

Webpack 2
A Build Tool for Modern JavaScript Applications

Sha Alibhai

This book is for sale at http://leanpub.com/webpack2

This version was published on 2017-05-17

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 Sha Alibhai

http://leanpub.com/webpack2
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Module Bundlers vs Task Runners . 1
Task Runners . 1
Module Bundlers . 3
Webpack . 3

Installation and Basic Use . 5
Creating a Project . 5
Running Webpack from the Command Line . 7
Serving the Project . 8

Module Bundlers vs Task Runners
As applications grow in complexity, we find ourselves using more and more tools that require extra
steps to make everything work smoothly. For example:

• Writing unit tests to ensure any changes introduced work as intended
• Linting code to ensure consistency and catch errors early
• Bundling and minifying code to reduce loading times and the number of files our application
needs to load to make things work

It’s also becoming more common to use language preprocessors like SASS and Typescript that
compile to native CSS and JavaScript, as well as using transpilers such as Babel to benefit from
new ES6 features whilst maintaining compatibility in older environments.

Task Runners

This leads to a significant number of repetitive tasks that need to be executed that have nothing to
do with the actual logic of the application itself. This is where task runners such as Gulp¹ and Grunt²
come in.

The purpose of these tools is to run a number of tasks either concurrently or in sequence that output
optimized code that can be run in an environment such as a browser or mobile device efficiently.
We benefit from being able to write maintainable, organized and understandable code that can still
be compiled down into less readable files that enable faster execution.

¹http://gulpjs.com/
²https://gruntjs.com/

http://gulpjs.com/
https://gruntjs.com/
http://gulpjs.com/
https://gruntjs.com/

Module Bundlers vs Task Runners 2

Visualization of a basic gulp task

Let’s take a look at a very basic Gulp file that minifies CSS and JavaScript files in a src folder and
outputs everything to a dist folder.

1 var gulp = require('gulp'),

2 minifyCss = require('gulp-minify-css'),

3 uglify = require('gulp-uglify');

4

5 gulp.task('minify-css', function() {

6 gulp.src('src/css/**')

7 .pipe(minifyCss())

8 .pipe(gulp.dest('dist/css/'));

9 });

10

11 gulp.task('uglify-js', function() {

12 return gulp.src('src/js/**')

13 .pipe(uglify())

14 .pipe(gulp.dest('dist/js/'));

15 });

16

17 gulp.task('build', ['minify-css', 'uglify-js']);

We see that in each task, a number of files matching set patterns are piped through
transformations, and the results are then written to another location. We can even set up
watchers that run when files are changed and run the process again so that our changes
reflect in real time.

Module Bundlers vs Task Runners 3

Module Bundlers

So where does Webpack³ fit in? Webpack positions itself as a module bundler for modern JavaScript
applications. A project consists of a number of:

• Modules
• Configuration files
• Libraries
• Stylesheets
• And resources

Webpack takes these dependencies and compiles them into static, production ready assets.

Visualizing Webpack

When using the CommonJS⁴ pattern of requiring or importing modules using require(), bundling
isn’t as simple as just concatenating files together. Instead, we set an entry point which acts as the
top of the dependency tree, and traverse down by resolving dependencies until all the necessary
code has been included. To make things more complex, we may have a dependency that is required
in multiple modules, but we would only want to resolve that dependency once for efficiency. This
is where Webpack shines.

Webpack

Webpack is a powerful tool. Although it’s good at bundling application code, it does a lot more than
that, such as:

³https://webpack.js.org/
⁴https://nodejs.org/docs/latest/api/modules.html

https://webpack.js.org/
https://nodejs.org/docs/latest/api/modules.html
https://webpack.js.org/
https://nodejs.org/docs/latest/api/modules.html

Module Bundlers vs Task Runners 4

• Providing plugins that can minify code, create service workers for offline mode, internation-
alization etc

• Running optimizers to do things such as eliminate dead code via tree shaking, and de-
duplicate repetitive code

• Splitting code into multiple bundles that can be lazy loaded to gain performance
• Acting as a dev tool which lets us do things such as hot module swapping when files change
and generate source maps

It’s not uncommon to see Webpack being used alongside Gulp or Grunt, but the reality is that it
can already perform the vast majority of the tasks that a task runner would otherwise be used for. In
fact, the only major tasks that Webpack can’t handle independently are testing and linting. Because
of this, dev’s tend to opt to use NPM scripts directly, rather than introducing the additional overhead
and maintenance of adding another tool.

The only drawback to usingWebpack is the initial learning curve of understanding how to configure
it, which is off putting when trying to get a project up and running quickly. However, with the aid
of great documentation and dozens of boilerplate examples, this spin can easily be avoided.

