

The Majesty of Vue.js

Alex Kyriakidis, Kostas Maniatis and Evan You

This book is for sale at http://leanpub.com/vuejs

This version was published on 2016-10-12

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Alex Kyriakidis, Kostas Maniatis and Evan You

http://leanpub.com/vuejs
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Alex Kyriakidis, Kostas Maniatis and Evan You by spreading the word about this book
on Twitter!

The suggested tweet for this book is:

I’m learning @vuejs with @tmvuejs. Get it at https://leanpub.com/vuejs #vuejs

The suggested hashtag for this book is #vuejs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#vuejs

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20learning%20@vuejs%20with%20@tmvuejs.%20Get%20it%20at%20https://leanpub.com/vuejs%20%23vuejs
https://twitter.com/search?q=%23vuejs
https://twitter.com/search?q=%23vuejs

Contents

Introduction . i

About Vue.js . ii
Vue.js Overview . ii
What people say about Vue.js . ii

Welcome . iv
About the Book . iv
Who is this Book for . iv
Get In Touch . iv
Homework . v
Sample Code . v
Errata . v
Conventions . v

Vue.js Fundamentals . 1

1. Interactivity . 2
1.1 Event Handling . 2

1.1.1 Handling Events Inline . 2
1.1.2 Handling Events using Methods . 4
1.1.3 Shorthand for v-on . 5

1.2 Event Modifiers . 6
1.3 Key Modifiers . 10
1.4 Computed Properties . 10

1.4.1 Using Computed Properties to Filter an Array 15
1.5 Homework . 19

Introduction

About Vue.js
Vue.js Overview

Vue.js (pronounced /vju:/, like view) is a library for building interactive web interfaces. The goal of
Vue.js is to provide the benefits of reactive data binding and composable view components with
an API that is as simple as possible.

Vue.js itself is not a full-blown framework - it is focused on the view layer only. It is therefore very
easy to pick up and to integrate with other libraries or existing projects. On the other hand, when
used in combination with proper tooling and supporting libraries, Vue.js is also perfectly capable of
powering sophisticated Single-Page Applications.

If you are an experienced frontend developer and you want to know how Vue.js compares to other
libraries/frameworks, check out the Comparison with Other Frameworks chapter.

If you are interested to learn more information about Vue.js’ core take a look at Vue.js official guide¹.

What people say about Vue.js

“Vue.js is what made me love JavaScript. It’s extremely easy and enjoyable to use. It has a great
ecosystem of plugins and tools that extend its basic services. You can quickly include it in any project,
small or big, write a few lines of code and you are set. Vue.js is fast, lightweight and is the future of
Front end development!”

—Alex Kyriakidis

“When I started picking up Javascript I got excited learning a ton of possibilities, but when my friend
suggested to learn Vue.js and I followed his advice, things went wild. While reading and watching
tutorials I kept thinking all the stuff I’ve done so far and how much easier it would be if I had invest
time to learn Vue earlier. My opinion is that if you want to do your work fast, nice and easy Vue is
the JS Framework you need. “

—Kostas Maniatis

¹http://vuejs.org/guide/overview.html

http://vuejs.org/guide/overview.html
http://vuejs.org/guide/overview.html

About Vue.js iii

“Mark my words: Vue.js will sky-rocket in popularity in 2016. It’s that good.”

— Jeffrey Way

“Vue is what I always wanted in a JavaScript framework. It’s a framework that scales with you as a
developer. You can sprinkle it onto one page, or build an advanced single page application with Vuex
and Vue Router. It’s truly the most polished JavaScript framework I’ve ever seen.”

— Taylor Otwell

“Vue.js is the first framework I’ve found that feels just as natural to use in a server-rendered app as
it does in a full-blown SPA. Whether I just need a small widget on a single page or I’m building a
complex Javascript client, it never feels like not enough or like overkill.”

— AdamWathan

“Vue.js has been able to make a framework that is both simple to use and easy to understand. It’s
a breath of fresh air in a world where others are fighting to see who can make the most complex
framework.”

