
Single-File-Component (SFC) mit Composition-API 35

9 Single-File-Component (SFC) mit
Composition-API
Dieses Kapitel stellt die modernen Single-File-Components (SFC) in einer .vue-Datei mit

Composition-API und Setup-Direktive (<script setup>) vor.

Zitat aus der Dokumentation: "<script setup> is a compile-time syntactic sugar for using

Composition-API inside Single-File-Components (SFCs)." [https://v3.vuejs.org/api/sfc-script-

setup.html]. Die Syntax <script setup> gilt seit Version 3.2 als stabil

[https://blog.vuejs.org/posts/vue-3.2.html].

9.1 Aufbau einer Single-File-Component (SFC)

Das folgende Schaubild veranschaulicht den Aufbau einer Single-File-Components (SFC) in einer

.vue-Datei mit Composition-API und Setup-Direktive (<script setup>).

Single-File-Component (.vue-Datei)
mit Composition-API und Setup-Direktive

Vorlagenbereich
<template>

- Interpolation mit {{ x }}
- Attributbindung mit v-bind:name="Wert"
- Ereignisbehandlungs mit @ereignisname, z.B. @click
- Unterkomponenten per Tagename, z.B. <Abc propName="Wert"/>

Vorlagenbezogenes CSS (Scoped Styles)
<style scoped>

Codebereich
<script setup lang="ts">

- Imports, z.B. import { ref } from 'vue';
- Parameter mit defineProps()
- Watcher mit watch()
- Ereignisse mit defineEmits()
- Öffentliche Methoden mit defineExpose()
- Reaktive Variablen mit ref() oder reactive()
- Normale, nicht-reaktive Variablen
- Lebenszyklusereignisbehandlung, z.B. onMounted()
- DOM-Ereignisbehandlung, z.B. für @click
- Hilfsfunktionen

© Dr. Holger Schwichtenberg, www.IT-Visions.de 2022

Abbildung: Aufbau einer Single-File-Components (SFC) in einer .vue-Datei mit Composition-API

und Setup-Direktive

https://v3.vuejs.org/api/sfc-script-setup.html
https://v3.vuejs.org/api/sfc-script-setup.html
https://blog.vuejs.org/posts/vue-3.2.html

36 Single-File-Component (SFC) mit Composition-API

9.2 SFC-Beispiel

Im Kontrast zum vorherigen Kapitel zeigt das folgende Listing den Quadratwurzelrechner nun als

wiederverwendbare Single-File-Component (SFC) in einer .vue-Datei mit Composition-API und

Setup-Direktive (<script setup>).

Die wichtigsten Unterschiede zur Implementierung mit dem Options-API sind:

▪ Die Programmiersprache ist TypeScript (lang="ts").

▪ Die SFC enthält keine vollständige Webseite, sondern nur ein Fragment.

▪ Das Fragment steht in <template> (mit der gleichen Template-Syntax wie im vorherigen

Kapitel). Dank TypeScript entfällt aber die Typkonvertierung beim Ausdruck 'Nächster Wert:

' + (x+1).

▪ Die CSS-Deklarationen sind mit <style scoped> auf die aktuelle Komponente begrenzt

(Scoped Styles).

▪ Es wird hier keine Vue-Instanz erzeugt, da die Komponente Teil einer Vue.js-Anwendung

werden soll. Die Vue-Instanz wird zentral für alle Komponenten erzeugt (dazu später mehr).

▪ Benötigte Typen von Vue.js müssen importiert werden.

▪ Variablen, berechnete Werte, Funktionen und Lebenszyklus-Ereignisse stehen im <script

setup>-Tag nach logischen Gesichtspunkten sortiert.

▪ Anders als im vorherigen Kapitel kann man in diese wiederverwendbare Komponente einen

Parameter mit Namen startValue hereinreichen. Die in Vue.js eingebaute Funktion

defineProps() definiert die öffentlichen Parameter der Komponente. Syntaktisch ist dies ein

Makro, das vom Vue.js-Compiler zur Entwicklungszeit übersetzt wird.

▪ Alle Variablen, die sich verändern können, müssen mit der Hilfsfunktion ref() in ein Objekt

des Typs RefImpl verpackt und damit zu reaktiven Variablen gemacht werden.

▪ Berechnete Werte müssen mit computed() in ein Objekt des Typs ComputedRefImpl verpackt

werden.

