learnbyexample

VIM REFERENCE
GUIDE

Sundeep Agarwal

Table of contents

Preface
Prerequisites L e e e e e e e e e e e e e
Conventions e e e e e e e e e e e e e
How tousethisguide e e
Acknowledgements L L e e e e e e
Feedback and Errata e e e e
Authorinfo L e e e
License e e e e e e e e e e e e e e
Book version L e e e e e e e e e e

Introduction
Why VIm? . . . e e e e e e e e e e e
Installation L e e e e e e e e e e
Ice Breaker e e e e e e e
Built-in tutor L e e e e
Built-inhelp e e e e e e
Vim learning resources 0 e e e e e e e e e e e e e e
Modes of Operation e e e e e
Identifying the current mode e
Vim philosophy and features e
Vim’s history e e e e e e e e e e
Chapters e e e e e e e e e e

Insert mode
Motion keys and commands L L. Lo e e e e e e e e e e e e e
Deleting L e e e e e e e e e
Autocomplete word L L L e e e e e
Autocomplete line L e e
Autocomplete assist L L L L e e e e e e e
Execute a Normal mode command o0
Indenting e e e e e e e
Insert register contents L Lo L e
Insert special characters e
Insert digraphs L e e e e

Normal mode

Replace characters e e e e
Repeatachange e e e
Opennew line e e e e e e e e e e e e e e e
Moving within the currentline o L oo
Charactermotions e e e e e e e e e e e
Word motions L e e e e e e e e e e
Text object motions L e e e e e

14
14
14
15
15
15
15
15
16
16
16

Moving within the currentfile oo Lo oL 22

Moving within the visible windowo Lo L s 22
Scrolling e e e e e e e e e e e e e 22
Reposition the currentline oo 23
Indenting e e e e e e e e e e 23
Mark frequently used locations L e 23
Jumping backand forth 24
Editwithmotion e e e e e e 24
Context editing L e e e e e e 25
Named registers e e e e e e e e e e e 26
Special registers L e e e e e e 26
Search word nearesttothecursoro 27
Joinlines e e e e e e e e e e e 27
Changing case o e e e e e e e e e e e e 27
Increment and Decrement numberso oo 28
Miscellaneous e e e e e e e e e e e e e 28
Switching modes L e e e e e e 28

Preface

Vim Reference Guide is intended as a concise learning resource for beginner to intermediate
level Vim users. It has more in common with cheatsheets than a typical text book. Most features
are presented using a sample usage. Topics like Regular Expressions and Macros have more
detailed explanations and examples due to their complexity.

The features covered in this guide are shaped and limited by my own experiences since 2007.
You might expect me to have already become an expert, but I'm not there yet (nor do I have a
pressing need for such expertise). The earlier version of this guide was written in 2017 and I did
an extensive rework to get it fit for publication. A large portion of that time was spent correcting
my understanding of Vim commands, going through user and reference manuals, getting good
at using the built-in help, learning new features and so on.

I do give a brief introduction to get started with using Vim, but having prior experience would be
ideal before using this resource. As a minimum requirement, you should be able touse vimtutor
on your own.

You are also expected to get comfortable with reading manuals, searching online, visiting exter-
nal links provided for further reading, tinkering with the illustrated examples, asking for help
when you are stuck and so on. In other words, be proactive and curious instead of just consuming
the content passively.

@ See my Vim curated list for links to tutorials, books, interactive resources, cheatsheets,
tips, tricks, forums and so on.

e This guide is based on Vim version 9.1 and some instructions assume Unix/Linux like op-
erating systems. Where possible, details and resources are mentioned for other platforms.

e [prefer using GVim, so you might find some differences if you are using Vim.

e Built-in help command examples are also linked to an online version. For example, clicking
:h usr toc.txt will take you to table of contents for Vim User Manual. :h usr toc.txt is
also a command that you can use from within Vim.

e External links are provided throughout the book for exploring some topics in more depth.

e My vim reference repo has markdown source and other details related to the book. If you
are not familiar with the git command, click the Code button on the webpage to get the
files.

e Since many chapters take the form of cheatsheet with examples, this is a densely packed
guide. Feel free to skim read some sections (because you already know them, not applica-
ble for your use cases, etc), but try not to skip them entirely.

e If you are not able to understand a particular feature, go through the Vim user manual
for that topic first. Each chapter has related documentation links at the top and external
learning resources are often mentioned at the end of command descriptions.

e Practice the commands multiple times to build muscle memory.

https://github.com/learnbyexample/vim_reference/tree/62eb9b8407904b26f07972a5a92b27d5e7eeaeb7
https://learnbyexample.github.io/curated_resources/vim.html
https://vimhelp.org/usr_toc.txt.html
https://github.com/learnbyexample/vim_reference

e Building your own cheatsheet is highly recommended. You wouldn’t need to refer most of
the basic commands often, so you’ll end up with a manageable reference sheet. As you
continue to build muscle memory, you can prune the cheatsheet further.

e This guide covers a lot, but not everything. So, you’ll need to learn from other resources
too and add to your personal cheatsheet.

Vim help files — user and reference manuals

/r/vim/ and vi.stackexchange — helpful forums

tex.stackexchange — for help on pandoc and tex related questions
canva — cover image

Warning and Info icons by Amada44 under public domain

oxipng, pngquant and svgcleaner — for optimizing images

Rodrigo Girao Serrao — for feedback and suggestions

Andy — for cover image suggestions

I would highly appreciate it if you’d let me know how you felt about this book. It could be anything
from a simple thank you, pointing out a typo, mistakes in code snippets, which aspects of the
book worked for you (or didn’t!) and so on. Reader feedback is essential and especially so for
self-published authors.