— Eric Barnes

“The reason I like Vue.js is because I’m a hybrid designer/developer. I’ve looked at React, Angular
and a few others but the learning curve and terminology has always put me off. Vue.js is the first
JS framework I understand. Also, not only is it easy to pick up for the less confidence JS’ers, such as
myself, but I’ve noticed experienced Angular and React developers take note, and liking, Vue.js. This
is pretty unprecedented in JS world and it’s that reason I started London Vue.js Meetup.”

—Jack Barham

Welcome
About the Book

This book will guide you through the path of the rapidly spreading Javascript Framework called
Vue.js!

Some time ago, we started a new project based on Laravel and Vue.js. After thoroughly reading Vue.js
guide and a few tutorials, we discovered lack of resources about Vue.js around the web. During the
development of our project, we gained a lot of experience, so we came up with the idea to write this
book in order to share our acquired knowledge with the world.

This book is written in an informal, intuitive, and easy-to-follow format, wherein all examples are
appropriately detailed enough to provide adequate guidance to everyone.

We’ll start from the very basics and throughmany examples we’ll cover the most significant features
of Vue.js. By the end of this book you will be able to create fast front end applications and increase
the performance of your existing projects with Vue.js integration.

Who is this Book for

Everyone who has spent time to learn modern web development has seen Bootstrap, Javascript, and
many Javascript frameworks. This book is for anyone interested in learning a lightweight and simple
Javascript framework. No excessive knowledge is required, though it would be good to be familiar
with HTML and Javascript. If you dont’t knowwhat the difference is between a string and an object,
maybe you need to do some digging first.

This book is also useful for any reader who already know their way around Vue.js and want to
expand their knowledge.

Get In Touch

In case you would like to contact us about the book, send us feedback, or other matters you would
like to bring to our attention, don’t hesitate to contact us.

Name Email Twitter

The Majesty of Vue.js hello@tmvuejs.com @tmvuejs
Alex Kyriakidis alex@tmvuejs.com @hootlex
Kostas Maniatis kostas@tmvuejs.com @kostaskafcas

Welcome v

Homework

The best way to learn code is to write code, so we have prepared one exercise at the end
of most chapters for you to solve and actually test yourself on what you have learned. We
strongly recommend you to try as much as possible to solve them and through them gain a better
understanding of Vue.js. Don’t be afraid to test your ideas, a little effort goes a long way! Maybe a
few different examples or ways will give you the right idea. Of course we are not merciless, hints
and potential solutions will be provided!

You may begin your journey!

Sample Code

You can find most of the code examples used in the book on GitHub. You can browse around the
code here².

If you prefer to download it, you will find a .zip file here³.

This will save you from copying and pasting things out of the book, which would probably be
terrible.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in the book we would be grateful if you could report it to us. By doing so, you
can protect other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please submit an issue on our GitHub repository⁴.

Conventions

The following notational conventions are used throughout the book.

A block of code is set as follows:

JavaScript

²https://github.com/hootlex/the-majesty-of-vuejs
³https://github.com/hootlex/the-majesty-of-vuejs/archive/v1.0.1.zip
⁴https://github.com/hootlex/the-majesty-of-vuejs

https://github.com/hootlex/the-majesty-of-vuejs
https://github.com/hootlex/the-majesty-of-vuejs/archive/v1.0.1.zip
https://github.com/hootlex/the-majesty-of-vuejs
https://github.com/hootlex/the-majesty-of-vuejs
https://github.com/hootlex/the-majesty-of-vuejs/archive/v1.0.1.zip
https://github.com/hootlex/the-majesty-of-vuejs

Welcome vi

1 function(x, y){

2 // this is a comment

3 }

Code words in text, data are shown as follows: “Use .container for a responsive fixed width
container.”

New terms and important words are shown in bold.

Tips, notes, and warnings are shown as follows:

This is a Warning
This element indicates a warning or caution.

This is a Tip
This element signifies a tip or suggestion.

This is an Information box
Some special information here.

This is a Note
A note about the subject.

This is a Hint
A hint about the subject.

This is a Terminal Command
Commands to run in terminal.

This is a Comparison text
A small text comparing things relative to the subject.

