
Introduction to full stack web
development with Go and Vue.js

Enrico Bassetti, Emanuele Panizzi

Contents

Preface 1

1 Introduction 3
1.1 Types of Applications in Web Development . 3
1.2 Full stack web development . 4
1.3 Structure of a web application . 5

2 Version Control with Git 6
2.1 Version control systems . 6
2.2 Git . 7
2.3 Remote git repositories . 20
2.4 Git repository hosting . 26
2.5 Practical Git . 30
2.6 Further readings . 57

3 Web protocols 58
3.1 Uniform Resource Identifier (URI) . 58
3.2 Hyper‑text Transfer Protocol (HTTP) . 59
3.3 Cross‑Origin Resource Sharing (CORS) . 71
3.4 JavaScript Object Notation (JSON) . 74
3.5 YAML Ain’t Markup Language . 76
3.6 REpresentational State Transfer (REST) . 78
3.7 Further readings . 81

4 Designing and documenting APIs 82
4.1 Introduction to APIs . 82
4.2 OpenAPI Specification Overview . 84
4.3 Designing REST API . 85
4.4 API versioning . 95
4.5 Best practices . 96
4.6 Further readings . 100

i

Introduction to full stack web development with Go and Vue.js

5 Backend Programming with Go 101
5.1 Introduction to Go Language . 101
5.2 Concurrency . 128
5.3 Sharing and using external code using Go Modules . 131
5.4 Building web services with Go . 132
5.5 Example: fountains . 136
5.6 Exercises . 138

6 Web Front‑end Programming with Vue.js 143
6.1 HTML . 143
6.2 CSS . 148
6.3 JavaScript . 148
6.4 Introduction to Vue.js . 148
6.5 Routing with Vue Router . 159
6.6 Interacting with Backend APIs . 160
6.7 Example: fountains . 161
6.8 Build a Vue.js application for publication . 165
6.9 Links . 165

7 Building and Deploying Containers with Docker 166
7.1 Introduction to Linux Containers and Docker . 168
7.2 Running your first container . 169
7.3 Creating container images . 171
7.4 Deploying andmanaging containers . 176
7.5 Docker Compose for multi‑container applications . 177
7.6 Beyond Docker Compose: container orchestrators . 178
7.7 Links . 179

Enrico Bassetti, Emanuele Panizzi ii

Preface

Who is this book for?

The ideal reader is a student enrolled in a Computer Science university program: someone with a
basic knowledge of at least one programming language and willing to learn how to build a full‑stack
web application.

This book is also suitable for developerswhowant to develop real‑worldweb applications profession‑
ally using state‑of‑the‑art technologies.

Requirements

To fully understand and follow the examples in this book, you should have some basic knowledge of
how to code in at least one programming language and use your operating system’s command line for
launching tools andmanaging files.

We suggest you test the examples in this book in a Debian GNU/Linux real or virtual machine. We
tested these examples onGNU/Linux; theymightwork in other operating systems, provided that tools
are installed and configured correctly (however, some commands might be different, and you need
to translate them). If unsure, you can download the Debian ISO freely from https://www.debian.org
and VirtualBox from https://www.virtualbox.org/, and then use VirtualBox to create a Debian virtual
machine.

If you want to deepen your knowledge of the GNU/Linux command line, we suggest “The Linux Com‑
mand Line” book fromWilliam E. Shotts, Jr. here: https://sourceforge.net/projects/linuxcommand/fi
les/TLCL/19.01/TLCL‑19.01.pdf/download.

Typographic conventions

Examples that involve running programs on the command linewill use the dollar sign$ to denote the
shell prompt as a standard user. Since the dollar sign indicates your shell prompt, you should not type
it in.

1

https://www.debian.org
https://www.virtualbox.org/
https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download

Introduction to full stack web development with Go and Vue.js

Lines without the dollar sign represent the output for the command. For example, in this block of
text:

$ git --version
git version 2.30.2

The textgit --version is the commandyouneed to run, andgit version 2.30.2 represents
the command’s output.

Note that, inUNIXphilosophy, commands that run successfully shouldhavenooutput (if not explicitly
requested using a flag). Many of the commands that we will use have this behavior.

Note for e‑book readers

Some e‑book readers have a small screen, and some images/tables may overflow out of the screen.
To scroll laterally and see the rest of the image or table, consult the manual of your e‑book reader.

About the Authors

Emanuele Panizzi is an Associate Professor in Computer Science at Sapienza University of Rome, Italy.
He leads a research team focusing on human‑computer interaction, app design, gamification, and
context‑aware mobile interaction. In the two areas of smart parking and earthquake detection, his
current study uses AI to recognize users’ behaviour and context. Designing mobile user interfaces
with implicit interaction and crowdsensing applications is the experimental component of this study.
Panizzi supervised several large software projects for Sapienza University and for companies and star‑
tups. He teaches HCI and software architecture. He has served as a consultant formajor national and
international corporations.

