of objects. Mathematicians have explored a

variety of such spaces for applied problems, ranging from the solution

of differential equations to the approximation of mathematical

functions. The formal definitions of the spaces of interest to us— vector

spaces, affine spaces (linear transformation), and Euclidean spaces

(parallel lines are equidistant). We are concerned with only those

examples in which the elements are geometric types.

We start with a set of scalars, any pair of which can be combined to

form another scalar through two operations, called addition and

multiplication.

226 Graphics, Photoshop and Flash Animation

If these operations obey the closure, associativity, commutivity, and

inverse properties , the elements form a scalar field. Familiar examples

of scalars include the real numbers, complex numbers, and rational

functions.

Perhaps the most important mathematical space is the (linear) vector

space. A vector space contains two distinct types of entities: vectors

and scalars. In addition to the rules for combining scalars, within a

vector space, we can combine scalars and vectors to form new vectors

through scalar–vector multiplication and vectors with vectors through

vector–vector addition. Examples of mathematical vector spaces

include n-tuples of real numbers and the geometric operations on our

directed line segments.

In a linear vector space, we do not necessarily have a way of measuring

a scalar quantity. A Euclidean space is an extension of a vector space

that adds a measure of size or distance and allows us to define such

things as the length of a line segment.

An affine space is an extension of the vector space that includes an

additional type of object: the point. Although there are no operations

between two points or between a point and a scalar that yield points,

there is an operation of vector–point addition that produces a new point.

Alternately, we can say there is an operation called point–point

subtraction that produces a vector from two points. Examples of affine

spaces include the geometric operations on points and directed line

segments.

In these abstract spaces, objects can be defined independently of any

particular representation; they are simply members of various sets. One

of the major vector space concepts is that of representing a vector in

terms of one or more sets of basis vectors. Representation provides the

tie between abstract objects and their implementation. Conversion

between representations leads us to geometric transformations.

Computer Science View

Although the mathematician may prefer to think of scalars, points, and

vectors as members of sets that can be combined according to certain

axioms, the computer scientist prefers to see them as abstract data

types (ADTs). An ADT is a set of operations on data; the operations are

defined independently of how the data are represented internally or of

how the operations are implemented. The notion of data abstraction is

fundamental to modern computer science. For example, the operation of

adding an element to a list or of multiplying two polynomials can be

defined independently of how the list is stored or of how real numbers

227 Web Programming Client-Side Scripting

are represented on a particular computer. People familiar with this

concept should have no trouble distinguishing between objects (and

operations on objects) and objects’ representations (or implementations)

in a particular system. From a computational point of view, we should

be able to declare geometric objects through code such as

vector u,v;

point p,q;

scalar a,b;

regardless of the internal representation or implementation of the

objects on a particular system. In object-oriented languages, such as

C++, we can use language features, such as classes and overloading of

operators, so we can write lines of code, such as
q = p+a*v;

using our geometric data types. Of course, first we must define

functions that perform the necessary operations; so that we can write

them, we must look at the mathematical functions that we wish to

implement. First, we will define our objects. Then we will look to

certain abstract mathematical spaces to help us with the operations

among them.

Geometric ADTs

The three views of scalars, points, and vectors leave us with a

mathematical and computational framework for working with our

geometric entities. In summary, for computer graphics our scalars are

the real numbers using ordinary addition and multiplication. Our

geometric points are locations in space, and our vectors are directed line

segments. These objects obey the rules of an affine space. We can also

create the corresponding ADTs in a program.

Our next step is to show how we can use our types to form geometrical

objects and to perform geometric operations among them. We will use

the following notation:

– Greek letters α, β, γ , . . . denote scalars;

– uppercase letters P, Q, R, . . . denote points;

– lowercase letters u, v, w, . . . denote vectors.

We have not yet introduced any reference system, such as a coordinate

system; thus, for vectors and points, this notation refers to the abstract

objects, rather than to these objects’ representations in a particular

reference system. We use boldface letters for the latter. The magnitude

of a vector v is a real number denoted by |v|.

The operation of vector–scalar multiplication has the property that

228 Graphics, Photoshop and Flash Animation

|αv| = |α||v|,

and the direction of αv is the same as the direction of v if α is positive

and the opposite direction if α is negative.

We have two equivalent operations that relate points and vectors. First,

there is the subtraction of two points, P and Q—an operation that yields

a vector v denoted by

v = P − Q.

As a consequence of this operation, given any point Q and vector v,

there is a unique point, P, that satisfies the preceding relationship. We

can express this statement as follows: Given a point Q and a vector v,

there is a point P such that

P = Q + v.

Thus, P is formed by a point–vector addition operation. Figure C16

shows a visual interpretation of this operation. The head-to-tail rule

gives us a convenient way of visualizing vector–vector addition. We

obtain the sum u + v as shown in Figure C17 (a) by drawing the sum

vector as connecting the tail of u to the head of v. However, we can also

use this visualization, as demonstrated in Figure C17 (b), to show that

for any three points P, Q, and R,

(P − Q) + (Q − R) = P − R.

Figure C16: Point–point Figure C17: Use of the head-to-tail rule

Subtraction (a) For vectors. (b) For points

Frames in OPENGL

OpenGL is based on a pipeline model, the first part of which is a

sequence of operations on vertices, many of which are geometric. We

can characterize such operations by a sequence of transformations or,

equivalently, as a sequence of changes of frames for the objects

specified by an application program.

In versions of OpenGL with a fixed-function pipeline and immediate-

mode rendering, six frames were specified in the pipeline. With

programmable shaders, we have a great deal of flexibility to add

229 Web Programming Client-Side Scripting

additional frames or avoid some traditional frames. Although as we

demonstrated in our first examples, we could use some knowledge of

how the pipeline functions to avoid using all these frames, which would

not be the best way to build applications.

Some may not be visible to the application. In each of these frames, a

vertex has different coordinates. The following is the usual order in

which the frames occur in the pipeline:

i. Object (or model) coordinates

ii. World coordinates

iii. Eye (or camera) coordinates

iv. Clip coordinates

v. Normalized device coordinates

vi. Window (or screen) coordinates

Let’s consider what happens when an application program specifies a

vertex. This vertex may be specified directly in the application program

or indirectly through an instantiation of some object. In most

applications, we tend to specify or use an object with a convenient size,

orientation, and location in its own frame called the model or object

frame. For example, a cube would typically have its faces aligned with

axes of the frame, its center at the origin, and have a side length of 1 or

2 units. The coordinates in the corresponding function calls are in object

or model coordinates.

An individual scene may comprise hundreds or even thousands of

individual objects. The application program generally applies a

sequence of transformations to each object to size, orient, and position it

within a frame that is appropriate for the particular application. For

example, if we were using an instance of a square for a window in an

architectural application, we would scale it to have the correct

proportions and units, which would probably be in feet or meters. The

origin of application coordinates might be a location in the center of the

bottom floor of the building. This application frame is called the world

frame, and the values are in world coordinates. Note that if we do not

model with predefined objects or apply any transformations before we

specify our geometry, object and world coordinates are the same.

Object and world coordinates are the natural frames for the application

program.

However, the image that is produced depends on what the camera or

viewer sees. Virtually all graphics systems use a frame whose origin is

the center of the camera’s lens3 and whose axes are aligned with the

sides of the camera. This frame is called the camera frame or eye

frame. Because there is an affine transformation that corresponds to

230 Graphics, Photoshop and Flash Animation

each change of frame, there are 4 × 4 matrices that represent the

transformation from model coordinates to world coordinates and from

world coordinates to eye coordinates. These transformations usually are

concatenated together into the model-view transformation, which is

specified by the model-view matrix. Usually, the use of the model-view

matrix instead of the individual matrices should not pose any problems

for the application programmer.

The last three representations are used primarily in the implementation

of the pipeline, but, for completeness, we introduce them here. Once

objects are in eye coordinates, OpenGL must check whether they lie

within the view volume. If an object does not, it is clipped from the

scene prior to rasterization. OpenGL can carry out this process most

efficiently if it first carries out a projection transformation that brings all

potentially visible objects into a cube centered at the origin in clip

coordinates. The division by the w component, called perspective

division, yields three-dimensional representations in normalized

device coordinates. The final transformation takes a position in

normalized device coordinates and, taking into account the viewport,

creates a three-dimensional representation in window coordinates.

Window coordinates are measured in units of pixels on the display but

retain depth information. If we remove the depth coordinate, we are

working with two-dimensional screen coordinates.

The application programmer usually works with two frames: the eye

frame and the object frame. By concatenating them together to form the

model-view matrix, we have a transformation that positions the object

frame relative to the eye frame.

Thus, the model-view matrix converts the homogeneous-coordinate

representations of points and vectors to their representations in the

application space to their representations in the eye frame.

Although an application does not require us to use the model-view

matrix, the model-view matrix is so important to most applications.

Let’s assume that we allocate a model-view matrix in our applications

and initialize it to an identity matrix. Now the object frame and eye

frame are identical. Thus, if we do not change the model-view matrix,

we are working in eye coordinates.

The camera is at the origin of its frame, as shown in Figure C18. The

three basis vectors in eye space correspond to (1) the up direction of the

camera, the y direction; (2) the direction the camera is pointing, the

negative z direction; and (3) a third orthogonal direction, x, placed so

that the x, y, z directions form a right-handed coordinate system. We

231 Web Programming Client-Side Scripting

obtain other frames in which to place objects by performing

homogeneous coordinate transformations that specify new frames

relative to the camera frame.

Figure C18: Camera and object frames

(a) In default positions (b) After applying model-view matrix

Because frame changes are represented by model-view matrices that

can be stored, we can save frames and move between frames by

changing the current model view matrix.

When first working with multiple frames, there can be some confusion

about which frames are fixed and which are varying. Because the

model-view matrix positions the camera relative to the objects, it is

usually a matter of convenience as to which frame we regard as fixed.

Most of the time, we will regard the camera as fixed and the other

frames as moving relative to the camera, but you may prefer to adopt a

different view.

Before beginning a detailed discussion of transformations and how we

use them in OpenGL, we present two simple examples. In the default

settings shown in Figure C18(a), the camera and object frames coincide

with the camera pointing in the negative z-direction. In many

applications, it is natural to specify objects near the origin, such as a

square centered at the origin or perhaps a group of objects whose center

of mass is at the origin. It is also natural to set up our viewing

232 Graphics, Photoshop and Flash Animation

conditions so that the camera sees only those objects that are in front of

it. Consequently, to form images that contain all these objects, we must

either move the camera away from the objects or move the objects away

from the camera. Equivalently, we move the camera frame relative to

the object frame. If we regard the camera frame as fixed and the model-

view matrix as positioning the object frame relative to the camera

frame, then the model-view matrix,

moves a point (x, y, z) in the object frame to the point (x, y, z − d) in the

camera frame. Thus, by making d a suitably large positive number, we

“move” the objects in front of the camera by moving the world frame

relative to the camera frame, as shown in Figure C18(b). Note that, as

far as the user—who is working in world coordinates—is concerned,

she is positioning objects as before. The model-view matrix takes care

of the relative positioning of the object and eye frames. This strategy is

almost always better than attempting to alter the positions of the objects

by changing their vertex positions to place them in front of the camera.