You can reach me via:

e Issue Manager: https://github.com/learnbyexample/vim reference/issues
e E-mail: learnbyexample.net@gmail.com
e Twitter: https://twitter.com/learn byexample

Sundeep Agarwal is a lazy being who prefers to work just enough to support his modest lifestyle.
He accumulated vast wealth working as a Design Engineer at Analog Devices and retired from the
corporate world at the ripe age of twenty-eight. Unfortunately, he squandered his savings within
a few years and had to scramble trying to earn a living. Against all odds, selling programming
ebooks saved his lazy self from having to look for a job again. He can now afford all the fantasy
ebooks he wants to read and spends unhealthy amount of time browsing the internet.

When the creative muse strikes, he can be found working on yet another programming ebook
(which invariably ends up having at least one example with regular expressions). Researching
materials for his ebooks and everyday social media usage drowned his bookmarks, so he main-
tains curated resource lists for sanity sake. He is thankful for free learning resources and open
source tools. His own contributions can be found at https://github.com/learnbyexample.

List of books: https://learnbyexample.github.io/books/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License.

Code snippets are available under MIT License.

https://vimhelp.org/
https://old.reddit.com/r/vim
https://vi.stackexchange.com/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://www.canva.com/
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner
https://mathspp.com/
https://twitter.com/andylondon
https://github.com/learnbyexample/vim_reference/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/vim_reference/blob/master/LICENSE

Resources mentioned in Acknowledgements section above are available under original licenses.

2.0

See Version changes.md to track changes across book versions.

https://github.com/learnbyexample/vim_reference/blob/master/Version_changes.md

Introduction

Back in 2007, I had a rough beginning as a design engineer at a semiconductor company in
terms of using software tools. Linux command line, Vim and Perl were all new to me. I distinctly
remember progressing from dd (delete currentline) to d¢ (delete current line as well as the
line below) and feeling happy that it reduced time spent on editing. Since I was learning on the
job, I didn’t know about count prefix or the various ways I could’ve deleted all the lines from the
beginning of the file to the line containing a specific phrase. Or even better, I could’ve automated
editing multiple files if I had been familiar with sed or progressed that far with Perl.

I also remember that we got a two-sided printed cheatsheet that we kept pinned to our cabins.
That was one of the ways I kept adding commands to my repertoire. But, I didn’t have a good
insight to Vim’s philosophy and I didn’t know how to apply many of the cheatsheet commands.
At some point, I decided to read the Vim book by Steve Oualline and that helped a lot, but it was
also too long and comprehensive for me to read it all. My memory is hazy after that, and I don't
recall what other resources I used. However, I'm sure I didn’t effectively utilize built-in help.
Nor did I know about stackoverflow or /r/vim until after I left my job in 2014.

Still, T knew enough to conduct a few Vim learning sessions for my colleagues. That came in
handy when I got chances to teach Vim as part of a scripting course for college students. From
2016 to 2018, I started maintaining my tutorials on Linux command line, Vim and scripting
languages as GitHub repos. As you might guess, I then started polishing these materials and
published them as ebooks. This is an ongoing process, with Vim Reference Guide being the
twelfth ebook.

You've probably already heard that Vim is a text editor, powerful one at that. Vim’s editing
features feel like a programming language and you can customize the editor using scripting
languages. Apart from a plethora of editing commands and support for regular expressions, you
can also incorporate external commands. To sum it up, most editing tasks can be managed from
within Vim itself instead of having to write a script.

Now, you might wonder, what is this need for complicated editing features? Why does a
text editor require programming capabilities? Why is there even a requirement to learn
how to use a text editor? Isn’t it enough to have the ability to enter text, use keys like
Backspace/Delete/Home/End/Arrow/etc, menubar, toolbar, some shortcuts, a search and
replace feature and so on? A simple and short answer — to reduce repetitive manual task.

What I like the most about Vim:

e Lightweight and fast

Modal editing helps me to think logically based on the type of editing task
Composing commands and the ability to record them for future use
Settings customization and creating new commands

Integration with shell commands

There’s a huge ecosystem of plugins, packages and colorschemes as well, but I haven’t used
them much. I've used Vim for a long time, but not really a power user. I prefer using GVim, tab
pages, mouse, arrow keys, etc. So, if you come across tutorials and books suggesting you should
avoid using them, remember that they are only subjective preferences.

Here are some more opinions by those who enjoy using Vim:

http://www.oualline.com/vim-book.html
https://stackoverflow.com/questions/tagged/vim
https://old.reddit.com/r/vim/
https://learnbyexample.github.io/books/

e stackoverflow: What are the benefits of learning Vim?
e Why Vim
e Vim Creep

A Should everybody use Vim? Is it suitable for all kinds of editing tasks? I'd say no.
There are plenty of other well established text editors and new ones are coming up all
the time. The learning curve isn’t worth it for everybody. If Vim wasn’t being used at job,
I probably wouldn’t have bothered with it. Don’t use Vim for the wrong reasons article
discusses this topic in more detail.

I use the following command on Ubuntu (a Linux distribution):

sudo apt install vim vim-gui-common

e :husr 90.txt — user manual for installation on different platforms, common issues, upgrad-
ing, uninstallation, etc

e vi.stackexchange: How can I get a newer version of Vim? — building from source, using
distribution packages, etc

@ See https://github.com/vim/vim for source code and other details.

