Grzegorz Gatezowski

Test-Driven
Development

Extensive Tutorial

Test-Driven Development: Rozbudowany
samouczek

Grzegorz Gatezowski i Borystaw Bobulski
Ta ksigzka jest do kupienia na http://leanpub.com/web-of-objects

Wersja opublikowana 2019-02-27

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2019 Grzegorz Galezowski i Borystaw Bobulski

http://leanpub.com/web-of-objects
http://leanpub.com/
http://leanpub.com/manifesto

Spis tresci

Przedmowa 1
Dedykacja. 2
Podziekowania!l 3
Oprzykladachkodu 4
Uwagi dla programistow jezyka C# 4
Uwagi dla programistéw jezyka Java 4

Czes¢ 1: Same podstawy 8

Motywacja — pierwszy krok w uczeniusie TDD 9
Jakie jest TDD? o oo 10
Zaczynajmy | ..o 12

Niezbedne narzedzia 13
Test framework L 13
Framework do mockowania 20
Generator warto$ci anonimizowanych L 27
Podsumowanie 29

Tonie (tylko) test 31
Kiedy test staje sie czym$ wiecej 31
Testy w §wiecie programistOw L 32
Raczej specyfikacja niz zbidr testow 33
Roéznice miedzy “wykonywalnymi” specyfikacjami i tymi “tradycyjnymi” 34

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 36
Po co pisac specyfikacje po fakcie? 36
“Najpierw-test” oznacza patrzenie na niepowodzenie, 38
“Test-Po” czesto koniczy jako “Test-Nigdy” 43
“Test-Po” czesto prowadzi do ponownego projektowania 44

Podsumowanie 45

SPIS TRESCI

Poc¢wiczmy to, czego si¢ wlasnie nauczyliSmy 46
Pozwoél mi opowiedzie¢ sobie historieo L. 46
Akt 1: SamochOd 47
Akt 2: TytutdlaKlienta 47
Akt 3: Test-Driven Development 51
Epilog . . . o oo 66

Odnajdzmy sie odrobine 68

Przedmowa

Dedykacja

Ad Deum qui laetificat iuventutem meam.

Mej ukochanej zonie Monice i naszemu ukochanemu synowi Danielowi.

Podziekowania!

Chcialbym podzickowaé¢ nastepujacym osobom (wymienionym w kolejnosci alfabetycznej) za
warto$ciowe uwagi, sugestie, poprawki literowek i tym podobny wktad

« Brad Appleton

« Borystaw Bobulski
« Chris Kucharski

« Daniel Dec

« Daniel Zolopa (projekt oktadaki)
« Donghyun Lee

« Lukasz Maternia

« Marek Radecki

« Martin Moene

« Michael Whelan

« Polina Kravchenko
- Rafal Bigaj

« Reuven Yagel

« Rémi Goyard

« Robert Pajak

« Wiktor Zotmowski

Ksigzka ta nie jest niczym, czego by dotychczas nie napisano. Prezentuje zagadnienia, ktore juz
poruszono a ktore ja, kolejny raz, podjatem.

Dlatego tez, chciatbym bardzo podzigkowa¢ moim mentorom i autorytetom, zajmujacych si¢ test-
driven development i projektowaniem zorientowanym obiektowo, od ktorych zdobylem wiekszos¢
swojej wiedzy (wymienieni nizej w kolejnosci alfabetycznej)

+ Amir Kolsky

« Dan North

« Emily Bache

« Ken Pugh

« Kent Beck

o Mark Seemann
o Martin Fowler
+ Nat Pryce

« Philip Schwarz
« Robert C. Martin
+ Scott Bain

« Steve Freeman

O przyktadach kodu

Uwagi dla programistow jezyka C#

Jezykiem, ktory wybrano dla przyktadow jest C#, aczkolwiek zrobitem kilka wyjatkéw od typowe;j
C# konwencji.

Usuniecie “I” z nazw interfejsow

Osobiscie, nie jestem fanem uzywania ISomething dla nazw interfejsu, wiec zdecydowatem sie nie
umieszcza¢ przedrostka I nawet jesli wigkszos¢ programistow C# by tego oczekiwata. Mam nadzieje,
ze tym razem mi wybacza.

Konstrukcje jezyka charakterystyczne dla C#

Wiekszos¢ kodu w tej ksigzce to nie jest typowy C# ze swoimi idiomami. Probowalem unikaé
wlasciwosci (properties), zdarzen (events) i wiekszosci nowoczesnych funkcji. Moim celem jest
umozliwienie uzytkownikom innych jezykow (zwtaszcza Javy) korzystanie z tej ksiazki.

Uzywanie podkreslen w nazwach pal

Niektorzy to lubia, inni nie. Postanowilem trzymaé¢ konwencje umieszczania znaku podkreslenia (_)
przed nazwa pola klasy.

Uwagi dla programistow jezyka Java

Jezykiem, w ktorym ukazano przyklady kodu, jest C#. Zaznaczytem jednak, ze chce, aby ksigzka byta
jak najmniej zwigzana z konkretng technologia, by umozliwi¢ programistom jezyka Java czerpanie
z niej korzysci. Probowalem uzywaé¢ minimalnej liczby funkceji specyficznych dla C#, a w kilku
miejscach nawet robilem uwagi skierowane do programistéw Java, aby im ulatwic¢ zrozumienie.
Jest jednak kilka rzeczy, ktorych nie moglem uniknaé, totez stworzytem liste opisujaca kilka roznic
miedzy Java i C#, co moze si¢ przydac.

O przyktadach kodu 5

Konwencja nazewnictwa

Wiekszos¢ jezykow ma swoje domyslne konwencje nazewnictwa. Na przyktad w jezyku Java nazwa
klasy jest zapisana za pomoca PascalCase (np. UserAccount), metody i pola sa zapisywane za
pomocy camelCase, np. “payTaxes” a state/pola tylko do odczytu sg zapisywane wielkimi literami z
podkresleniem (np. CONNECTED_NODES).

C# uzywa pascalCase dla nazw klas i metod (np. UserAccount, PayTaxes, ConnectedNodes). W
przypadku pdl istnieje kilka konwencji nazewnictwa. Wybratem ta, ktéra zaczyna sie od znaku
podkreslenia (np. _myDependency). Sa jeszcze inne drobne réznice, ale z tymi sie spotkasz najczescie;.

stowo kluczowe var

By uczyni¢ zapis bardziej zwiezlym, zdecydowalem sie uzy¢ w przyktadach stowa kluczowego var.
To stowo kluczowe stuzy do automatycznego wnioskowania jakiego typu jest zmienna, np.

var x = 123; // wnioskuje, zZe x jest liczbg catkowity

Oczywiscie, to nie jest typowanie dynamiczne (dynamic typing) - wszystko jest okreslane na etapie
kompilacji.

Jeszcze jedno - stowo kluczowe “var” moze by¢ uzyte tylko wtedy, kiedy mozna wywnioskowac¢ z
jakim typem mamy do czynienia, w nnych wypadkach musialem deklarowa¢ typy jawnie, jak w
przypadku:

List<string> list = null; //nie mozna uzy¢é var by wnioskowa¢ jakiego typu to lista

stowo kluczowe string
C# ma typ String, podobnie jak Java. C# pozwala jednak na wpisanie nazwy tego typu jako stowa

kluczowego, np. string zamiast String. To jest tylko lukier sktadniowy (syntactic sugar), ktory jest
domyslnie uzywany przez spotecznos¢ C#.

Atrybuty zamiast adnotacji

W jezyku C# istnieja atrybuty. Sg uzywane w tym samym celu, co adnotacje (anntoations) w Javie.
Tak wiec, gdy widzisz:

[Whatever]
public void doSomething()

mysl:

O© 00 I O O b W N =

SV
N =~ O

O przyktadach kodu 6

@Whatever

public void doSomething()

readonly i const W mMi@jscu final

Tam, gdzie w Javie uzywa stowa final dla statych (wraz z static) i pol tylko do odczytu, w C#
uzywa sie dwoch stow kluczowych: const i readonly. Bez wchodzenia w szczegoély, za kazdym
razem, gdy zobaczysz co$ takiego:

public class User
{
// a constant with literal:

private const int DefaultAge = 15;

// a "constant" object:
private static readonly TimeSpan DefaultSessionTime
= TimeSpan.FromDays(2);

// a read-only instance field:
private readonly List<int> _marks = new List<int>();

mysl:

public class User {
//a constant with literal:
private static final int DEFAULT_AGE = 15;

//a "constant" object:
private static final Duration

DEFAULT_SESSION_TIME = Duration.ofDays(2);

// a read-only instance field:

private final List<Integer> marks = new ArraylList<>();

Konstrukcja List<T>

Jesli jestes programistg jezyka Java to zauwaz, ze w C# List<T> nie jest interfejsem, ale konkretng
klasa. Ten typ jest zwykle uzywany tam, gdzie Ty uzywalbys$ Arrayl ist

BSw N

O przyktadach kodu 7

Typy uogdlnione (generyczne)

Jedna z najwigkszych réznic miedzy Java i C # jest to, jak traktuje sie typy generyczne. Po pierwsze,
C# pozwala na uzywanie typow prostych (prymitywnych) w deklaracjach typéw uogélnionych,
wiec mozesz napisac List<int> w jezyku C#, podczas gdy w Javie musisz napisa¢ List<Integer>.

Inna réznicy jest to, ze w jezyku C# nie ma wymazywania typow, tak jak w Javie. Kod napisany w C#
zachowuje wszystkie informacje o typie generycznym w czasie wykonywania. To istotnie wptywa
na to, jak sg projektowane i jak mozna uzywac¢ API korzystajacego z typéw generycznych.

Definicja klas generycznych i ich tworzenie, w Javie i C# wygladaja mniej wiecej tak samo. Istnieje
jednak réznica na poziomie metody. Metoda generyczna w Javie wyglada tak:

public <T> List<T> createArrayOf(Class<T> type) {

a uzywamy jej tak:
List<Integer> ints = createArrayOf(Integer.class);
podczas, gdy w C# ta sama metoda bedzie zdefiniowana tak:

public List<T> CreateArrayOf<T>()
{

i uzywana w taki sposob:
List<int> ints = CreateArrayOf<int>();

Réznice te sg widoczne w projekcie biblioteki, uzywanej w tej ksigzce do generowania danych
testowych[“anylibraryauthor]. W wersji C#, generujemy dane testowe, piszac:

var data = Any.Instance<MyData>();
w jezyku Java zas:

MyData data = Any.instanceOf(MyData.class);

Czesc 1: Same podstawy

W tej czesci przedstawiam podstawy filozofii TDD (test-driven development - sterowane testami
wytwarzanie oprogramowania) i sposoby pisania kodu, bez zbytniego wchodzenia w zaawansowane
aspekty takie jak wprowadzanie TDD do systeméw zorientowanych obiektowo, gdzie wspotpracuje
ze soba mnostwo obiektow (pisze o tym w czesci drugiej). Wiekszos¢ przyktadéw, przytoczonych w
tej czesci, dotyczy zaprojektowania pojedynczego obiektu.

Zanim przejde do konkretnych zastosowan TDD, skoncentruje sie nad samg istotg tego podejscia.
Potem - powoli - wprowadze konkretne pojecia w tatwy do zrozumienia sposob.

Po przeczytaniu czesci pierwszej, dzigki TDD, bedziesz w stanie catkiem sprawnie projektowac klasy,
ktore nie zalezg od innych klas (ani nie zalezg od jakichkolwiek zasobéw systemowych).

Motywacja - pierwszy krok w uczeniu
sie TDD

Pisze te ksigzke, poniewaz jestem entuzjasta TDD. Wierze, ze TDD ma przewage nad innymi spo-
sobami wytwarzania oprogramowania, ktérych uzywatem. Mysle, ze wielu programistow podziela
moje przekonania. To sklania mnie do zadania pytania - dlaczego wigcej oséb nie miatoby uczy¢
sie TDD, dlaczego nie miatoby stosowa¢ TDD w swojej pracy? Wcigz nie moge stwierdzi¢, ze
TDD jest gtownym nurtem w wytwarzaniu oprogramowania. Podczas mojej kariery zawodowe;
nie widzialem wystarczajaco duzo przyktadow, ktore by potwierdzaly taki stan rzeczy.

Drogi czytelniku! Juz zdobyles mdj szacunek, bo zdecydowates$ si¢ siegna¢ po ksiazke, zamiast
budowac¢ swoje rozumienie TDD na podstawie miejskich legend i swoich wyobrazen. Niewazne,
czy to Twoja pierwsza ksigzka podejmujgca temat TDD, czy tez miates styczno$¢ z innymi - jestem
zaszczycony i szczesliwy, ze dzi§ wybrates moja ksigzke. Mam nadzieje, ze przeczytasz ja od deski
do deski. Gdybys jeszcze sie wahal, chce zada¢ Ci pomocnicze pytanie, ktére pomoze Ci stwierdzic,
czy naprawde masz ochote na czytanie. Dlaczego wlasciwie chcesz sie uczy¢ o TDD?

Kwestionujac Twojg motywacje, nie staram sie zniecheca¢ Cig¢ do czytania. Raczej chciatbym, bys$
dobrze wiedziat co chcesz osiggnac przeczytawszy moja ksigzke. Kilka lat temu uczylem pewng
osobe, ktora zainteresowata sie TDD. ZaczeliSmy razem pracowac nad matym projektem, by ta osoba
mogla naby¢ niezbednych umiejetnosci poprzez praktyke, ja zas siedzialem obok niej, udzielajac
wskazowek. Tych lekcji bylo trzy, lub cztery - potem méj uczen zrezygnowal majac “pilniejsze rzeczy
do zrobienia” i “nie majac czasu”. Od tamtej pory, nie wykorzystywal TDD w pracy ani nie starat
sie zrozumiec niczego wiecej. Nawet dzisiaj, zastanawiam sie, co byto jego motywacja i dlaczego ta
wyparowata?

Innym powodem dla ktérego mozna chcie¢ uczy¢ sie TDD, sa btedne oczekiwania. Niektorzy z
nas majg mgliste wyobrazenie o rzeczywistych kosztach i zyskach, jakie daje TDD. Wiedzac, ze
jest cenione i chwalone przez innych, mozna wyciagna¢ wnioski, ze to bedzie idealne rozwigzanie
réwniez dla nas. Dla przykladu, ktos oczekujacy poprawnie dzialajacego kodu mogl ustyszec,
ze dzieki TDD “kod staje sie bardziej przetestowany”. Jesli nie mamy wiedzy, dlaczego warto
wprowadza¢ TDD do projektu, mozemy uwazaé, iz nalezy pisa¢ najpierw testy przed kodem, po
to tylko, by zapewni¢ 100% pokrycia kodu. Nie zrozumcie mnie zle - to cz¢sciowo moze by¢ prawda,
aczkolwiek w takim podejsciu gubimy istote TDD. Co wiecej, gdy od TDD oczekiwaliSmy czegos,
czego ono nie daje, mozemy by¢ bardzo rozczarowani. Styszalem wiele osob, ktore twierdzity “nie
potrzebuje TDD, bo musze¢ miec¢ testy systemowe dajace wigcksza pewnos¢, co do poprawnego
dziatania produktu” albo “po co mi testy jednostkowe' kiedy juz mam testy integracyjne, smoke-
testy, sanity-testy, exploration-testy, etc...?”. Wiele razy bylem $wiadkiem, Ze porzucano idee TDD
zanim jg w ogo6le zrozumiano.

"Nawiasem méwiac, TDD to nie tylko testy jednostkowe, jeszcze do tego dojdziemy.

Motywacja — pierwszy krok w uczeniu sie TDD 10

Czy nauka TDD ma dla Ciebie priorytet? Czy jestes zdeterminowany, by wyprobowaé¢ TDD i
naprawde sie tego nauczy¢? Jesli jest inaczej - hej - styszalem, ze nowy sezon “Gry o Tron” pojawit sie
w telewizji, czemu nie mialtby$ zajaé sie wlasnie nim? Dobra, tylko sie przekomarzam. Mowi sie, ze
zasady TDD sa tatwe do zrozumienia, ale ciezko by¢ prawdziwym ekspertem (“easy to learn, hard to
master”?). Dlatego, bez odrobiny odwagi, bedzie ciezko. Szczegélnie, Ze zamierzam wprowadzac Cie
w temat powoli, stopniowo, bys otrzymat lepsze wyjasnienie réznych technik i sposobéw pisania.

Jakie jest TDD?

Razem z bratem lubiliSmy gra¢ w gry video gdy byliSmy dzie¢mi - szczegélnie mito wspominam gre
Tekken 3 — japonski beat’em up na Sony Playstation (PSX). Ukoniczenie gry wszystkimi zawodnikami
i odblokowanie wszystkich ukrytych bonuséw, mini-gier etc. zajmowalo jeden dzien. Kto§ mogiby
powiedziec, ze od tego momentu gra nie oferuje niczego wiecej. Dlaczego wiec, z bratem, graliSmy
w nig ponad rok?

*Nie wiem, kto pierwszy to powiedzial, przeszukalem Internet i znalaztem ten zwrot w kilku miejscach, gdzie zaden z piszacych nie
informowal, kogo cytuje - wiec postanowitem tylko wspomnieé, Ze nie jestem autorem tych stow.

Motywacja — pierwszy krok w uczeniu sie TDD 11

el —. = = #
i = = = ! ==
1 B YA
- r =1t
- ME o
L] ' !"-.L‘.'
s
- e ee—
- mplelall Gp
i A il
‘
Tekken3

To dlatego, ze kazdy wojownik w grze posiadal mnostwo kombosow, kopniec i uderzen rekami, ktore
mozna bylo taczy¢ na rézne sposoby. Niektore dato sie zastosowaé tylko w okreslonych sytuacjach,
inne moglem uzy¢ prawie zawsze bez ryzyka narazenia si¢ na kontratakt. Moglem zejs¢ z lini
ataku przeciwnika, a takze bylem w stanie wykopa¢ przeciwnika w powietrze, gdzie nie mogt juz
blokowa¢ moich cioséw, a potem wykona¢ dodatkowy atak zanim upadl na ziemie. Ta powietrzna
technika nazywa sie “juggles”. W tamtych czasach pojawialy sie czasopisma, ktore kazdego miesigca
publikowaly liste nowo odkrytych “juggles”, nie pozwalajac - w ten spodb - zgasnaé fascynacji
graczy przez ponad rok.