Translation, Rotation and Scaling

Translation

Translation is an operation that displaces points by a fixed distance in a

given direction, as shown in Figure C19. To specify a translation, we

need only to specify a displacement vector d, because the transformed

points are given by

Pl = P + d

for all points P on the object. Note that this definition of translation

makes no reference to a frame or representation. Translation has three

degrees of freedom because we can specify the three components of the

displacement vector arbitrarily.

233 Web Programming Client-Side Scripting

Figure C19: Translation

(a) Object in original position (b) Object translated

Rotation

Rotation is more difficult to specify than translation because we must

specify more parameters. We start with the simple example of rotating a

point about the origin in a two-dimensional plane, as shown in Figure

C20. Having specified a particular point—the origin—we are in a

particular frame. A two-dimensional point at (x, y) in this frame is

rotated about the origin by an angle θ to the position (xl, yl). We can

obtain the standard equations describing this rotation by representing (x,

y) and (xl, yl) in polar form:

x = ρ cos φ,

y = ρ sin φ,

xl = ρ cos(θ + φ),

yl = ρ sin(θ + φ).

Expanding these terms using the trigonometric identities for the sine

and cosine of the sum of two angles, we find

xl= ρ cos φ cos θ − ρ sin φ sin θ = x cos θ − y sin θ ,

yl = ρ cos φ sin θ + ρ sin φ cos θ = x sin θ + y cos θ .

These equations can be written in matrix form as

Figure C20: Two-dimensional rotation

234 Graphics, Photoshop and Flash Animation

Figure C21: Rotation about a fixed point

Figure C22: Three-dimensional rotation

Scaling

Scaling is an affine non–rigid-body transformation by which we can

make an object bigger or smaller. Figure C23 illustrates both uniform

scaling in all directions and scaling in a single direction. We need non-

uniform scaling to build up the full set of affine transformations that we

use in modeling and viewing by combining a properly chosen sequence

of scalings, translations, and rotations.

Figure C23: Uniform and Figure C24: Effect of scale factor

non-uniform scaling

235 Web Programming Client-Side Scripting

Figure C25: Reflection

Scaling transformations have a fixed point, as we can see from Figure

C24. Hence, to specify a scaling, we can specify the fixed point, a

direction in which we wish to scale, and a scale factor (α). For α >1, the

object gets longer in the specified direction; for 0 ≤α <1, the object gets

smaller in that direction. Negative values of α give us reflection (Figure

C25) about the fixed point, in the scaling direction. Scaling has six

degrees of freedom because we can specify an arbitrary fixed point and

three independent scaling factors.

Interfaces to Three-Dimensional Applications

We can use a three-button mouse to control the direction of rotation of a

cube. This interface is limited. Rather than use all three mouse buttons

to control rotation, we might want to use mouse buttons to control

functions, such as pulling down a menu that we would have had to

assign to keys. There were many ways to obtain a given orientation.

Rather than do rotations about the x-, y-, and z-axes in that order, we

could do a rotation about the x-axis, followed by a rotation about the y-

axis, and finish with another rotation about the x-axis. If we do our

orientation this way, we can obtain our desired orientation using only

two mouse buttons. However, there is still a problem:

236 Graphics, Photoshop and Flash Animation

Our rotations are in a single direction. It would be easier to orient an

object if we could rotate either forward or backward about an axis and

could stop the rotation once we reached a desired orientation.

GLUT (OpenGL Utility Toolkit) allows us to use the keyboard in

combination with the mouse. We could, for example, use the left mouse

button for a forward rotation about the x-axis and the Control key in

combination with the left mouse button for a backward rotation about

the x-axis.

However, neither of these options provides a good user interface, which

should be more intuitive and less awkward.

Animation

Introduction

Animation is the process of creating and recording images which

change over time. Though often interpreted as implying only two-

dimensional image changes, it may be applied in general to any model

or scene changes in three dimensions as well. In animation, the

background and stationary objects are rendered once, while changing or

moving objects are rendered on a per frame basis and combined with

the static part of the image.

- Articulation

~Getting at the part you want

~ Getting it to move correctly

-Physics of motion

Animation by the specification of forces and torques applied to

masses, rather than their positions, velocities, and accelerations.

-Constraints

Constraints are Values, relationships or conditions which are to be

maintained while other changes are being made. For example, a

constraint can hold a line horizontal, keep two objects a constant

distance from one another as they moving, or can cause one object

to be attracted to another.

237 Web Programming Client-Side Scripting

Animating is giving variations on a model over time. Different keys

given by the animator are interpolated to give in-betweens.

Interpolation is the process of filling in information from a set of values.

Interpolation can be used to generate plausible surface points for

sparse data or for curves or surfaces defined with a small set of control

points. It is also a way to generate positions for objects between key

frames in an animation.

-Film: 24 frames/second

~30 minutes = 43,200 frames

~ More for TV!

-Motion shape

Concepts

Animation objects may be two-, three-, or even multi-dimensional while

their form may be represented in numerous different ways in the

computer program. Images are usually two-dimensional, but may have

color, depth, and compositing information associated with each pixel. A

sequence of images comprises an animation, whether recorded on film

or video, or simply viewed interactively. The control of an animation is

based on the manipulation of parameters of the image or object.

Parameters may describe image background, compositing operations,

and layout; or object shape, color, texture, position, orientation, motion

paths, and so on. As the parameters change over time, the

corresponding attributes of the image or object change to produce the

animation.

Levels

-Low level: Individual frames.

- Medium level: Sequences and scenes.

- High level: Story and Message.

Computer helps all three levels

2D Animation

-Hand-drawn cels

- Stacks of cels over background

- Only redraw cels that change

 Limited animation

Animation produced by stacking multiple 2D drawings (called

cels), each containing a fragment of a scene or character on a

transparent background. In a physical environment the cels are lit and

photographed to create one frame of animation. Cels are basically a

labor-saving device.

238 Graphics, Photoshop and Flash Animation

If a character is standing still and talking, then a cel of the character

without a mouth might be placed over a background. Then for each

frame a cel containing the appropriate mouth image is placed on top of

the stack, avoiding the necessity to re-draw the entire character for

every frame. Often there are several independent planes of images

which may be superimposed in a so-called "two and a half-

dimensional" animation.

What gets interpolated?

Strokes, Outlines and Colors.

-3D relationships hard to judge

-Timing based on exposure sheets

- High-quality compositing

3D Animation

-Shoot individual frames with camera

What gets interpolated?

 Shape geometry, Shape appearance, Light source information, Cameras

and Anything.

-Model transformed then rendered

Animation Techniques

The principal task of the animator is to select and control the "proper"

parameters to produce the desired effect. Certain applications may

dictate a more image-based control approach, while others may require

more explicit object models.

Animation means giving life to any object in computer graphics. It has

the power of injecting energy and emotions into the most seemingly

inanimate objects. Computer-assisted animation and computer-

generated animation are two categories of computer animation. It can be

presented via film or video.

Animation can make a series of dead images come alive. Animation can

be used in many areas like entertainment, computer aided-design,

scientific visualization, training, education, e-commerce, and computer

art.

Animators have invented and used a variety of different animation

techniques and some of them are discussed here.

Constraints

The use of end effector goals and inverse kinematics leads naturally to a

desire to specify other types of goals for objects and articulated figure

parts.

239 Web Programming Client-Side Scripting

Since specifying several goals may easily lead to over-constrained

systems (more constraints than degrees of freedom), a solution is

usually obtained by some "non-procedural" minimization or iterative

process. The constraints may take several forms, including

relationships, boundary conditions, formulas, potential functions, or

spring forces.

Scripting Systems

A scripting system is essentially a programming system or language in

which arbitrary changes to program variables can be invoked. The time

dimension may be provided explicitly by the order of execution of the

program, but more frequently the parameter changes are given times or

temporal relationships and then posted in an event list for simulation-

style execution. Alternatively, the object behaviors may be encapsulated

in an object-oriented programming paradigm. Scripts may be either

language or graphics-based and offer an animation interface apparently

rather like a series of director commands.

Traditional Animation (frame by frame)

Traditionally most of the animation was done by hand. All the frames in

an animation had to be drawn by hand. Since each second of animation

requires 24 frames (film), the amount of efforts required to create even

the shortest of movies can be tremendous.

Parametric Interpolation

In parametric interpolation, desired attributes of the object model are

parameterized so that they may be altered over time. As noted above,

parameters may include object geometry, topology, color, surface

attributes, textures, position, and orientation. Light sources and their

attributes, camera shots, and other image features may also be

parametrically specified and changed. The parameters are given key

values at various time points and linear or smoothly varying curves are

fit to the data points and interpolated to determine in-between values.

Motion of an object along a given path is a good example of parametric

interpolation.

Parameter values may be determined by direct measurement of some

real motion, by algorithm, or by user determined key values.

Key framing

In this technique, a storyboard is laid out and then the artists draw the

major frames of the animation. Major frames are the ones in which

prominent changes take place. They are the key points of animation.

Key framing requires that the animator specifies critical or key

240 Graphics, Photoshop and Flash Animation

positions for the objects. The computer then automatically fills in the

missing frames by smoothly interpolating between those positions.

Procedural

In a procedural animation, the objects are animated by a procedure - a

set of rules - not by key framing. The animator specifies rules and initial

conditions and runs simulation. Rules are often based on physical rules

of the real world expressed by mathematical equations.

Behavioral

In behavioral animation, an autonomous character determines its own

actions, at least to a certain extent. This gives the character some ability

to improvise, and frees the animator from the need to specify each detail

of every character's motion.

Performance Based (Motion Capture)

Another technique is Motion Capture, in which magnetic or vision-

based sensors record the actions of a human or animal object in three

dimensions. A computer then uses these data to animate the object.

This technology has enabled a number of famous athletes to supply the

actions for characters in sports video games. Motion capture is pretty

popular with the animators mainly because some of the commonplace

human actions can be captured with relative ease. However, there can

be serious discrepancies between the shapes or dimensions of the

subject and the graphical character and this may lead to problems of

exact execution.

Physically Based (Dynamics)

Unlike key framing and motion picture, simulation uses the laws of

physics to generate motion of pictures and other objects. Simulations

can be easily used to produce slightly different sequences while

maintaining physical realism. Secondly, real-time simulations allow a

higher degree of interactivity where the real person can maneuver the

actions of the simulated character.

In contrast the applications based on key-framing and motion select and

modify motions form a pre-computed library of motions. One drawback

that simulation suffers from is the expertise and time required to

handcraft the appropriate controls systems.