Enrico Bassetti is a post‑doctoral researcher at Sapienza University of Rome, Italy. His research fo‑
cused on network security, fully distributed sensing systems, and Internet‑of‑Things devices. In 2019,
heearnedhisMaster’s inCybersecurity fromSapienzaUniversity anddefendedhisPh.D. in 2023. Inad‑
dition to his research experience, Bassetti has ten years of company experience as a system architect
consultant, DevOps advocate, system/network administrator, and trainer on security and Linux.

If you have any feedback about any aspect of this book, email us at panizzi@di.uniroma1.it and
bassetti@di.uniroma1.it.

Enrico Bassetti, Emanuele Panizzi 2

mailto:panizzi@di.uniroma1.it
mailto:bassetti@di.uniroma1.it

1 Introduction

1.1 Types of Applications in Web Development

In the world of web development, applications are the heart and soul of the digital landscape. These
computer programs enable users to accomplish a wide array of tasks, from managing their finances
to playing games or simply staying connected with friends and family. Applications come in various
shapes and sizes, tailored to suit different platforms and user needs.

1.1.1 Desktop and Mobile Applications

Desktop applications, also known as native desktop applications, are designed to run directly on a
desktop computer’s operating system. To use a desktop app, users typically need to install it on their
computer. These applications can vary widely in their complexity, from lightweight utilities to sophis‑
ticated software suites.

Mobile applications are tailored for smartphones, tablets, or evenwearable devices like smartwatches.
Like desktop apps, mobile apps also need to be installed on the user’s device. They can be further
categorized into two types:

• Native Apps: Native apps are explicitly developed for a specific mobile operating system, such
as Swift for iOS, Java or Kotlin for Android, or Objective‑C for older iOS versions. This approach
provides developers with the maximum control and access to device‑specific features and ca‑
pabilities.

• Hybrid Apps: Hybrid apps, on the other hand, are created using web technologies like HTML,
CSS, and JavaScript and then cross‑compiled to run on multiple operating systems. Tools like
Apache Cordova or frameworks like Ionic allow developers to build hybrid apps that can be de‑
ployed on both iOS and Android platforms.

1.1.2 Web Applications

Web applications, often referred to as web apps, are distinct from their desktop and mobile counter‑
parts. They run within a web browser, which means users don’t need to install them on their devices.

3

Introduction to full stack web development with Go and Vue.js

Instead,webapps canbeaccessed simply bynavigating to a specific URL. These applications are ubiq‑
uitous on the internet, offering a wide range of services, from email clients to project management
tools.

A specific subset of web apps is known as Single Page Applications or SPAs. SPAs interact with users
by dynamically updating the current web page with new data from the web server, without requiring
a full page reload. This approach results in a smoother, more seamless user experience, as only the
necessary content is updated, making the application feel more like a traditional desktop or mobile
app.

Progressive Web Apps, or PWAs, are a modern evolution of web applications. They offer the best of
both worlds, combining the accessibility of web apps with the capabilities of native apps. Users can
install PWAs by adding them to their device’s home screen, providing easy access like a native app.
Additionally, PWAs canworkofflineor in low‑quality network conditions,making themhighly resilient
and user‑friendly.

1.1.3 Web APIs

Web API stands for Web Application Programming Interface. It is a set of rules and protocols that
allows one software application (desktop, mobile or web application, or even servers) to request and
exchange data or functionality with a server over the Internet. Web APIs are the building blocks that
enable different web services, servers, and clients to communicate effectively.

At their core, web APIs define a collection of endpoints or URLs that developers can use to send re‑
quests and receive responses in a structured format, typically in JSON (JavaScript Object Notation)
or XML (eXtensibleMarkupLanguage). Theseendpoints are likedoors intoawebservice, eachoffering
a specific function or data resource.

1.2 Full stack web development

Full stack web development refers to the process of creating web applications that encompass both
the front‑end and back‑end aspects. A full stack developer is proficient in working with all the tech‑
nologies and layers involved in building a web application, including the client‑side, server‑side, and
the underlying database.

The typical full stack application can be described by these layers:

• the “Front‑End” (also known as “client‑side”): is what users directly interact with through their
web browsers; it includes the visual elements, layout, and interactive features that users see

Enrico Bassetti, Emanuele Panizzi 4

Introduction to full stack web development with Go and Vue.js

and engage with. Front‑end technologies commonly include HTML, CSS, and JavaScript, along
with various front‑end libraries and frameworks like Vue.js, React, or Angular.

• the “Back‑End” (also known as “server‑side”): is responsible for handling business logic, data
processing, and communication with databases and external services. It manages requests
from the client‑side, processes them, and sends back the necessary data or responses. Back‑
end development involvesworkingwith programming languages like PHP, Go, Python, Node.js,
Ruby, or Java, as well as frameworks such as Express, Django, or Spring.

• thedatabase layerofa full stackapplicationstoresandmanages theapplication’sdata. It could
be a relational database like MySQL or PostgreSQL, a NoSQL database like MongoDB or Redis,
flat files, or any combination of those.