Tak, tatwo bylo sie nauczy¢ gra¢ w Tekken — mogltem poswieci¢ zaledwie jedna godzine trenujac
najwazniejsze ruchy postaci i bylem w stanie juz “uzywac” danego zawodnika, ale wiedziatem, ze
lepiej bym walczyt gdybym zdobyt doswiadczenie i wiedze, ktore techniki sg ryzykowne, a ktore nie,
ktérych atakow uzywac w okreslonych sytuacjach, jak taczy¢ je ze soba, jak zmniejszy¢ mozliwosé¢
kontrataku. Nic dziwnego, ze wkroétce pojawilo sie wiele turniejow, gdzie gracze mogli walczy¢ o
chwate, stawe i nagrody. Nawet dzis, mozna obejrze¢ niektdre z tych legendarnych pojedynkow na
YouTube.

TDD jest jak Tekken. Prawdopodobnie styszale$ pojecie “red-green-refactor” lub ogdlng zasade

Motywacja — pierwszy krok w uczeniu sie TDD 12

“napisz najpierw test, potem kod”, moze nawet przeprowadziles eksperyment, gdzie probowales
zaimplementowac sortowanie bgbelkowe lub jaka$ inng rzecz zaczynajac od napisania testu. To
wszystko jest jak uczenie si¢ Tekkena przez sprawdzanie kazdego ataku na przeciwniku, ktéry nie
moze si¢ ruszac, bez calego kontekstu realnej gry, ktéry czyni pojedynek naprawde wymagajacym.
Chociaz uwazam takie ¢wiczenia “na sucho” za bardzo uzyteczne (sam zrobilem duzo takich), to
najwieksze korzysci daje zrozumienie, jak TDD jest uzywane w prawdziwym zyciu.

Niktorzy ludzie z ktéorymi rozmawiam o TDD okreslajg to, co do nich mowie, jako naprawde
demotywujace — “jest tak wiele rzeczy, na ktére musze uwazaé, ze nigdy nie chce zaczynacd!”
Luz, nie panikuj — przypomnij sobie, jak po raz pierwszy probowales jezdzi¢ na rowerze — nie
zaprzatales sobie glowy tym, Ze musisz znac¢ jakie$ przepisy drogowe i ze trzeba przestrzega¢ znakow
drogowych, to Ci¢ wcale nie powstrzymato, prawda?

Uwazam, ze TDD jest fascynujace i w ogole sprawia, ze pisanie kodu ekscytuje. Niektorzy faceci w
moim wieku juz mysla, ze wiedza wszystko o kodowaniu, nudza sie z tym i nie moga si¢ doczekac,
az przejda do “menadzerki”, wymagan lub analizy biznesowej, ale hej! Oto pojawia sie nowy
zestaw technik, ktore sprawig, ze moja kariera programisty znéw bedzie wyzwaniem! Moge naby¢
umiejetnosci, ktore bede w stanie zastosowaé podczas pracy z wieloma réznymi technologiami i
jezykami, a to uczyni mnie lepszym programistg! Czy to nie jest co$, do czego warto dazy¢?

Zaczynajmy !

W tym rozdziale probowatem sprowokowa¢ Cie do przemyslenia swojej postawy i motywacji. Jesli
nadal jeste$ zdeterminowany by nauczy¢ sie TDD czytajac te ksiazke (a mam nadzieje, ze tak), to
zacznijmy prace!

Niezbedne narzedzia

Czy kiedykolwiek ogladates film Karate Kid, starg lub nowa wersje? W obu chodzi o to, ze kiedy
“dzieciak” zaczyna uczy¢ sie od swojego mistrza karate (lub kung-fu), otrzymuje najprostsze zadanie
do powtarzania (jak zdjecie kurtki i zalozenie jej), nie wiedzac jeszcze po co to robi i gdzie go to
zaprowadzi. Albo, wlacz sobie pierwszy film Rocky (tak, ten z udziatem Sylvestra Stallone’a), w
ktorym Rocky Sciga kurczaka, aby trenowa¢ zwinnos¢.

Kiedy po raz pierwszy probowalem nauczy¢ si¢ grac na gitarze, znalaztem dwie porady w Internecie:
pierwsza byto opanowanie pojedynczego, trudnego utworu. Druga rada polegata na graniu na jedne;
strunie, nauczeniu si¢ jak ta struna moze brzmiec i probie zagrania melodii ze stuchu wilasnie na tej
jednej strunie. Chyba nie musze dodawac, ze ta druga rada dziatata lepiej?

Szczerze moéwige, mogtbym od razu rozpoczaé od podstawowych technik TDD, ale wydaje mi
sie, ze bytoby to tak, jakbym postawil Ci¢ na ringu z bardzo wymagajacym przeciwnikiem -
prawdopodobnie zniecheciltbys sie przed zdobyciem niezbednych umiejetnosci. Zamiast wyjasniac,
jak si¢ wygrywa wyscigi, w tym rozdziale przyjrzymy si¢ raczej, jakie blyszczace samochody
bedziemy prowadzic.

Innymi stowy, zaprezentuje kroko trzy narzedzia, z ktérych bedziemy korzystaé¢ w tej ksigzce

W tym rozdziale upraszczam niektore rzeczy tylko po to, aby$ zaczat dziata¢ bez wchodzenia w
filozofie TDD (skojarz: lekcje fizyki w szkole podstawowej). Nie przejmuj si¢ :-), nadrobie to w
nadchodzacych rozdziatach!

Test framework

Pierwszym narzedziem, ktére wykorzystamy, bedzie test framework (framework testujacy). W
Jjezyku polskim nie ma odpowiednika stowa “framework”, najblizej jest stowo “platforma” lub
“struktura”. Framework to cos, co wyznacza pewne ramy, definiuje struktury do wykorzystania,
dostarcza biblioteki, funkcje - w tym przypadku funkcje pomagajgce w pisaniu i wykonaniu testow.

Zalézmy, na potrzeby naszego wprowadzenia, ze mamy aplikacje, ktora przyjmuje dwie liczby z
linii polecen, mnozy je i wypisuje wynik na konsoli. Kod jest dos¢ prosty:

13
14
15
16
17

Niezbedne narzedzia 14

public static void Main(string[] args)

{
try
{
int firstNumber = Int32.Parse(args|[@]);
int secondNumber = Int32.Parse(args[1]);
var result =
new Multiplication(firstNumber, secondNumber).Perform();
Console.WriteLine("Result is: " + result);
}
catch(Exception e)
{
Console.WriteLine("Multiplication failed because of: " + e);
}
}

Teraz zal6zmy, ze chcemy sprawdzi¢, czy program daje prawidlowe wyniki. Najbardziej oczywistym
sposobem sprawdzenia bytoby wywotanie go z linii polecen - recznie - za pomoca kilku przyktado-
wych argument6w, nastepnie sprawdzenie wynikéw programu na konsoli i poréwnanie ich z tym,
co czekaliSmy. Taka sesja testowa moze wygladac nastepujaco:

C:\MultiplicationApp\MultiplicationApp.exe 3 7
21
C:\MultiplicationApp\

Jak wida¢, nasz program daje wynik 21 dla mnozenia 3 przez 7. Jest to poprawne, wiec zakladamy,
ze program zdat test.

Co sie stanie, jesli program bedzie mial réwniez zaimplementowane dodawanie, odejmowanie,
dzielenie, catkowanie itp.? Ile razy bedziemy musieli go recznie wywota¢ na rézne sposoby, by
upewnic sie, ze kazda operacja, po naszych zmianach, wcigz dziala poprawnie? Czy nie bytoby to
czasochtonne? Ale czekaj, jesteSmy programistami, prawda? Tak wiec mozemy napisaé¢ programy
do testowania dla nas! Ponizej znajdziesz kod zrédtowy innej aplikacji, ktéry uzywa naszej klasy
Multiplication, ale w nieco inny sposéb niz robit to nasz wczesniejszy program:

© 00 N O O b W N =

[T S G S G S O S U U
S © 0 N O O b W N =~ O

Niezbedne narzedzia 15

public static void Main(string[] args)

{

var multiplication = new Multiplication(3,7);
var result = multiplication.Perform();

if(result != 21)
{

throw new Exception("Failed! Expected: 21 but was: " + result);

Wyglada prosto, prawda? Teraz na tym kodzie oprzemy bardzo prymitywny szkielet testowy -
by pokazaé¢ fragmenty, z ktorych sktadajg sie frameworki testujace. Pierwszym krokiem w tym
kierunku bedzie wyodrebnienie sprawdzenia wyniku (result) do metody, ktorg bedzie mozna
uzywac wielokrotie. Po tym wszystkim, w mgnieniu oka dodamy do aplikacji dzielenie, pamigtasz?
No to jedziemy:

public static void Main(string[] args)

{

var multiplication = new Multiplication(3,7);
var result = multiplication.Perform();

AssertTwolntegersAreEqual (expected: 21, actual: result);

// Wyodrebiony kod:
public static void AssertTwolntegersAreEqual(
int expected, int actual)

if(actual != expected)

{

throw new Exception(

"Failed! Expected:
+ expected + " but was: " + actual);

Zauwaz, ze nazwe tej wyodrebnionej metody zaczalem od “Assert” - wkrétce wrécimy do nazew-
nictwa, na razie przyjmijmy, ze jest to dobra nazwa dla metody, ktora sprawdza, czy wynik pasuje
do naszych oczekiwan. Ostatnim krokiem bedzie wyodrebnienie samego test, aby jego kod byt w
osobnej metodzie. Tej metodzie nadamy nazwe opisujaca, co sprawdza ten test:

O© 00 I O O b W N =

W RN NN NN NN NN N A R R Rl sl
© © W I O O b W N A~ O © W 3 0 U » W N~

Niezbedne narzedzia 16

public static void Main(string[] args)

{

// Oczekujemy iloczynu dwéch liczb przekazanych do aplikacji

Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers();

public void
Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()

{

//Zaktadajac, ze...

var multiplication = new Multiplication(3,7);

//Kiedy dzieje sie co$s takiego:

var result = multiplication.Perform();

//Wtedy wynik powinien byé taki. ..

AssertTwolntegersAreEqual (expected: 21, actual: result);
}

public static void AssertTwolntegersAreEqual(
int expected, int actual)

// Sprawdzamy, ze podane liczby catkowite (w tym przypadku oczekiwana i zwrdcona) \
sq sobie réwne.
if(actual != expected)
{
throw new Exception(
"Failed! Expected: " + expected + " but was: " + actual);

I to wszystko. Teraz, jesli potrzebujemy kolejnego testu, np. dla dzielenia, mozemy po prostu
dodac kolejne wywotanie, innej metody testujacej do Main() a nastepnie zaimplementowaé te
metode. Wewnatrz nowego testu mozemy ponownie uzy¢ metody AssertTwolIntegersAreEqual(),
poniewaz sprawdzenie wynikow dzielenia bedzie réwniez opieralo sie na poréwnania dwoch
wartosci catkowitych - oczekiwanej i tej faktycznie zwroconej.

Jak widzisz, mozemy tatwo napisa¢ zautomatyzowane testy, uzywajac naszych prymitywnych
metod. Takie podejscie ma jednak pewne wady:

1. Zakazdym razem, gdy dodajemy nowy test, musimy zaktualizowa¢ metodeMain() o wywota-
nie nowego testu. Jesli zapomnimy tego, test nigdy nie zostanie uruchomiony. Na poczatku nie
jest to wielka sprawa, ale gdy juz bedziemy miec¢ dziesiatki testow, trudno bedzie zauwazy¢ te
niedodane.

Niezbedne narzedzia 17

2. Wyobraz sobie, ze Twoj system sklada sie z wiecej niz jednej aplikacji - miatby$ problemy ze
zbieraniem wynikow testow z wszystkich aplikacji, z ktorych sktada si¢ twdj system.

3. Wkrotce bedziesz musial napisac¢ wiele innych metod podobnych do AssertTwoIntegersAreEqual()
- ta tutaj poréwnuje dwie liczby catkowite, ale co jesli chcemy sprawdzi¢ inny warunek, np. czy
jedna liczba catkowita jest wieksza od innej? Co by byto, gdybysmy chcieli sprawdzi¢ rownos¢
nie dla liczb catkowitych, ale dla znakoéw, ciggéw znakoéw, itp.? Co by bylo, gdybysmy chcieli
sprawdzi¢ pewne wtasciwosci kolekeji, np. czy kolekcja jest posortowana, lub czy wszystkie
elementy w kolekcji sa unikatowe?

4. Jesli test sig nie powiedzie, trudno bedzie przenies¢ sie od komunikatu na konsoli do odpowied-
niego wiersza w kodzie Zrédlowym w twoim IDE. Czy nie bytoby tatwiej - klikna¢ komunikat
o btedzie i zosta¢ przeniesionym do miejsca w kodzie, dzie wystapit btad?

Z tego wzgledu i kilku innych, stworzono zaawansowane, zautomatyzowane narzedzia do testo-
wania aplikacji - frameworki testujace, takie jak CppUnit (dla C++), JUnit (dla Javy) lub NUnit
(C#). Frameworki testujace sa w zasadzie oparte na tej samej idei, ktorg opisalem powyzej,
ale jednoczes$nie nadrabiajg wady naszego wczesniejszego, prymitywnego podejscia. Struktura i
funkcjonalnos¢ tych framework’ow wywodza sie ze Smalltalk’s SUnit, sa okreslane jako rodzina
testow xUnit.

Szczerze mowiac, nie moge sie doczekac, by pokazac Ci jak bedzie wygladaé nasz wezesniejszy test,
napisany przy uzyciu frameworka testujacego. Jednakze najpierw podsumujmy to, co si¢ nam udato
osiagna¢ do tej pory. Wprowadzmy tez pewna terminologie, ktora pomoze nam zrozumieé, w jaki
sposob zautomatyzowane frameworki testujace rozwigzujg nasze problemy:

1. Metoda Main() postuzyta nam jako lista testow (Test List) - miejsce, w ktorym decyduje sie,
ktore testy nalezy uruchomic.

2. Metoda Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers() byla naszg
metoda testowq (Test Method).

3. Metoda AssertTwoIntegersAreEqual () jest asercjg (Assertion) - warunkiem, ktory - gdy nie
zostanie spetniony - konczy test niepowodzeniem.

Ku naszej radosci, te trzy chwalebne elementy sg réwniez obecne, gdy uzywamy frameworka
testujacego. Ponadto sa znacznie bardziej zaawansowane. Aby to zilustrowaé, oto (nareszcie!)
ten sam test, ktory napisaliSmy powyzej, teraz uzywajacy frameworka testowego [xUnit.Net]

(http://xunit.github.io/):

O© 00 I O O b W N =

=Y
N =~ O

Niezbedne narzedzia 18

[Fact] public void
Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()
{

//Zaktadajgc, zZe...

var multiplication = new Multiplication(3,7);

//Kiedy dzieje sie to:
var result = multiplication.Perform();

//Wtedy wyniki powinny by¢ takie. ..
Assert.Equal(21, result);

Patrzac na przykitad widzimy, ze metoda testu jest jedyna rzecza, ktora pozostata - lista testow i
asercja, ktore poprzednio mieli$my, zniknety. C6z, prawde moéwiac, one nie do konca znikajg -
po prostu framework testujacy oferuje zastepstwa, ktére sg o wiele lepsze - wiec ich uzyliSmy.
Odswiezmy sobie trzy elementy z poprzedniej wersji testu, o ktorych mowilem, Ze teraz réwniez
beda obecne:

1. Lista testow (Test List) jest teraz tworzona automatycznie przez framework na podstawie
wszystkich metod oznaczonych atrybutem [Fact]. Nie ma potrzeby zarzadzac z poziomu kodu
juz zadnymi listami, dlatego znika metoda Main().

2. Metoda testujgca (Test Method) wciaz jest obecna i wyglada niemalze tak jak wczesniej.

3. Asercja (Assertion) przyjeta ksztalt statycznej metody Assert.Equal() — xUnit.NET frame-
work posiada szeroki zakres takich asercji, a wiec uzytem jednej z nich. Oczywiscie, nie ma
przeszkod bys napisal swojg wlasng asercje, jesli framework nie oferuje Ci tego, czego szukasz.

Uff, mam nadzieje, ze to przejscie do frameworka testujgcego okazato si¢ w miare bezbolesne dla
Ciebie. Teraz ostatnia rzecz - skoro nie ma juz metody Main(), to pewnie si¢ zastanawiasz jakim
cudem uruchamiamy te testy, prawda? Dobrze, wyjawie Ci ostatni sekret — uzywamy zewnetrzenej
aplikacji do tego celu (po polsku mozna jq nazwac odpalaczem testow, po angielsku to Test Runner)
— okreslamy ktore zestawy z testami (assemblies) chcemy zaladowad, rest runner uruchamia testy,
tworzy raporty na podstawie wynikéw etc. Nasz odpalacz moze przyja¢ wiele form, to moze by¢
aplikacja konsolowa, aplikacja z GUI albo plugin do IDE. Oto przyktad test runner’a dostarczanego
jako plugin do Visual Studio IDE, nazywajacego si¢ Resharper:

Niezbedne narzedzia

Unit Test Sessions - All tests from Solution

o7 All tests from Solution ® X

ﬂ»bﬂl'ﬂ'i}(@l@l"“**H*Gptions*
[@m " Jvw @0 80 @0

pe to searct

b of B SpinOffs (12 tests)
4 f 1 TddToolkitSpecification (129 tests)
b +f TddEbook.TddToolkitSpecification.AnySpecification (49 tests)
B +f TddEbook TddToolkitSpecification.AnySubstituteSpecification (7 tests)
b +f TddEbook.TddToolkitSpecification.ChainedAssertionsSpecification (4 tests)
B +f TddEbook TddToolkitSpecification.CircularListSpecification (2 tests)
b +f TddEbook.TddToolkitSpecification.CloneSpecification (2 tests)
B +f TddEbook TddToolkitSpecification.ConstraintsViolationsSpecification (3 tests)
b +f TddEbook.TddToolkitSpecification.OnlySpecification (15 tests)
b +f TddEbook.TddToolkitSpecification.ReceivedNothingSpecification (2 tests)
b of TddEbook.TddToolkitSpecification.RecardedAssertionsSpecification (6 tests)
4 +f TddEbook.TddToolkitSpecification.SynchronizationSpecification (24 tests)
W' ShouldMotThrowWhenNonVaidMethodlsMonitorSynchronizedCorrectly
v ShouldNotThrowWhenMonVoidMethodlsReadSynchronizedCorrectly
W' ShouldMotThrowWhenMNonVoidMethodlsWriteSynchronized Carrectly
v ShouldNotThrowWhenVoidMethodlsMonitorSynchronizedCorrecthy
W' ShouldMotThrowWhenVoidMethodlsReadSynchronizedCorrectly
v ShouldMNotThrowWhenVoidMethodlsWriteSynchronizedCorrectly
v ShouldThrowWhenNonVoidMethodDioesNotEnterMonitorAtAll
v ShouldThrowWhenNonVoidMethodDoesNotEnterReadLockAtAll
v ShouldThrowWhenNonVoidMethodDioesNotEnterWriteLockAtAll
v ShouldThrowWhenNonVoidMethodDoesMotExitMonitor

W ShouldThrowWhenMonVoidMethodDoesMotExitMonitorOnException
C¥ Interactive Tearn Explorer MuGet browser Package Mana... Test Explorer

Success —

Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success

Success

Success
v I

Success
Unit Test 5essi...