Key Frame

A key frame is a frame where we define changes in animation. Every

frame is a key frame when we create frame by frame animation. When

someone creates a 3D animation on a computer, they usually don’t

241 Web Programming Client-Side Scripting

specify the exact position of any given object on every single frame.

They create key frames.

Key frames are important frames during which an object changes its

size, direction, shape or other properties. The computer then figures out

all the in-between frames and saves an extreme amount of time for the

animator.

Image Interpolation and Morphing

In image interpolation the two-dimensional drawing of an object's

boundary and features is transformed over time by moving

(interpolating) points of the drawing between specified positions of

those points in a sequence of keyframes.

The transformation of object shapes from one form to another form is

called morphing. It is one of the most complicated transformations. A

morph looks as if two images melt into each other with a very fluid

motion. In technical terms, two images are distorted and a fade occurs

between them.

Artificial Intelligence control

Since there is no clear advantage in all situations to any of the above

methods, there may be a need to organize several techniques to

accomplish particular animation tasks. For example, human animation

may require kinetics, dynamics, constraints, and a process model for the

task being performed. While such systems are still evolving, several

advantages are already apparent: general world model information,

object interactions, rule-based action description, motion planning, and

simulatable models. This approach may provide the only effective way

to deal with the vast numbers of parameters involved to complex

animations.

Virtual Reality

Introduction

Computer graphics, engineers have strived to develop more realistic,

responsive, and immersive means for the human to interact with the

computer this is often called virtual reality (or simply VR).

There is no one definition of VR everyone will agree on; there is at least

one common stand. VR goes beyond the flat monitor that you simply

look at, and tries to immerse you in a three dimensional visual world.

The things you see appear to be in the room with you, instead of stuck

on a flat area like a monitor screen. As you might imagine, there are a

number of techniques for achieving this, each with its own trade-off

242 Graphics, Photoshop and Flash Animation

between degree of immersion, senses involved beyond sight,

computational requirements, physical constraints, cost, and others.

VRML (Virtual Reality Modelling Language) was similar to HTML but

allowed users to create 3D worlds; it had some academic popularity but

never gained attraction with general users.

VR Systems

Stereo Viewing

An important aspect of VR is that the things you look at are presented

in three dimensions.

Humans see the world around them in 3D using many different

techniques. Probably the most powerful technique for nearby (a few

tens of meters) objects is called stereoscopic.

In stereoscopic 3D perception, we use the fact that we have two eyes

that are set some distance apart from each other. When we look at a

nearby object we measure the difference in angle from each eye to the

object. Knowing this angle, the distance between the eyes, and a bit of

trigonometry, we compute the distance to the object. Fortunately this is

done for us sub-consciously by an extremely sophisticated image

processor in our brain. We simply perceive the end result as objects at

specific locations in the space around us.

So, one way to make a 3D computer graphics display is to render two

images from slightly different eye points, then present them separately

to each eye. Once again there are several ways of achieving this.

Shutter Glasses

Probably the simplest way of displaying stereo computer images is by

using the existing monitor. Suppose the display alternates rapidly

between the left and right eye images. We could then make sure each

eye only saw the image intended for it by opening a shutter in front of

the eye when its image is being displayed. The shutters would have to

be synchronized to the display.

This is exactly what shutter glasses are. They typically use electronic

shutters made with liquid crystals. Another variation places the shutter

over the monitor screen.

Instead of blocking or unblocking the light, this shutter changes the

light polarization between the left and right eye images. You can now

wear passive polarizing glasses where the polarizer for each eye only

lets thru the image that was polarized for that eye.

243 Web Programming Client-Side Scripting

Figure C26: Shutter Glasses and Controller

Head Mounted Display

Another way to present a separate image to each eye is to use a separate

monitor for each eye. This can be done by mounting small monitors in

some sort of head gear.

With the right optics, the monitors can appear large and at a

comfortable viewing distance. This setup is usually referred to as a head

mounted display, or HMD for short.

Figure 27: Head Mounted Display in Use

Head Tracking

What if the computer could sense the position and orientation of your

head in real time?

Assuming we have a sufficiently fast computer and a head mounted

display (that’s where the position/orientation sensor is hidden), we

could re-render the image for each eye in real time also, taking into

account the exact eye position. Objects could then be defined in a fixed

space. As you moved your head around, the eye images would update to

present the illusion of a 3D object at a fixed location in the room, just

like real objects.

244 Graphics, Photoshop and Flash Animation

Figure C28: Position and Orientation Sensors

Hand Tracking

We can use more motion sensors and track the position and orientation

of other objects, like your fingers, for example. Just like a mouse or

joystick can be used to control a program, your finger actions could be

used to control a program.

This might take the form of pushing virtual menu buttons, or maybe

grabbing an object and moving it around with your hand. The possible

interactions are virtually boundless, limited mostly by the software

designer’s imagination. Hand and finger position and orientation is

typically achieved by wearing a special glove that has a position sensor

on it and can sense the angles of your finger joints. This can be taken a

step further by wearing a whole suite with imbedded joint angle

sensors.

Figure C29: Glove that senses joint angles

Force Feedback

One can be in the same space with the objects we’re viewing and

interact with them thru hand motions, but we can’t feel them. That’s

where force feedback comes in. This is also referred to as haptic

feedback. Suppose the special glove (or body suit) you were wearing

245 Web Programming Client-Side Scripting

could not only sense joint angles, but also had actuators that could push

back at you.

With some clever software and fast computers, the actuators could

present the illusion of hard objects at particular locations. You can now

not only see it in 3D, walk around it, control it, but also bump into it.

Note that force feedback is currently limited to "pushing back" to

simulate the existence of a object. It does not provide other parts of

what we call tactile feel, like texture, temperature, etc.

Figure C30: Haptic Feedback Glove

Applications

Entertainment

This is definitely the biggest market, and is the main force for driving

down prices on VR hardware. You can be in a computer game with

computer generated players and/or other real players.

Augmented Reality

Imagine a VR head mounted display as we’ve discussed, but the display

doesn’t block out the regular view, it’s just superimposed on it. Imagine

walking around a building and "seeing" inside the walls to the wiring,

plumbing, and structure. Or, seeing the tumor inside a patient’s head as

you hack away at it.

Training

VR is already being used in to teach people how to use expensive

equipment, or when the cost of a mistake in Real Reality is very high.

For example, use of VR is getting more common in aircraft simulators

used as part of an overall program to train pilots. The benefits are also

substantial for military applications for obvious reasons.

Remote Robotics

This is another "real" application that is gaining much attention.

Suppose you had a robot that had arms and hands modelled after those

246 Graphics, Photoshop and Flash Animation

of humans. It could have two video cameras where we have eyes. You

could be wearing a head mounted display and see what the robot sees in

real time. If your head, arm, and hand motions are sensed and replicated

in the robot, for many applications you could be where the robot is

without really being there.

This could be useful and worth all the trouble in situations where you

can’t physically go, or you wouldn’t be able to survive. Examples might

be in hostile environments like high radiation areas in nuclear power

plants, deep undersea, or in outer space. The robot also doesn’t need to

model a human exactly.

Distributed collaboration

VR is being employed to allow geographically distributed people to do

more together than simply hear and see each other as allowed by

telephone or videoconferencing.

For example, the military is using VR to create virtual battles. Each

soldier participates from his own point of view in an overall simulation

that may involve thousands of individuals. All participants need not be

in physical proximity, only connected on a network.

This technology is still in its infancy, but evolving rapidly. I expect

commercial applications of distributed collaboration to slowly gain

momentum over the next several years.

Visualization

Scientists at NASA/Ames and other places have been experimenting

with VR as a visualization research tool. Imagine being able to walk

around a new aircraft design as it’s in a simulated mach 5 wind tunnel

(speed of tunnel). VR can be used to "see" things humans can’t

normally see, like air flow, temperature, pressure, strain, etc.

Problems

The current state of VR is far from everything we could imagine or

want. A few of the open issues are:

Cost

This stuff is just too expensive for everyone to have one, and it’s likely

to stay that way for quite a while.

Importance

I listed some application areas above, but note that none of them solve

common everyday problems. While VR certainly has its application

niches - and the number is steadily growing- it’s hard to imagine how it

can help the average secretary type a letter on a word processor.

247 Web Programming Client-Side Scripting

Display Resolution

Head mounted displays need to be small and light else you get a sore

neck real fast.

Unfortunately, the display resolution is therefore limited. Most displays

are only about 640 pixels across, which is a tiny fraction of what a

normal human can see over the same angle of view.

Update Speed

Most VR displays are updated at 30 Herz (30 times per second). This

requires a large amount of computation, just to maintain what looks and

feels like "nothing is happening".

The amount of computation required also depends on the scene

complexity. VR is therefore limited to relatively "simple" scenes that

can be rendered in 1/30 second or faster. This currently precludes any of

the rendering methods that can provide shadows, reflections,

transparency, and other realistic lighting effects. As a result, VR scenes

look very "computer-ish".

Photoshop –Practical Session

Introduction

In the Middle to Late '80's, Postscript was developed by John Warnock

and Adobe was formed. Photoshop was marketed by Adobe.

Adobe Photoshop is a vast program and it will take an enormous time

and pages to treat the content of every function. This appendix provides

a tour of the Photoshop user interface and covers some of the basics

function of Adobe Photoshop, in a general overview. This will provide

a good foundation that once can build on.

In Adobe Photoshop, there are often multiple ways of accomplishing

the same task. It is not necessary for you to learn the 5 or 6 different

ways there are in the Photoshop for creating a new layer. You only need

to remember the one method that fits with the way you prefer to work.

This may be a keyboard shortcut, right clicking, menus or icons, its

completely up to you how to utilize the tools that are available to you.

Photoshop Panels and Tools

Photoshop is modular in it is layout and it is infinitely customizable. In

the default configuration, the panels are located on the right hand side,

248 Graphics, Photoshop and Flash Animation

the tools are on the left and the options bar which displays the most

useful parameters for a selected tool is across the top of the work area.

There is also a standard menu bar at the very top of the application.

Workspaces

Figure CA.1: the default Photoshop workspace layout

All of the program elements, with the exception of the menu bar, can be

dragged around and docked with other panels to create your own

custom work area called a workspace. There a number of pre-set

workspaces that can be selected from the right hand side of the menu

bar, the default workspaces is “Essential” and can be recall at any time

by clicking on the button. This is very useful because beginners will

often accidently close or collapse panels and cannot remember how to

restore them.

Figure CA.2: a close up of the workspaces available from the top right

corner of the menu bar

If you cannot see all of the workspace options shown in Figure CA.2

they can be accessed by clicking on the >> icons. Alternatively, they

can be accessed from the Window menu > Workspace.

Each open panel has its own fly-out menu that contains commonly used

functions. The menu can be accessed by clicking on the icon

at the top right of the respective panel.

