Vue.js Component
Patterns

Frederik Dietz - Copyright 2018

Vue.js Component Patterns

Frederik Dietz

This book is for sale at http://leanpub.com/vuejscomponentpatterns

This version was published on 2019-04-09

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2018 - 2019 Frederik Dietz

http://leanpub.com/vuejscomponentpatterns
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Frederik Dietz by spreading the word about this book on Twitter!
The suggested hashtag for this book is #vue-component-patterns.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#vue-component-patterns

http://twitter.com
https://twitter.com/search?q=%23vue-component-patterns
https://twitter.com/search?q=%23vue-component-patterns

Contents

Introduction to Components with Vue.js
Components can be reused
Passing data to child components as props
Sending messages to parents with events
Summary

Introduction to Components with
Vue.js

In this chapter we introduce the Vue.js component model and show the benefits of component reuse
and encapsulation.

We will start with a simple example component and gradually improve its functionality.

Striped Tiger Cat
Image by @lemepe

Who doesn’t like cats?

The HTML for this card component consists of a large image area and body with some text:

<div id="demo">
<div class="image-card">

<div class="image-card__body">
<h8 class="image-card__title">Striped Tiger Cat</h3>
<div class="image-card__author">Image by @lemepe</div>
</div>
</div>
</div>

We use the root HTML element with the demo id as our element to initiate Vue:

© 00 N O O & W N =

Bw N

Introduction to Components with Vue.js 2

new Vue({ el: '#demo' })

0 You can find the complete example on GitHub'.

What did we achieve? We used Vue.js to render this image card. But we can’t really reuse this code
as is and we don’t want to copy and paste and thereby duplicating code.

The solution to our problem is to turn this into a component.

Components can be reused

So, let’s separate the image card from the remaining Vue.js application.

First we introduce a template element with all the image card content:

<template id="template-image-card">
<div class="image-card">

<div class="image-card__body">
<h3>Striped Tiger Cat</h3>
<div class="image-card__author">Image by @lemepe</div>
</div>
</div>

</template>
And we define the component with Vue . component and reference our template id template-image-card:

Vue.component('image-card', {
template: "#template-image-card"

1)
This is again wrapped in an HTML root element:

<div id="demo">
<image-card></image-card>
<image-card></image-card>
</div>

And then instantiated:

"https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-1

https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-1
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-1

1

Introduction to Components with Vue.js 3

new Vue({ el: '#demo' })

o You can find the complete example on GitHub?

And voila! We have two cats :-)

Striped Tiger Cat Striped Tiger Cat
Image by @lemepe Image by @lemepe

Example 2

Now, two cats are obviously better than one cat and we showed that we can have several instances
of our image-card component on the same page.

We now have the means to reuse this component in our app. And if you think about it, it’s
actually quite remarkable that this includes our HTML, CSS and Javascript code all wrapped up
in a component.

But still, this component is not very useful, isn’t it? It is just not flexible enough! It would be awesome
if we could change the image and text body for each component.

Passing data to child components as props

In order to customize the component’s behaviour, we will use props.

Let’s start with how we want to use our component:

*https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-2

https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-2
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-2

0w N O U B~ W N O O B W N

© 00 N O O & W N =

Introduction to Components with Vue.js 4

<div id="demo">

<image-card image-src="catl.jpg" heading="Striped Tiger Cat" text="Image by @lemep\
e"></image-card>

<image-card image-src="cat2.jpg" heading="Alternative Text" text="alternative subt\
itle"></image-card>
</div>

We introduce three new props image-src, heading, and text. When using the component these will
be passed along as HTML attributes.

The prop definition of our component comes next:

Vue.component('image-card', {
template: "#template-image-card",
props: {

heading: String,
text: String,
imageSrc: String
}
1),

Note, how the prop imagesrc is written in camelCase whereas the HTML attributes is using a dash
image-src. You can read more about props in the official Vue.js Guide®.

And the accompanying template uses this props in the camelCase format again:

<template id="template-image-card">
<div class="image-card">

<div class="image-card__body">

<h3>{{heading}}</h3>
<div class="image-card__author">{{text}}</div>
</div>
</div>
</template>

0 You can find the complete example on GitHub*.

Let’s have a look at the result:

*https://vuejs.org/v2/guide/components-props.html
“https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-3

https://vuejs.org/v2/guide/components-props.html
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-3
https://vuejs.org/v2/guide/components-props.html
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-3

O© 00 N O O b W N =~

10
11
12
13

Introduction to Components with Vue.js 5

Striped Tiger Cat Alternative Text

Image by @lemepe alternative subtitle

Example 3

It worked! We have used two instances of our image-card component with different props.

Isn’t it nice that we can render a component differently using props as inputs?

Components have state

In my typical day job a product manager would most probably note that the image-card by itself
looks quite nice with the cats and such. But, it is not really engaging yet. How about we let users
like our cat and we could then keep a count of which cat had the most likes?