Welcome vii

This is a link to Github for the code examples
Links which lead to the repository of this book, where you can find the code samples of
each chapter.

https://github.com/hootlex/the-majesty-of-vuejs

Vue.js Fundamentals

1. Interactivity
In this chapter, we are going to create and expand previous examples, learn new things concerning
‘methods’, ‘event handling’ and ‘computed properties’. We will develop a few examples using
different approaches. It’s time to see how we can implement Vue’s interactivity to get a small app,
like a Calculator, running nice and easy.

1.1 Event Handling

HTML events are things that happen to HTML elements. When Vue.js is used in HTML pages, it
can react to these events.

In HTML, events can represent everything from basic user interactions to things happening in the
rendering model.

These are some examples of HTML events:

• A web page has finished loading
• An input field was changed
• A button was clicked
• A form was submitted

The point of event handling is that you can do something whenever an event takes place.

In Vue.js, to listen to DOM events you can use the v-on directive.

The v-on directive attaches an event listener to an element. The type of the event is denoted by the
argument, for example v-on:keyup listens to the keyup event.

Info
The keyup event occurs when the user releases a key. You can find a full list of HTML
events here¹.

1.1.1 Handling Events Inline

Enough with the talking, let’s move on and see event handling in action. Below, there is an ‘Upvote’
button which increases the number of upvotes every time it gets clicked.

¹http://www.w3schools.com/tags/ref_eventattributes.asp

http://www.w3schools.com/tags/ref_eventattributes.asp
http://www.w3schools.com/tags/ref_eventattributes.asp

Interactivity 3

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Upvote</title>

6 </head>

7 <body>

8 <div class="container">

9 <button v-on:click="upvotes++">

10 Upvote! {{upvotes}}

11 </button>

12 </div>

13 </body>

14 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.26/vue.js"></script>

15 <script type="text/javascript">

16 new Vue({

17 el: '.container',

18 data: {

19 upvotes: 0

20 }

21 })

22 </script>

23 </html>

Interactivity 4

Upvotes counter

As you can see above, we have a basic setup and this time we use the class container in our view
model. There is an upvotes variable within our data. In this case, we bind an event listener for
click, with the statement that is right next to it. Inside the quotes we’re simply increasing the count
of upvotes by one, each time the button is pressed, using the increment operator (upvotes++).

Shown above is a very simple inline JavaScript statement.

1.1.2 Handling Events using Methods

Now we are going to do the exact same thing as before, using a method instead. A method in Vue.js
is a block of code designed to perform a particular task. To execute a method, you have to define it
and then invoke it.

Interactivity 5

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Upvote</title>

6 </head>

7 <body>

8 <div class="container">

9 <button v-on:click="upvote">

10 Upvote! {{upvotes}}

11 </button>

12 </div>

13 </body>

14 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.26/vue.js"></script>

15 <script type="text/javascript">

16 new Vue({

17 el: '.container',

18 data: {

19 upvotes: 0

20 },

21 // define methods under the **`methods`** object

22 methods: {

23 upvote: function(){

24 // **`this`** inside methods points to the Vue instance

25 this.upvotes++;

26 }

27 }

28 })

29 </script>

30 </html>

We are binding a click event listener to a method named ‘upvote’. It works just as before, but cleaner
and easier to understand when reading your code.

Warning
Event handlers are restricted to execute one statement only.

1.1.3 Shorthand for v-on

When you find yourself using v-on all the time in a project, you will find out that your HTML will
quickly becomes dirty. Thankfully, there is a shorthand for v-on, the @ symbol. The @ replaces the

Interactivity 6

entire v-on: and when using it, the code looks a lot cleaner, but everyone has their own practices
and this is totally optional.

Using the shorthand, the button of our previous example will be:

Listening to ‘click’ using v-on:

1 <button v-on:click="upvote">

2 Upvote! {{upvotes}}

3 </button>

Listening to ‘click’ using @ shorthand

1 <button @click="upvote">

2 Upvote! {{upvotes}}

3 </button>

1.2 Event Modifiers

Now we will move on and create a Calculator app. To do so, we’ll use a form with two inputs and
one dropdown to select the desired operation.