249 Web Programming Client-Side Scripting

Some panels are often

represented by a strip of icons

docked on the left hand side of

the open panels. The full panel

can be revealed by simple

clicking on the icon. However, it

is not always clear to beginners

what these icons mean. The

solution to this is to left-click

with your mouse and drag on the

left hands side of the icon strip.

This will expand the icon strip to

reveal the name of the function

associated with that icon.

Figure CA.3: an example of a

fly-out menu, in the case,

accessed from the layers panel

250 Graphics, Photoshop and Flash Animation

Figure CA.4: Panel icons

Tool Bar

The tool bar (or tool panel) is located by default on the left hand side of

the work area. It contain mouse based tool that are used for editing and

navigation in Photoshop. Most of the icons have a small black down-

pointing arrowhead in the bottom right hand corner. This indicates that

251 Web Programming Client-Side Scripting

these are more tools that can be accessed by clicking and holding down

the mouse button. Once the extended tools have appeared, you may

release the mouse button and the tool will remain.

The tools in the tool bar are loosely grouped according to their

functionally. You may notice that there are small lines or spacers

separating the groups of

tools. The first group of

tools are used for creating

selection, the second group

are the pixel editing tools,

the third group are the

vector editing tools and the

final group are the

navigation tools. At the

bottom of the tool bar there

is colour picker and very

bottom is an icon that

allows you to enter the

quick mask mode for

creating and editing

selections.

Figure CA.5: an example of multiple tools, available from a single

tool icon

Figure CA.6: tool groupings

252 Graphics, Photoshop and Flash Animation

Options Bar

The option bar is a context sensitive panels. Which to say, that its

changes depending on which tools is selected in the tool bar. It provides

access to the most important configuration settings for a particular tool.

For example, in fig CA.7 the options bar has changed to provide the

attributes associated with the move tool. We have the show transform

control and a range of alignment options, which are faded in

appearance, because is the case, no layer was highlighted in the layers

panel.

Figure CA.7: the options associated with the move tool

Menu Bar

253 Web Programming Client-Side Scripting

Figure CA.8: all of the menus and items located in the menu bar

Photoshop standard edition

The menu bar contains menu items and many sub menu items. The most

important functions in the menu bar have assigned keyboard shortcuts

which are customisable from the keyboard shortcuts section of the edit

menu. Many of the functions in these menus are accessible from the fly-

out menus in the various panels. The options to work with keyboard

shortcuts, the menu bar or the fly-out menus is one of personal choice

and is down to a particular workflow, or may be determined by the type

of input device you are using -Mouse, graphics tablet or track pad etc.

Basic Operations

Opening Files

Open

As with most

programs, the options

to open a file can

found in the file menu

fig CA.9. This

operation also has a

keyboard shortcuts

ctrl-O/cmd-O

(PC/Mac). Figure CA.9: Opening a file form the file menu

 254 Graphics, Photoshop and Flash Animation

Once you've selected to open a file, the Open dialogue box will appear.

From here you can navigate to your file and images, fig CA.10.

Figure CA.10: open dialogue box

Open As

In addition to the standard open option in the file menu, there is also

choice to Open As. The Open As dialogue box is almost identical to the

Open dialogue box, except that is allows you open image in one format,

fig CA.11.

A useful application of the Open As command is that you can open

most single layered file format as a Camera Raw document. This will

open the image into Camera Raw plugin (fig CA.12) that is part of

Adobe Photoshop. From here you can quickly and easily make simple

adjustments to your image without having to get in to complex editing

techniques in Photoshop.

255 Web Programming Client-Side Scripting

Figure CA.11: Open As dialogue box, showing some of the many

available file formats

Figure CA.12: Camera Raw

256 Graphics, Photoshop and Flash Animation

Open As Smart object

The third option is to use Open As

Smart Object. A Smart Object

allows non-destructive editing of

your image and is useful if you

are planning on making extreme

edits or multiple transformations,

such as scaling, to your image.

Smart objects appear in the layers

and panels with a small icon in the

bottom right hand corner and if

you apply a filter to them, they

will display the filter below the

layer fig CA.13. The application

of a filter to a smart object is not

permanent and the settings can be

changed at any time by double

clicking on the filter name in

Layers Panel. Figure CA.13: a Smart Object

There are several ways of getting an image in to Photoshop, including

simple dragging an image on to the work area. You can also use one of

the two file browsing options, Bridges and Mini-Bridge.

Saving your work

When you need to save your work you will go to the File menu and

choose Save or Save As.

Save: If the file has been saved previously, the file will update. If the

document has not been previously saved you will see the same dialogue

box As if you had pressed Save As.

Save As: This command brings up a dialogue box (fig CA.14) where

you can name the file, choose the properties that you wish to be

included in the file and also choose the file format.

File Formats

When you click on the Format drop down menu in the "Save As"

dialogue box (fig CA.14) you will notice that Photoshop allows you to

save your file in many different formats. Some of these formats are now

redundant and are only there to provide backwards compatibility: others

are specialist format used in areas such as medical imaging. In reality

you only need to know a few of these formats - the number depends on

the type of work you are doing.

257 Web Programming Client-Side Scripting

Figure CA.14: the Save As dialogue box and file formats

Popular and Useful File Formats:

PSD: This is Photoshop's native file format and if you only use

Photoshop as your Image editor, it is the one that will give you the most

flexibility. It will retain all layers, adjustment and effect that you have

applied to you image. This format support high bit depths filed Up to

32bits. The file size for high bit depth file can be extremely large so

think carefully before you consider saving your image in anything other

than 8bits.

TIFF: Tagged-Image file format (TIFF, TIF) has most of the same

attributes as the PSD format (when opened in Photoshop). This format

is useful for its compatibility with almost all software that will open

Image data. It also allowed the use of several different compression

methods to reduce the size of your file.

JPEG: Joint Photographic Expert Group (JPEG, JPG) format is mostly

used for images that will be displayed on screen or the web. This file

format uses "Lossy" compression, which is to say, that data is lost

during the compression process resulting in a much smaller file, but

may also compromise image quality. If your camera only takes JPEG

Images i recommend that you save the image as PSD during the editing

process, as repeatedly opening and saving JPEG image causes

recompression of the image and can severally degrade the data,

resulting in very noticeable compression artefacts.

258 Graphics, Photoshop and Flash Animation

GIF: Graphics Interchange Format (GIF) is used to display indexed

colour mode graphics. This file format may only contain 256 colours so

it is not commonly used for photographs. However, it has several

characteristics that have made it very popular in web graphics.

. Small file size

. Supports transparency

. Supports animation

PNG: Like the GIF format this format is commonly used for web

graphics. The PNG format is a lot more flexible in its support for 24bit

photographic images and alternative colour modes than the GIF format.

However, it is not widely supported in web browsers.

PDF: The Portable Document Format (PDF) is very useful for

displaying file across multiple platform and applications. It has the

benefit of supporting compression, 16bit format and common colour

modes. Whilst retaining font, vector, raster information and Photoshop

editing (if selected).

Creating a New Documents

You can create a new document by selecting New form the File menu

or by using the keyboard shortcuts Ctrl-N/Cmd-N (PC/Mac). The new

dialogue box allows you set all of the parameters for your new

document and have a number of presets to get you started, fig CA.15

and fig CA.16. It is important to set up your document correctly. For

example, you need it to be at the correct size and resolution for it's

intended purpose. If you select a paper size preset, it will automatically

set the resolution for print. Likewise, if a web preset is selected the

resolution will be set accordingly.

Figure CA.15: the New dialog box and Preset options

259 Web Programming Client-Side Scripting

Figure CA.16: International Paper and Web size options

There are other options in the New dialogue box that also need to be

determined:

- Colour Mode- For example, RGB for web design and photography

and CMYK for commercial print.

- Bit Depths - 8 bit is generally fine unless you are intending to

perform some major image editing or have a lot of gradients in a

design, in which case it would be better to work in 16 bit mode and

then convert to 8 bit once the editing process is completed. Web

graphics should be 8 bit.

 - Background Contents - This determines the colour of your

background layer.

Under the Advanced section of the dialogue box there are two

options:

- Colour Profile - you should leave the colour profile set to sRGB

except for those wishing to do advanced Photographic work, in

which case you may wish to use Adobe RGB or ProPhoto RBG.

- Pixel Aspect Ratio - in almost all cases this should be set to Square

Pixels. Rectangular pixels are only generally used to correctly

display wide screen content.

When you click Ok, you will have a new empty documents with a

single layer.

Navigation and Zooming

Navigator Panel

When you are zoomed in to and image in Photoshop it is easy to lose

where you are. By quickly checking the Navigator panel, the red (grey)

square (fig CA.17) will indicate the zoomed area. Navigation can also

be undertaken by dragging the red (grey) square to a new position.

260 Graphics, Photoshop and Flash Animation

Figure CA.17: Navigator Panel

Hand Tool

The Hand tool is used for moving the image around zoomed in. In CS5,

flick panning is possible and can be enabled or disabled in the general

preferences dialogue box which is found in the Edit menu on the PC, or

the Photoshop menu on the Mac. If you are performing some close up

editing and need to quickly access the Hand tool, holding down the

Space Bar will temporarily select the tool, your original too will be

reinstated once the Space Bar is released.

Zoom Tool

When the zoom tool is selected, the default setting is to enable you to

zoom in to an image in two ways:

- Click on the desired portion of the image to zoom in predefined

increments.

- Click and drag to define a particular area that you wish to zoom in

on.

When you wish to zoom back out, you can either click on the icon with

the magnifier glass containing the minus symbol (fig CA.18), or

Alt/option (PC/Mac) - Click to temporarily change the tool. The second

method is preferable because unless you remember to click on the zoom

in icon (the one with the plus), you may zoom out when you want to

zoom in the next time that you come to use the tool.

261 Web Programming Client-Side Scripting

Figure CA.18: the Options associated with the zoom tool

If you have the Scrubby zoom option selected (fig CA.18) you can

quickly zoom in to your image by clicking and dragging to the right.

You can then zoom back out by clicking and dragging to the left.

There are four buttons in the Zoom options that can help you navigate

your image:

• Actual Pixels-shows your image at 100% magnification

• Fit Screen – zoom’s your image to fit available work area,

without respecting the panels and tool bar

• Fill screen -zoom's your image to fill all the available work

area without respect for the position of any open panels.

• Print size- show the image at the size it will be printed

based on the documents resolution setting.

The above four options are also available from the View menu.

Useful Keyboard Shortcuts

Experienced Photoshop users will often use keyboard shortcuts for

navigating and zooming. I recommend that you try to learn the

following shortcuts, as it will speed up your workflow and productivity.

It will also, ultimately make using Photoshop a more pleasant and

rewarding experience.