Open a terminal and follow these steps:

e gvim ip.txt opens afile named ip.txt for editing
o You can also use vim if you prefer terminal instead of GUI, or if gvim is not
available
e Press i key (yes, the lowercase alphabet i , not some alien key)
e Start typing, for example What a weird editor
e Press Esc key
e Press : key
e Type wq
e Press Enter key
e cat ip.txt — sanity check to see what you typed was saved or not

Phew, what a complicated procedure to write a simple line of text, isn’t it? This is the most
challenging and confusing part for a Vim newbie. Here’s a brief explanation for the above steps:

e Vim is a modal editor. You have to be aware which mode you are in and use commands
or type text accordingly

e When you first launch Vim, it starts in Normal mode (primarily used for editing and mov-
ing around)

e Pressing i key is one of the ways to enter Insert mode (where you type the text you
want to save in a file)

e After you've entered the text, you need to save the file. To do so, you have to go back to
Normal mode first by pressing the Esc key

https://stackoverflow.com/q/597077/4082052
https://www.jakeworth.com/posts/why-vim/
https://rudism.com/vim.html
https://gist.github.com/romainl/6b952db7a6138b48657ba0fbb9d65370
https://vimhelp.org/usr_90.txt.html
https://vi.stackexchange.com/q/10817/1616
https://github.com/vim/vim

e Then, you have to go to yet another mode! Pressing : key brings up the Command-line
mode and awaits further instruction
e wq is acombination of write and quit commands
o use wq ip.txt ifyou forgot to specify the filename while launching Vim, or perhaps
if you opened Vim from the Start menu instead of a terminal
e Enter key completes the command you’ve typed

If you launched GVim, you’ll likely have Menu and Tool bars, which would’ve helped with oper-
ations like saving, quitting, etc. Nothing wrong with using them, but this book will not discuss
those operations. In fact, you'll learn how to configure Vim to hide them in the Customizing Vim
chapter.

Don’t proceed any further if you aren’t comfortable with the above steps. Take help of youtube
videos if you must. Master this basic procedure and you will be ready for Vim awesomeness
that’ll be discussed in the coming sections and chapters.

@ Material presented here is based on GVim (GUI), which has a few subtle differences
compared to Vim (TUI). See this stackoverflow thread for more details.

@ Options and details related to opening Vim from the command line will be discussed
in the CLI options chapter.

e gvimtutor command that opens a tutorial session with lessons to get started with Vim
o don’t worry if something goes wrong as you’ll be working with a temporary file
o use vimtutor if gvim is not available
o pro-tip: go through this short tutorial multiple times, spread over multiple days and
make copious notes for future reference

@ Next step is :h usr 02.txt, which provides enough information about editing files with
Vim.

@ See also vimtutor-sequel, which provides advanced lessons.

Vim comes with comprehensive user and reference manuals. The user manual reads like a text
book and reference manual has more details than you are likely to need. There’s also an online
site with these help contents, which will be linked as appropriate throughout this book.

e You can access built-in help in several ways:
o type :help from Normal mode (or just the :h short form)
o GVim hasa Help menu
o press F1 key from Normal mode

e :h usr toc.txt table of contents for User Manual

https://www.youtube.com/results?search_query=vim+editor
https://www.youtube.com/results?search_query=vim+editor
https://stackoverflow.com/q/22517896/4082052
https://vimhelp.org/usr_02.txt.html
https://github.com/micahkepe/vimtutor-sequel
https://vimhelp.org/usr_toc.txt.html

o Task oriented explanations, from simple to complex. Reads from start to end like a
book
:h reference toc table of contents for Reference Manual
o Precise description of how everything in Vim works
:h quickref quick reference guide
:h help-summary effectively using help depending on the topic/feature you are interested
in

o See also vi.stackexchange: guideline to use help
:h version9.txt what’s new in Vim 9
o See also VimLog, a ChangeLog for Vim

Here’s a neat table from :h help-context:

WHAT PREPEND EXAMPLE

Normal mode command :help x

Visual mode command v :help v u

Insert mode command i thelp i <Esc>
Command-line command : :help :quit
Command-line editing c_ :help c
Vim command argument - thelp -r

Option : :help 'textwidth'
Regular expression / thelp /I

@ You can go through a copy of the documentation online at https://vimhelp.org/. As
shown above, all the :h hints in this book will also be linked to the appropriate online
help section.

As mentioned in the Preface chapter, this Vim Reference Guide is more like a cheatsheet in-
stead of a typical book for learning Vim. In addition to built-in features already mentioned in the
previous sections, here are some resources you can use:

Tutorials

e Vim primer — learn Vim in a way that will stay with you for life

e Vim galore — everything you need to know about Vim

e Learn Vim progressively — short introduction that covers a lot

e Vim from the ground up — article series for beginners to expert users

Books

e Practical Vim
e Mastering Vim Quickly
e Learn Vim (the Smart Way)

Interactive

e OpenVim — interactive tutorial
e Vim Adventures — learn Vim by playing a game

10

https://vimhelp.org/#reference_toc
https://vimhelp.org/quickref.txt.html
https://vimhelp.org/usr_02.txt.html#help-summary
https://vi.stackexchange.com/q/2136/1616
https://vimhelp.org/version9.txt.html
https://www.arp242.net/vimlog/
https://vimhelp.org/#help-context
https://vimhelp.org/
https://danielmiessler.com/p/vim/
https://github.com/mhinz/vim-galore/blob/master/README.md
https://yannesposito.com/Scratch/en/blog/Learn-Vim-Progressively/
https://thevaluable.dev/vim-commands-beginner/
https://pragprog.com/titles/dnvim2/practical-vim-second-edition/
https://jovicailic.org/mastering-vim-quickly/
https://github.com/iggredible/Learn-Vim
https://www.openvim.com/tutorial.html
https://vim-adventures.com/

e Learn vim and learn it fast — interactive lessons designed to help you get better at Vim
faster

@ See my Vim curated list for a more complete list of learning resources, cheatsheets,
tips, tricks, forums, etc.