Even though the following code seems fine, our calculator does not work as expected.

1 <html>

2 <head>

3 <title>Calculator</title>

4 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.\

5 css" rel="stylesheet">

6 </head>

7 <body>

8 <div class="container">

9 <h1>Type 2 numbers and choose operation.</h1>

10 <form class="form-inline">

11 <!-- Notice here the special attribute 'number'

12 is passed in order to parse inputs as numbers.-->

13 <input v-model="a" number class="form-control">

14 <select v-model="operator" class="form-control">

15 <option selected>+</option>

16 <option>-</option>

17 <option>*</option>

18 <option>/</option>

Interactivity 7

19 </select>

20 <!-- Notice here the special attribute 'number'

21 is passed in order to parse inputs as numbers.-->

22 <input v-model="b" number class="form-control">

23 <button type="submit" @click="calculate"

24 class="btn btn-primary">

25 Calculate

26 </button>

27 </form>

28 <h2>Result: {{a}} {{operator}} {{b}} = {{c}}</h2>

29 <pre>

30 {{$data | json}}

31 </pre>

32 </div>

33 </body>

34 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.26/vue.js"></script>

35 <script type="text/javascript">

36 new Vue({

37 el: '.container',

38 data: {

39 a: 1,

40 b: 2,

41 c: null,

42 operator: " ",

43 },

44 methods:{

45 calculate: function(){

46 switch (this.operator) {

47 case "+":

48 this.c = this.a + this.b

49 break;

50 case "-":

51 this.c = this.a - this.b

52 break;

53 case "*":

54 this.c = this.a * this.b

55 break;

56 case "/":

57 this.c = this.a / this.b

58 break;

59 }

60 }

Interactivity 8

61 },

62 });

63 </script>

64 </html>

If you try and run this code yourself, you will find out that when the “calculate” button is clicked,
instead of calculating, it reloads the page.

This makes sense because when you click “calculate”, in the background, you are submitting the
form and thus the page reloads.

To prevent the submission of the form, we have to cancel the default action of the onsubmit event. It
is a very common need to call event.preventDefault() inside our event handling method. In our
case the event handling method is called calculate.

So, our method will become:

1 calculate: function(){

2 event.preventDefault();

3 switch (this.operator) {

4 case "+":

5 this.c = this.a + this.b

6 break;

7 case "-":

8 this.c = this.a - this.b

9 break;

10 case "*":

11 this.c = this.a * this.b

12 break;

13 case "/":

14 this.c = this.a / this.b

15 break;

16 }

17 }

Interactivity 9

Using Event Modifiers to build a calculator.

Although we can do this easily inside methods, it would be better if the methods can be purely
ignorant about data logic rather than having to deal with DOM event details.

Vue.js provides two event modifiers for v-on to prevent the event default behavior:

1. .prevent
2. .stop

So, using one of them, our submit button will change from:

1 <button type="submit" @click="calculate">Calculate</button>

to:

1 <button type="submit" @click.prevent="calculate">Calculate</button>

2 <!-- or -->

3 <button type="submit" @click.stop="calculate">Calculate</button>

And we can now safely remove event.preventDefault() from our calculate method.

Interactivity 10

1.3 Key Modifiers

If you hit enter when you focus on one of the inputs, you will notice that the page reloads again
instead of calculating. This happens because we have prevented the behavior of the submit button
but not of the inputs.

To fix this, we have to use ‘Key Modifiers’.

1 <input v-model="a" @keyup.enter="calculate">

2 <input v-model="b" @keyup.enter="calculate">

Tip
When you have a form with a lot of inputs/buttons/etc and you need to prevent their
default submit behavior, you can modify the submit event of the form. Example: <form
@submit.prevent=”calculate”>

Finally, the calculator is up and running.

1.4 Computed Properties

Vue.js inline expressions are very convenient, but for more complicated logic, you should use
computed properties. Practically, computed properties are variables which their value depends on
other factors.

Computed properties work like functions that you can use as properties. But there is a significant
difference. Every time a dependency of a computed property changes, the value of the computed
property re-evaluates.