E

Resharper test runner docked as a window in Visual Studio 2015 IDE

19

Niezbedne narzedzia 20

Framework do mockowania

a To wprowadzenie jest przeznaczone dla tych, ktdrzy nie sa biegli w uzywaniu mockéw
(czytaj: “mokéw”, mock to kolejny angielskojezyczny termin w informatyce, ktéry nie ma
swojego odpowiednika w jezku polskim - dostownie ttumaczqc z angielskiego, mock to
imitacja). Mocki moga nie by¢ najlatwiejsze do zrozumienia i dlatego jestem w stanie
zaakceptowad, jesli na razie bedziesz mial problemy z uchwyceniem tej koncepcji. Jesli,
podczas czytania tego wprowadzenia, zgubisz sie - nie zwacaj na to w ogdle uwagi i idz
dalej. Bedziemy zajmowac sie mocno mockami w drugiej czesci ksigzki, gdzie zagwarantuje

Ci bogatszy i dokladniejszy opis.

Kiedy chcemy przetestowac klase, ktora zalezy od innej klasy, moznaby sadzi¢, ze dobrym pomystem
jest umieszczenie w tescie rowniez tej drugiej klasy. To, jednakze, nie pozwoli nam testowac
wylacznie jednego obiektu, czy tez malej grupy obiektow tak, bySmy mogli sprawdzi¢ prawidlowe
dzialanie najmniejszego fragmentu aplikacji. Testujemy najmniejszy fragment programu, bo gdy test
nie bedzie przechodzit, tatwiej bedzie znalezZé w matym fragmencie miejsce i przyczyne wystgpienia
bledu. Jesli sprawimy, iz nasza klasa nie zalezy od innych klas, ale zalezy raczej od abstrakcji w
postaci interfejsow - mozemy z latwoscig implementowac te interfejsy za pomocg specjalnych,
“falszywych” klas, stworzonych w taki sposob, by ulatwi¢ nam testowanie. Na przyktad obiekty
takich klas moga zawiera¢ wstepnie zaprogramowane wartosci zwracane dla metody zadeklarowa-
nej w interfejsie. Moga takze zapamigtywac, ktore metody byly wywolywane i zezwala¢ testowi
na sprawdzenie, czy komunikacja migdzy obiektem poddawanym testowi a jego zaleznosciami jest
poprawna.

To moze nie mie¢ znaczenia w Twoim przypadku, ale preferowanym podejsciem jest stworzenie
imitacji obiektu na podstawie interfejsu, a nie klasy, poniewaz normalnie, jesli podazasz za
TDD (Test Driven Development), mozesz napisac testy jednostkowe jeszcze przed napisaniem
implementacji zaleznych klas. Dlatego, nawet jesli nie masz konkretnej klasy DataAccessImpl, nadal
mozesz uzywac interfejsu DataAccess.

Niekorzystanie z interfejsow skutecznie utrudnia TDD, bo zmusza nas do tworzenia zaleznych klas
wraz z ciatami metod, nawet wtedy, kiedy ich jeszcze nie potrzebujemy. Zeby skomplikowaé sprawe,
dodam - Ze w Javie mozna, bez przeszkdd, stworzyc imitacje na podstawie definicji klasy - nie da
sie tego samego rownie bezproblemowo zrobi¢ w C#. Warto zaznaczy¢, ze interfejs w C# nigdy nie
bedzie zawieral metod.

Co wiecej, frameworki do mockowania (imitowania) majg ograniczenia w imitowaniu klas, a
niektore frameworki pozwalajg tylko na imitowanie interfejsow.

W dzisiejszych czasach mozemy zda¢ sie na narzedzia do generowania takiej “falszywej” imple-
mentacji danego interfejsu, co pozwoli nam wykorzystac te wygenerowang implementacje zamiast
prawdziwego obiektu w testach. Dzieje sie to na roézny sposob, w zaleznosci od jezyka. Czasami
implementacje interfejsu moga by¢ generowane w czasie wykonywania (tak jak w Javie lub C#),
czasami musimy polega¢ bardziej na generowaniu w czasie kompilacji (np. w C++).

© 00 N O O b W N =

NN N N P R R N N Ly s
W N, O O 0N 0O O b W N =~

Niezbedne narzedzia 21

Zawezajac sprawe do samego C# - framework mockujacy jest mechanizmem, ktéry pozwala nam
tworzy¢ obiekty-imitacje (zwane “mockami”), ktére kojarzone sg z interfejsem, w czasie wykony-
wania. Dziala to tak: typ interfejsu, ktory chcemy zaimplementowac, jest zwykle przekazywany do
specjalnej metody, ktéra zwraca obiekt mock oparty na tym interfejsie (zobaczymy przyktad w kilka
sekund). Oprocz tworzenia imitacji obiektow, taki framework zapewnia interfejs API do okreslania,
jak mocki powinny sue zachowywac podczas wywylywania okreslonych metod. To API pozwala
nam rowniez sprawdzi¢, ktére metody zostaly wywotane. Jest to bardzo wazna funkcja, poniewaz
mozemy zasymulowaé takie sytuacje lub zweryfikowac takie warunki poczatkowe, ktore bytyby
trudne do osiagniecia przy uzyciu kodu produkcyjnego. Frameworki do mockowania nie sa tak stare
jak frameworki do testowania, wiec nie byly uzywane w TDD od samego poczatku.

Teraz pokaze Ci krotki przyktad uzycia frameworka mockujacego, natomiast przetoze dalsze
wyjasnienie do podzniejsztch rozdziatéw, poniewaz pelny opis mockéw i ich miejsca w TDD nie
jest taki tatwy do przekazania.

Zatézmy, ze mamy klase, ktora umozliwia sktadanie zamoéwien, a nastepnie umieszcza te zamo-
wienia w bazie danych (za pomocg implementacji interfejsu o nazwie OrderDatabase). Dodatkowo,
klasa obstuguje wszelkie wyjatki, ktore moga wystapic i zapisuje je do logu. Klasa sama w sobie nie
robi zadnych waznych rzeczy, ale sprébujmy wyobrazi¢ sobie naprawde mocno, ze to wazna logika
domenowa. Oto kod dla tej klasy:

public class OrderProcessing

{
OrderDatabase _orderDatabase; // OrderDatabase to interfejs
Log _log;

// pobieramy obiekt bazodanowy spoza klasy:
public OrderProcessing(
OrderDatabase database,

Log log)
{
_orderDatabase = database;
_log = log;
}
public void Place(Order order)
{
try
{
_orderDatabase. Insert(order);
}
catch(Exception e)
{

_log.Write("Could not insert an order. Reason: " + e);

24
25
26
27
28

© 00 N O O b W N =

[T T S O S S N N = = =
O © 0 N O O & W N =~ o

Niezbedne narzedzia 22

// reszta kodu. ..

Teraz wyobraz sobie, ze musimy to przetestowac — jak to robimy? Juz widze, jak potrzasasz glowa i
moéwisz: “Stworzmy polaczenie z baza danych, wywolajmy metode Place() i sprawdzmy, czy rekord
jest poprawnie dodany do bazy danych”. Jesli to zrobimy, pierwszy test bedzie wygladat nastepujaco:

[Fact] public void ShouldInsertNewOrderToDatabaseWhenOrderIsPlaced()
{
//GIVEN
var orderDatabase = new MySqlOrderDatabase(); //uzycie prawdziwej bazy danych
orderDatabase.Connect();
orderDatabase.Clean(); //posprzataj po poprzednim tescie
var orderProcessing = new OrderProcessing(orderDatabase, new Filelog());
var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

//WHEN
orderProcessing.Place(order);

//THEN
var allOrders = orderDatabase.SelectAll10rders();
Assert.Contains(order, allOrders);

Na poczatku testu otwieramy potaczenie z bazg danych i czyscimy wszystkie istniejace w niej
zamoOwienia (wiecej o tym wkrotce), nastepnie tworzymy obiekt zamoéwienia, wstawiamy go do bazy
danych, a potem pobieramy wszystkie zamoéwienia z bazy. Na koniec sprawdzamy, czy zamoéwienie,
ktore probowalismy wprowadzic, znajduje si¢ wsrod wszystkich zamowien.

Dlaczego czyscimy baze danych na poczatku testu? Pamigtaj, ze baza danych trwale przechowuje
dane. Jesli nie wyczyscimy ich przed wykonaniem logiki testu, baza danych moze juz zawierac
element, ktory probujemy dodac, np. z poprzedniego wykonania sie testu. Co wiecej, baza danych
moze nie pozwoli¢ nam na ponowne dodanie tego samego produktu, a test zakonczy si¢ niepowodze-
niem. Alaaa! To tak bardzo boli - chcielismy, aby nasze testy udowodnily, ze co$ dziala, ale wyglada
na to, Ze moga zawie$¢ nawet wtedy, gdy logika jest poprawnie zakodowana. Jakie zastosowanie

Niezbedne narzedzia 23

mialby taki test, gdyby nie moégl nam odpowiedzie¢ na pytanie, czy zaimplementowana logika jest
poprawna czy nie? Tak wiec, aby upewnic sie, ze stan bazy danych jest taki sam za kazdym razem,
gdy uruchamiamy test, przed kazdym uruchomieniem czyscimy baze danych.

Czy teraz, kiedy test jest gotowy, dostaliSmy to, czego chcielismy? Wahatbym sie, czy odpowiedzie¢
“tak”. Jest kilka powodow:

1. Test bedzie najprawdopodobniej wykonywat si¢ wolno, poniewaz dostep do bazy danych jest
stosunkowo wolny. Nierzadko zdarza si¢, ze w projekcie do wykonania jest ponad tysiac testow.
Nie chce za kazdym razem czeka¢ pét godziny na wyniki, gdy uruchamiam testy jednostkowe.
A ty?

2. Kazdy, kto chce uruchomic ten test, musi skonfigurowa¢ specjalne srodowisko, np. lokalng
baza danych na swoim komputerze. Co, jesli czyjas konfiguracja rézni si¢ nieco od mojej? Co
sie stanie, jesli schemat produkcyjnej bazy danych stanie si¢ nieaktualny - czy kazdy zdazy to
zauwazy¢ i zaktualizowac schemat swoich lokalnych baz danych? Czy powinnismy ponownie
uruchomi¢ nasz skrypt do tworzenia bazy danych tylko po to, aby upewnic sie, ze dysponujemy
aktualnym schematem, dla ktérego mozna przeprowadzi¢ testy?

3. Mozemy nie by¢ w stanie uruchomi¢ systemu bazodanowego na naszym komputerze, jesli
docelowo ma on dziala¢ na jakiej$ egzotycznej platformie, albo na urzadzeniu mobilnym.

4. Zauwaz, ze test, ktory napisalismy, jest tylko jednym z dwoch nam potrzebnych. Nadal musimy
napisa¢ kolejny test dla scenariusza, gdzie wstawienie zamoéwienia konczy sie¢ rzuceniem
wyjatku. Jak skonfigurowac baze danych, by rzucita wyjatek? Jest to mozliwe, ale wymaga
znacznego wysitku (np. usuniecie tabeli i odtworzeniu jej po tescie - bo inne testy moga
wymagac tej tabeli do prawidlowego dziatania). To moze doprowadzi¢ nas do wniosku, ze
nie warto pisa¢ testow w ogole.

Teraz sprobujmy podejsé do tego problemu w inny sposob. Zatdézmy, ze klasa MySqlOrderDatabase
wysylajaca zapytania do bazy danych, jest juz przetestowana (nie chce jeszcze wdawac sie w
dyskusje na temat testowania zapytan do bazy danych - dojdziemy do tego w pdzniejszych
rozdziatach) i zatézmy, Ze jedyna rzecza, ktora musimy przetestowac, jest klasa OrderProcessing
(pamigtajcie, staramy si¢ naprawde mocno wyobrazic, ze jest tu zakodowana pewna powazna logika
domenowa). W tej sytuacji mozemy usungé MySqlOrderDatabase z testu i zamiast tego stworzy¢
falszywsg implementacje OrderDatabase. Bedzie ona dzialata tak, jakby wykonywata prawdziwe
potaczenie z bazg danych, ale nie bedzie w ogdle zapisywata tam informacji (zapisze wstawione
rekordy na liScie, w pamieci RAM komputera). Kod takiego udawanego potaczenia moze wygladac
tak:

© 0O N O O b W N =

[S = S G o = G
S © 00 N O O b W N =~ O

Niezbedne narzedzia 24

public class FakeOrderDatabase : OrderDatabase

{

public Order _receivedArgument;

public void Insert(Order order)

{

_receivedArgument = order;

public List<Order> SelectAllOrders()
{

return new List<Order>() { _receivedOrder };

Zauwaz, ze klasa imitujaca polaczenie z bazg danych jest instancja klasy implementujaca ten sam
interfejs co MySqlOrderDatabase. Tak wiec, mozemy sprawi¢, ze testowany kod uzyje falszywej bazy
danych nawet o tym nie widzac.

Zastapmy, w naszym tescie, prawdziwe potaczenia z baza danych falszywa implementacija:

[Fact] public void
ShouldInsertNewOrderToDatabaseWhenOrderIsPlaced()
{
//GIVEN
var orderDatabase = new FakeOrderDatabase();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

//WHEN
orderProcessing.Place(order);

//THEN
var allOrders = orderDatabase.SelectAllOrders();
Assert.Contains(order, allOrders);

Zauwaz, ze nie czy$cimy obiektu falszywej bazy danych, tak jak robili$my to z prawdziwg baza
danych, poniewaz tworzymy nowy obiekt za kazdym razem, gdy test jest uruchamiany, a wyniki sg

© 00 N O O & W N =

(AN
= O

© 00 N O O & W N =

N S =
g b 0w N =~

Niezbedne narzedzia 25

przechowywane w innym miejscu pamieci dla kazdej instancji. Test bedzie teraz znacznie szybszy,
poniewaz nie mamy juz dostepu do prawdziwej bazy danych. Co wigcej, mozemy teraz tatwo
napisac test na wypadek btedu przy dodawaniu nowego zamowienia. W jaki sposob? Po prostu
zaimplementujemy kolejne potgczenie z nieprawdziwg baza danych w ten sposéb:

public class ExplodingOrderDatabase : OrderDatabase

{
public void Insert(Order order)
{
throw new Exception();

}

public List<Order> SelectAllOrders()
{

}

Ok, na razie dobrze, ale teraz mamy dwie klasy potaczen z falszywa bazg danych do utrzymania
(i sa szanse, ze bedziemy potrzebowac ich jeszcze wiecej). Kazda metoda dodana do interfejsu
OrderDatabase musi réwniez zosta¢ dodana do kazdej z tych fatszywych klas. Mozemy zaoszczedzic
troche kodu, czyniac nasze imitacje nieco bardziej generycznymi, bySmy ich zachowania mogli
konfigurowac za pomocg wyrazen lambda:

public class ConfigurableOrderDatabase : OrderDatabase

{
public Action<Order> doWhenlnsertCalled;

public Func<List<Order>> doWhenSelectAllOrdersCalled;

public void Insert(Order order)

{
doWhenInsertCalled(order);

public List<Order> SelectAllOrders()

{
return doWhenSelectAllOrdersCalled();

Teraz nie musimy tworzy¢ dodatkowych klas dla nowych scenariuszy, ale nasza sktadnia stata sie
bardziej ucigzliwa. Oto jak konfigurujemy falszywg baze danych, by pamietata i pozwalata odczytaé
wprowadzone zamoéwienie:

Bw N

O© 00 1 O O b W N =

O = N =Y
0 N O O & W N -~ O

Niezbedne narzedzia 26

var db = new ConfigurableOrderDatabase();

Order gotOrder = null;

db.doWhenInsertCalled = o => {gotOrder = o;};
db.doWhenSelectAll0rdersCalled = () => new List<Order>() { gotOrder };

A jesli chcemy rzuci¢ wyjatek, gdy cos jest wstawiane:

var db = new ConfigurableOrderDatabase();
db.doWhenInsertCalled = o => {throw new Exception();};

Na szczescie niektorzy sprytni programisci stworzyli biblioteki, ktore zapewniajg dalszg automaty-
zacje w takich sytuacjach. Jedna z takich bibliotek jest [NSubstitute] (http://nsubstitute.github.io/).
Zapewnia ona API w postaci metod rozszerzajacych (extension methods) C# - co moze Ci si¢ na
poczatku wydawac si¢ nieco magiczne, szczeg6lnie jesli nie znasz C#. Nie martw sie, przyzwyczaisz
sie do tego.