▪ Beim lesenden und schreibenden Zugriff auf die RefImpl-Objekte, muss der Entwickler immer

.value aufrufen. Wenn man .value vergisst, meckert der TypeScript-Compiler: "Type T is not

assignable to Ref<T>". Im Template ist die Verwendung von .value freilich nicht notwendig:

dort werden die Objekte automatisch ausgepackt ("Unwrapping").

Zu beachten ist, dass der Inhalt von <script setup> bisher nicht in eine separate Datei ausgelagert

werden kann im Sinne einer Template-Datei und einer Code-Behind-Datei ("<script setup> cannot

be used with the src attribute" [https://v3.vuejs.org/api/sfc-script-setup.html#typescript-only-

features]).

Listing: Quadratwurzelrechner.vue
<!-- Vue.js Template -->

<template>

 <div id="Quadratwurzelrechner">

 <h2>{{name }}</h2>

 <h4>{{author}}</h4>

 <div>Zahl: <input type="number" v-model="x" style="width:50px;">

 <button @click="increment" :title="'Nächster Wert: ' +

(x+1)">+1</button> Quadratwurzel: {{result.toFixed(2)}}

 </div>

 <hr>

https://v3.vuejs.org/api/sfc-script-setup.html%23typescript-only-features
https://v3.vuejs.org/api/sfc-script-setup.html%23typescript-only-features

Single-File-Component (SFC) mit Composition-API 37

 <h3 v-if="all.size > 0">{{all.size}} Ergebnisse:</h3>

 <li v-for="[key,value] in all"

 v-bind:key="key"

 v-bind:class="{'even': key%2==0, 'odd': key%2!=0}">

 <!-- or: v-bind:style="{color: (key%2==0 ? 'green' :

'blue')}"> -->

 {{key}} = {{value.toFixed(2)}}

</div>

</template>

<!-- Scoped CSS -->

<style scoped>

 li { margin: 2px; }

 li::marker { color:red; }

 .even { color: green}

 .odd { color: blue}

</style>

<!-- Composition-API in Single-File-Components (SFCs) -->

<script setup lang="ts">

import { ref, computed, onMounted } from 'vue';

import { version } from 'vue';

// Parameter

const props = defineProps({;

 startValue: Number

});

// Variablen

const name = "Quadratwurzelrechner in Vue.js " + version;

let author = ref('(C) Dr. Holger Schwichtenberg');

let x = ref(props.startValue || 0);

let all = new Map();

// Berechnete Werte

let result = computed(()=> Math.sqrt(x.value));

// Benutzerereignis

function increment()

{

 x.value++;

 all.set(x.value, result.value);

}

38 Single-File-Component (SFC) mit Composition-API

// Lebenszyklusereignis

onMounted(() => {

 console.log(name + ": mounted!");

 author.value += " " + new Date().getFullYear();

 });

</script>

Das Schlüsselwort this ist in solchen Single-File-Components übrigens nicht belegt. Wir befinden

uns auch offensichtlich nicht in einer TypeScript-Klasse, denn wir müssen Variablen mit let bzw.

const deklarieren und das Schlüsselwort function vor alle Funktionen schreiben. Eine Kombination

von <script setup> mit Vue Class Component ist noch nicht möglich (siehe

[https://github.com/vuejs/vue-class-component/issues/416]).

9.3 Nutzung einer Single-File-Component

Die Single-File-Component aus dem vorherigen Unterkapitel kann man in der vorliegenden Form

nicht einfach in einem Browser ausführen, denn sie braucht als Umgebung ein Vue.js-Projekt mit

Startcode, Layout-Seite, TypeScript-Transpiler und Bundler.

Zum einfachen, isolierten Test einer Komponente gibt es eine solche Umgebung auf einer vom

Vue.js-Team betriebenen Website, dem "Vue SFC Playground" [https://sfc.vuejs.org]. Hier kann

man den obigen Code erfassen und dann direkt im Browserfenster ausführen, siehe folgende

Abbildung.

Abbildung: Die Vue.js-Komponente aus dem Listing im Vue SFC Playground

Für die echte Softwareentwicklung braucht man ein Vue.js-Projekt. Solch ein Projekt erschafft man

besser nicht von Hand, sondern über die Vue CLI [https://cli.vuejs.org] oder das Werkzeug Vite

[https://vitejs.dev]. Hier soll die etablierte Vue CLI zum Einsatz kommen.