In Vue.js, you define computed properties within the computed object inside your Vue instance.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 a={{ a }}, b={{ b }}

10 <pre>

Interactivity 11

11 {{$data | json}}

12 </pre>

13 </div>

14 </body>

15 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.26/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20 a: 1,

21 },

22 computed: {

23 // a computed getter

24 b: function () {

25 // **`this`** points to the Vue instance

26 return this.a + 1

27 }

28 }

29 });

30 </script>

31 </html>

This is a basic example demonstrating the use of computed properties. We’ve set two variables, the
first, a, is set to 1 and the second, b, will be set by the returned result of the function inside the
computed object. In this example the value of b will be set to 2.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 a={{ a }}, b={{ b }}

10 <input v-model="a">

11 <pre>

12 {{$data | json}}

13 </pre>

14 </div>

15 </body>

16 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.26/vue.js"></script>

Interactivity 12

17 <script type="text/javascript">

18 new Vue({

19 el: '.container',

20 data: {

21 a: 1,

22 },

23 computed: {

24 // a computed getter

25 b: function () {

26 // **`this`** points to the vm instance

27 return this.a + 1

28 }

29 }

30 });

31 </script>

32 </html>

The above example is the same as the previous one, but with one difference. An input is binded
to the a variable. The desired outcome would be to change the value of the binded attribute and
immediately update the result of b. But notice here, that it does not work as we would expect.

If you run this code and enter an input for variable a the number 5, you expect that b will be set to
6. Sure, but it doesn’t, b is set to 51.

Why is this happening? Well, as you might have already thought, b takes the given value from the
input (“a”) as a string, and appends the number 1 at the end of it.

One solution to solve this problem is to use the parseFloat() function that parses a string and
returns a floating point number.

1 new Vue({

2 el: '.container',

3 data: {

4 a: 1,

5 },

6 computed: {

7 b: function () {

8 return parseFloat(this.a) + 1

9 }

10 }

11 });

Another option that comes to mind, is to use the <input type="number"> which is used for input
fields that should contain a numeric value.

Interactivity 13

But there is a more neat way.With Vue.js, whenever you want your user’s inputs to be automatically
persisted as numbers, you can add the special attribute number to these inputs.

1 <body>

2 <div class="container">

3 a={{ a }}, b={{ b }}

4 <input v-model="a" number>

5 <pre>

6 {{$data | json}}

7 </pre>

8 </div>

9 </body>

The number attribute is going to give us the desired result without any further effort.

To demonstrate a wider picture of computed properties, we are going to make use of them and build
the calculator we have already shown, but this time using computed properties instead of methods.

Lets start with a simple example, where a computed property c contains the sum of a plus b.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Enter 2 numbers to calculate their sum.</h1>

10 <form class="form-inline">

11 <input v-model="a" number class="form-control">

12 +

13 <input v-model="b" number class="form-control">

14 </form>

15 <h2>Result: {{a}} + {{b}} = {{c}}</h2>

16 <pre> {{$data | json}} </pre>

17 </div>

18 </body>

19 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.26/vue.js"></script>

20 <script type="text/javascript">

21 new Vue({

22 el: '.container',

23 data: {

Interactivity 14

24 a: 1,

25 b: 2

26 },

27 computed: {

28 c: function () {

29 return this.a + this.b

30 }

31 }

32 });

33 </script>

34 </html>

The initial code is ready, and at this point the user can type in 2 numbers and get the sum of these
two. A calculator that can do the four basic operations is the goal, so let’s continue building!

Since the HTML code will be the same with the calculator we build in the previous section of this
chapter (except now we don’t need a button), I am am going to show you here only the Javascript
codeblock.

1 new Vue({

2 el: '.container',

3 data: {

4 a: 1,

5 b: 2,

6 operator: " ",

7 },

8 computed: {

9 c: function () {

10 switch (this.operator) {

11 case "+":

12 return this.a + this.b

13 break;

14 case "-":

15 return this.a - this.b

16 break;

17 case "*":

18 return this.a * this.b

19 break;

20 case "/":

21 return this.a / this.b

22 break;

23 }

24 }

Interactivity 15

25 },

26 });

The calculator is ready for use. The only thing we had to do, was to move whatever was inside
calculate method to the computed property c! Whenever you change the value of a or b the result
updates in real time! We don’t need any buttons, events, or anything. How awesome is that??