Simple Global Adjustment

In this section we are going to take a look at Global Adjustments. This

means adjusting the whole image to correct colour, contrast or exposure

262 Graphics, Photoshop and Flash Animation

of an image. It can also be used as a special effect to create a specific

look.

There are two different ways in which you can apply an adjustment to

an image. The first is to go to the menu and choose adjustments:

There are 22 different adjustment that you can apply to you image from

this menu. However, if you apply an adjustment to your image and save

it, the adjustment is permanent and destructive. The second method for

applying an adjustment is non-destructive and utilizes a special type of

layer called an Adjustment layer.

You can apply an adjustment layer by clicking on the icon at the

bottom of the layers panel (if you can't see your layers panel Press the

F7 Key to open). Alternatively, you can create an adjustment layer from

the menu by choosing New Adjustment layer. You can also apply an

adjustment layer by clicking on the appropriate icon in the appointment

list. The Adjustment list is visible in adjustment panel if no adjustment

layer is highlighted in the Layers panel.

263 Web Programming Client-Side Scripting

You will notice that this time there are only 15 adjustments instead of

the 22 we saw previously. However, with the exception of Shadows

/Highlights, we have all of the important adjustment available to us.

264 Graphics, Photoshop and Flash Animation

Once you've added the adjustment layer it will be visible as a new layer

above your image in the Layers panel. The dialog box for the

adjustment will also appear in the Adjustments panel (if you can’t see

the adjustments panel, select it from the Windows menu).

There are many different adjustments, but the most useful adjustment

for beginners to start with are:

• Levels

• Hue/Saturation

265 Web Programming Client-Side Scripting

Levels

Levels is an extremely powerful tool for adjusting exposure problems

and can also be used to colour an image.

When you apply a Levels correction you will notice that there is a

histogram, this is a representation of all the tonal values in the image.

The black point slide on the left is set at 0 which is pure black and the

value point slider on the right is set at 255 which is pure white. This

gives us a complete range of 256 possible values.

The middle Gamma slider works differently to the black and white

sliders. If the Gamma is adjusted to the left (towards black end of the

scale) the image will get lighter in the mid tones and the opposite will

happen if you move it to the right, the image will get darker in the mid

tones.

266 Graphics, Photoshop and Flash Animation

In this Histogram we can see that the dark values don't go all the way to

the black point on the left and the white values don’t go all the way to

the white point on the right. This means that there are no true blacks or

whites in the image and this may result in the image lacking in contrast.

We can adjust the histogram by moving the black and white points

inwards to meet the beginning and end of the pixel values.

The black and white values have been changed and in the left hand box

the input value now reads 14.This means that any pixels value of 14, or

less, Will be mapped to 0 (black). Similarly, the right hand input box

now reads 238. This means that any pixels value in the image of 238 or

greater will be mapped to 255 (white). By moving these sliders inwards

to meet where the pixel values begin and end, we now have an image

that contains a full range of value from pure black to pure white. This

results in an increase in contrast within the image.

If you are confident as to where your black points and white point

should be in your image, you can select the appropriate sample point

selectors (commonly known as the eye dropper tools, see figure below)

in the Levels dialogue box and click directly in your image to set the

value. The eyedroppers will also attempt to create neutral values, so

they will remove any colour cast that your image may have.

267 Web Programming Client-Side Scripting

Hue Saturation

The Hue/Saturation adjustment allows us to manipulate in an image,

either globally or independently.

As with the Levels adjustment, i recommend that you apply it as an

Adjustment layer. In the Hue/Saturation dialogue box we have three

main sliders:

• Hue: affects the colour value. When you move it, the spectrum

of colour is shifted. This is not useful as a global adjustment but

can be very useful when applied to a specific colour.

Saturation: represent the intensity of the colour. Moving the

slider value to the right will make the colours in your image

appear stronger. Moving the slider to the left will decrease the

intensity of the colours and if you move it all the way to the

left, will result in a greyscale image. For the best and most

natural looking results you should do this on a per -colour basis.

268 Graphics, Photoshop and Flash Animation

• Lightness: as the name implies, will affect the lightness of

image and unless used with care, can result in loss of contrast.

The default settings is to affect all of the colours in the image, as

indicated by "Master" in the dropped down menu. However, individual

colours can be affected independently, by either selecting the

appropriate colours from the dropped down menu - see preceding fig

(right). Or by using the small icon that depicts a finger on right pointing

arrow, to clicking and dragging to the left will de-saturate the selected

colour.

Near the bottom of the panel is a check box called Colorize, preceding

fig if you click in this box your entire image will be tinted with one

specific colour. The Hue slider will allow you to change the colour and

the Saturation slider will adjust the intensity.

Layers

Beginners to Photoshop often have a problem with the concept of layers

and how they can be made to interact with one another. They can be

partially hidden using layer masks, they can be blended together in

several different ways, they can be re-ordered, renamed, linked,

grouped, clipped, duplicated and flattened.

So what are layers? Layers are simply stacks of images, objects or text.

Layers are very powerful because they will allow us to edit and move

individual image components without affecting other elements within

the scene. Let’s look at an example of a layered document, see the fig

below.

269 Web Programming Client-Side Scripting

In the image of the Layers panel, in the preceding fig, we can see that

there are total of 5 layers, from the bottom upwards, there is a

Background layer, an image of the Sky, a layer containing a Square, a

layer containing a Circle and a Text layer which contains the word

“LAYERS”, we can see 4 of the 5 layers, the background layer is

completely covered up by the sky layer.

The two shape layers and the Text layer do not completely cover the

Sky layer because they are surrounded by transparency which allows

the underlying layers to show through. Transparency is represented in

the Layer panel as a chequer-board pattern and is apparent in this

example, in the square and circle layers. Finally, the Text layer is a

special kind of Layer and although text is always surrounded by

transparency, it does not show in the Layers panel.

Aligning and Moving Layers

To move the contents of a layer, select the Move tool which is located

at the top of the Tools panel, see the Fig below. You must then

highlight the layer you wish to move by clicking on it in the Layers

panel. Once the layer is selected it will appear blue, fig.5.3. With a layer

selected, you can use the move to click and drag the layer into a new

position.

 Move tool

Circle layer is selected, as indicated by the blue highlight

270 Graphics, Photoshop and Flash Animation

Multiple layers can be selected by choosing a layer and then holding

down the Shift Key and clicking on different layer. All of the layers

between the two selected layers will be highlighted in blue, see the fig

below. Non-adjacent layer can be selected by Ctrl/Cmd-click(Pc/Mac)

on the required layers.

With several layers highlighted, multiple layers can be moved

simultaneously, however, they will maintain their relative positions to

one another. If you wish to change the position of the layers so that they

are aligned with one another, you can use the Alignment tools that are

present in the Options bar once the Move tool is selected, see the fig

below.

271 Web Programming Client-Side Scripting

Layers Interactions

The manner in which the individual layers in a document may interact

with each other is editable in a number of ways. The most basic

interaction is Opacity, by default the Opacity is 100%, but this can be

adjusted by moving the slider that appears when you click on the right

pointing arrow at the side of the Opacity value, see the fig below.

Alternatively, you can just position your cursor over the word

“Opacity” and drag to the left to reduce the value, and to the right to

increase it.

When we reduce the opacity of a layer it allows any layers that may be

below the altered layered, to be partially visible, see the fig below.

272 Graphics, Photoshop and Flash Animation

Blend Modes

Layer can also interact with one another by using Blend modes. They

allow one layer to affect underlying layers in a number of different

ways. However, to help you to understand in broad terms what their

function is, similar modes are grouped together, see the fig below.

You can alter a layers blend mode by clicking on the down arrow next

to the word Normal in the Layers panel.

Naming Layers

It can be very easy to lose track of which layer is which if you have

many layered document. It is a good idea to get into the habit of naming

your layers as you create them. To rename a layer simply double click

on the name of the layer in the layer’s panel and type in the new name.

Adding a text to an image is very simple and can be done in two ways.

• Select the Type tool from the Tool panel and click in the image

where you would like the type to appear. A flashing cursor will

appear and you can commence typing.

• If with to create a column of text for a magazine layout, choose the

Type tool, but instead of just clicking, click and drag to create the

text box. Now when you type, it will be contained within the box.

You will notice that when you type a new type layer appears in the

Layers panel so there is no need to manually create a new layer when

you wish to add text.

273 Web Programming Client-Side Scripting

When you choose one of the Shape tools, see the fig below, the default

setting in the associated Options bar is to create what is known as a

Shape layer, in the same manner as the Type tool, Shapes layers are

created automatically when you start to draw with one of the tools,

provided that the create shape layer icon is selected in the Option bar-

the first selected icon from the left in the second fig below.

274 Graphics, Photoshop and Flash Animation

Shape layers consist of a solid colour layer with a vector mask, see the

fig below. A vector mask is like a stencil, only allowing the colour to be

seen where the shape has been drawn. The colour of a shape can be

changed at a time by double clicking on the coloured thumbnail icon in

the layers panel. The icon will reflect the currently chosen colour. As

you double click the Colour picker dialogue box will appear, see the

second fig below, allowing you to choose any colour you wish.

275 Web Programming Client-Side Scripting

Simple Selections

Selections allow us to isolate a particular portion of the layer. We can

then edit the selected region without affecting the rest of the layer.

There are so many ways in which we can generate a selection in

Photoshop. In this Appendix we will start by taking a look at some of

the simple selection tools.

Magic Wand Tool

The Magic Wand tool is located fourth from the top in the Tools panels

and is stacked with the Quick Selection tool. To access a stacked tool,

simply click and hold on a particular tool to see the other tools available

in that location. Stacked tools are indicated by the small black triangle

in the bottom right hand corner of the icon.

The Options bar functions associated with the Magic Wand tool play an

important role in its functionality, see the fig below.

• Tolerance: determines how much of the image is selected when

you click on a particular part of your image. A value of 10 indicates

that 5 darker values and 5 lighter values will be chosen based on the

position where you clicked, see the fig below.

• Anti-alias: make selection edges smoother.

276 Graphics, Photoshop and Flash Animation

• Contiguous: when this option is selected only neighbouring

pixels are selected, see the fig below.

When unchecked all pixels of the selected value will be selected, see

the fig below.

• Sample All Layers: if chosen, will take all layers into

consideration and not just the highlighted layer.

There are other icons in the Magic Wands Options that allow us to

make more accurate selections.

277 Web Programming Client-Side Scripting

In the following example we will look at making a selective edit to an

image. In the fig below, the orange poppy was selected with the magic

wand tool so that we can change the colour of the flower without

affecting the rest of the image. The poppy contains a surprisingly

amount of different tones so it is difficult to make an accurate selection.

If you keep increasing the tolerance value, you will get to a point where

areas outside of the poppy start to become selected. We don’t want this,

so a better solution for an image like this, is to keep the tolerance value

relatively low (in this example, I used a value of 20) and chose the Add

Selection icon in the option bar. You can then keep clicking various

parts of the flower until you are happy with the selection. If you manage

to have unwanted selection areas appear, click on the Subtract from

selection icon to remove those values from the selection (note: take care

not to leave this icon selected once you have removed the unwanted

selection areas).