In this book, wewill go through these layers, andwewill present some of these technologies, namely
OpenAPI for API definition, Go for backend development, Vue.js for frontend development. We won’t
cover the database part,as there are multiple valid books on the topic.

Additionally, we will see how a full stack application can be deployed, and we will present the “con‑
tainers” as deployment strategy.

1.3 Structure of a web application

There are several different approaches when dealing with web application. Regardless of program‑
ming languages and frameworks that are involved, you may have server‑side or client‑side rendered
application.

In server‑side rendering, the frontend code (JavaScript, HTML, CSS) is renderedon the server side. The
frontend browser receives web pages already formatted and it draw them on the screen. Using this
approach, the HTML code (and its generator) are embedded in the backend project, and there is no
need for serialization and de‑serialization of data. Responses may also contains partial web pages:
their content replaces a portion of an already‑shown web page. Requests may be synchronous or
asynchronous (i.e., in background).

In client‑side rendering, the backend and the frontend are two different applications. Data and mes‑
sage exchanged between the two applications are serialized and encoded in HTTP messages. The
frontend is in change of preparing the HTML and CSS based on data and messages exchanged with
the backend. Differently from the server‑side rendering, the backend does not produce HTML: data
are serialized to the frontend, which is expected to fully manipulate them. In this type of rendering,
JavaScript is heavly used to request data from the backend and build UI elements. Requests are al‑
most always asynchronous.

Enrico Bassetti, Emanuele Panizzi 5

2 Version Control with Git

To introduce you to version control, let us tell you a story (based on notFinal.doc PHDcomics).
Let’s say that you are at the end of your final year at the university, and you are writing your final
thesis. You write the document, and when you think that it’s ready, you name it final.doc, and
you send it to your supervisor/professor for revision and approval.

The professor reads your thesis, adds comments, and marks paragraphs of the text that
you should rewrite. And they send back the document, named final.comments.doc.
You eagerly start modifying your thesis, and you send it as final_rev2.doc. And then
your professor sends back a final_rev2.comments2.doc. Now you send back fi-
nal_rev2.comments2.corrections1.doc, and they send back… you get the point.

At the end of this back and forth, you end upwithmany files with inconsistent naming at best, hoping
that the last created file is also the latest and greatest version.

This problem is named versioning, and it is common, especially when multiple people work on the
same project, or the project lasts for years.

2.1 Version control systems

Version control systems (VCS) start from a set of needs every team or solo developer face after a
few years. Projects grow in complexity and size; several changes are made by different collabora‑
tors/developers, and tracking and evaluating those changes is necessary. Sometimes, projects may
havemultiple versions being developed or tested concurrently (consider, for example, trying various
optimizations to the same algorithm). And when the project is finally months/years old, there should
be a way to track down when a specific feature or bug was introduced in the code.

Version Control Systems are now essential tools for modern software development and collaborative
projects (even in low‑code or no‑code projects). They provide:

• Consistent labeling of revisions: multiple versions of a file are labeled using a standardizedway
(enforced by the tool);

• Tracking of changes: each difference between two revisions is tracked, and it can be recalled in
the future (for example, if you need to explore an older version of the code);

6

https://phdcomics.com/comics/archive.php?comicid=1531

Introduction to full stack web development with Go and Vue.js

• Metadata (date, authors, etc.) to revisions, to help, e.g., tracking down when and who made a
particular change;

• Consistent point‑in‑time revisions: each revision is saved explicitly, and it may contain multi‑
ple files;

• Branches: revisions may diverge, and the same project may have multiple parallel “versions”,
clearly labeled;

• Merges: different branches may be “merged” by merging their changes;
• Synchronization betweenmultiple users and computers.

Various applications provide these features, such as CVS, Subversion, Mercurial. We will look at Git,
a modern solution that quickly became industry standard a few years ago. Note that most (if not all)
concepts are shared between different version control systems.

2.2 Git

Git, a distributed version control system, was created in 2005 by Linus Torvalds tomanage the source
code of the Linux Kernel. It utilizes directed acyclic graphs (DAG) and data structures similar toMerkle
trees. Thanks to its distributed nature and robust capabilities, Git has become the industry standard
for version control. It enables developers to collaborate seamlessly, manage complex projects, and
maintain a comprehensive historical record of codemodifications.

We will introduce Git incrementally in the following sections.

2.2.1 Repository

A repository is a set of commits, branches, and tags, usually for the same project. We will define all
these terms in the following sections; for now, think of the repository as a “bucket” which contains all
Git‑related items for a given project.

A project (for example, a mobile app) may be divided into multiple repositories for organizational
reasons (for example, because some parts have a different life cycle). Nevertheless, for the sake of
simplicity, in this book we assume that a repository contains a project and that a project is in one
repository.

2.2.2 Working copy

Theworking copy, orworking directory, is a local copy of the project. It is the set of files tracked by the
version control system, and it’s usually the directory that contains your project. It includes subdirec‑
tories as well. Each time you add, modify or delete a file, you need to tell Git about that.

Enrico Bassetti, Emanuele Panizzi 7