As mentioned earlier, Vim is a modal editor. This book will mainly discuss these four modes:

Insert mode

Normal mode

Visual mode
Command-line mode

This section provides a brief description for these modes. Separate chapters will discuss their
features in more detail.

@ For a complete list of modes, see :h vim-modes-intro and :h mode-switching. See also
this comprehensive illustration of navigating modes.

Insert mode

This is the mode where the required text is typed. There are also commands available for moving
around, deleting, autocompletion, etc.

Pressing the Esc key takes you back to the Normal mode.
Normal mode

This is the default mode when Vim is opened. This mode is used to run commands for operations
like cut, copy, paste, recording, moving around, etc. This is also known as the Command mode.

Visual mode

Visual mode is used to edit text by selecting them first. Selection can either be done using mouse
or visual commands.

Pressing the Esc key takes you back to the Normal mode.
Command-line mode

This mode is used to perform file operations like save, quit, search, replace, execute shell com-
mands, etc. An operation is completed by pressing the Enter key after which the mode changes
back to the Normal mode. The Esc key can be used to ignore whatever is typed and return to
the Normal mode.

The space at the bottom of the screen used for this mode is referred to as Command-line area.
It is usually a single line, but can expand for cases like auto completion, shell commands, etc.

e In Insert mode, you get a blinking | cursor
o also, -- INSERT -- can be seen on the left hand side of the Command-line area

11

https://www.learnvim.com/
https://learnbyexample.github.io/curated_resources/vim.html
https://vimhelp.org/intro.txt.html#vim-modes-intro
https://vimhelp.org/intro.txt.html#mode-switching
https://gist.github.com/kennypete/1fae2e48f5b0577f9b7b10712cec3212

e In Normal mode, you get a blinking rectangular block cursor, something like this [Jj

e In Visual mode, the Command-line area shows -- VISUAL -- or -- VISUAL LINE -- or
-- VISUAL BLOCK -- according to the visual command used

e In Command-line mode, the cursor is of course in the Command-line area

@ See also :h ‘'showmode’ setting.

@ Commands discussed in this section will be covered again in later chapters. The idea
here is to give you a brief introduction to modes and notable Vim features. See also:
e Best introduction to Vi and its core editing concepts explained as a language (this
stackoverflow thread also has numerous Vim tips and tricks)
e Seven habits of effective text editing

As a programmer, I love how composable Vim commands are. For example, you can do this in
Normal mode:

e dG delete from the current line to the end of the file
o where d isthe delete command awaiting further instruction
o and G is a motion command to move to the last line of the file
e yG copy from the current line to the end of the file
o where y isthe yank (copy) command awaiting further instruction

Most Normal mode commands accept a count prefix. For example:

e 3p paste the copied content three times

e 5x delete the character under the cursor and 4 characters to its right (total 5 characters)
e 3 followed by Ctrl + a add 3 tothe number under the cursor

There are context aware operations too. For example:

e diw delete a word regardless of where the cursor is on that word
e vya} copy all characters within {} including the {} characters

If you are a fan of selecting text before editing them, you can use the Visual mode. There are
several commands you can use to start Visual mode. If enabled, you can even use mouse to select
the required portions.

e -~ invert the case of the visually selected text (i.e. lowercase becomes UPPERCASE and
vice versa)
e g followed by Ctrl + a for visually selected lines, increment numbers by 1 for the

first line, by 2 for the second line, by 3 for the third line and so on

The Command-line mode is useful for file level operations, search and replace, changing Vim
configurations, talking to external commands and so on.

e /searchpattern search the given pattern in the forward direction

e :g/call/d delete all lines containing call

e :g/cat/ s/animal/mammal/g replace animal with mammal only for the lines containing
cat

12

https://vimhelp.org/options.txt.html#%27showmode%27
https://stackoverflow.com/a/1220118/4082052
https://www.moolenaar.net/habits.html

e :3,8! sort sortonlylines 3 to 8 (uses an external command sort)
e :set incsearch highlights the current match as you type the search pattern

Changes to Vim configurations from the Command-line mode are applicable only for that partic-
ular session. You can use the vimrc file to load the settings at startup.

e colorscheme murphy a dark theme

set tabstop=4 width for the tab character (defaultis 8)

nnoremap <F5> :%y+<CR> map F5 key to copy everything to the system clipboard in
Normal mode

inoreabbrev teh the automatically correct teh to the in Insert mode

There are many more Vim features that’d help you with text processing and customizing the
editor to your needs, some of which you’ll get to know in the coming chapters.