Uzywajac NSubstitute, nasz pierwszy test moze zosta¢ napisany w taki sposob:

[Fact] public void ShouldInsertNewOrderToDatabaseWhenOrderisPlaced()
{
//GIVEN
var orderDatabase = Substitute.For<OrderDatabase>();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

//WHEN
orderProcessing.Place(order);

//THEN
orderDatabase.Received(1).Insert(order);

Zauwaz, ze nie potrzebujemy juz metody SelectAllOrders() w interfejsie do komunikacji z baza
danych. Istniala tylko po to, aby ulatwi¢ pisanie testu - nie uzywat jej zaden kod produkeyjny.
Mozemy usungé te metode i pozby¢ sie kolejnych probleméw z utrzymaniem kodu. Zamiast
wywotywania funkcji SelectAllOrders(), nasz mock utworzony przez NSubstitute zapisuje wy-
wotania wszystkich swoich funkcji, pozwalajac nam na skorzystanie ze specjalnej metody o nazwie

O O B W N

O© 00 1 O O b W N =

NN
= O

Niezbedne narzedzia 27

Received() (patrz ostatnia linia tego testu). W istocie, jest to zakamuflowana asercja sprawdzajaca,
czy metoda Insert() zostala wywotana z konkretnym obiektem zamoéwienia jako parametr.

To objasnienie mockow jest bardzo ptytkie, a jego celem jest tylko sprawienie, aby$ zaczat dziatac.
Wrécimy do mockéw pdzniej, poniewaz zaledwie podrapaliSmy powierzchnie.

Generator wartosci anonimizowanych

Patrzac na dane testowe z poprzedniej sekcji widzimy, ze wiele wartosci podano bardzo konkretnie,
np. w nastepujacym kodzie:

var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,

quantity: 1);

imie, nazwisko, produkt, data i ilos¢ sa bardzo specyficzne. Moze to sugerowac, ze te konkretne
wartosci sa wazne z punktu widzenia zachowania, ktére testujemy. Z drugiej strony, gdy ponownie
spojrzymy na kod, ktory jest testowany:

public void Place(Order order)
{

try

{

this.orderDatabase. Insert(order);

}

catch(Exception e)

{

this.log.Write("Could not insert an order. Reason: " + e);

mozemy zauwazy¢, ze wartosci te nie sg nigdzie uzywane - testowana klasa nie wymaga ich, ani nie
sprawdza w zaden sposob. Te wartosci moglyby by¢ wazne z punktu widzenia bazy danych, ale juz
zdazyliSmy pozby¢ sie prawdziwej bazy danych z testow. Czy nie przeszkadza ci, ze wypelniamy
obiekt zamowienia tak wieloma wartosciami, ktore nie maja zwigzku z samg logika testu i ktore
zakldcaja strukture testu niepotrzebnymi szczegétami? Aby usunaé ten batagan, wprowadzmy
metode o opisowej nazwie, tworzaca zamowienie ale ukrywajaca szczeg6ty, ktorych osoba czytajaca
test wcale nie potrzebuje:

O© 00 I O O b W N =

NN N N N R R b s sy
B W0 N PO O 0N 0 O bk ON A~ O

Niezbedne narzedzia 28

[Fact] public void
ShouldInsertNewOrderToDatabase()
{
//GIVEN
var orderDatabase = Substitute.For<OrderDatabase>();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());

var order = AnonymousOrder();

//WHEN
orderProcessing.Place(order);

//THEN
orderDatabase.Received(1).Insert(order);

public Order AnonymousOrder()
{
return new Order(

name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

Teraz jest znacznie lepiej. Nie tylko sprawilismy, ze test byt krotszy, ale rowniez pokazalismy
czytelnikowi, ze wartosci uzyte do utworzenia zamoéwienia nie majg znaczenia z punktu wi-
dzenia przetestowanej logiki przetwarzania zamoéwien, sa zanonimizowane. Dlatego tez nazwa
AnonymousOrder ().

Przy okazji, czy nie byloby mito, gdyby$Smy sami nie musieli anonimizowac¢ obiektow, ale mogli
polega¢ na innej bibliotece, ktora by dla nas generowata obiekty juz zanonimizowane? Niespo-
dzianka, jest jedna! Nazywa si¢ [** Autofixture **] (https://github.com/AutoFixture/AutoFixture).
Jest to przykiad tak zwanego generatora anonimizowanych wartosci (cho¢ jego tworca lubi mowic,
ze jest to rowniez implementacja wzorca projektowego Konstruktor Danych Testowych (Test Data
Builder), ale pominmy tutaj te dyskusje.

Po zmianie naszego testu tak, by uzywat biblioteki AutoFixture dochodzimy do tego:

O© 00 I O O b W N =

N S
a b W N =~ O

© 00 N O O b W N =

Niezbedne narzedzia 29

private Fixture any = new Fixture();

[Fact] public void ShouldInsertNewOrderToDatabase()

{
//GIVEN

var orderDatabase = Substitute.For<OrderDatabase>();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());

var order = any.Create<Order>();

//WHEN
orderProcessing.Place(order);

//THEN
orderDatabase.Received(1).Insert(order);

W tym tescie uzywamy instancji klasy Fixture (ktora jest czeScig AutoFixture) do tworzenia
anonimizowanych wartosci za pomocg metody o nazwie Create(). Tym samym, to pozwala nam
usuna¢ metode¢ AnonymousOrder (), dzieki czemu konfiguracja testu jest krotsza.

Niezle, co? AutoFixture ma wiele zaawansowanych funkcji, ale zeby wszystko byto proste, chciat-
bym ukry¢ jego obecnos$¢ za statyczng klasg o nazwie Any. Najprostsza implementacja takiej klasy
wygladataby tak:

public static class Any

{

private static any = new Fixture();

public static T Instance<T>()

{

return any.Create<T>();

W nastepnych rozdzialach zobaczymy wiele roznych metod klasy Any, a takze pelne wyjasnienie
filozofii, ktora za tym stoi. Im dituzej uzywasz tej klasy, tym bardziej rozszerza si¢ ona o nowe
metody tworzenia niestandardowych obiektow.

Podsumowanie

W niniejszym rozdziale przedstawiono trzy narzedzia, ktérych bedziemy uzywac¢ w tej ksiazce,
po opanowaniu ktérych, Twoje wytwarzanie oprogramowania sterowane testami (test-driven

Niezbedne narzedzia 30

development) bedzie szto Ci bardziej ptynnie. Jesli ten rozdziat nie sprawil, zebys uwazat uzycie tych
trzech narzedzi za zasadne, nie martw sie - zaglebimy sie w filozofi¢ stojacg za nimi w nastepnych
rozdziatach. Na razie chce tylko, zebys zapoznat sie z ich sktadnig. No dalej, pobierz te narzedzia z
Internetu, uruchom je, sprébuj napisa¢ co$ prostego przy ich uzyciu. Nie musisz jeszcze rozumiec
ich pelnego celu, po prostu zacznij zabawe :-).

To nie (tylko) test

Czy rola testu jest tylko “weryfikacja” lub “sprawdzenie”, Ze oprogramowanie dziata? Z pewnoscia
jest to istotna cze$¢ jego runtime value, tj. wartosci, ktérg otrzymujemy kiedy uruchamiamy
test. Jednakze, gdy ograniczymy naszg perspektywe jedynie do testow, mozemy dojs¢ do wniosku,
ze jedyna cenng rzecza w przeprowadzaniu testu jest mozliwos¢ jego wykonania i wyswietlenia
wyniku. Wartos¢ projektowanie lub pisanie testu sprowadza sie do tego, ze mozna go uruchomic, a
czytelnosc¢ testu ma zas wartosc tylko podczas debugowania. Czy tak jest w istocie?

W tym rozdziale bede przekonywal, Ze czynnosci polegajace na projektowaniu, implementowaniu,
kompilowaniu i czytaniu testu sg bardzo wazne. Pozwalajg traktowac testy jako co$ wiecej niz tylko
“automatyczng kontrole”.

Kiedy test staje sie czyms wiecej

Studiowatem w Lodzi, duzym miescie w centrum Polski. Jak (zapewne) wszyscy inni studenci we
wszystkich krajach swiata, mieliSmy wyktady, ¢wiczenia i egzaminy. Egzaminy byty dos¢ trudne.
Poniewaz moja grupa informatyczna byla na Wydziale Elektroniki i Elektrotechniki, musielismy
zrozumie¢ wiele przedmiotow, ktoére nie mialy nic wspoélnego z programowaniem. Na przyktad:
elektrotechnike, fizyke ciata statego lub metrologie elektryczna i elektroniczna.

Wiedzac, ze egzaminy byty trudne i ze trudno bylto nauczy¢ sie wszystkiego w trakcie semestru,
wykladowcy czasami dostarczali nam przyktadowe egzaminy z poprzednich lat. Pytania réznity sie
od tych na naszych egzaminach, ale struktura i rodzaje zadawanych pytan (praktyka i teoria itp.)
byty podobne. Zazwyczaj otrzymywalismy przyktadowe pytania, zanim nauka stawata sie¢ napraw-
de cigzka (co zwykle miato miejsce pod koniec semestru). Zgadnij, co si¢ wtedy dzialo? Jak mozecie
podejrzewac - nie korzystaliSmy z testow, ktére otrzymalismy, tylko po to, by “zweryfikowaé” lub
“sprawdzi¢” nasza wiedze po ukoriczeniu nauki. Wrecz przeciwnie - zbadanie tych testow byto
pierwszym krokiem naszego przygotowania. Dlaczego tak byto? Jaki byt cel patrzenia na testy, skoro
wiedzieliSmy, ze i tak nie znamy wiekszosci odpowiedzi?

Chociaz mysle, ze moi wyktadowcy nie zgodziliby si¢ tutaj ze mna, to mam dos$¢ zabawne
spostrzezenie, ze to co robilismy bylo podobne do “Lean Software Development”. Lean to filozofia
gdzie kladzie si¢ nacisk na pozbywanie si¢ tego, co niepotrzebne (unikanie marnotrawstwa). Kazda
funkcjonalnos¢ lub produkt, ktére nie sa nikomu potrzebne, s3 uwazane za strate, marnotrawstwo.
To dlatego, ze jesli co$ nie jest potrzebne teraz to nie ma najmniejszego powodu by zalozy¢, ze
kiedykolwiek bedzie potrzebne. Cata taka funkcjonalnos¢ lub produkt nie dodaje Zadnej wartosci
biznesowej. Nawet jesli kiedykolwiek bedzie potrzebne, to - bardzo prawdopodobne - Ze i tak
bedzie wymagac¢ pracy, aby dopasowac to do potrzeb klienta. W takim przypadku, praca - ktéra
zostata wlozona w oryginalne rozwigzanie, a teraz wymagajace adaptacji - jest marnotrawstwem.

1
2
3

To nie (tylko) test 32

To kosztowalo, ale nie przyniosto korzysci (nie mowie o takich rzeczach jak demo dla klienta, ale
gotowy, dopracowany produkt lub funkcjonalnosc).

Aby wyeliminowa¢ marnotrawstwo, zazwyczaj staramy si¢ dodawaé¢ funkcjonalnosci ktorych sie
od nas zada, zamiast “wpycha¢” funkcjonalnosci do produktu w nadziei, ze pewnego dnia stang sie
one przydatne. Innymi stowy, kazda funkcja ma zaspokoi¢ konkretng potrzebe. Jesli nie, prace uwaza
sie za zmarnowana, a pienigdze poszly w bloto.

Wracajac do egzaminéw - dlaczego podejscie polegajace na przejrzeniu przyktadowych testow
mozna uzna¢ za “lean”? Zalézmy, ze naszym celem jest zaliczenie egzaminu. Dlatego - wszystko co
nie przybliza nas do tego celu, jest uwazane za marnotrawstwo. Jesli egzamin z przedmiotu dotyczyt
tylko teorii - po co bylo przed egzaminem zajmowac¢ sie ¢wiczeniami? To, jaki jest egzamin, mozna
byto uzyskaé na podstawie przykltadowych testow. Testy byly wiec swoista specyfikacjg tego, co
byto potrzebne do zdania egzaminu. Pozwolily nam uzyska¢ wartosciowe informacje (np. wiedze
o ksztalcie egzaminu) na podstawie wymagan (informacji uzyskanych z prawdziwych testow),
zamiast zmusza¢ nas do przeszukiwania wszystkiego, co juz istnialo (tj. probowac¢ przeczytac
wszystko, co sie da pod katem i ¢wiczen, i teorii).

Dlatego tez testy okazaly si¢ czym$ wigcej, nizli tylko testami. Okazaly si¢ bardzo cenne jeszcze
przed “implementacja” (tj. uczeniem sie do egzaminu). Stato sie tak, bo:

1. pomogly nam skupi¢ sie na tym, co bylo potrzebne, aby osiagna¢ nasz cel
2. odciaggnely nasza uwage od tego, co nie byto konieczne, aby osiagna¢ nasz cel

Swojq drogq, nie musze chyba mowicé, ze celem nauki nie powinno by¢ wylqcznie zdanie egzaminu?

Taka wiasnie byta wartos¢ testu przed nauks. Zwrdoc uwage, ze testy, ktore otrzymywalismy, nie
byly doktadnie takie same, jak te w czasie egzaminu, wigc nadal musieliSmy zgadywac. Jednak rola
testu jako wyszczegélnienia potrzeby, wymagania byta juz widoczna. Mozna powiedziec, rola
testu jako specyfikacji wymagan.

Testy w Swiecie programistow

Wybralem te dluga metafore, aby pokazaé, ze napisanie “testu” jest innym sposobem okreslenia
wymagan, potrzeb - i ze myslenie w ten sposob o testach nie jest sprzeczne z intuicjg. Przyktad z
testami z poprzednich lat, przed egzaminem, to co$ wzietego z codziennego zycia. Ta sama sytuacja
ma miejsce w przypadku rozwoju oprogramowania. Wezmy nastepujacy “test” i zobaczmy, jakie
potrzeby on okresla:

var reporting = new ReportingFeature();
var anyPowerUser = Any.Of(Users.Admin, Users.Auditor);
Assert.True(reporting.CanBePer formedBy(anyPowerUser));

To nie (tylko) test 33

(W tym przyktadzie uzyliSmy metody Any.0£ (), ktoéra zwraca jakas wartos¢ z podanej listy. Chcemy
powiedzie¢: “podaj mi warto$¢, ktdra jest albo Users.Admin albo Users.Auditor”.)

Spoéjrzmy na te trzy (tylko!) linie kodu i wyobrazmy sobie, ze kod produkcyjny, ktory sprawi, ze test
zakonczy sie sukcesem, jeszcze w ogoéle nie istnieje. Czego mozemy si¢ nauczy¢ na podstawie tych
trzech linii o tym, co kod produkcyjny musi zrobi¢? Wyliczaj ze mna:

1. Potrzebujemy czego$, co cechuje mozliwosé raportowania.

2. Musimy uzywac pojecia uzytkownikow i przywilejow.

3. Musimy uzywac¢ koncepcji uzytkownika zaawansowanego, ktory jest administratorem lub
przeprowadza audyt.

4. Tak zwaniPower users, czyli “uzytkownicy majacy moc”, musza mie¢ mozliwo$¢ raportowania
(pamigtaj, ze nie okreslilismy, czy jacy$ inni uzytkownicy powinni lub nie powinni mieé¢
mozliwos$ci korzystania z funkcji raportowania - potrzebowaliby$my do tego osobnego “testu”).

Ponadto, juz jesteSmy po fazie projektowania interfejsu API (poniewaz test juz uzywa jakiegos
API), ktory pasowalby do powyzszych wymagan. Czy nie sadzisz, ze to catkiem duzo informacji
o funkcjach aplikacji - wnioskujac po zaledwie trzech liniach kodu?

Raczej specyfikacja niz zbior testow

Mam nadzieje, ze teraz widzicie, ze to, co nazywali$my “testem”, moze by¢ réwniez postrzegane jako
rodzaj specyfikacji. Jest to rowniez odpowiedz na pytanie, ktére zadatem na poczatku tego rozdziatu
(o to, co jest rolg testu)

W rzeczywistosci test, napisany przed kodem produkcyjnym, ma nastepujace funkcje :

« projektowanie scenariusza - kiedy okreslamy nasze wymagania, podajac konkretne przyktady
zachowan, ktorych sie spodziewamy

« pisanie kodu testowego - kiedy okreslamy interfejs API, za pomocg ktérego chcemy wywoty-
wacé testowany kod

« kompilowanie - gdy otrzymujemy informacje od kompilatora, ze kod produkcyjny ma klasy
i metody wymagane przez specyfikacje, ktora napisalismy. Jesli nie, kompilacja zakonczy sie
niepowodzeniem.

« wykonanie - kiedy otrzymujemy informacje zwrotng od testu, czy kod produkcyjny zachowuje
sie tak jak opisano w specyfikacji. Jesli nie, test powinien zakonczy¢ sie niepowodzeniem,
fiaskiem (failed).

« czytanie - to miejsce, w ktorym wykorzystujemy juz napisang specyfikacje, aby uzyska¢ wiedze
na temat tego, jak korzysta¢ z kodu produkcyjnego.

Dlatego nazwa “test” to troche za mato, by odda¢ co w TDD robimy. Moje odczucia sg takie, ze inna
nazwa moglaby by¢ lepsza - stad okreslenie specyfikacja.

To nie (tylko) test 34

Odkrycie, ze testy pelnig role specyfikacji jest dos¢ niedawne i nie ma jeszcze jednolitej terminologii.
Niektorzy lubig nazywaé proces uzywania testow jako specyfikacje. Specyfikacja przez przyktady
(specification by example) zeby przekazac, ze testy sa przyktadami, ktére pomagaja okresli¢ i wy-
jasni¢ rozwijang funkcjonalnosc¢. Niektorzy uzywaja terminu BDD (Behavior-Driven Development),
aby podkresli¢, ze pisanie testow polega na analizowaniu i opisywaniu zachowan. Ponadto mozesz
napotka¢ rézne nazwy dla niektorych elementéw takiego podejscia, na przyktad “test” moze by¢
okreslany jako “specyfikacja”, “przyktad”, “opis zachowania”, lub “opis zachowania”, albo “fakt o
systemie”. Zreszta, widzieliSmy w rozdziale o narzedziach, ze xUnit.NET Framework oznacza kazdy
test atrybutem [Fact], sugerujac, ze stwierdzamy pojedynczy fakt o tworzonym kodzie. Przy okazji,
xUnit.NET pozwala nam réwniez na okreslenie teorii na temat naszego kodu, ale zostawmy ten
temat na inny czas.