Once the selection is complete you can go to the Image

menu>Adjustments>Hue/Saturation. The values that I chose to use can

be seen below.

278 Graphics, Photoshop and Flash Animation

Not only can you apply Adjustments to selected areas, you can also

apply filters from the Filter menu. In the next fig, you can see that the

Filters>Artistic>Plastic Wrap filter has been applied to the same

selection

Selections can be saved and loaded from the Select menu, fig below. If

you have taken the time to make a selection, it is a good idea to save it

in case you want to make further edits. Once you have finished with

your selection you can remove it by choosing Deselect from the Select

menu.

Marquee Tools

The Marquee tools allow us to draw basic shapes with the selections,

see fig below.

279 Web Programming Client-Side Scripting

As with the Magic Wand tool, the selection can then be used to edit the

image.

The option bar for the Marquee tools is very similar in appearance to

that of the Magic Wand tool. However, you will notice that you also

have an option called Feather. By default, the Marquee tools will define

a hard edged selection. However, by entering a pixel value in to the

Feather option we can create a selection that will have a soft edge. Soft

feathered selections can be very useful as they allow us to blend edits

with underlying layers, see fig below.

As well as you could able to edit the content of a selection on a layer

that contains an image or design, we can also create a new empty layer

and use the active selection to:

• Fill with a colour (see fig below)

• Stroke with an outline (see fig below)

• Paint or clone inside (see fig below)

• Apply an adjustment or filter to the selected area (as was saw

with magic wand tool.)

280 Graphics, Photoshop and Flash Animation

The fill and stroke commands can be found in the edit menu, see fig

below.

Marquee Selection Modifier keys

When drawing a selection using the marquee tools there are a number

of keys on the keyboard that will alter how the selection is drawn.

281 Web Programming Client-Side Scripting

• Shift key – constraints the Rectangular and elliptical marquee

tools to a perfect square or circle respectively.

• Alt key – draws a selection from the centre instead of the edge.

• Space bar – allows the selection to be moved during the

drawing process.

• Shift key (after the selection is drawn) – temporarily chooses

the add to Section option.

• Alt key (after the selection is drawn) – temporarily chooses the

Subtract from Selection option.

• Shift and Alt - temporarily chooses the Intersect with Section

option.

Lasso Tools

Another set selection tools are the Lasso tools, see fig below. These

tools are used to create more of a free-hand drawn selection.

The Lasso tools comprise of:

• The Lasso tool – a completely hand drawn selection.

282 Graphics, Photoshop and Flash Animation

• The Polygonal Lasso tool – draws straight lines between

clicked points.

• The Magnetic Lasso tool – used for drawing selections around

image contents by detecting contrast changes around the edge of the

subject.

Copying a Selected item to a New Layer

The act of copying a selected item to a new layer is a crucial editing

technique in Photoshop. It allows you to work non-destructively, by

applying edits to a new layer instead of the original pixels that are

located in the Background layer. It also allows you to duplicate items to

create composite images (see fig below) or complex designs.

There are a number of ways to copy an item to a new layer. Once

you’ve made your selection, go to Layer menu and choose New>Layer

via Copy. Alternatively, you can use one of the most useful keyboard

shortcuts in Photoshop to do the same task – Ctrl J. when you make the

new layer it will appear as if nothing has changed, this is because the

duplicate item will be in perfect register with the original image below.

Select the Move tool (the first tool in the tool bar) and reposition the

item as required. If you are using an image as in the preceding fig

above, a large feathered selection will help the new layer blend more

effectively with the one below for a more seamless result.

It is often the case that you will wish the copied item to be of a different

size or orientation to the original, see fig below. This can be achieved

by going to the Edit menu and choosing one of the Transform

commands. In the fig below the item has been scaled down slightly and

flipped horizontally, so that it appears to be a little further away and

283 Web Programming Client-Side Scripting

swimming in the opposite direction. Once you’ve made your transform

edits, you must click on the tick in the option bar in order to accept the

changes (if you don’t like what you’ve done, click on the X to cancel

the edits).

Choosing Colours

Foreground and Background colours

At the bottom of the tools panel there are two colour chips that

represent the colours that are currently selected. There are commonly

known as the foreground and background colours. The foreground

colour is the colour currently use by a specific tool and is represented as

the top colour chip in the tools panel. In fig below we can see that the

foreground colour is set to blue and the background colour is set to red.

The reason for having a background colour is that it can be switched for

the foreground colour very quickly by clicking on the double headed

arrow icon. The background colour can also be used in gradients – in

this case drawing a gradient with the gradient tool will result in a blue

to red gradient being drawn (using the default gradient settings)

The black and white icon in the preceding fig will return the colours to

their default setting of black as the foreground and white as the

background.

Changing the Colours

You can change the selected colours by simply clicking on either the

foreground or background colour chips at the bottom of the Tools panel.

284 Graphics, Photoshop and Flash Animation

This will result in the Colour Picker dialogue box appearing, see fig

below.

Click in the multi-coloured area to choose your colour. The brightness

of the colour can be adjusted by clicking higher or lower in the large

area on the left dialogue box, which represents variations of the chosen

colours with respect to brightness and saturation of the colour is

increased by clicking further to the right of this area.

If your colour picker dialogue box does not look like the one the fig

above, there could be reasons for this. Firstly, the Operating System

colour picker has selected in the general preferences, found in the edit

menu. If this is the case, you can change it to Adobe version if you

wish. The colours represented in the Adobe Color Picker may also

appear different. The “Only Web Colors” box may be ticked or an

alternative colour mode chosen. To have the dialogue box appear as in

the preceding fig above, make sure that the only web colors box is not

checked and that the HSB (Hue, Saturation, Brightness) color option is

selected.

285 Web Programming Client-Side Scripting

There are two small warning boxes that may appear to the right of the

new/current box. The top one indicates an out of gamut for printing

warning, which means that it’s outside the range of colors that the

printer can reproduce correctly. The lower one is warning that the

colour may not be displayed correctly if viewed in a web browser. If

you click on either one of warning icons, it will alter chosen colour to

make it print and /or web safe.

Swatches Panel

The Swatches panel contains number of useful pre-set colours, see fig

below. If your Swatches panel is not visible in your current workspace

you can access it by choosing swatches in the Window menu.

Additional swatches are available from the fly-out menu in the top right

hand corner of the panel, see the next fig. You can also create your own

swatches by:

• Click on the turning page icon at the bottom of the Swatches

panel to add the current foreground colour to the list.

• Click on the “Add to Swatches” button in the Color Picker

dialogue box.

• Click on an empty space in the Swatches panel to add the

current foreground colour to the list.

Swatches are extremely useful for graphics and web designers because

you can create your own set of custom colours from a layout or web

page. You can then save that set of colours from your swatches panel

fly-out menu, see the fig below.

286 Graphics, Photoshop and Flash Animation

They will be quickly loaded (from the fly-out menu) the next time that

you are required to create a design for a particular client and need the

colour palette that was used in a previous design.

Color Panel

You can create a foreground or background colour from the colour

panel, see the fig below.

287 Web Programming Client-Side Scripting

The colours are changed by either moving the slider or by clicking

directly on the spectrum. Both the slider and the spectrum are

configurable to accommodate working in the most popular colour

spaces. The most useful setup for this panel, is to have the slider set to

HSB and the colour spectrum set to RGB, if you can create a colour that

is out of the gamut for your printer, a warning icon will appear, see the

fig below, if you click on the icon, the colour will automatically be

change to the colour in the nearest gamut colour.

288 Graphics, Photoshop and Flash Animation

Guides and Rulers

Designers of all types will find using guide and rulers a great help in

laying out pages for the web or for print. The options for turning on and

off ruler and guide

functions can be found in

the View menu.

To have the Rulers appear

around the outside of you

work area, select Rulers

from the View menu, or

the keyboard shortcut (the

keyboard shortcut for

commonly used function

are indicated to the right

of the menu item),

Cmd/Ctr+R(Mac/PC).

You can create guides by

clicking on the New

Guide option in the View

menu. However, it's far

quicker and easier to

simply click and drag

from inside one of the

rulers to create a guide.

Clicking and dragging

from the vertical rulers

will create a new vertical

guide and performing the

same procedure from the

horizontal rulers will

result in a horizontal

guide.

Once your guides have

been created, you can

change or refine your layout by selecting the move tool and

repositioning the guides. To do this you must select the move tool and

place the cursor over the guide that you wish to move. When the cursor

changes, you can then move the guide.

289 Web Programming Client-Side Scripting

You will notice that the guides are cyan in colour by default. This can

be changed if you wish by changing the colour setting in the

Preferences. The Preferences are found in the Edit menu and the guide

settings are found in the sub category "Guides, Grid, & Slices ". I find it

easier to fill my background layer with a dark neutral colour to that i

can see the guides more clearly when preparing a layout, see fig below.

290 Graphics, Photoshop and Flash Animation

You can do this by selecting the required colour as you foreground

colour and then use the paint packets tool, (ground with the gradient

tool), to on the background to apply the colour. It can be returned to

white (or whatever colour you like) by repeating the process once your

guides are in place.

If you wish to change the units displayed on the Rulers, you changed

the "Units and Rulers" setting in the Preferences. Alternatively, you can

right click in the ruler and select you alternative units from the box that

appears below.

You can create a layout mock up by using the Vector Shape tools (fig

below) to draw shapes to represent where specific items will appear in

 your layout (fig below). Drawing with Vector Shapes has many

similarities to using the Selection Marquee tools. The modifier keys for

291 Web Programming Client-Side Scripting

adding and subtracting from shapes are the same as for creating

selections (Shift to add, Alt/Option to subtract).

While drawing a layout, it is useful to utilize the snap setting in the

View menu. This will cause the drawing tools to snap precisely to the

guides as you are dragging out the shapes.

Once your design is complete you may wish to view without the guides.

However, if you use the Clear Guides option from the View menu, the

292 Graphics, Photoshop and Flash Animation

guides will be gone for good. A better way to work is to hide the guides.

This can be done from the Show options in the View menu or by simply

pressing Cmd/Ctrl+;(Mac/PC) to toggle the guides on and off.

Your guides will be saved with your documents, but they will not

appear in a print or an exported web slices.

History

If you make a mistake in Photoshop you can undo that mistake by going

to the edit menu and choosing either Undo or Step Backward. Clicking

Undo will take you back a single step, the command will then change to

Redo (followed by the name of the action that you have just performed).

Selecting the Step Backward option take you once set backwards in the

History panel, see the fig below.

 The History panel can be opened from the Window menu and contains

a record of operations performed up to a finite number. The number of

steps visible in the History panel are set in the performance section of

the Preferences, see fig below. The Preferences are found in the Edit

menu.