Components can have state using the data attribute:

Vue.component('image-card', {
template: "#template-image-card",
props: {

heading: String,
text: String,
imageSrc: String
},
data: function () {
return {

count: @

});

O 00 =N O O & W N =

I S =
O O b W N~

Introduction to Components with Vue.js

Note, that data is returning a function instead of only a Javascript objectdata: { count: @ }. Thisis
required, so that each component instance can maintain an independent copy of the returned data.
Read more about this in the Vue.js Guide®

*https://vuejs.org/v2/guide/components.html#data- Must-Be-a-Function

Our template uses this count:

<template id="template-image-card">
<div class="image-card">

<div class="image-card__body">
<h3 class="image-card__heading">{{heading}}</h3>
<div class="image-card__author">{{text}}</div>
<button class="image-card__heart" @click="count++">
<svg viewBox="0Q © 32 29.6">

<path d="M16,28.261c0,0-14-7.926-14-17.046¢c0-9.356,13.159-10.399,14-0.454c\

1.011-9.938,14-8.903,14,0.454 C30,20.335,16,28.261,16,28.261z"/>
</svg>
</button>
<div class="image-card__count" v-if="count > @">{{count}}</div>
</div>
</div>

</template>

o You can find the complete example on GitHub’.

*https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-4

https://vuejs.org/v2/guide/components.html#data-Must-Be-a-Function
https://vuejs.org/v2/guide/components.html#data-Must-Be-a-Function
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-4
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-4

Introduction to Components with Vue.js 7

Striped Tiger Cat Alternative Text
Image by @lemepe alternative subtitle
Example 4

We use an SVG element to render a little heart and on the click event we increment the count by
1. A little count is displayed next to the heart with the current count value.

If you are more interested in working with SVG, have a look in the Vue.js Cookbook® for
more information.

Note, that each component instance has its own local state of count which can be changed
independently from the other component’s count.

Whereas in the previous example we only encapsulated the HTML code and made it more flexible
with props. We now also encapsulate some business logic to keep count.

Whereas props are the input parameters of our component, the state is something internal to the
component and is hidden from a user of our component’s code. We could change the name of our
variable from count to clickCount and a user of our component wouldn’t even need to know. This
is awesome because we can keep improving our component without breakings our user’s code.

Sending messages to parents with events

Now that we know how to pass data down to children and how to encapsulate state. There one thing
missing: How can we get data back from a child?

In Vue.js we can emit a custom event from the component to it’s parent which listens to that specific
event. This event can additionally pass along data.

In our example we can use $emit to send an event called change with data to the parent:

“https://vuejs.org/v2/cookbook/editable-svg-icons.html

https://vuejs.org/v2/cookbook/editable-svg-icons.html
https://vuejs.org/v2/cookbook/editable-svg-icons.html

O© 00 9 O U b W N =~

= =y
© 00 N O O b W N =~ O

© 0 N O O & W N =

T =Y
O O B W N~

Introduction to Components with Vue.js 8

Vue.component('image-card', {
template: "#template-image-card",
props: {

heading: String,
text: String,
imageSrc: String
},
data: function () {
return {

count: @

}

},
methods: {

handleClick() {
this.count++;
this.$emit("change", this.count);

}
});

We defined the method handleClick which not only increments our count state, but additionally
uses $emit to send a message to our parent. The handleClick is called in the on click event of our
heart:

<template id="template-image-card">
<div class="image-card">

<div class="image-card__body">
<h3 class="image-card__heading">{{heading}}</h3>
<div class="image-card__author">{{text}}</div>
<button class="image-card__heart" @click="handleClick">
<svg viewBox="0Q © 32 29.6">
<path d="M16,28.261c0,0-14-7.926-14-17.046c0-9.356,13.159-10.399,14-0.454c\
1.011-9.938,14-8.903,14,0.454 C30,20.335,16,28.261,16,28.261z"/>
</svg>
</button>
<div class="image-card__count" v-if="count > @">{{count}}</div>
</div>
</div>

</template>

Now the parent template can use this to listen to the change event to increment a totalCount:

=~ O O b W N =

© 00 N O O b W N =

_oR R
N O

Introduction to Components with Vue.js 9

<div id="demo">

<image-card image-src="cat.jpg" heading="Striped Tiger Cat" text="Image by @lemepe\
" @change="handleChange"></image-card>

<image-card image-src="cat.jpg" heading="Alternative Text" text="alternative subti\
tle" @change="handleChange"></image-card>

<p>Total Count: {{totalCount}}</p>
</div>

Together with the Vue.js instance to keep track of a totalCount:

new Vue({
el: '#demo',
data: {
totalCount: ©
1
methods: {
handleChange(count) {
console.log("count changed", count);
this.totalCount++;

}
1);

0 You can find the complete example on GitHub’.

Note, that the parent doesn’t know about the component’s internals. It just knows that there’s a
change event available and that the message sends the component’s count.

The event emitted via this.$emit("event") is only send to the parent component. It will not bubble
up the component hierarchy similar to native DOM events.

Summary

In this chapter we explored the base concepts of a component model. We discussed component reuse
and encapsulation, how to use props to pass data to children and how to emit events to pass messages
to the parent.

"https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-5

https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-5
https://github.com/fdietz/vue_components_book_examples/tree/master/chapter-2/example-5

	Table of Contents
	Introduction to Components with Vue.js
	Components can be reused
	Passing data to child components as props
	Sending messages to parents with events
	Summary