Finally, you can apply your Vim skills elsewhere too. Vim-like features have been adopted across
a huge variety of applications and plugins, for example:

e less command supports vim-like navigation

Extensible vi layer for Emacs

Vimium (browser extension), qutebrowser (keyboard-driven browser with vim-like naviga-
tion), etc

JetBrains IdeaVim, VSCodeVim, etc

Huge list of Vim-like applications and plugins

See Where Vim Came From if you are interested in knowing Vim’s history that traces back to
the 1960s with ged , ed , etc.

Here’s a list of remaining chapters:

Insert mode

Normal mode
Command-line mode
Visual mode
Regular Expressions
Macro

Customizing Vim
CLI options

13

https://www.mankier.com/1/less
https://www.emacswiki.org/emacs/Evil
https://vimium.github.io/
https://qutebrowser.org/
https://qutebrowser.org/
https://plugins.jetbrains.com/plugin/164-ideavim
https://marketplace.visualstudio.com/items?itemName=vscodevim.vim
https://vim.reversed.top/
https://twobithistory.org/2018/08/05/where-vim-came-from.html

Insert mode

This is the mode where the required text is typed. There are also commands available for moving
around, deleting, autocompletion, etc.

Documentation links:

:h usr 24.txt — overview of the most often used Insert mode commands
:h insert.txt — reference manual for Insert and Replace mode

@ Recall that you need to add i prefix for built-in help on Insert mode commands, for
example :h i CTRL-P.

< move left by one character within the current line
- move right by one character within the current line
1 move down by one line
t+ move up by one line
Ctrl + « and Ctrl + - move to the start of the current/previous and next word
respectively
o From :h word “A word consists of a sequence of letters, digits and underscores, or a
sequence of other non-blank characters, separated with white space”
o you can also use Shift key instead of Ctrl
Home move to the start of the line
End move to the end of the line
PageUp move up by one screen
PageDown move down by one screen

Ctrl + Home move to the start of the file
Ctrl + End move to the end of the file

@ You can use the whichwrap setting (ww for short) to allow « and - arrow keys
to cross lines. For example, :set ww+=[,] tells Vim to allow left and right arrow keys
to move across lines in Insert mode (+= is used here to preserve existing options for the
whichwrap setting).

Delete delete the character after the cursor
Backspace delete the character before the cursor

o Ctrl + h also deletes the character before the cursor
Ctrl + w delete characters before the cursor until the start of a word
o From :h word ”A word consists of a sequence of letters, digits and underscores, or a
sequence of other non-blank characters, separated with white space”
Ctrl + u delete all the characters before the cursor in the current line, preserves inden-
tation if any
o if you have typed some characters in an existing line, this will delete characters till
the starting point of the modification

14

https://vimhelp.org/usr_24.txt.html
https://vimhelp.org/insert.txt.html
https://vimhelp.org/insert.txt.html#i_CTRL-P
https://vimhelp.org/motion.txt.html#word
https://vimhelp.org/motion.txt.html#word

e Ctrl + p autocomplete word based on matching words in the backward direction
e Ctrl + n autocomplete word based on matching words in the forward direction

If more than one word matches, they are displayed using a popup menu. You can take further
action using the following options:

e t and ¢ move up and down the list, but doesn’t change the autocompleted text
e Ctrl + p and Ctrl + n move up and down the list as well as change the autocompleted
text to that particular selection
e Ctrl + y confirm the current selection (the popup menu disappears)
o you can also use the Enter key for confirmation if you have used the arrow keys to
move through the popup list

@ Typing any character will make the popup menu disappear and insert whatever char-
acter you had typed.

e Ctrl + x followed by Ctrl + 1 autocomplete line based on matching lines in the
backward direction

@ If more than one line matches, they are displayed using a popup menu. In addition to
the options seen in the previous section, you can also use Ctrl + 1 to move up the list.

e Ctrl + e cancels autocomplete
o you’ll retain the text you had typed before invoking autocomplete

@ See :h ins-completion for more details and other autocomplete features. See :h ‘com-
plete’ setting for customizing autocomplete commands.

Ctrl + o execute a Normal mode command and return to Insert mode
o Ctrl + o followed by A moves the cursor to the end of the current line
o Ctrl + o followed by 3j moves the cursor three lines below

o Ctrl + o followed by ce clear till the end of the word

Ctrl + t indent the current line
Ctrl + d unindent the current line
0 followed by Ctrl + d deletes all indentation in the current line

15

https://vimhelp.org/insert.txt.html#ins-completion
https://vimhelp.org/options.txt.html#%27complete%27
https://vimhelp.org/options.txt.html#%27complete%27

@ Cursor can be anywhere in the line for the above features. Indentation depends on
the shiftwidth setting. See :h ’shiftwidth’ for more details.

e Ctrl + r helps toinsert the contents of a register
o Ctrl + r followed by % inserts the current file name
o Ctrl + r followed by a inserts the content of "a register
e Ctrl + r followed by = allows you to insert the result of an expression
o Ctrl + r followed by =12+1012 and then Enter keyinserts 1024
o Ctrl + r followed by =strftime("%Y/%m/%d") and then Enter key inserts the
current date, for example 2022/02/02

From :h 24.6:

~

If the register contains characters such as <BS> or other special characters, they
are interpreted as if they had been typed from the keyboard. If you do not want this
to happen (you really want the <BS> to be inserted in the text), use the command
CTRL-R CTRL-R {register} .