Wzigwszy pod uwage réoznorodnos¢ w terminologii, uméwmy sie tak: zeby by¢ spdjnym przez calg
ksigzke, ustanowie konwencje nazewnicza, ale ostatecznie Tobie zostawiam prawo wyboru tego,
jaka nazwa jest dla Ciebie najodpowiedniejsza. Powodem takiego podejscia do nazewnictwa jest
pedagogika - nie probuje stworzy¢ ruchu na rzecz lansowania okreslonych pojeé, nie chce wynalezé
nowej metodyki, ani niczego podobnego - mam nadzieje, ze konsekwnetne uzywanie w ksigzce
ponizszej terminologii, pozwoli Ci spojrze¢ na niektore rzeczy inaczej. Zgadzamy sie wiec, ze ze
wzgledu na te ksigzke:

Specyfikacja Wymagania (Specification Statement), lub po prostu Wymaganie (Statement),
wielka literg ‘W’
bedzie uzywane zamiast stowa “test” i “metoda testowa” (“test method”)
Specyfikacja (Specification) rowniez wielka literg ‘S’
bedzie uzywana zamiast stow “zestaw testow” (“test suite”) i lista testow (“test list”)
Wymaganie niespelnione (False Statement)
bedzie uzywane zamiast “niepowodzenie testu” (“failing test”)
Wymaganie spelnione (True Statement)
bedzie uzywane zamiast “test, ktory przeszedl” (“passing test”)

Od czasu do czasu bede powracal do “tradycyjnej” terminologii, poniewaz jest lepiej utrwalona
w $rodowisku IT i poniewaz styszeliscie juz jakie$ inne terminy, ktére zdazyly sie zadomowi¢ w
swiadomosci programistow. Z pewnoscig zastanawiacie sie, jak nalezy je rozumie¢ w kontekscie
myslenia o testach jako specyfikacji.

Réznice miedzy “wykonywalnymi” specyfikacjami i
tymi “tradycyjnymi”

Uzytkownik moze by¢ zaznajomiony ze specyfikacjami wymagan lub specyfikacjami projektowymi
napisanymi prostym jezykiem angielskim lub innym jezykiem mowionym. Jednakze nasze specy-
fikacje roznig sie od nich w kilku kwestiach. W szczegdlnosci specyfikacja, ktorg tworzymy piszac
testy:

To nie (tylko) test 35

1. Nie jest catkowicie narzucona nam z gory, tak jak wiele “tradycyjnych” specyfikacji (co nie
znaczy, ze jest pisana po stworzeniu kodu - wiecej na ten temat w nastepnych rozdziatach).

2. Jest “wykonywalna” - mozna jg uruchomié, aby sprawdzi¢, czy kod jest zgodny ze specyfikacja,
czy tez nie. Zmniejsza to ryzyko wystapienia niescistosci w Specyfikacji i nieprzystawalnosci
Specyfikacji do kodu produkcyjnego.

3. Jest napisana za pomoca kodu zrédlowego, a nie w jezyku moéwionym - co jest dobre, poniewaz
struktura kodu i sformalizowany styl pozostawiajg mniej miejsca na nieporozumienia. Jed-
nakze, jest to takze wyzwanie, poniewaz nalezy zachowac szczeg6lng ostrozno$¢, by utrzymac
czytelnosc¢ Specyfikacji.

Programowanie poprzedzone
wymaganiem (Wymaganie-najpierw)

Po co pisac specyfikacje po fakcie?

Jedna z najbardziej znanych rzeczy na temat TDD jest to, ze piszemy nieprzechodzacy test, zanim
w ogole zaimplementujemy w kodzie potrzebne zachowanie. Ta koncepcja jest czesto nazywana
“test-first development” i dla wielu 0osob wydaje sie by¢ do$¢ kontrowersyjna.

W poprzednim rozdziale powiedzialem, ze w TDD “test” przyjmuje dodatkowg role — wymagania,
ktore jest czeScia specyfikacji. Jesli tak postawimy sprawe, cala kontrowersyjna koncepcja “pisania
testu przed kodem” wcale nie stanowi problemu. Wrecz przeciwnie — wydaje si¢ naturalne,
aby sprecyzowac, czego oczekujemy od kodu, zanim sprobujemy go napisa¢. Czy odwrotnie
tez to ma sens? Specyfikacja napisana po zakonczeniu implementacji jest niczym wiecej jak
proba udokumentowania istniejgcego rozwigzania. Oczywiscie, takie proby moga stanowic¢ jakas
warto$¢, gdy sa wykonywane jako rodzaj inzynierii wstecznej (tj. gdy dokumentujemy istniejace
rozwigzanie, albo zapisujemy specyfikacje dla czegos, co zostalo zaimplementowane dawno temu i
dla czego odkrywamy wczesniej niejawne reguly biznesowe). Pisanie specyfikacji ma w sobie co$ z
ekscytujacego odkrywania, ale po tym, jak sami podjelismy wszystkie decyzje, nie wydaje mi sie,
aby byt to produktywny sposob spedzania czasu. Nie wspominajac o tym, ze uwazam to za nudne
(mozesz sprawdzi¢ na wlasnej skorze, czy jestes w stanie sie ze mng zgodzi¢ - sprobuj stworzy¢
prosta aplikacje - kalkulator, a nastepnie napisz jej specyfikacje zaraz po implementacji i recznym
sprawdzeniu, czy dziata). W kazdym razie trudno mi doszukiwac sie, jak co§ powinno dziata¢ po tym
jak to juz zostanie stworzone. Moze wtasnie dlatego przez te lata zdazylem zauwazy¢, ze specyfikacje
napisane “po” - sg znacznie mniej kompletne niz te napisane przed wdrozeniem produktu.

Aha, i czy méwitem wam, ze bez jakiejkolwiek specytikacji, nie wiemy, czy skonczyliSmy wprowa-
dza¢ zmiany do kodu, czy nie? Dzieje si¢ tak, poniewaz aby ustali¢, czy zmiana jest kompletna,
musimy z “czym$” pordwna¢ zaimplementowang funkcjonalno$¢, nawet jesli to “co$” znajduje
sie tylko w glowie klienta. w TDD “poréwnujemy” funkcjonalnoé¢ z oczekiwaniami zaszytymi w
zestawie automatycznych testow.

Inng rzecza, o ktorej wspomnialem w poprzednim rozdziale jest to, ze zabieramy sie za pisanie
Specyfikacji za pomoca uruchamialnych Wymagan (Specification Statement) zupelnie inaczej niz
gdy implementujemy, krok pro kroku, wyglad i dzialanie aplikacji korzystajac z opisu, lub -
chociazby - mamy z géry narzucone biznesowe wymagania (Requirements). W TDD, nawet jesli
zachowanie jest implementowane po tym, jak juz istnieje koncepcja dziatania aplikacji, nie piszemy
Specyfikacji tak, jakby$my mieli tekst przed oczyma i przektadali go na kod jota w jote. Zazwyczaj
postepujemy tak, ze napiszemy troche Specyfikacji, a potem troche kodu aplikacji i tak w kotko. W

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 37

TDD przechodzimy wielokrotnie przez kilka faz, ktore sktadajg si¢ na cykl. Chcemy by te cykle byty
krotkie, aby$my otrzymywali informacje zwrotne czgsto i odpowiednio wezesnie. Informacje te sa
niezbedne, poniewaz pozwalaja nam i$¢ do przodu, dajac pewnos¢, ze to co juz mamy, dziata zgodnie
z naszymi zamierzeniami. Pozwalaja nam réwniez na usprawnienie nastepnego cyklu, dzigki wiedzy
zdobytej w poprzednim cyklu (jesli nie wierzysz, ze liczy sie szybka reakcja, zadaj sobie pytanie: “ile
razy dziennie kompiluje kod, nad ktorym pracuje?”).

Przeczytawszy tyle o cyklach, nie bedzie dla Ciebie pewnie zaskoczeniem, zZe tradycyjna ilustracja
procesu TDD jest wizualnie modelowana jako przeptyw cykliczny:

Write a failing
test

Make it pass

Basic TDD cycle

Zwr6é uwage, ze powyzszy ilustarcja wykorzystuje tradycyjng terminologie TDD, wigc zanim
wyjasnie kroki, oto podobna ilustracja, ktéra korzysta z naszych poje¢ Specyfikacji (Specifiction)
i Wymagania (Statement):

Write a Statement

you wish was true Add nge
but is not make it true

Refactor
Basic TDD cycle with changed terminology

1. Napisz Wymaganie, ktore chciatbys, by byto spelnione ale nie jest.
2. Dodaj kod, by Wymaganie zostato spetnione.
3. Zrefaktoruj kod.

Druga wersja wydaje sie mie¢ bardziej sens niz pierwsza - okreSlenie, jak co$ powinno si¢
zachowywac¢ przed napisaniem kodu dla tego zachowania, jest bardziej intuicyjne nizli “testowaniu”
czego$, co jeszcze nie istnieje.

W kazdym razie te trzy kroki zastuguja na wyjasnienie. W nastepnych rozdziatach podam kilka

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 38

przykltadow na to, jak proces ten dzialta w praktyce i wprowadze rozszerzong wersje, ale w
miedzyczasie wystarczy wyjasnié, ze:

Napisz Wymaganie, ktore chcialbys, by bylo spelnione ale nie jest.
oznacza, ze Wymaganie jest niespelnione i na liscie testow pojawia sie to jako btad, fiasko (fail),
ktory wiekszos¢ frameworkow xUnit zaznacza kolorem czerwonym.

Dodaj kod, by Wymganie zostalo spelnione.
oznacza, ze piszemy tylko tyle kodu, aby Wymaganie bylo spelnione, nie wiecej. Na liscie
testow takie Wymaganie jawi sie jako sukces (pass), ktore wigkszos¢ frameworkéw xUnit
zaznacza kolorem zielonym. W dalszej czesci ksigzki zobaczysz, jak malo moze oznaczaé
“wystarczajaco duzo”.

Zrefaktoruj kod.
jest krokiem, ktory do tej pory milczaco ignorowatem i zrobie to jeszcze przez kilka kolejnych
rozdziatéw. Nie martw sie, w konicu wrocimy do tego. Na razie wazne jest, aby miec
swiadomos¢, ze Wykonywalna Specyfikacja moze dziata¢ jak siatka zabezpieczajac w cyrku.
Podczas gdy my poprawiamy jakos¢ kodu bez zmiany jego zachowania zewnetrznego, dzigki
czestemu wykonywaniu kodu Specyfikacji, szybko odkrywamy kazdy btad, ktéry popetnilismy
w procesie refaktorzacji.

Nawiasem mowigc, proces ten jest czasami okreslany jako “Red-Green-Refactor”, ze wzgledu na
kolory wyswietlane przez narzedzia xUnit w przypadku niepowodzenia i sukcesu testu. Tylko o
tym tutaj wspominam — nie bede uzywat tego terminu w dalszej czesci ksigzki.

“Najpierw-test” oznacza patrzenie na niepowodzenie

Wyjasniajac powyzszy rysunek opisujacy TDD, zwrdcitem uwage, ze powinni$my napisa¢ Wyma-
ganie, ktore chcieliby$smy, by bylo spelnione ale nie jest. Oznacza to, Ze nie tylko trzeba napisac
Wymaganie przed implementacja, dzigki ktérej wymaganie jest spelnione, ale musimy réwniez to
Wymaganie ewaluowac (tj. uruchomié) i obserwowac, ze - w istocie - nie spelnia swoich zatozen
przed dostarczeniem implementacji.

Dlaczego to takie wazne? Czy nie wystarczy samo zapisanie Wymagania? Przeciez wiadomo, ze
nie jest spelnione, gdy nie ma odpowiedniego kodu - po co je uruchamia¢ i ogladac jak swieci na
czerwono na liScie? Jest kilka powodow i postaram si¢ pokrotce omowic kilka z nich.

Gléwnym powodem sprawdzenia, czy Wymaganie nie jest spelnione jest fakt, iz nie ma zadnego
dowodu na to, ze napisane Wymaganie skonczy sie kiedykolwiek spektakularnym fiaskiem po
uruchomieniu.

Kazde dobrze napisane Wymaganie nigdy nie przechodzi sprawdzenia, gdy nie jest spetnione, a
zawsze przechodzi sprawdzenie, gdy jest spelnione. Jest to jeden z gléwnych powodow, dla ktérych
je piszemy - chcemy zobaczy¢ przejscie od Red (czerwonego) do Green (zielonego), co oznacza, ze
to, co wczesniej nie zostalo zaimplementowane nie dziatato (i mieliSmy na to dowdd), a teraz dziata
(i réwniez mamy na to dowdd). Obserwacja przejscia Red-Green pokazuje, ze zrobiliSmy postep.

o I O O b W N =~

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 39

Inng rzecza, na ktorg nalezy zwroci¢ uwage, jest to, ze napisanie kodu, ktory spelnia Wymaganie,
sprawia iz staje sie ono czescig uruchamialnej Specyfikacji. Gdy, cho¢ przez chwile, kod przestaje
spelnia¢ Wymaganie dowiadujemy si¢ o tym (to moze by¢ na przyktad wynik pomyltki podczas
refaktoryzacji kodu).

Zauwazenie, ze Wymaganie nie jest spetnione dostarcza nam cennych informacji. Jesli uruchomimy
je wylacznie po napisaniu kodu dla opisywanego zachowania, to skad wiemy, ze Wymaganie
weryfikuje nasze prawdziwe oczekiwania i potrzeby? Nigdy nie widzieliSmy, by Wymaganie
kiedykolwiek $wiecito na czerwono, wiec jaki mamy dowdd, zZe w ogodle jest w stanie powiadomic
nas o fiasku?

Pierwszy raz spotkalem sie z tym argumentem, tuz przed tym, gdy zaczalem mysle¢ o testach jak o
uruchamialnej specyfikacji. “Powaznie?” — pomyslalem — “Wiem doskonale, co koduje, jesli zrobie
wystarczajaco matle testy, bedzie oczywiste, ze opisujg prawidlowe zachowania. To jest zwykta
paranoja”. Jednak zycie szybko zweryfikowalo moje zatozenia i bytem zmuszony wycofac si¢ ze
swoich pogladow. Pozwole sobie opisac trzy sposoby na to, jak napisa¢ Wymaganie, ktére nigdy
nie $wieci na czerwono, niezaleznie od tego, czy kod jest poprawny czy tez nie. Tych sposobow jest
wiecej, ale mysle, ze danie wam trzech powinno by¢ wystarczajaca ilustracja.

Oto sytuacje, kiedy odnositem wrazenie, ze Wymaganie jest spelnione, nawet jesli nie byto:

1. Omytkowe nieoznaczenie Wymagania w Specyfikacji

Zazwyczaj nie wystarczy napisanie kodu Wymagania - musimy takze poinformowac proces
uruchamiajacy testy, ze metoda, ktérg napisalismy, jest faktycznie Wymaganiem (a nie np. jakas
metoda pomocniczg) i musi zosta¢ uruchomiona przez ten proces.

Wiekszos¢ frameworkéw typu xUnit ma jaki$ mechanizm oznaczania metod jako Wymaganie, czy
to przy uzyciu atrybutéow (C #, np. [Fact]) czy adnotacji (Java, np. @ Test), lub przy uzyciu makr
(CiC ++), lub przy uzyciu konwencji nazewniczej. Musimy uzy¢ takiego mechanizmu, aby proces
uruchamiajacy testy wiedzial, ze powinien wykonywac takie metody.

Wezmy na przyklad xUnit.Net. Aby przeksztalci¢ zwykla metode w Wymaganie, musimy oznaczy¢
ja za pomocg atrybutu [Fact]:

public class CalculatorSpecification
{
[Fact]
public void ShouldDisplayAdditionResultAsSumOfArguments()
{
VZa
}
}

Jest szansa, ze zapomnimy oznaczy¢ metode atrybutem [Fact] - w takim przypadku ta metoda
nigdy nie bedzie wykonywana przez proces uruchamiajacy testy. Cho¢ moze to zabrzmie¢ zabawnie,

© 00 N O O b W N =

[N
o

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 40

kilka razy mi sie to przydarzyto. Wyobrazmy sobie, ze powyzsze Wymaganie piszemy post-factum
jako test jednostkowy w Srodowisku, ktore ma, powiedzmy, ponad trzydziesci innych Wymagan juz
napisanych i spelnianych podczas uruchamiania. Napisalismy wczesniej kod dla naszych zachowan,
a teraz dodajemy test po tescie, aby upewnic sie, ze kod dziala. Pierwszy test — sukces, drugi
test — sukces, trzeci test — suckes... wietnie! Co ciekawe, kiedy wykonuje testy, prawie zawsze
uruchamiam wiecej niz jeden naraz (stuzy do tego specjalny przycisk), poniewaz jest to dla mnie
tatwiejsze niz kazdorazowe wybieranie z listy tego, co chce aktualnie ewaluowac. Poza tym,
uruchamiajgc wszystkie testy, zyskuje wiecej pewnosci, ze nie popelnitem btedu i nie zepsutlem
czego$, co bylo napisane wczesniej. Tu si¢ pojawia problem, bo nawet jesli kaze uruchomic wszystkie
testy i wszystkie przejda, to te oznaczone nieprawidtwo nigdy nie zostang uruchomione.

Z biegiem czasu nauczytem si¢ uzywac¢ mechanizmu code snippets (wstawianie szablonéow kodu w
edytorze) w moim IDE do generowania szkieletu Wymagan. Wczesniej zdarzato mi si¢ jednak pisa¢
co$ takiego:

public class CalculatorSpecification

{

//... jakies inne Wymagania

//uups. . .zapomniatem wstawié atrybutu!
public void ShouldDisplayZeroWhenResetIsPer formed()

{
e

Jak widzisz, brakowato atrybutu [Fact], czyli Wymaganie nie byto uruchamiane. Nawet nie dlatego,
ze nie umiatem korzysta¢ z generatoréw kodu - po prostu w celu utworzenia nowego Wymagania
wygodniejsze byto dla mnie skopiowanie i wklejenie innego Wymagania, zmiana jego nazwy i kilku
linii jego kodu [* copypaste]. Nie zawsze pamietalem, aby dotaczy¢ atrybut [Fact] w skopiowanym
kodzie Zrédlowym. Kompilator tez nie narzekat.