Info
Note here that a normal approach would be to have an if statement to avoid error of
division. The best part about this, is that there is already a prediction for this kind of flaws.
If the user types 1/0 the result automatically becomes infinity! If the user types a text the
displayed result is “not a number”.

Calculator built with computed properties.

1.4.1 Using Computed Properties to Filter an Array

A computed property can also be used to filter an array. Using a computed property to perform array
filtering gives you in-depth control and more flexibility, since it’s full JavaScript, and allows you to
access the filtered result elsewhere. For example you can get the length of a filtered array anywhere
in your code.

Interactivity 16

To see how it’s done, we will filter the famous stories as we did in the Custom Filter example. This
time we will create a computed property that returns the filtered Array.

1 new Vue({

2 el: '.container',

3 data: {

4 stories: [

5 {

6 plot: "I crashed my car today!",

7 writer: "Alex",

8 upvotes: 28

9 },

10 {

11 plot: "Yesterday, someone stole my bag!",

12 writer: "John",

13 upvotes: 8

14 },

15 {

16 plot: "Someone ate my chocolate...",

17 writer: "John",

18 upvotes: 51

19 },

20 {

21 plot: "I ate someone's chocolate!",

22 writer: "Alex",

23 upvotes: 74

24 },

25]

26 },

27 computed: {

28 famous: function() {

29 return this.stories.filter(function(item){

30 return item.upvotes > 25;

31 });

32 }

33 }

34 })

In our HTML code, instead of stories array, we will render the famous computed property.

Interactivity 17

1 <body>

2 <div class="container">

3 <h1>Let's hear some famous stories! ({{famous.length}})</h1>

4 <ul class="list-group">

5 <li v-for="story in famous"

6 class="list-group-item"

7 >

8 {{ story.writer }} said "{{ story.plot }}"

9 and upvoted {{ story.upvotes }} times.

10

11

12 </div>

13 </body>

Filter array using a computed property

That’s it.We have filtered our array using a computed property. Did you notice how easily we man-
aged to display the number of famous stories next to our headingmessage using {{famous.length}}?

Info
Although using a computed property to perform array filtering, gives youmore flexibility,
array filters can be more convenient for common use cases.

Interactivity 18

Code Examples
You can find the code examples of this chapter on GitHub².

²https://github.com/hootlex/the-majesty-of-vuejs/tree/master/examples/5.%20Interactivity

https://github.com/hootlex/the-majesty-of-vuejs/tree/master/examples/5.%20Interactivity
https://github.com/hootlex/the-majesty-of-vuejs/tree/master/examples/5.%20Interactivity

Interactivity 19

1.5 Homework

Now that you have a basic understanding of Vue’s event handling, methods, computed properties etc,
you should try something a bit more challenging. Start by creating an array of “Mayor” candidates.
Each candidate has a “name” and a number of “votes”. Use a button to increase the count of votes
for each candidate. Use a computed property to determine who is the current “Mayor”, and display
his name.

Finally when key ‘c’ is pressed the elections start from the beginning, and all votes become 0.

Hint
Javascript’s sort() and map()methods could prove very useful and Key modifiers will get
you there.

Hint 2
To listen globally for events you should target the body element.

Example Output

You can find a potential solution to this exercise here³.

³https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter5.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter5.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter5.html

	Table of Contents
	Introduction
	About Vue.js
	Vue.js Overview
	What people say about Vue.js

	Welcome
	About the Book
	Who is this Book for
	Get In Touch
	Homework
	Sample Code
	Errata
	Conventions

	Vue.js Fundamentals
	Interactivity
	Event Handling
	Handling Events Inline
	Handling Events using Methods
	Shorthand for v-on

	Event Modifiers
	Key Modifiers
	Computed Properties
	Using Computed Properties to Filter an Array

	Homework