@ Registers will be discussed in more details in the Normal mode chapter. See :h
usr 41.txt to get started with Vim script.

e Ctrl + v helps to insert special keys literally
o Ctrl + v followed by Esc gives ~[
o Ctrl + v followed by Enter gives "M
e Ctrl + g aliasfor Ctrl + v , helpsifitis mapped to do something else

@ You'll see a practical usage of this command in the Macro chapter. You can also specify
the character using decimal, octal or hexadecimal formats. See :h 24.8 for more details.

e Ctrl + k helpstoinsert digraphs (two character combinations used to represent a single
character, such characters are usually not available on the keyboard)
o Ctrl + k followed by Ye gives ¥

@ You can use :digraphs to get a list of combinations and their respective characters.

You can also define your own combinations using the :digraph command. See :h 24.9
for more details.

16

https://vimhelp.org/options.txt.html#%27shiftwidth%27
https://vimhelp.org/usr_24.txt.html#24.6
https://vimhelp.org/usr_41.txt.html
https://vimhelp.org/usr_41.txt.html
https://vimhelp.org/usr_24.txt.html#24.8
https://vimhelp.org/usr_24.txt.html#24.9

Normal mode

Make sure you are in Normal mode before trying out the commands in this chapter. Press Esc
key to return to Normal mode from other modes. Press Esc again if needed.

Documentation links:

:h usr 03.txt — moving around

:h usr 04.txt — making small changes

:h motion.txt — reference manual for motion commands

:h change.txt — reference manual for commands that delete or change text
:h undo.txt — reference manual for undo and redo

The four arrow keys can be used in Vim to move around, just like other text editors. Vim also
maps them to four letters in Normal mode.

or « move left by one character within the current line
or 1 move down by one line

or t move up by one line
or - move right by one character within the current line

o o
—~ x w =

Vim offers a plethora of motion commands. Several sections will discuss them later in this chap-
ter.

~ a

@ You can use the whichwrap setting to allow <« and - arrow keys to cross lines.
For example, :set ww+=<,> tells Vim to allow left and right arrow keys to move across
lines in Normal and Visual modes. Add h and 1 to this comma separated list if want
those commands to cross lines as well.

There are various ways to delete text. All of these commands can be prefixed with a count value.
d and c¢ commands can accept any of the motion commands. Only arrow motion examples
are shown in this section, many more variations will be discussed later in this chapter.

dd delete the current line
2dd delete the current line and the line below it (total 2 lines)
o dj or d¢ can also be used
10dd delete the current line and 9 lines below it (total 10 lines)
dk delete the current line and the line above it
o dt can also be used
e d3k delete the current line and 3 lines above it (total 4 lines)
o 3dk can also be used
D delete from the current character to the end of line (same as d$, where $ is a
motion command to move to the end of line)
x delete only the current character under the cursor (same as dl)
5x delete the character under the cursor and 4 characters to its right (total 5 characters)
X delete the character before the cursor (same as dh)

17

https://vimhelp.org/usr_03.txt.html
https://vimhelp.org/usr_04.txt.html
https://vimhelp.org/motion.txt.html
https://vimhelp.org/change.txt.html
https://vimhelp.org/undo.txt.html

o if the cursor is on the first character in the line, deleting would depend on the
whichwrap setting as discussed earlier

5X delete 5 characters to the left of the cursor
cc delete the current line and change to Insert mode

o indentation will be preserved depending on the autoindent setting
4cc delete the current line and 3 lines below it and change to Insert mode (total 4 lines)
C delete from the current character to the end of line and change to Insert mode
s delete only the character under the cursor and change to Insert mode (same as cl)
5s delete the character under the cursor and 4 characters to its right and change to
Insert mode (total 5 characters)
S delete the current line and change to Insert mode (same as cc)

o indentation will be preserved depending on the autoindent setting

@ You can also select text (using mouse or visual commands) and then press d or x
or c¢ or s todeletethe selected portions. Example usage will be discussed in the Visual
mode chapter.

@ The deleted portions can also be pasted elsewhere using the paste command (dis-
cussed later in this chapter).

There are various ways to copy text using the yank command vy .

e yy copy the current line

o Y also copies the current line
e y$ copy from the current character to the end of line

o use :nnoremap Y y$ ifyouwant Y to behave similarly tothe D command
e 2yy copy the current line and the line below it (total 2 lines)

o yj and y! can also be used
e 10yy copy the current line and 9 lines below it (total 10 lines)

e yk copy the current line and the line above it
o yt can also be used

@ You can also select text (using mouse or visual commands) and then press y to copy
them.

The put (paste) command p is used after cut or copy operations.

e p paste the copied content once

o if the copied text was line based, content is pasted below the current line

o if the copied text was part of a line, content is pasted to the right of the cursor
e P paste the copied content once

o if the copied text was line based, content is pasted above the current line

18

o if the copied text was part of a line, content is pasted to the left of the cursor
3p and 3P paste the copied content three times

Ip paste the copied content like p command, but changes the indentation level to match
the current line
e [p pastethe copied contentlike P command, but changes the indentation level to match
the current line

u undo last change
o press u again for further undos

U undo latest changes on last edited line
o press U again to redo changes

[@ See :h 32.3 for detailson g- and g+ commands that you can use to undo branches.

e Ctrl + r redo achange undone by u
e U redo changes undone by U

Often, you just need to change one character. For example, changing i to j , 2 to 4 and
SO on.

e rj replace the character under the cursor with j
e ry replace the character under the cursor with vy
e 3ra replace the character under cursor as well as the two characters to the right with
aaa
o the command will entirely fail if there aren’t sufficient characters to match the count