The default number of history states is 20, in the fig below. The

minimum value is 1000. It is very tempting to set a high number of

History states. However, this will have serious consequences with

respect to performance of your computer as Photoshop has to remember

the exact configuration of your documents in each of the History states.

I recommend 20-30 History states for a beginner. When you become

more experienced at using Photoshop try reducing the number of

History states to 8-12. This will free up some of your computer

resources so that it performs other functions faster. I also recommend

293 Web Programming Client-Side Scripting

setting the History states to a low value if you are trying to run

Photoshop on a minimum specifications machine.

Snapshots

When you create or open a document an initial Snapshot appears at the

top of the History panel and is the default source for the History brush,

see the 1st fig under History. If you make many edits to your document

and make a mess of things, you can always return the document to its

original state by clicking on this Snapshot.

294 Graphics, Photoshop and Flash Animation

If you are making a several edits to your document are about to run out

of History states you can click on the camera shaped icon at the bottom

of the History panel in order to create another Snapshot. The new

Snapshot will remember all of the edits that you have created to that

point, see preceding fig above. You can then proceed with your edits,

knowing that if you make a mistake you can click on the new snapshot

and don't have to start all the way from the beginning again. It’s a good

idea to rename any new Snapshots that you make by assigning them a

descriptive name. To rename any Snapshots, double click on Snapshot

name and type in the new name.

An alternative to working with Snapshots is to create an entirely new

document from a History state. You can do this by clicking on the icon

shown in fig below.

A new document from a History state will have that state as its opening

Snapshot and the History for that document will be empty.

Keyboard shortcuts:

History Brush & Fill History

You can apply any History state to specific area in two different ways.

Firstly you can select History Brush Tool from the tools panel.

You then select the History State that you wish to paint with by clicking

in the left hand box corresponding to that history states position in the

History panel see the fig below.

295 Web Programming Client-Side Scripting

 Adjust the brushes properties from the Options panel (see the fig

below) and point on the document. It is best to create a new blank layer

stack to point the History state on. This way you will be working in a

good non-destructive workflow and you can always discard the layer if

you don't like the changes.

Another way of applying a history state to a specific area is to make a

selection using any of the methods described in the section, ‘Simple

Selections’. Click in the left hand box at the appropriate History state in

the History panel. Create a new empty layer at the top of the Layer

stack, go to the Edit menu and choose Fill. In the dialogue box that

appears (see the fig below), use the drop down menu next to the word

use: to select history then click OK.

The selection will be filled with selected history, see the fig below.

296 Graphics, Photoshop and Flash Animation

Cropping

There are two main ways in which we can crop a document in

Photoshop. The first and most commonly used method is to use the

Crop tool, see fig below.

The options panel that is associated with the crop tool is unusual in that,

before the crop area is drawn there are one set of options. After the crop

area has been selected a second set of options will appear, (see the fig

below).

The first set of Crop tool options are to enter specific dimensions and

resolution for the document. This is very useful if you need the

document output to specific criteria, to fit a certain print size or if the

image has to be placed inside a design or web page layout. The second

set of options pertain to the shield that is drawn with the Crop tool and

defines the crop area. You can change the colour and opacity of the

297 Web Programming Client-Side Scripting

shield and you can also use the small drop down menu to determine

which type of grid overlay or visible.

Basic Printing
Printing is one of the areas of Photoshop that causes people problems.

Typically, their prints don't look like the on-screen version of the

document. You have to accept that your monitor and printer reproduce

colours in every different ways and that they will never be completely

identical in their output.

The very best method of getting a good print output that closely

resemble the version you can see on your monitor, is to buy (or borrow)

a calibration device. There are many calibration devices on the market.

However, the best ones enable you to calibrate both your monitor and

printer so that their out matches as closely as possible. This kind of

device will create a custom "Profiles ", which Photoshop can use to

display and print your documents accurately.

A good calibration device can be expensive, so let's look at how there

can be better results from Photoshop if we don't have access to one.

• Go to your printer manufacturer website. Download and install

the latest drivers for your printer.

298 Graphics, Photoshop and Flash Animation

• Make sure that you are viewing your monitor in a colour

neutral environment. Colours that are around us strongly

influence how we see colours on the screen. If you have strong

colours in the room that you are working in, try working in the

dark.

• Check your documents for out of gamut colours -colours that

your printer is unable to reproduce, such as strong, heavily

saturated colours.

• If you are working with image, make sure that you adjust your

image so that there is good detail in both the highlight and

shadow areas.

• Let Photoshop handle the printing. Turn off your printers

colour management options.

• If you are making high quality photo or fine art prints on high

quality paper, check the manufacture’s website to see if they

have produced a custom profile for the particular paper stock

that you are using.

Photoshop Print Dialogue Box

When you wish to make a print go to the File menu and choose the Print

option.

299 Web Programming Client-Side Scripting

Once the Print option is chosen, the Print Dialogue box will be

displayed, as shown below.

300 Graphics, Photoshop and Flash Animation

Make sure that the following settings are made:

- Select your printer from the drop down list at the top of the dialogue

box.

- Set Photoshop Manages Colors from the Color Handling drop down

list.

- In the Printer Profile section, have this set to either your printer or any

custom that you may wish to use.

- For photographics document, have the Rendering intent drop down

menu set to either Perceptual or Relative Colorimetric and make sure

that the Black Point Compensation Check box is ticked.

- For documents containing graphics or charts, you may use of the

Rendering Intents, but you may be able to reproduce stronger colours if

you use the saturation options.

- Click on Print Settings to open up your printer’s settings (this will be

different for every printer - refer to your user manual for how to make

the required settings). Select the resolution, paper size and paper type

that you wish to use. Find the colour Management Settings for your

printer and turn them off, see fig below.

301 Web Programming Client-Side Scripting

If you want to produce a high quality print, it is often a good idea to use

the "Scaled Print Size" options to make a smaller test print. Enter a

percentage value in the scale box (make sure that the Scale to Fit Media

check box is unchecked or you will not able to do this). This will save

you ink in the long run, as you will probably have to make some

adjustments to your document and make a few print before you are

happy with the results. Prints are almost always darker than their own

screen version, so it's good idea to make a level adjustment layer and

brighten the image slightly before you print. Once you have make a

print that you are happy with, you can turn off or discard the Levels

Adjustment Layer.

302 Graphics, Photoshop and Flash Animation

Flash Animation–Practical Session

Introduction

Flash is widely used in the creative industry to develop engaging

projects integrating video, sound, graphics, and animation. You can

create original content in Flash or import assets from other Adobe

applications such as Photoshop or Illustrator, quickly design animation

and multimedia, and use ActionScript 3.0 to integrate sophisticated

interactivity.

Use Flash Professional to generate graphics and animation assets, to

build innovative and immersive websites, to create standalone

applications for the desktop, or to create apps to distribute to mobile

devices running on the Android or iOS system. The 2014 release of

Adobe Flash Professional CC is briefly discussed in this appendix.

Installing Flash

You must purchase the Adobe Flash Professional application as part of

Adobe Creative Cloud. The following specifications are the minimum

required system configurations.

Windows

• Intel® Pentium 4, Intel Centrino®, Intel Xeon®, or Intel Core™

Duo (or compatible) processor

• Microsoft® Windows® 7 (64 bit), Windows 8 (64 bit), or Windows

8.1 (64 bit)

• 4 GB of RAM

• 1024x900 display (1280x1024 recommended)

• Java Runtime Environment 1.7 (included)

• QuickTime 7.7x software recommended

• 4 GB of available hard-disk space for installation; additional free

space required during installation (cannot install on removable flash

storage devices)

• Broadband Internet connection and registration are necessary for

required software activation, validation of subscriptions, and access to

online services.

Mac OS

• Multicore Intel® processor

• Mac OS X v10.9 64-bit, 10.8 64-bit, or 10.7 64-bit

• 4 GB of RAM

303 Web Programming Client-Side Scripting

• 1024x900 display (1280x1024 recommended)

• Java™ Runtime Environment 1.7

• QuickTime 10.x software recommended

• 4 GB of available hard-disk space for installation; additional free

space required during installation (cannot install on a volume that

uses a case-sensitive file system or on removable flash storage

devices)

• Broadband Internet connection and registration are necessary for

required software activation, validation of subscriptions, and access

to online services.

For updates on system requirements and complete instructions on

installing the software, visit www.adobe.com/products/flash/tech-

specs.html.

Install Flash from Adobe Creative Cloud at creative.adobe.com/ and

make sure that you have your login and password accessible.

Animation basics

In this section we will go through the basics of the Flash interface and

tools, the basic concepts of nested animation and ultimately a walk

cycle from start to finish. We will be using Flash CC 2014 but the basic

concepts such as keyframes, tweens, eases, symbols and instancing,

transcend each version of Flash over the past six years or so.

New Document

When opening a new document you will see the various options.

Generally for animation we leave all values alone, except for the

Width/Height, which is set to 1920x1080, the frame rate, which

depends on the project, but for now it will be at 24, and the background

colour. We prefer to work on a grey background but choose anything

that suits you.

304 Graphics, Photoshop and Flash Animation

Interface

Once you open the new document, you will see a lot of panels. For now,

we will concentrate on 3 of these; the timeline, the stage and the tool

panel. See the figure below in order to become familiar with them:

305 Web Programming Client-Side Scripting

Tools

The main tools we'll be using are the brush tool, the line tool, the paint

bucket tool, ink bottle tool and the eraser. Usually, when animating, we

use the brush & eraser tools to sketch out rough poses and inbetweens,

then once happy we can use the line and bucket tools to create finished

drawings. Details later!

For the purposes of discussing the basics, we will also discuss the ‘Oval

tool’ to draw circles.

Strokes and fills

There are 2 types of graphical elements when drawing in flash; Strokes

and fills. Think of them as the outlines and the bits coloured in. That

may be a simplified description but once you get playing with lines and

fills you will quickly see how they work. Try this; use the Oval tool to

create a circle or ellipse. By default it will be an outline with the centre

filled in. Now select the filled part and delete it. What remains is the

stroke. Now use the bucket tool to fill it again. Now delete the outline.

What remains is the fill. It’s important to get the idea of this, so play

around with it.

Stage

The stage is where we will draw everything we need for our animations.

Characters, Backgrounds and effects are all created here. Anything that

exists outside of the stage will not be visible when exporting your

movie.

Timeline

The timeline is the panel from which we will be able to see the amount

of frames we have in our animation, the positioning and distance

between our main drawings (keyframes), the various layers we use for

rough drawings, and various elements and the ‘tweens’ between

keyframes. Details later!

Symbols - Nested Timelines

To fully explain symbols let’s define what a ‘drawing’ is.