Powodem, dla ktérego nie potrafitem dostrzec swojego btedu byt fakt, ze uruchamiatem caty czas
wszystkie testy jednoczesnie - i kiedy pojawit si¢ zielony pasek (ktéry oznacza, ze wszystkie
Wymagania sa spetnione), zatozylem, ze nowonapisane Wymaganie réwniez jest spelnione. Nie jest
rzeczg fajng sprawdzanie, ze kazde nowe Wymaganie faktycznie pojawia sie na lisScie Wymagan,
wiec tego nie robilem. Co gorsza - brak atrybutu [Fact] nie zakidcal mojej pracy: pisatem test —
wszystkie testy przeszly, pisalem kolejny test — wszystkie testy przeszlty, kolejny test - wszystkie
przeszly... Innymi stowy, mdj sposdb pracy nie dawat zadnej informacji zwrotnej, ze popetnitem
gdzies, jaki$ blad. Tak wiec, w tym przypadku, nie chodzito o to, ze Wymaganie moze nie by¢
spetnione, bo jest zle napisane, ale o to, ze ono w ogdle nie zostalo uruchomione i nie podlegato
zadnej ewaluacji.

W jaki sposdb moze pomoéc postrzeganie testow jako Wymagan i uruchamianie ich przed napisaniem
kodu dla konkretnego zachowania? W TDD normalny schemat wytawarzania programowania to:

W N

© 00 N O O b W N =

N
)

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 41

test - fiasko - sukces, test - fiasko - sukces, test - fiasko - sukces... To podstawowg réznica. Innymi
stowy spodziewamy sig, ze podczas pracy w TDD, dowolne Wymaganie jest niespelnione conajmnie;j
raz i sprawdzamy to. Tak wiec za kazdym razem, gdy nowy test nie koriczy sie “niepowodzeniem”,
otrzymujemy informacje zwrotng ze dzieje si¢ co§ mocno podejrzanego. To pozwala nam zaczac¢
bada¢ sprawe i rozwigzac problem.

2. Inicjalizacje umieszczone w ztej kolejnosci

Dobrze, to moze sie¢ wydawac jeszcze bardziej zabawne, ale zdarzyto mi sie to kilka razy i zaktadam,
ze pewnego dnia Tobie tez moze si¢ przydarzy¢, zwlaszcza jesli sie spieszysz.

Rozwazmy nastepujacy przyktadzik: chcemy zweryfikowaé prosta strukture danych, ktéra odzwier-
ciedla ramke danych, ktore moga dotrzec przez sie¢. Struktura wyglada nastepujaco:

public class Frame /* ramka */

{

public int timeSlot; /* przedziat czasu */

Musimy napisac specyfikacje dla klasy vValidation (Walidacja), ktora przyjmie obiekt Frame (Ramke)
jako argument, i sprawdzi¢, czy przedziat czasowy (czymkolwiek on jest) jest poprawny. Popraw-

no$¢ okreslamy poréwnujac przedziat czasowy z maksymalng, dozwolong wartoscig TimeSlot . MaxAllowed

(to stala zdefiniowana w klasie TimeSlot). Jesli przedziat czasowy jest wiekszy niz dopuszczalne
maksimum, uwazamy go za niepoprawny a walidacja powinna zwrdci¢ false (fatsz). W innym
przypadku powinno by¢ zwrdcone true (prawda).

Przyjrzyjmy sie ponizszemu Wymaganiu, ktore opisuje, zZe ustawienie wartosci wyzszej niz dozwo-
lona dla pola frame powinno nie przejs¢ walidacji:

[Fact]
public void ShouldRecognizeTimeSlotAboveMaximumAllowedAsInvalid()
{
var frame = new Frame();
var validation = new Validation();
var timeSlotAboveMaximumAllowed = TimeSlot.MaxAllowed + 1;
var result = validation.PerformForTimeSlotIn(frame);
frame.timeSlot = timeSlotAboveMaximumAllowed;

Assert.False(result);

Zwr6¢ uwage na metode Per formForTimeSlotIn() wyzwalajaca walidacje, ktora omytkowo zostata
zawolana przed ustawieniem maksymalnej, dozwolonej wartosci timeSlotAboveMaximumAllowed
obiektu frame. Pozadana wartos$¢ nie jest w ogéle brana pod uwage w momencie walidacji. Jesli, na

a b w N

© 00 N O O b W N =

RN
= O

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 42

przyktad, popelnimy btad podczas implementacji klasy validation i, wbrew zalozeniom, walidacja
bedzie zwracala falsz (false) dla wartosci ponizej (a nie powyzej) wartosci maksymalnej - btad taki
moze pozosta¢ niezauwazony. Tak zapisane Wymaganie zawsze bedzie spetnione.

To réwniez jest trywialny przyktad - uzylem go jako ilustracje czegos, co da sie przypadkowo
popehic¢, gdy ma sie do czynienia z bardziej ztozonymi przypadkami.

3. Uzywanie danych typu static wewnatrz kodu produkcyjnego

Od czasu do czasu musimy zajrze¢ do Specyfikacji dodajac kilka nowych Wymagan i troche logiki
do klas, ktore Specyfikacja opisuje. Zalézmy, ze klasa i jej specyfikacja zostaly napisane przez kogos
innego niz my, a wspomniany kod, jest klasg “opakowujaca” dane z pliku konfiguracyjnego XML.
Postanowili$my napisa¢ nasze Wymaganie po wprowadzeniu nowych zmian (przeciez mozemy
powiedzie¢ - “wszyscy jesteSmy chronieni przez Specyfikacje, ktora juz istnieje, wiec mozna dokonac
zmian bez ryzyka przypadkowego zniszczenia istniejacej funkcjonalnosci, a potem wystarczy
przetestowac zmiany i wszystko bedzie w porzadku..”).

Zaczynamy sobie kodowac... gotowe. Teraz piszemy nowe Wymaganie, ktore bedzie opisywac
wlasnie dodang funkcjonalnos¢. Tymczasem, sprawdziwszy klase Specyfikacji widzimy, ze ma ona
w sobie zaszyte takie oto pole:

public class XmlConfigurationSpecification

{

XmlConfiguration config = new XmlConfiguration(xmlFixtureString);

ass

Co si¢ dzieje w tej linijce? Ustawiamy obiekt dostepny dla kazdego Wymagania w Specyfikacji.
Wkrétce okazuje sie, ze kazde z Wymagan uzywa tego samego obiektu config zainicjalizowanego
ta samg warto$cig ciggu xmlConfiguration. Kolejne szybkie sprawdzenie pozwala nam podejrze¢,
co jest ukryte w xmlFixtureString:

<config>
<section name="General Settings">

<subsection name="Network Related">
<parameter name="1IP">192.168.3.2</parameter>
<parameter name="Port">9000</parameter>
<parameter name="Protocol">AHJ-112</parameter>

</subsection>
<subsection name="User Related">
<parameter name="login">Johnny</parameter>
<parameter name="Role">Admin</parameter>

<parameter name="Password Expiry (days)">30</parameter>

12
13
14
15

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 43

</subsection>
<I-- 1 tak dalej, 1 tak dalej... -->
</section>

</config>

Nasz taricuch znakow jest juz pokazny i wypelniony réoznymi, nie zawsze potrzebnymi rzeczami, po-
niewaz zawiera informacje wymagane przez wszystkie istniejace Wymagania. Zalézmy, ze musimy
napisac testy dla pewnych, skrajnych przypadkéow, ktore nie potrzebuja tych wszystkich bzdurnych
ustawien. Dlatego postanawiamy sobie stworzy¢, od nowa, obiekt klasy Xm1Configuration zainicja-
lizowany naszym wlasnym ciggiem znakdéw o minimalnej dtugosci. Poczatek Wymagania bedziwe
wygladat tak:

string customFixture = CreateMyOwnFixtureForThisTestOnly();

var configuration = new XmlConfiguration(customFixture);

[uruchamiamy scenariusz testowy. Kiedy go wykonamy, zaswieci sie na zielono, bo przeszedt -
fajnie... nie, zaraz. Ok, co jest tu nie tak? Na pierwszy rzut oka wszystko jest w porzadku, dopoki
nie wczytamy sie w kod zrodtowy klasy XmlConfiguration. Wewnatrz widzimy, jak XML jest
przechowywany:

private static string xmlText; //zwrdéé uwage na stowo kluczowe static!

I tu jest pies pogrzebany. To pole statyczne, co oznacza, ze jego wartos¢ jest zachowywana miedzy
instancjami poszczegdlnych testow. Co takiego...? Juz wyjasniam, oto co sig¢ stato: autor tej klasy
zastosowal malg optymalizacje. Pomyslal sobie tak: “W tej aplikacji konfiguracja jest modyfikowana
tylko przez konsultantow-wdrozeniowcéw produktu, a zeby mogli ja trwale zmieni¢ musza i tak
zamkng¢ system. Dlatego nie trzeba czyta¢ pliku XML za kazdym razem, gdy tworzony jest
obiekt XmlConfiguration. Moge zaoszczedzic kilka cykli procesora i kilka operacji wejscia/wyjscia,
odczytujac konfiguracje tylko raz, gdy pierwsza instancja tej klasy zostanie utworzona. Przeciez
pozniejsze obiekty bedg uzywaly tego samego pliku XML!”. Fajnie dla niego, nie tak “spoko” dla
nas. Czemu? Poniewaz, w zaleznosci od kolejnosci, w jakiej ewaluowane s3 Wymagania, albo pole
zostanie trwale zainicjowane tym przydlugawym XML-em albo naszym-krotkim! W zwigzku z
tym Wymagania w tej Specyfikacji beda niedeterministycznie spetnione badz nie z niewlasciwego
powodu - gdy przypadkowo uzyje si¢ ztego XML-a.

Rozpoczynanie pracy od napisania Wymagania, po ktérym oczekujemy, ze nie bedzie spetnione -
pomoze nam w sytuacji, gdy Wymaganie niespodziewanie jest spetnione, chociaz nie zostato nawet
zaimplementowane zachowanie przezen opisywane.

“Test-Po” czesto konczy jako “Test-Nigdy”

Zastan6w si¢ ponownie nad pytaniem, ktore juz zadalem w tym rozdziale: czy kiedykolwiek
musiate$ napisa¢ Wymagania lub dokument projektowy dla czegos, co juz zaimplementowates?

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 44

Fajnie bylo? Czy bylo to wartosciowe? Czy to byto tworcze? Jesli chodzi o mnie, mojg odpowiedzia
na te pytania bylo - nie. Zauwazylem, ze ta sama odpowiedz dotyczyla napisania przeze mnie
wykonywalnej specyfikacji. Obserwujac siebie i innych programistow, doszedtem do wniosku, ze
po napisaniu kodu mamy malg motywacje do tworzenia specyfikacji dla tego, co napisalismy -
widzimy, ze “niektdére fragmenty kodu po prostu sa poprawne”, inne fragmenty “widzieli$my, ze
dzialaja” kiedy kompilowalismy kod i wdrazaliSmy nasze zmiany, przeprowadzajac kilka recznych
kontroli ... Architektura aplikacji jest gotowa... Specyfikacja? Moze nastepnym razem... W ten
sposob, owa Specyfikacja nigdy nie zostaje napisana, a jesli juz - czesto widze, ze obejmuje tylko
gtéwne funkcje programu, ale brakuje w niej niektérych Wymagan méwiacych o tym, co powinno
sie sta¢ w przypadku btedow itp.

Kolejnym powodem, dla ktérego nie mozna napisa¢ Specytikacji, moze by¢ presja czasu, szczegélnie
w zespotach, ktore nie sg jeszcze dojrzate lub nie maja silnej etyki zawodowej. Wiele razy widziatem
ludzi reagujacych na naciski przez odrzucenie wszystkiego, co nie jest wytacznie pisaniem kodu
implementujacego pozadane funkcje. Wsrdd rzeczy, ktére sg odrzucane jest architektura kodu,
wymagania i testy. I takze nauka. Widzialem wiele razy zespoly, ktére pod presja przestaly
eksperymentowac i uczyc¢ sie, a powrdcity do starych “bezpiecznych” zachowarn w sposobie my$lenia
“ratowanie tonacego statku” i “nadzieje na najlepsze”. Jako, ze w takich sytuacjach obserwowatem
wzrost ci$nienia, gdy zblizal sie termin zakoniczenia lub osiggniecie kamila milowego projektu, to
wiem, ze pozostawienie Specyfikacji na koniec oznacza, ze prawdopodobnie catkowicie si¢ z niej
zrezygnuje, szczegélnie w przypadku, gdy zmiany zostana (do pewnego stopnia) przetestowane
recznie pdzniej.

Z drugiej strony, kiedy robimy TDD (tak jak zobaczymy w kolejnych rozdziatach) nasza Specyfikacja
ro$nie wraz z kodem produkcyjnym, wiec jest o wiele mniej pokusy, aby catkowicie z niej
zrezygnowac. Ponadto w TDD wyspecyfikowanie Wymagan nie jest dodatkiem do kodu, ale raczej
powodem do napisania kodu. Tworzenie Wykonywalnej Specyfikacji staje si¢ nieodzowng czescig
dodawania nowych funkcji do programu.

“Test-Po"” czesto prowadzi do ponownego
projektowania

Lubie czytac i oglada¢ wuja Boba (Robert C. Martin). Pewnego dnia stuchatem jego przewodniego
motywu na Ruby Midwest 2011, Architecture The Lost Years®. Na koniec Robert dokonat pewnych
dygresji, z ktorych jedna dotyczyta TDD. Powiedzial, Ze pisanie testow po kodzie nie jest TDD i
nazwal to “stratg czasu”.

Moja pierwsza mysl byla taka, ze komentarz byt chyba nieco zbyt przesadzony i dotyczyt tylko
braku korzysci wynikajacych z rozpoczecia pracy nad kodem od niespelnionego Wymagania:
kiedy widzimy niespelnione Wymaganie, mozna przeprowadzi¢ niezakldcona niczym analize itp.
Jednakze, teraz czuje, ze chodzi o wiele wigcej, a to za sprawa tego, czego nauczylem sie Amira
Kolsky’ego i Scotta Baina - aby moc napisac¢ przystepng w utrzymaniu Specyfikacje dla jakiegos

*http://www.confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years

http://www.confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years
http://www.confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years
http://www.confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years

Programowanie poprzedzone wymaganiem (Wymaganie-najpierw) 45

fragmentu kodu, kod musi mie¢ wysoki poziom testowalno$ci. Porozmawiamy o jakosci kodu
w czesci drugiej tej ksigzki, ale na razie przyjmijmy ponizszg uproszczong definicje: im wieksza
testowalno$¢ kodu (np. klasy), tym latwiej jest napisa¢ Wymaganie okreslajace jego zachowaniu.

Na czym polega strata czasu w pisaniu Specyfikacji po napisaniu kodu? Aby si¢ tego dowiedzied,
poréwnajmy podejscia Najpierw-Wymaganie i Najpierw-Kod. W pierwszym przypadku dla nowo-
powstajacego (nie zastanego) moj przeptyw pracy i podejscie do testowalnosci zazwyczaj wygladaja
tak:

1. Napisz Wymaganie, ktore jest niespetnione na poczatku (w tym kroku wykryj i popraw
problemy z testowalnoscia jeszcze przed napisaniem kodu produkcyjnego).
2. Napisz kod, aby Wymaganie bylo prawdziwe.

A oto, co czgsto robig programisci, gdy pisza najpierw kod (dodatkowe kroki oznaczone pogrubio-
nym tekstem):

1. Napisz kod produkcyjny bez zastanawiania sie, w jaki sposob zostanie on przetestowany (po
tym etapie testowalnos¢ jest czesto nieoptymalna, poniewaz zwykle nie jest rozwazana w tym
momencie).

2. Rozpocznij pisanie testu jednostkowego (to moze nie wydawac¢ sie dodatkowym krokiem,
poniewaz jest rOwniez obecne w poprzednim podejsciu, ale gdy dojdziesz do kroku 5 - bedziesz
wiedziat co mam na mysli).

3. Zauwaz, ze przy probie napisania testu jednostkowego okazuje si¢, ze kod sprawia
trudnosé¢ jesli chodzi o testowanie, nie daje ku temu wielu mozliwosci, a pisane poden
testy zaczynaja wygladac strasznie nieprzejrzyscie, poniewaz probuja obej$¢ problemy z
testowalnoscia.

4. Zdecyduj sie poprawi¢ testowalnosé¢ poprzez restrukturyzacje kodu, np. aby izolujac
obiekty i uzywajac takich technik, jak mocki (imitacje)

5. Napisz testy jednostkowe (tym razem powinno by¢ tatwiej, poniewaz testowalnos¢ jest juz
lepsza).

Co jest odpowiednikiem pogrubonych wyzej krokéw jesli chodzi o pierwszy sposéb? Nie ma
zadnych odpowiednikéw! Robienie tych rzeczy to strata czasu! Niestety, jest to marnotrawstwo,
z ktérym czesto sie spotykam.

Podsumowanie

W tym rozdziale staralem sie pokazac, ze wybdr kiedy piszemy nasza Specyfikacje czesto robi
ogromng roznice i ze istnieje wiele korzysci w zaczynaniu od Wymagania. Kiedy traktujemy
Specyfikacje jako zapis tego, co rzeczywiscie dzieje si¢ w programie - a nie tylko jako zestaw testow
sprawdzajacych poprawnos¢ srodowiska wykonawczego - wowczas podejscie “Najpierw-Test” staje
sie mniej klopotliwe i mniej sprzeczne z intuicja.

Pocwiczmy to, czego sie wtasnie
nauczyliSmy

And now, a taste of things to come! A teraz przedsmak tego, co was czeka”

- Shang Tsung, Mortal Kombat The Movie

Cytowane stowa miaty miejsce tuz przed sceng walki*, w ktorej bezimienny wojownik skoczyt na
Sub-Zero tylko po to, by zosta¢ zamrozonym i rozbi¢ sie na kilka czesci po trafieniu w Sciane. Scena
nie byta spektakularna pod wzgledem techniki walki ani dtugosci. Ponadto, bezimienny go$¢ nawet
nie starat sie walczy¢ - jedyng rzecza, ktorg zrobil, byt wyskok w powietrze, by zosta¢ uderzonym
przez zmrozong kule, ktora - nawiasem moéwige - mogt dostrzec, gdy nadchodzita. Wygladato to tak,
jakby walka byta ustawiona po to, by pokaza¢ zdolnos¢ zamrazania Sub-Zero. I zgadnij co? W tym
rozdziale zamierzamy zrobi¢ z grubsza to samo - stworzy¢ falszywy, tatwy scenariusz, aby pokazac
niektére z podstawowych elementéw TDD!