To replace multiple characters with different characters, use R .

e Rlion followed by Esc replace the character under cursor and three characters to the
right with lion
o Esc key marks the completion of R command
o Backspace key will act as an undo command to give back the character that was
replaced
o if you are replacing at the end of a line, the line will be automatically extended if
needed

The advantage of r and R commands is that you remain in the Normal mode, without needing
to switch to Insert mode and back.

e . the dot command repeats the last change
e If the last change was 2dd (delete current line and the line below), dot key will repeat
2dd

19

https://vimhelp.org/usr_32.txt.html#32.3

e Ifthe last change was 5x (delete current character and four characters to the right), dot
key will repeat 5x

e If the last change was (123<Esc> and dot key is pressed, it will clear from the current
character to the end of the line, insert 123 and go back to Normal mode

From :h 4.3:

The . command works for all changes you make, except for u (undo), CTRL-R (redo)
and commands that start with a colon (:).

@ See :h repeat.txt for complex repeats, using Vim scripts, etc.

e 0 open a new line below the current line and change to Insert mode
e 0 open a new line above the current line and change to Insert mode

@ Indentation of the new line depends on the autoindent , smartindent and cindent
settings.

e 0 move to the beginning of the current line (i.e. column number 1)
o you can also use the Home key
e ~ move to the beginning of the first non-blank character of the current line (useful for
indented lines)
e $ move to the end of the current line
o you can also use the End key
o 3% move to the end of 2 lines below the current line
e g move to the last non-blank character of the current line
e 3| move to the third column character

o | issameas 0 or 1|
Moving within long lines that are spread over multiple screen lines:

e g0 move to the beginning of the current screen line

e g~ move to the first non-blank character of the current screen line

e g$ move to the end of the current screen line

e gj move down by one screen line, prefix a count to move down by that many screen lines

gk move up by one screen line, prefix a count to move up by that many screen lines
gm move to the middle of the current screen line
o Note that this is based on the screen width, not the number of characters in the line!
e gM move to the middle of the current line
o Note that this is based on the total number of characters in the line

[@ See :h left-right-motions for more details.

20

https://vimhelp.org/usr_04.txt.html#04.3
https://vimhelp.org/repeat.txt.html
https://vimhelp.org/motion.txt.html#left-right-motions

These commands allow you to move based on a single character search, within the current

line only.

e f(move forward to the next occurrence of character (
e fb move forward to the next occurrence of character b
e 3f" move forward to the third occurrence of character "
e t; move forward to the character just before ;
e 3tx move forward to the character just before the third occurrence of character x
e Fa move backward to the character a
e Ta move backward to the character just after a
e ; repeat the previous character motion in the same direction
e , repeat the previous character motion in the opposite direction
o for example, tc becomes Tc and vice versa

@ Note that the previously used count prefix wouldn’t be repeated with the ; or ,
commands, but you can use a new count prefix. If you pressed a wrong motion command,
use the Esc key to abandon the search instead of continuing with the wrongly chosen
command.

Definitions from :h word and :h WORD are quoted below:

7

word A word consists of a sequence of letters, digits and underscores, or a sequence of
other non-blank characters, separated with white space (spaces, tabs, <EOL>). This can
be changed with the iskeyword option. An empty line is also considered to be a word.

WORD A WORD consists of a sequence of non-blank characters, separated with white

space. An empty line is also considered to be a WORD.

w move to the start of the next word
W move to the start of the next WORD

o 192.1.168.43;hello is considered a single WORD, but has multiple words
b move to the beginning of the current word if the cursor is not at the start of word.
Otherwise, move to the beginning of the previous word
B move to the beginning of the current WORD if the cursor is not at the start of WORD.
Otherwise, move to the beginning of the previous WORD
e move to the end of the current word if cursor is not at the end of word. Otherwise,
move to the end of next word
E move to the end of the current WORD if cursor is not at the end of WORD. Otherwise,
move to the end of next WORD
ge move to the end of the previous word
gE move to the end of the previous WORD
3w move 3 words forward

o Similarly, a number can be prefixed for all the other commands mentioned above

21

https://vimhelp.org/motion.txt.html#word
https://vimhelp.org/motion.txt.html#WORD

@ All of these motions will work across lines. For example, if the cursor is on the last
word of a line, pressing w will move to the start of the first word in the next line.

move backward a sentence
move forward a sentence
move backward a paragraph

- — ~

move forward a paragraph

@ More such text objects will be discussed later under the Context editing section. See
:h object-motions for a complete list of such motions.

e gg move to the first non-blank character of the first line
G move to the first non-blank character of the last line
5G move to the first non-blank character of the fifth line
o As an alternative, you can use :5 followed by Enter key (Command-line mode)
e 50% move to halfway point
o you can use other percentages as needed
e % move to matching pair of brackets like () , {} and []
o This will work across lines and nesting is taken into consideration as well
o If the cursor is on a non-bracket character and a bracket character is present later
in the line, the % command will move to the matching pair of that character (which
could be present in some other line too)
o Use the matchpairs option to customize the matching pairs. For example,

:set matchpairs+=<:> will match <> as well

@ It is also possible to match a pair of keywords like HTML tags, if-else, etc with % .
See :h matchit-install for details.