We’re going to create a simple project and incorporateWebpack to see how it can be used to automate
the following tasks:

• Serve our files using the webpack dev server, watch for changes and use module hot swapping
to update our application without having to refresh anything that hasn’t changed

• Use Babel to transpile our code so that we can benefit from ES6 features whilst maintaining
compatibility

• Create source maps so that we can view our bundled code and add breakpoints during
development

• Automate generating unique filenames for our bundles using hashes so that when we deploy
new versions of our code, they are reloaded before being cached

• Load resources using different schemes, for example base64 encoding small images rather
than saving them as files to reduce the number of unnecessary server requests

• Creating different bundles for different environments, to suit the unique requirements of
each

• Optimize our bundle size by using tree shaking to eliminate unused code

Installation and Basic Use
Webpack simplifies your workflow by constructing a dependency graph of your application and
bundling it together in the right order. It can be configured to customize optimizations to your code,
to split vendor, CSS and JavaScript code for production, run a development server that hot-reloads
your application without refreshing the page as well many other cool things.

Let’s start testing some of these features out. First we’re going to create a new folder for our project,
initialize npm and then install Webpack locally as a dev dependency.

1 $ mkdir webpack_demo

2 $ cd webpack_demo

3 $ npm init -y

4 $ npm install --save-dev webpack

To make sure everything works, we can run:

1 $./node_modules/.bin/webpack --help

Local vs Global Package
The standard and recommended practice is to run a locally installed version of webpack
via npm scripts. Installing webpack globally is acceptable but locks you down to a specific
version of webpack that may not work in projects that require a different version.

Creating a Project

To start testing Webpack’s features, we need to have some code in our project. Let’s create two files,
an index.html file in the project root, and an index.js file that will act as an entry point in a src

subfolder.

1 $ touch index.html

2 $ mkdir src

3 $ touch src/index.js

In the JavaScript file, we’ll create a div container that outputs “Hello, Webpack!” to the screen and
append it to the document body.

Installation and Basic Use 6

1 function appComponent() {

2 var el = document.createElement('div');

3

4 // lodash is required to make this line work

5 el.innerHTML = _.join(['Hello,', 'webpack!'], ' ');

6

7 return el;

8 }

9

10 document.body.appendChild(appComponent());

To run this code, we need to add it to the HTML template file. Let’s do that now.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Webpack 2 Demo</title>

5 <script src="https://unpkg.com/lodash@4.16.6"></script>

6 </head>

7 <body>

8 <script type="text/javascript" src="src/index.js"></script>

9 </body>

10 </html>

In this example, there’s an implicit dependency between our index.js file and lodash⁵. Our
application requires lodash be loaded before it runs. The relationship is considered implicit as the
index.js file never explicitly declared a requirement for lodash, it just assumes that a global variable
_ (underscore) exists.

There’s some glaring problems with managing JavaScript projects in this way:

• If a dependency is missing or including in the wrong order, the application won’t work
• If the dependency is included but isn’t used, that causes the browser to download a lot of
unnecessary code

1 $ npm install --save lodash

⁵https://lodash.com/

https://lodash.com/
https://lodash.com/

Installation and Basic Use 7

1 import _ from 'lodash';

2

3 function addComponent() {

4 ...

We also need to change our index.html file to expect our generated bundle file instead of the
index.js file.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Webpack 2 Demo</title>

5 </head>

6 <body>

7 <script type="text/javascript" src="dist/bundle.js"></script>

8 </body>

9 </html>

Now we’ve changed our JavaScript file to explicitly require lodash as a dependency. When we run
the index file through Webpack, it’s going to build a dependency graph and generate an optimized
bundle with all the code we need. It’s also smart enough to not include any unused dependencies.

Running Webpack from the Command Line

We can run Webpack in our terminal, setting src/index.js as the entry point and dist/bundle.js

as the output file.

1 $./node_modules/.bin/webpack src/index.js dist/bundle.js

Installation and Basic Use 8

Terminal output from running the webpack command

Serving the Project

We can use the http-server⁶ npm package to start a simple server in this folder and run this code in
the browser. To install this package globally, run:

1 $ npm install -g http-server

Once this is installed, simply execute the http-server command. The default port that http-server
serves our project is 8080, so in the browser navigate to http://localhost:8080. We should see a page
with ‘Hello, webpack!’.

⁶https://www.npmjs.com/package/http-server

https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/http-server

Installation and Basic Use 9

Browser output

This is great, but we’re not leveraging the full power of Webpack. To do this we’re going to create
a configuration file called webpack.config.js. We’ll also be able to leverage npm scripts to saving
us having to type the entry and output files each time we want to create a build.

	Table of Contents
	Module Bundlers vs Task Runners
	Task Runners
	Module Bundlers
	Webpack

	Installation and Basic Use
	Creating a Project
	Running Webpack from the Command Line
	Serving the Project