Poprzedni rozdziat byt peten teorii i filozofii, nie sadzisz? Naprawde mam nadzieje, ze nie zasnates
podczas czytania. Prawde moéwigc, musimy przyswoi¢ znacznie wiecej tej teorii, dopdki nie
bedziemy w stanie pisa¢ realnych aplikacji za pomocg TDD. Aby Ci to jako$ zrekompensowac,
proponuje dodatkowa wycieczke podczas naszej podrozy, tylko po to, by wyprobowac to, czego
juz sie nauczyliSmy, na szybkim i fatwym przykladzie. Kiedy przezen przejdziemy, mozesz tamaé
sobie glowe, w jaki sposéb mogliby$my napisa¢ prawdziwe aplikacje tak, jak si¢ pisato nasz prosty
program. Nie martw sie, nie pokaze Ci jeszcze wszystkich trikow, wiec potraktuj to jako “przedsmak
tego, co Cie czeka”. Innymi stowy, przyklad bedzie tak bliski problemom realnego $wiata, jak
pojedynek miedzy Sub-Zero i bezimiennym ninja byl prawdziwg szkota walki, jednakze pozwoli
Ci to zobaczy¢ niektore elementy procesu TDD.

Pozwdl mi opowiedziec sobie historie

Meet Johnny and Benjamin, two developers from Buthig Company. Johnny is quite fluent in pro-
gramming and Test-Driven Development, while Benjamin is an intern under Johnny’s mentorship
and is eager to learn TDD. They are on their way to their customer, Jane, who requested their
presence as she wants them to write a small program for her. Along with them, we will see how
they interact with the customer and how Benjamin tries to understand the basics of TDD. Like you,
Benjamin is a novice so his questions may reflect yours. However, if you find anything explained
in not enough details, do not worry - in the next chapters, we will be expanding on this material.

“https://www.youtube.com/watch?v=bOvhGEGJC8g

https://www.youtube.com/watch?v=b0vhGEGJC8g
https://www.youtube.com/watch?v=b0vhGEGJC8g

Poéwiczmy to, czego si¢ wlasnie nauczyliSmy 47

Akt 1: Samochdéd

Johnny: How do you feel about your first assignment?
Benjamin: [am pretty excited! I hope I can learn some of the TDD stuff you promised to teach me.

Johnny: Not only TDD, but we are also gonna use some of the practices associated with a process
called Acceptance Test-Driven Development, albeit in a simplified form.

Benjamin: Acceptance Test-Driven Development? What is that?

Johnny: While TDD is usually referred to as a development technique, Acceptance Test-Driven
Development (ATDD) is something more of a collaboration method. Both ATDD and TDD have
a bit of analysis in them and work very well together as both use the same underlying principles,
just on different levels. We will need only a small subset of what ATDD has to offer, so don’t get
over-excited.

Benjamin: Sure. Who's our customer?

Johnny: Her name’s Jane. She runs a small shop nearby and wants us to write an application for
her new mobile. You'll get the chance to meet her in a minute as we’re almost there.

Akt 2: Tytut dla Klienta

Johnny: Hi, Jane, how are you?
Jane: Thanks, I'm fine, how about you?

Johnny: Me too, thanks. Benjamin, this is Jane, our customer. Jane, this is Benjamin, we’ll work
together on the task you have for us.

Benjamin: Hi, nice to meet you.
Jane: Hello, nice to meet you too.
Johnny: So, can you tell us a bit about the software you need us to write?

Jane: Sure. Recently, I bought a new smartphone as a replacement for my old one. The thing is,
I am really used to the calculator application that ran on my previous phone and I cannot find a
counterpart for my current device.

Benjamin: Can’t you just use another calculator app? There are probably plenty of them available
to download from the web.

Jane: That’s right. I checked them all and none has exactly the same behavior as the one I have used
for my tax calculations. You see, this app was like a right hand to me and it had some really nice
shortcuts that made my life easier.

Johnny: So you want us to reproduce the application to run on your new device?

Poéwiczmy to, czego sie wlasnie nauczyliSmy 48

Jane: Exactly.

Johnny: Are you aware that apart from the fancy features that you were using we will have to
allocate some effort to implement the basics that all the calculators have?

Jane: Sure, I am OK with that. I got used to my calculator application so much that if I use something
else for more than a few months, I will have to pay a psychotherapist instead of you guys. Apart
from that, writing a calculator app seems like an easy task in my mind, so the cost isn’t going to be
overwhelming, right?

Johnny: I think I get it. Let’s get it going then. We will be implementing the functionality
incrementally, starting with the most essential features. Which feature of the calculator would you
consider the most essential?

Jane: That would be addition of numbers, I guess.

Johnny: Ok, that will be our target for the first iteration. After the iteration, we will deliver this
part of the functionality for you to try out and give us some feedback. However, before we can even
deliver the addition feature, we will have to implement displaying digits on the screen as you enter
them. Is that correct?

Jane: Yes, I need the display stuff to work as well - it’s a prerequisite for other features, so...

Johnny: Ok then, this is a simple functionality, so let me suggest some user stories as I understand
what you already said and you will correct me where I am wrong. Here we go:

1. In order to know that the calculator is turned on, As a tax payer I want to see “0” on the screen
as soon as I turn it on.

2. In order to see what numbers I am currently operating on, As a tax payer, I want the calculator
to display the values I enter

3. In order to calculate the sum of my different incomes, As a tax payer I want the calculator to
enable addition of multiple numbers

What do you think?

Jane: The stories pretty much reflect what I want for the first iteration. I don’t think I have any
corrections to make.

Johnny: Now we’ll take each story and collect some examples of how it should work.

Benjamin: Johnny, don’t you think it is obvious enough to proceed with implementation straight
away?

Johnny: Trust me, Benjamin, if there is one word I fear most in communication, it is “obvious”.
Miscommunication happens most often around things that people consider obvious, simply because
other people do not.

Jane: Ok, I'm in. What do I do?

Johnny: Let’s go through the stories one by one and see if we can find some key examples of how
the features should work. The first story is...

Poéwiczmy to, czego sie wlasnie nauczyliSmy 49

In order to know that the calculator is turned on, As a tax payer |
want to see “0” on the screen as soon as | turn it on.

Jane: I don’t think there’s much to talk about. If you display “0”, I will be happy. That’s all.
Johnny: Let’s write this example down using a table:

key sequence Displayed output Notes
N/A 0 Initial displayed value

Benjamin: That makes me wonder... what should happen when I press “0” again at this stage?

Johnny: Good catch, that’s what these examples are for — they make our thinking concrete. As Ken
Pugh says®: “Often the complete understanding of a concept does not occur until someone tries to
use the concept”. Normally, we would put the “pressing zero multiple times” example on a TODO
list and leave it for later, because it’s a part of a different story. However, it looks like we’re done
with the current story, so let’s move straight ahead. The next story is about displaying entered digits.
How about it, Jane?

Jane: Agree.
Johnny: Benjamin?

Benjamin: Yes, go ahead.

In order to see what numbers | am currently operating on, As a
tax payer, | want the calculator to display the values | enter

Johnny: Let’s begin with the case raised by Benjamin. What should happen when I input “0” multiple
times after I only have “0” on the display?

Jane: A single “0” should be displayed, no matter how many times I press “0”.

Johnny: Do you mean this?

key sequence Displayed output Notes
0,0,0 0 Zero is a special case — it is displayed only
once

Jane: That’s right. Other than this, the digits should just show on the screen, like this:

key sequence Displayed output Notes
1,2,3 123 Entered digits are displayed

Benjamin: How about this:

key sequence Displayed output Notes
1,2,3,4,5,6,7,1,2,3,4,5,6 1234567123456? Entered digits are displayed?

°K. Pugh, Prefactoring, O’Reilly Media, 2005

Poéwiczmy to, czego sie wlasnie nauczyliSmy 50

Jane: Actually, no. My old calculator app has a limit of six digits that I can enter, so it should be:

key sequence Displayed output Notes
1,2,3,4,5,6,7,1,2,3,4,5,6 123456 Display limited to six digits

Johnny: Another good catch, Benjamin!
Benjamin: I think ’'m beginning to understand why you like working with examples!
Johnny: Good. Is there anything else, Jane?

Jane: No, that’s pretty much it. Let’s start working on another story.

In order to calculate sum of my different incomes, As a tax payer
I want the calculator to enable addition of multiple numbers

Johnny: Is the following scenario the only one we have to support?

key sequence Displayed output Notes

2,+,3,+,4,= 9 Simple addition of numbers

[]

Jane: This scenario is correct, however, there is also a case when I start with “+” without inputting
any number before. This should be treated as adding to zero:

key sequence Displayed output Notes
+,1,= 1 Addition shortcut — treated as 0+1

Benjamin: How about when the output is a number longer than six digits limit? Is it OK that we
truncate it like this?

key sequence Displayed output Notes
9,9.9.9,9.9.+,9,9,9.9.99 = 199999 Our display is limited to six digits
only

Jane: Sure, I don’t mind. I don’t add such big numbers anyway.

Johnny: There is still one question we missed. Let’s say that I input a number, then press “+” and
then another number without asking for result with “=”. What should I see?

Jane: Every time you press “+”, the calculator should consider entering current number finished and
overwrite it as soon as you press any other digit:

key sequence Displayed output Notes

2,+,3 3 Digits entered after + operator are treated as
digits of a new number, the previous one is
stored

Jane: Oh, and just asking for result just after the calculator is turned on should result in “0”.

Poéwiczmy to, czego sie wlasnie nauczyliSmy 51

key sequence Displayed output Notes
= 0 Result key in itself does nothing

Johnny: Let’s sum up our discoveries:

key sequence Displayed output Notes

N/A 0 Initial displayed value

1,2,3 123 Entered digits are displayed

0,0,0 0 Zero is a special case - it is displayed
only once

1,2,3,4,5,6,7 123456 Our display is limited to six digits
only

2,+,3 3 Digits entered after + operator are

treated as digits of a new number, the
previous one is stored

= 0 Result key in itself does nothing

+1,= 1 Addition shortcut - treated as 0+1

2,+,3,+,4,= 9 Simple addition of numbers

9,9,9.9,9,9,4+,9,9,9,9.99, = 199999 Our display is limited to six digits
only

Johnny: The limiting of digits displayed looks like a whole new feature, so I suggest we add it to
the backlog and do it in another sprint. In this sprint, we will not handle such situation at all. How
about that, Jane?

Jane: Fine with me. Looks like a lot of work. Nice that we discovered it up-front. For me, the limiting
capability seemed so obvious that I didn’t even think it would be worth mentioning.

Johnny: See? That’s why I don’t like the word “obvious”. Jane, we will get back to you if any more
questions arise. For now, I think we know enough to implement these three stories for you.

Jane: good luck!
Akt 3: Test-Driven Development

Benjamin: Wow, that was cool. Was that Acceptance Test-Driven Development?

Johnny: In a greatly simplified version, yes. The reason I took you with me was to show you the
similarities between working with customer the way we did and working with the code using TDD
process. They are both applying the same set of principles, just on different levels.

Benjamin: 'm dying to see it with my own eyes. Shall we start?

Johnny: Sure. If we followed the ATDD process, we would start writing what we call acceptance-
level specification. In our case, however, a unit-level specification will be enough. Let’s take the first
example:

Statement 1: Calculator should display 0 on creation

O© 00 1 O O b W N =

N
)

Poéwiczmy to, czego sie wlasnie nauczyliSmy 52

key sequence Displayed output Notes
N/A 0 Initial displayed value

Johnny: Benjamin, try to write the first Statement.

Benjamin: Oh boy, I don’t know how to start.

Johnny: Start by writing the statement in plain English. What should the calculator do?
Benjamin: It should display “0” when I turn the application on.

Johnny: In our case, “turning on” is creating a calculator. Let’s write it down as a method name:

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()
{

Benjamin: Why is the name of the class CalculatorSpecification and the name of the method
ShouldDisplay@WhenCreated?

Johnny: It is a naming convention. There are many others, but this is the one that I like. In this
convention, the rule is that when you take the name of the class without the Specification part
followed by the name of the method, it should form a legit sentence. For instance, if I apply it to
what we wrote, it would make a sentence: “Calculator should display 0 when created”.

Benjamin: Ah, I see now. So it’s a statement of behavior, isn’t it?

Johnny: That’s right. Now, the second trick I can sell to you is that if you don’t know what code
to start your Statement with, start with the expected result. In our case, we are expecting that the
behavior will end up as displaying “0”, right? So let’s just write it in the form of an assertion.

Benjamin: You mean something like this?

O© 00 I O O b W N =

N
[~

O© 00 I O O b W N =~

SN
N =~ O

Poéwiczmy to, czego sie wlasnie nauczyliSmy 53

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()

{
Assert.Equal("Q", displayedResult);

}

Johnny: Precisely.
Benjamin: But that doesn’t even compile. What use is it?

Johnny: The code not compiling is the feedback that you needed to proceed. While before you didn’t
know where to start, now you have a clear goal — make this code compile. Firstly, where do you get
the displayed value from?

Benjamin: From the calculator display, of course!
Johnny: Then write down how you get the value from the display.
Benjamin: Like how?

Johnny: Like this:

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()

{
var displayedResult = calculator.Display();

Assert.Equal("0", displayedResult);
1

Benjamin: [see. Now the calculator is not created anywhere. I need to create it somewhere now or
it will not compile - this is how I know that it’s my next step. Is this how it works?

Johnny: Yes, you are catching on quickly.

Benjamin: Ok then, here goes:

O© 00 I O O b W N =

I =S =N
W N s,

=~ O O b W N =

Poéwiczmy to, czego sie wlasnie nauczyliSmy 54

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()
{

var calculator = new Calculator();
var displayedResult = calculator.Display();

Assert.Equal("0", displayedResult);
}

Johnny: Bravo!

Benjamin: The code doesn’t compile yet, because I don’t have the Calculator class defined at all...
Johnny: Sounds like a good reason to create it.

Benjamin: OK.

public class Calculator

{
}

Benjamin: Looks like the Display() method is missing too. I'll add it.

public class Calculator

{
public string Display()
{
return "Q";
}
}

Johnny: Hey hey, not so fast!
Benjamin: What?

Johnny: You already provided an implementation of Display() that will make our current Statement
true. Remember its name? ShouldDisplay@WhenCreated — and that’s exactly what the code you wrote
does. Before we arrive at this point, let’s make sure this Statement can ever be evaluated as false. You
won’t achieve this by providing a correct implementation out of the box. So for now, let’s change it
to this:

=~ O O b W N =

= O O B W N~

Poéwiczmy to, czego sie wlasnie nauczyliSmy 55

public class Calculator

{
public string Display()
{
return "Once upon a time in Africa";
}
}

Johnny: Look, now we can run the Specification and watch that Statement evaluate to false, because
it expects “0”, but gets “Once upon a time in Africa”.

Benjamin: Running... Ok, it is false. By the way, do you always use such silly values to make
Statements false?

Johnny: Hahaha, no, I just did it to emphasize the point. Normally, I would write return ""; or
something similarly simple. Now we can evaluate the Statement and see it turn false. Hence, we're
sure that we have not yet implemented what is required for the Statement to be true.

Benjamin: I think I get it. For now, the Statement shows that we do not have something we need
and gives us a reason to add this “thing”. When we do so, this Statement will show that we do have
what we need. So what do we do now?

Johnny: Write the simplest thing that makes this Statement true.

Benjamin: like this?

public class Calculator

{
public string Display()

{

return "Q";

Johnny: Yes.

Benjamin: But that is not a real implementation. What is the value behind putting in a hardcoded
string? The final implementation is not going to be like this for sure!

Johnny: You’re right. The final implementation is most probably going to be different. What we did,
however, is still valuable because:

1. You’re one step closer to implementing the final solution

2. This feeling that this is not the final implementation points you towards writing more
Statements. When there is enough Statements to make your implementation complete, it
usually means that you have a complete Specification of class behaviors as well.

O© 00 I O O b W N =~

Poéwiczmy to, czego sie wlasnie nauczyliSmy 56

3. If you treat making every Statement true as an achievement, this practice allows you to evolve
your code without losing what you already achieved. If by accident you break any of the
behaviors you've already implemented, the Specification is going to tell you because one of
the existing Statements that were previously true will turn false. You can then either fix it
or undo your changes using version control and start over from the point where all existing
Statements were true.

Benjamin: Ok, so it looks like there are some benefits after all. Still, I'll have to get used to this kind
of working.

Johnny: Don’t worry, this approach is an important part of TDD, so you will grasp it in no time.
Now, before we go ahead with the next Statement, let’s look at what we already achieved. First, we
wrote a Statement that turned out false. Then, we wrote just enough code to make the Statement
true. Time for a step called Refactoring. In this step, we will take a look at the Statement and the
code and remove duplication. Can you see what is duplicated between the Statement and the code?

Benjamin: both of them contain the literal “0”. The Statement has it here:
Assert.Equal("Q", displayedResult);

and the implementation here:

return "Q";

Johnny: Good, let’s eliminate this duplication by introducing a constant called InitialVvalue. The
Statement will now look like this:

[Fact] public void
ShouldDisplayInitialValueWhenCreated()

{
var calculator = new Calculator();

var displayedResult = calculator.Display();

Assert.Equal(Calculator.InitialValue, displayedResult);
}

and the implementation:

o N O O b W N =

© 00 N O O b W N =

=
N O

Poéwiczmy to, czego si¢ wlasnie nauczyliSmy 57

public class Calculator

{
public const string InitialValue = "0";
public string Display()
{

return InitialValue;

Benjamin: The code looks better and having the “0” constant in one place will make it more
maintainable. However, I think the Statement in its current form is weaker than before. I mean,
we can change the Initialvalue to anything and the Statement will still be true, since it does not
state that this constant needs to have a value of “0”.