Die zuvor gezeigte Single-File-Component Quadratwurzelrechner.vue kann man als eigenständige

Webseite in eine Vue.js-Anwendung einbetten oder über den Komponentennamen ohne .vue als

Tagnamen:

<Quadratwurzelrechner :startvalue="10"></Quadratwurzelrechner>

https://github.com/vuejs/vue-class-component/issues/416
https://sfc.vuejs.org/
https://cli.vuejs.org/
https://vitejs.dev/

Single-File-Component (SFC) mit Composition-API 39

Der Doppelpunkt vor dem Parameter startValue zeigt an, dass der Inhalt nicht – wie in HTML-

Attributen üblich – als einfache Zeichenkette, sondern per Vue.js-Datenbindung erfolgen soll; hier

könnte also ein beliebiger JavaScript-Ausdruck folgen. Die Wertübergabe ohne den Doppelpunkt

würde in diesem Fall zwar auch funktionieren, aber Vue.js würde sich in der Browserkonsole leicht

beschweren: "[Vue warn]: Invalid prop: type check failed for prop "startvalue". Expected Number

with value 10, got String with value "10"."

40 Vue.js-Projekte mit der Vue CLI

10 Vue.js-Projekte mit der Vue CLI

10.1 Anlegen des Projekts mit der Vue CLI

Für den weiteren Verlauf dieses Buchs sollten die im Kapitel 6 dokumentierten Voraussetzungen

(Node.js, Visual Studio Code, Volar) installiert haben.

Dann installieren Sie die Vue CLI wie folgt per Node Package Manager:

npm install -g @vue/cli@4.5.15

Etwas unbehaglich wird einem Entwickler, weil bei der Installation der Vue CLI zahlreiche

Warnungen bezüglich nicht mehr gepflegter Pakete und Sicherheitslücken erscheinen, siehe

folgende Abbildung. Aber solche Missstände sind aufgrund der Kurzlebigkeit vieler NPM-Pakete

in der Webwelt leider in vielen Frameworks so üblich. Ebenso die Tatsache, dass man sehr viele

NPM-Pakete braucht: Wie man in der folgenden Abbildung sieht, hat die Vue CLI stolze 942 NPM-

Abhängigkeiten.

Als ersten Test nach dem Installieren prüft man die Versionsnummer der Vue CLI:

vue --version

Abbildung: Warnungen beim Installieren der Vue CLI

Hinweis: Zum Zeitpunkt der ersten Erstellung dieses Textes (Ende Januar 2022) war die Version

4.5.15 der Vue CLI aktuell; diese Version ist am 28. Oktober 2021 erschienen.

Danach, am 17.5.2022, ist zwar die Version 5.0 der Vue CLI erschienen

[https://github.com/vuejs/vue-cli/releases]. Allerdings zeigte sich in verschiedenen Tests, dass

diese noch sehr fehlerhaft ist. So kann diese Version der Vue CLI noch mal erfolgreich ein

Grundprojekt mit Nightwatch-Tests für Chrome erstellen, siehe Screenshot und

https://github.com/vuejs/vue-cli/issues/4689

Diese Version der Vue CLI ist daher leider noch nicht praxisreif und das Buch bleibt daher

vorerst auf der Version 4.5.15.

Wenn Sie dennoch es mit der Vue CLI Version > 5 versuchen wollen, nutzen Sie den obigen

Befehl ohne Angabe einer Versionsnummer, um die aktuellste Version zu installieren:

npm install -g @vue/cli

https://github.com/vuejs/vue-cli/releases
https://github.com/vuejs/vue-cli/issues/4689

Vue.js-Projekte mit der Vue CLI 41

Dieses Buch wird auf die Version 5.0 umgestellt, sobald die Vue CLI 5 auch mit Chrome korrekt

funktioniert.

Abbildung: Die Vue CLI Version 5.0.1 scheitert schon beim Anlegen eines neuen Projekts, weil

die Nightwatch-Tests eine Beta-Version des Chrome-Drivers (99) verwenden, die noch gar nicht

in NPM verfügbar ist

Abbildung: Liste der derzeit verfügbaren Versionen des Chrome-Drivers auf NPM