306 Graphics, Photoshop and Flash Animation

It sounds funny, but in Flash knowing the difference between a drawing

and a symbol will save a lot of heartache down the line. A ‘drawing’, is

raw graphics on the stage that have been created using any of the

drawing tools, such as the line tool, oval, brush, rectangle etc. It can be

erased with the eraser; it can be added to or manipulated and ultimately

is the core of your animation.

A symbol on the other hand, is created from a drawing as a container

for the drawing. It can’t be added to or manipulated in the same way as

a drawing. Think of it as placing an apple in a box. Before placing it in

the box, it’s edible, squashable etc. Once placed in the box it’s still

there as an apple but you can no longer manipulate it in the same way.

But now you can do things to the box that you could not with the apple,

and yet the apple stays the same. Sounds strange?

Do the following:

- Create 2 circles on the stage.

- Select one of them (using the selection tool)

- Hit the F8 key

- You’re about to turn that drawing into a symbol - give it a name &

click ok.

- Congrats, you’ve created a symbol. Notice the blue box around the

circle.

- Before we proceed, go to the timeline and double click the layer where

it says Layer 1. Re-name its Outer Timeline.

- Now; double click your new symbol. Notice anything different? Your

newly changed layer is back to layer 1, one of your circles is grayed out

and the other is back to being a regular drawing. This is because you are

now inside the symbol (or using my earlier analogy, you’re inside the

box with the apple).

307 Web Programming Client-Side Scripting

- Inside the symbol, you now have a brand new timeline, separate but

inside the main timeline where you first created your circles. This is

important stuff to understand because what this means is that you can

create animation inside animations.

- Now manipulate the circle drawing somehow. Use the eraser tool or

brush or line and change it in some way.

- Once you’ve done this. Double click anywhere away from your

drawing on the stage. This will now bring you back to the main

timeline. Notice the layer you had changed earlier and the changes you

made to your circle inside the symbol remain.

Symbols - Tweening

Now, let's do some animating.

Create a new document by going to File-New or press Ctrl + N. Choose

your stage dimensions and colour and click ok. Create a circle as before

using the oval tool. Now select the new circle and hit the F8 key to

convert the drawing into a symbol.

In the timeline, go to frame 40 and hit the F5 key. What this does is add

frames (not keyframes) to the timeline. This is how long your animation

will be. Press enter and watch the slider traverse the new frames you

have created.

308 Graphics, Photoshop and Flash Animation

Now, for Keyframes. A Keyframe is essentially a selected frame on

which the drawing or symbol changes. To illustrate this go to frame 20

and hit the F6 key. This will place a new keyframe on that place on

your timeline.

While on frame 20, go to your circle symbol and move it anywhere on

the stage. Now if you hit enter or scrub the timeline you will see that

once the timeline reaches frame 20 it changes to the new position.

Now this one will be used a lot from now on; Right click in the area

between the two keyframes in the timeline and select create classic

tween. The area should go blue. What this does is fill in the gaps in the

positions of each keyframe. Hit enter or scrub the timeline. You should

have something similar to the image below:

309 Web Programming Client-Side Scripting

Now you can drag the second keyframe anywhere in your timeline to

adjust its speed.

Let’s close the case here for now!

WHAT’s NEXT?

INDEX

A

account.html 175

Action Buttons 65

Additions to HTML 75

Affine Spaces 225

Alignment 38
Alternate Text 36

Animation 236, 303

Animation Techniques 238

Artificial Intelligence 241

Assignment Operators 109

Audio 73

B

Backgrounds 24

Basic Operations 253

Blend Modes 272

Block IP Address 142
Block level elements 26

Bootstrap 163

Border 37

Bounding Volume

Hierarchies 216

BSP Trees 215

Bullet Character 27

BV Hierarchies Construction

217

C

category.html web 183

Cathode Ray Tube 208

Color 23, 217, 283

Panel 286

Conversion 223

Gamuts 22

Matching 220

Printing 223

Systems 224

Communication Protocol 3

Computer Graphics 196

Computer Science View 226

Conditions 114

Construction 216

Coordinate Geometry 225

Creating Forms 56

Cropping 296

CRT 208

CSS 81

Background 93

Box Model 95

Implementation 83

Syntax 82

Cube 213

Current Servers 4

D

Data Structures 211

Definition Lists 29

Directories 42

Directory Lists 30

Display Devices 204

Display Hardware 206, 207

Displaying Images 36

Document Body 22

Divisions 26

Domain 4

Domain Name Service 7

E

E-Commerce 163
Electromagnetic spectrum 219

311 Index

Element State 92

E-mail 5

Email Links 42

E-mail Protocols 8

Evolution of HTML 13

Example Forms 68

Expressions 108
Extranet 2

F

File Formats 256

File Transfer Protocol 8

Flash Animation 196, 302

Font Size and Color 32

Force Feedback 244

Form Design 53

Formatting 22

Frames 229

G

Geometric ADTs 227

Geometry 224

Global Adjustment 261

Graphic Storage Formats 33

Graphics Systems 196

Graphics Theory 196

Guides and Rulers 288

H

Hand Tool 260

Hand Tracking 244

Hardware 204

Head Mounted Display 243

Head Tracking 243

History 1, 102, 292

HTML 12, 14, 92

HTML Elements 19, 25

HTML5 12, 69

HTML5 Structure 15, 17

HTTP 7

Hue Saturation 268

Hyperlinks 40

Hypertext Reference 41

Hypertext Transfer Protocol 7

I

Image Maps 39

Image Size 37

Images 33

IMG Tag 34

Inline Elements 32

Inline Elements 43

Install Validation 138
Installing Flash 302

Interface 304

Interfacing CPU 210

Internet Access 3

Internet Protocol 6

Internet Services 3

Intranet 1

Introduction 1, 101

J

JavaScript 101, 122

Applications 125

Control Structures 113

Features 103

Functions, Objects and

Properties 106

Instructions Conventions

104

Language 105

Properties 107

Statements 116

JS 101

JS Solution 137

K

K-d-Trees 215

312 Index

Keyboard Shortcuts 261, 294

L

Lasso Tools 281

Layers 268

Layers Interactions 271

Levels 265

Light 218

Line Break 31

Link Color 24

Lists 27

M

Magic Wand Tool 275

Mapping 220

Marquee Tools 278

Math Operators 111

Menu Bar 252

Menu Lists 30

Method and Action 54

Multiple Users Login 139

N

Named Input Fields 59

Naming Layers 272

Navigation 259

Navigator Panel 259

Network Model 9

New Documents 258

Notes 19

Numbering Scheme 28

Sequence 29

O

Octrees 213

OpenGL 199, 205, 228, 229

Opening Files 253

Operators 109

Options Bar 252

Organizing Tables 46

Overview 10

P

Paragraph Tag 26

Passing Form Data 65

Photoshop 196, 247

Panels 247

Printing 297

product.html 185

Protocol 6

Pull Down Menu 137

Q

Quadtrees 213

Quiz 31, 43, 68

R

Real Time Streaming

Protocol 9

Reality to Perception 220

References 135

Requirements 13

Reserved Words 115

Retina 219

RGB Colour Cube 223

Rotation 233

RTSP 9

S

Saving Files 256

Scaling 234

Scripting Language 101

Search Engine 143

Selections 275

Shopping Cart 147

Shutter Glasses 242

Snapshots 293

Software 204

313 Index

Space around Image 38

Specific Elements 69

Stage 305

Stereo Viewing 242

Strokes and fills 305

Swatches Panel 285

Symbols - Nested Timelines

305

Symbols – Tweening 307

T

Table Attributes 50

Tables 45

Text Color 24

Three Tries Login 141

Three-Dimensional Interfaces

235

Timeline 305

Tool Bar 250

Tools 247, 305

Translation 232

U

UDP 7

URL 5

V

Vector 225

Vector Displays 209

Video 71

Virtual Reality 241

Applications 245

Problems 246

Systems 242

W

Web Browsers 122

Workspaces 248

World Wide Web 4

Z

Zoom Tool 260

Zooming 259

The End!!!

Contacting MH7 Global Publishers/ Independent

Research Group

This book is a positive implication of a continuous preparation, research

and speech delivery into Web Programming Client-Side Scripting and

its consistent relevance. I welcome thoughts, helpful updates and

reactions from readers, though I am not always able to respond to most

letters on time. My personal e-mail address: habeebmamman@yahoo.fr,

index.habeebmamman.com

For those people in organizations and into research seeking to

implement the ideas presented here, development tools and services are

available through my research group, MH7 Global Publishers/

Independent Research Group. Services includes: organizing

academic/seminar conferences, free computing research activities,

design and implementation of third party apps, and training of trainers

for organizations. To contact MH7:

 MH7 Global Publishers/ Independent Research Group Services

 Physical Address: (Request through email)

 Phone: (Request through email)

 Email: habeebmamman@yahoo.fr, index.habeebmamman.com

 Website: www.habeebmamman.com

mailto:habeebmamman@yahoo.fr
mailto:habeebmamman@yahoo.fr
http://www.habeebmamman.com/

About the MH7 Global Publishers/ Independent

Research Group

Mamman A. Habeeb is the architect of MH7 Global Publishers/

Independent Research Group: The 7 Rules of Excellence (emerged in

2010). The research interests of the group are: ‘Novelty Detection and

Game Playing Using Neural Networks’.

The MH7 group in collaboration with Oxford Research and

Publications International are the organizers of 22nd Conference.

Theme: Developing World and Intellectual, and Research for Achieving

the new Sustainable Development: to be held at ESEP-Le Berger

Universite, Cotonou-Benin.

MH7 forthcoming academic journal is titled ‘International Journal of

Computational/Digital Philosophy (IJCDP)’.

Mamman is the acting departmental coordinator of Computer Science

and Technology (2015- to date) at ESEP-Le Berger Universite Cotonou

and a visiting lecturer to a University.

Mamman developed the Computing Department of ESPAM-

FORMATION University, Cotonou (2011-2014) as the department

chair, when the department population was still about 40 students.

He is still an average leader in the subject of Web Programming. He

has had fun teaching and writing about Data/Telecommunication

Networks, Concept of Programming Languages, Android

Programming, Internet Programming, Computing Research, Object

Oriented Languages and Artificial Intelligence with Prolog.

He spent the summer of 2013 and 2014 at the Blackberry Developers

Conference Android-Platform Z10 and Z30. He spent the autumn of

2013 at University of Lagos Conference of Peoples, Land, and Water:

The Natural Connection. He also spent the summer of 2016 at the

Oxford Research and Publication International Conference: held at

Usmanu Danfodio University, Sokoto.

Mamman has written several books and published several papers in

international journals and conferences. He also develops Computer

Science and Technology curriculum for both undergraduate and post

graduate programmes.

Mamman had a bright early career and has received several

scholarships and research grants. He also received a postgraduate study

research grant in Computer Science by research and thesis from

University of Kent Canterbury-U.K (2011).

Mamman is an average leading authority on computer programming,

computational research and computational intelligence.