Johnny: That’s right. We need to add it to our TODO list to handle this case. Can you write it down?
Benjamin: Sure. I will write it as “TODO: 0 should be used as an initial value”

Johnny: Ok. We should handle it now, especially since it’s part of the story we are currently
implementing, but I will leave it for later just to show you the power of TODO list in TDD — whatever
is on the list, we can forget and get back to when we have nothing better to do. Our next item from
the list is this:

Statement 2: Calculator should display entered digits

key sequence Displayed output Notes
1,2,3 123 Entered digits are displayed

Johnny: Benjamin, can you come up with a Statement for this behavior?

Benjamin: I'll try. Here goes:

[Fact] public void
ShouldDisplayEnteredDigits()
{

var calculator = new Calculator();

calculator.Enter(1);
calculator.Enter(2);
calculator.Enter(3);

var displayedValue = calculator.Display();

Assert.Equal("123", displayedValue);

© 00 N O O b W N =

T = = =
0 N O O b W0 N =~ O

Poéwiczmy to, czego sie wlasnie nauczyliSmy 58

Johnny: I see that you're learning fast. You got the parts about naming ans structuring a Statement
right. There’s one thing we will have to work on here though.

Benjamin: What is it?

Johnny: When we talked to Jane, we used examples with real values. These real values were
extremely helpful in pinning down the corner cases and uncovering missing scenarios. They were
easier to imagine as well, so they were a perfect suit for conversation. If we were automating these
examples on acceptance level, we would use those real values as well. When we write unit-level
Statements, however, we use a different technique to get this kind of specification more abstract.
First of all, let me enumerate the weaknesses of the approach you just used:

1. Making a method Enter() accept an integer value suggests that one can enter more than one
digit at once, e.g. calculator .Enter(123), which is not what we want. We could detect such
cases and throw exceptions if the value is outside the 0-9 range, but there are better ways when
we know we will only be supporting ten digits (0,1,2,3,4,5,6,7,8,9).

2. The Statement does not clearly show the relationship between input and output. Of course,
in this simple case it’s pretty self-evident that the sum is a concatenation of entered digits. In
general case, however, we don’t want anyone reading our Specification in the future to have
to guess such things.

3. The name of the Statement suggests that what you wrote is true for any value, while in reality,
it’s true only for digits other than “0”, since the behavior for “0” is different (no matter how
many times we enter “0”, the result is just “0”). There are some good ways to communicate it.

Hence, I propose the following:

[Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotlLeadingZeroes()
{

//GIVEN

var calculator = new Calculator();

var nonZeroDigit = Any.Besides(DigitKeys.Zero);

var anyDigit1l = Any.O0f<DigitKeys>();

var anyDigit2 = Any.O0f<DigitKeys>();

//WHEN
calculator.Enter(nonZeroDigit);
calculator.Enter(anyDigit1);
calculator.Enter(anyDigit2);

//THEN
Assert.Equal(
string.Format("{0}{1}{2}",
(int)nonZeroDigit,

19
20
21
22
23
24

Poéwiczmy to, czego sie wlasnie nauczyliSmy 59

(int)anyDigit1,
(int)anyDigit2
).
calculator.Display()

);
}

Benjamin: Johnny, I'm lost! Can you explain what’s going on here?
Johnny: Sure, what do you want to know?
Benjamin: For instance, what is this DigitKeys type doing here?

Johnny: It is supposed to be an enumeration (note that it does not exist yet, we just assume that
we have it) to hold all the possible digits a user can enter, which are from the range of 0-9. This
is to ensure that the user will not write calculator.Enter(123). Instead of allowing our users to
enter any number and then detecting errors, we are giving them a choice from among only the valid
values.

Benjamin: Now I get it. So how about the Any.Besides() and Any.0f()? What do they do?

Johnny: They are methods from a small utility library I'm using when writing unit-level Specifica-
tions. Any .Besides() returns any value from enumeration besides the one passed as an argument.
Hence, the call Any.Besides(DigitKeys.Zero) means “any of the values contained in DigitKeys
enumeration, but not DigitKeys.Zero”.

The Any.0£() is simpler - it just returns any value in an enumeration.

Note that by saying:

var nonZeroDigit = Any.Besides(DigitKeys.Zero);
Any.0f<DigitKeys>();
var anyDigit2 = Any.O0f<DigitKeys>();

var anyDigit1l

I specify explicitly, that the first value entered must be other than “0” and that this constraint does
not apply to the second digit, the third one and so on.

By the way, this technique of using generated values instead of literals has its own principles and
constraints which you have to know to use it effectively. Let’s leave this topic for now and I promise
I'll give you a detailed lecture on it later. Agreed?

Benjamin: You better do, because for now, I feel a bit uneasy with generating the values — it seems
like the Statement we are writing is getting less deterministic this way. The last question — what
about those weird comments you put in the code? GIVEN? WHEN? THEN?

Johnny: Yes, this is a convention that I use, not only in writing, but in thinking as well. I like to think
about every behavior in terms of three elements: assumptions (given), trigger (when) and expected
result (then). Using the words, we can summarize the Statement we are writing in the following

g b W N~

o N O O b W N =

Poéwiczmy to, czego sie wlasnie nauczyliSmy 60

way: “Given a calculator, when I enter some digits, the first one being non-zero, then they should
all be displayed in the order they were entered”. This is also something that I will tell you more
about later.

Benjamin: Sure, for now I need just enough detail to be able to keep going — we can talk about the
principles, pros and cons later. By the way, the following sequence of casts looks a little bit ugly:

string.Format("{0}{1}{2}",
(int)nonZeroDigit,
(int)anyDigit1,
(int)anyDigit2

)

Johnny: We will get back to it and make it “smarter” in a second after we make this statement true.
For now, we need something obvious. Something we know works. Let’s evaluate this Statement.
What is the result?

Benjamin: Failed: expected “351”, but was “0”.

Johnny: Good, now let’s write some code to make this Statement true. First, we're going to introduce
an enumeration of digits. This enum will contain the digit we use in the Statement (which is
DigitKeys.Zero) and some bogus values:

public enum DigitKeys

{

Zero = 0,

TODO1, //TODO - bogus value for now
TODO2, //TODO - bogus value for now
TODO3, //TODO - bogus value for now
TODO4, //TODO - bogus value for now

Benjamin: What’s with all those bogus values? Shouldn’t we correctly define values for all the digits
we support?

Johnny: Nope, not yet. We still don’t have a Statement which would say what digits are supported
and which would make us add them, right?

Benjamin: You say you need a Statement for an element to be in an enum?

Johnny: This is a specification we are writing, remember? It should say somewhere which digits we
support, shouldn’t it?

Benjamin: It’s difficult to agree with, I mean, I can see the values in the enum, should I really test
for something when there’s not complexity involved?

o N O O b W N =

© 00 N O O b W N =

10
11
12
13
14
15
16

Poéwiczmy to, czego sie wlasnie nauczyliSmy 61

Johnny: Again, we're not only testing, we’re specifying. I will try to give you more arguments later.
For now, just bear with me and note that when we get to specify the enum elements, adding such
Statement will be almost effortless.

Benjamin: OK.

Johnny: Now for the implementation. Just to remind you — what we have so far looks like this:

public class Calculator
{

public const string InitialValue = "0";
public string Display()

{

return InitialValue;

}
}

This clearly does not support displaying multiple digits (as we just proved, because the Statement
saying they are supported turned out false). So let’s change the code to handle this case:

public class Calculator

{

public const string InitialValue = "0";
private int _result = ©;
public void Enter(DigitKeys digit)
{

_result *= 10;

_result += (int)digit;

}
public string Display()
{
return _result.ToString();
}

}

Johnny: Now the Statement is true so we can go back to it and make it a little bit prettier. Let’s take
a second look at it:

Poéwiczmy to, czego sie wlasnie nauczyliSmy 62

1 [Fact] public void

2 ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()
s A

4 //GIVEN

5 var calculator = new Calculator();

6 var nonZeroDigit = Any.Besides(DigitKeys.Zero);
7 var anyDigitl = Any.Of<DigitKeys>();
8 var anyDigit2 = Any.O0f<DigitKeys>();
9

10 //WHEN

11 calculator.Enter(nonZeroDigit);

12 calculator.Enter(anyDigitl);

13 calculator.Enter(anyDigit2);

14

15 //THEN

16 Assert.Equal(

17 string.Format("{0}{1}{2}",

18 (int)nonZeroDigit,

19 (int)anyDigit1,

20 (int)anyDigit2

21),

22 calculator.Display()

23);

24}

Johnny: Remember you said that you don’t like the part where string.Format() is used?
Benjamin: Yeah, it seems a bit unreadable.

Johnny: Let’s extract this part into a utility method and make it more general — we will need a way
of constructing expected displayed output in many of our future Statements. Here is my go at this
helper method:

string StringConsistingOf(params DigitKeys[] digits)
{

var result = string.Empty;

{
result += (int)digit;

}

1
2
3
4
5 foreach(var digit in digits)
6
.
8
9 return result;

10 }

© 00 N O O b W N =

I S =
O O b W N~

17
18
19
20

a b w N

Poéwiczmy to, czego sie wlasnie nauczyliSmy 63

Note that this is more general as it supports any number of parameters. And the Statement after this
extraction looks like this:

[Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()
{

//GIVEN

var calculator = new Calculator();

var nonZeroDigit = Any.Besides(DigitKeys.Zero);

var anyDigit1l = Any.Of<DigitKeys>();

var anyDigit2 = Any.O0f<DigitKeys>();

//WHEN
calculator.Enter(nonZeroDigit);
calculator.Enter(anyDigitl);
calculator.Enter(anyDigit2);

//THEN

Assert.Equal(
StringConsisting0f(nonZeroDigit, anyDigit1, anyDigit2),
calculator.Display()

)

}

Benjamin: Looks better to me. The Statement is still evaluated as true, which means we got it right,
didn’t we?

Johnny: Not exactly. With moves such as this one, I like to be extra careful and double check whether
the Statement still describes the behavior accurately. To make sure that’s still the case, let’s comment
out the body of the Enter () method and see if this Statement would still turn out false:

public void Enter(DigitKeys digit)
{
//_result *= 10;

//_result += (int)digit;
}

Benjamin: Running... Ok, it is false now. Expected “243”, got “0”.

Johnny: Good, now we’re pretty sure it works OK. Let’s uncomment the lines we just commented
out and move forward.

Benjamin: But wait, there is one thing that troubles me.
Johnny: I think I know - I was wondering if you’d catch it. Go ahead.

Benjamin: What troubles me is these two lines:

© 00 N O O b W N =

10
11
12
13
14
15
16

Poéwiczmy to, czego sie wlasnie nauczyliSmy 64

public const string InitialValue = "Q";
private int _result = ©;

Isn’t this a duplication? I mean, it’s not exactly code duiplication, but in both lines, the value of @
has the same intent. Shouldn’t we remove this duplication somehow?

Johnny: Yes, let’s do it. My preference would be to change the Initialvalue to int instead of
string and use that. But I can’t do it in a single step as I have the two Statements depending on
InitialValue being a string. if I just changed the type to int, I would break those tests asd well as
the implementation and I always want to be fixing one thing at a time.

Benjamin: So what do we do?

Johnny: Well, my first step would be to go to the Statements that use Initialvalue and use a
ToString() method there. For example, in the Statement ShouldDisplayInitialValueWhenCreated(),
I have an assertion:

Assert.Equal(Calculator.InitialValue, displayedResult);
which I can change to:
Assert.Equal(Calculator.InitialValue.ToString(), displayedResult);

Benjamin: But calling ToString() on a string just returns the same value, what’s the point?

Johnny: The point is to make the type of whatever’s on the left side of .ToString() irrelevant.
Then I will be able to change that type without breaking the Statement. The new implementation
of Calculator class will look like this:

public class Calculator

{

public const int InitialValue = 0;
private int _result = InitialValue;

public void Enter(DigitKeys digit)
{
_result *= 10;

_result += (int)digit;

}
public string Display()
{
return _result.ToString();
}

}

O© 00 I O O b W N =~

O = = =Y
0 N O O b W N -~ O

Poéwiczmy to, czego sie wlasnie nauczyliSmy 65

Benjamin: Oh, I see. And the Statements are still evaluated as true.

Johnny: Yes. Shall we take on another Statement?

Statement 3: Calculator should display only one zero digit if it is
the only entered digit even if it is entered multiple times

Johnny: Benjamin, this should be easy for you, so go ahead and try it. It is really a variation of the
previous Statement.

Benjamin: Let me try... ok, here it is:

[Fact] public void
ShouldDisplayOnlyOneZeroDigitWhenItIsTheOnlyEnteredDigitEvenIfItIsEnteredMultipleTim\
es()

{
//GIVEN

var calculator = new Calculator();

//WHEN

calculator.Enter(DigitKeys.Zero);
calculator.Enter(DigitKeys.Zero);
calculator.Enter(DigitKeys.Zero);

//THEN
Assert.Equal(
StringConsisting0f(DigitKeys.Zero),
calculator.Display()
);
}

Johnny: Good, you’re learning fast! Let’s evaluate this Statement.

Benjamin: It seems that our current code already fulfills the Statement. Should I try to comment
some code to make sure this Statement can fail just like you did in the previous Statement?

Johnny: That would be a wise thing to do. When a Statement turns out true without requiring you to
change any production code, it’s always suspicious. Just like you said, we have to change production
code for a second to force this Statement to become false, then undo this modification to make it
true again. This isn’t as obvious as previously, so let me do it. I will mark all the added lines with
//+ comment so that you can see them easily:

Poéwiczmy to, czego sie wlasnie nauczylismy

public class Calculator

{

public const int InitialValue = 0;

private int _result = InitialValue;

string _fakeResult = "0"; //+

public void Enter(DigitKeys digit)
{

_result *= 10;

_result += (int)digit;

if(digit == DigitKeys.Zero) //+

{ 7+
_fakeResult += "0"; //+
Y S/
}
public string Display()
{
if(_result == 0) //+
{ 7+
return _fakeResult; //+
Yo
return _result.ToString();
}
}

66

Benjamin: Wow, looks like a lot of code just to make the Statement false! Is it worth the hassle? We
will undo this whole change in a second anyway...

Johnny: Depends on how confident you want to feel. I would say that it’s usually worth it — at
least you know that you got everything right. It might seem like a lot of work, but it only took me
about a minute to add this code and imagine you got it wrong and had to debug it on a production
environment. Now that would be a waste of time.

Benjamin: Ok, I think I get it. Since we saw this Statement turn false, I will undo this change to
make it true again.

Johnny: Sure.

Epilog

Czas zostawi¢ Johnny’ego i Benjamina, przynajmniej na razie. Tak naprawde planowatem by ten
rozdziat byt dtuzszy i objat wszystkie wazne dziatania, ale obawiam sie, ze juz jest zbyt dlugi i Cie

Poéwiczmy to, czego si¢ wlasnie nauczyliSmy 67

nudze. Powinienes teraz kojarzy¢, jak wyglada cykl TDD, zwtaszcza, ze Johnny i Benjamin poruszyli
w miedzyczasie wiele watkow. Powrdce do nich w dalszej czesci ksigzki. Jesli czujesz si¢ zagubiony
lub nieprzekonany w ktorymkolwiek z tematéw poruszonym przez Johnny’ego, nie martw si¢ — nie
oczekuje, ze bedziesz od razu biegly w zakresie technik przedstawionych w tym rozdziale. Przyjdzie
na to czas.

Odnajdzmy sie odrobine

W ostatnim rozdziale nastapita ozywiona rozmowa miedzy Johnnym i Benjaminem. Nawet podczas
tak krotkiej sesji Benjamin, jako nowicjusz TDD, mial wiele pytan i wiele rzeczy potrzebowat
jeszcze ustali¢. Zbierzmy wszystkie pytania, na ktore jeszcze nie udzielono odpowiedzi i sprobujemy
odpowiedzie¢ na nie w nastepnych rozdziatach. Oto pytania:

« Jak nazwa¢ wymaganie?

« Jak rozpocza¢ pisanie wymagania?

« Co méwi TDD o analizie wymagan i co, w zasadzie, znaczy “GIVEN-WHEN-THEN"?

« Jaki doktadnie jest zakres wymagania? Klasa, metoda lub co$ innego?

« Jaka jest rola listy TODO w TDD?

« Dlaczego warto uzywaé¢ generowanych, anonimizowanych wartosci zamiast literalow jako
danych wejsciowych testowanego zachowania?

« Po co i w jaki sposob korzystac z klasy Any?

« Jaki kod wyodrebni¢ z wymagania do stworzenia pomocniczej, wspotdzielonej biblioteki?

« Skad takie dziwne podejscie do tworzenia statych - przy pomocy typu wyliczeniowego enum?

Wiele pytan, prawda? Niefortunnie, TDD ma wysoki prog wejscia, przynajmniej dla kogo$ przy-
zwyczajonego do tradycyjnego sposobu pisania kodu. W kazdym razie, ten samouczek stuzy
do znalezienia odpowiedzi na takie pytania i obnizeniu tego progu. Tak wiec, postaramy sie
odpowiedzie¢ na te pytania jedno po drugim.

	Spis treści
	Przedmowa
	Dedykacja
	Podziękowania!
	O przykładach kodu
	Uwagi dla programistów języka C#
	Uwagi dla programistów języka Java

	Część 1: Same podstawy
	Motywacja – pierwszy krok w uczeniu się TDD
	Jakie jest TDD?
	Zaczynajmy !

	Niezbędne narzędzia
	Test framework
	Framework do mockowania
	Generator wartości anonimizowanych
	Podsumowanie

	To nie (tylko) test
	Kiedy test staje się czymś więcej
	Testy w świecie programistów
	Raczej specyfikacja niż zbiór testów
	Różnice między ``wykonywalnymi'' specyfikacjami i tymi ``tradycyjnymi''

	Programowanie poprzedzone wymaganiem (Wymaganie-najpierw)
	Po co pisać specyfikację po fakcie?
	``Najpierw-test'' oznacza patrzenie na niepowodzenie
	``Test-Po'' często kończy jako ``Test-Nigdy''
	``Test-Po'' często prowadzi do ponownego projektowania
	Podsumowanie

	Poćwiczmy to, czego się właśnie nauczyliśmy
	Pozwól mi opowiedzieć sobie historię
	Akt 1: Samochód
	Akt 2: Tytuł dla Klienta
	Akt 3: Test-Driven Development
	Epilog

	Odnajdźmy się odrobinę