H move to the first non-blank character of the top (home) line of the visible window
M move to the first non-blank character of the middle line of the visible window
L move to the first non-blank character of the bottom (low) line of the visible window

Ctrl + d scroll half a page down

Ctrl + u scroll half a page up

Ctrl + f scroll one page forward

Ctrl + b scroll one page backward

Ctrl followed by Mouse Scroll scroll one page forward or backward

22

https://vimhelp.org/motion.txt.html#object-motions
https://vimhelp.org/usr_05.txt.html#05.5

Ctrl + e scroll up by a line
Ctrl + y scroll down by a line
zz reposition the current line to the middle of the visible window
o useful to see context around lines that are nearer to the top/bottom of the visible
window
zt reposition the current line to the top of the visible window
zb reposition the current line to the bottom of the visible window

[@ See :h ’scrolloff’ option if you want to always show context around the current line.

> and < indent commands, waits for motion commands similarto d or vy

>> indent the current line

3>> indent the current line and two lines below (same as >2j)

>k indent the current line and the line above

>} indent till the end of the paragraph

<< unindent the current line

5<< unindent the current line and four lines below (same as <4j)

<2k unindent the current line and two lines above

= auto indent code, use motion commands to indicate the portion to be indented
o =4j auto indent the current line and four lines below

o =ip auto indent the current paragraph (you’ll learn about ip later in the Context
editing section)

@ Indentation depends on the shiftwidth setting. See :h shift-left-right, :h = and :h
’shiftwidth’ for more details.

@ You can indent/unindent the same selection multiple times using a number prefix in
the Visual mode.

ma mark a location in the file using the alphabet a
o you can use any of the 26 alphabets
o use lowercase alphabets to work within the current file
o use uppercase alphabets to work from any file
o :marks will show a list of the existing marks
“a move to the exact location marked by a
'a move to the first non-blank character of the line marked by a
'A move to the first non-blank character of the line marked by A (this will work for any
file where the mark was set)
d*a delete from the current character to the character marked by a
o marks can be paired with any command that accept motionslike d , y , >, etc

23

https://vimhelp.org/options.txt.html#%27scrolloff%27
https://vimhelp.org/change.txt.html#shift-left-right
https://vimhelp.org/change.txt.html#%3D
https://vimhelp.org/options.txt.html#%27shiftwidth%27
https://vimhelp.org/options.txt.html#%27shiftwidth%27

@ Motion commands that take you across lines (for example, 160G) will automatically
save the location you jumped from in the default = mark. You can move back to that
exact location using *° or the first non-blank character using '° . Note that the arrow
and word motions aren’t considered for the default mark even if they move across lines.

@ See :h mark-motions for more ways to use marks.

This is helpful if you are moving around often while editing a large file, moving between different
buffers, etc. From :h jump-motions:

”

The following commands are jump commands: ', ~, G, /, ?, n, N, %, (,
), [, 11, {, }, s, :tag, L, M, H andthe commands that start editing
a new file.

When making a change the cursor position is remembered. One position is remembered
for every change that can be undone, unless it is close to a previous change.

Ctrl + o navigate to the previous location in the jump list (o as in old)

e Ctrl + i navigate to the next location in the jump list (i and o are usually next to
each other)

g; go to the previous change location

g, go to the newer change location

e gi place the cursor at the same position where it was left last time in the Insert mode

@ Use :jumps and :changes to view the jump and change lists respectively. See :h
jump-motions for more details.

From :h usr 03.txt:

You first type an operator command. For example, d is the delete operator. Then you
type a motion command like 41 or w . This way you can operate on any text you can
move Over.

dG delete from the current line to the end of the file

dgg delete from the current line to the beginning of the file

d a delete from the current character up to the location marked by a

d% delete up to the matching pairs for () , {} , [] ,etc

ce delete till the end of word and change to Insert mode
o cw will also work the same as ce , this inconsistency is based on Vi behavior
o use :nnoremap cw dwi if you don’t want the old behavior

e yl copy the character under the cursor

24

https://vimhelp.org/motion.txt.html#mark-motions
https://vimhelp.org/motion.txt.html#jump-motions
https://vimhelp.org/motion.txt.html#jump-motions
https://vimhelp.org/motion.txt.html#jump-motions
https://vimhelp.org/usr_03.txt.html

e yfc copy from the character under the cursor up to the next occurrence of c¢ in the
same line
e d) delete up to the end of the sentence

From :h usr 03.txt:

s a

Whether the character under the cursor is included depends on the command you used to
move to that character. The reference manual calls this “exclusive” when the character
isn’t included and “inclusive” when it is. The $ command moves to the end of a line. The
d$ command deletes from the cursor to the end of the line. This is an inclusive motion,
thus the last character of the line is included in the delete operation.

You have seen examples for combining motions suchas w , % and f with editing commands
like d , ¢ and y . Such combination of commands require precise positioning to be effective.

Vim also provides a list of handy context based options to make certain editing use cases easier
using the 1 and a text object selections. You can easily remember the difference between
these two options by thinking i as inner and a as around.

e diw delete a word regardless of where the cursor is on that word

o Equivalent to using de when the cursor is on the first character of the word
diW delete a WORD regardless of where the cursor is on that WORD
daw delete a word regardless of where the cursor is on that word as well as a space
character to the left/right of the word depending on its position in the current sentence
dis delete a sentence regardless of where the cursor is on that sentence
yas copy a sentence regardless of where the cursor is on that sentence as well as a space
character to the left/right
cip delete a paragraph regardless of where the cursor is on that paragraph and change
to Insert mode
dit delete all characters within HTML/XML tags, nesting is taken care as well

o see :h tag-blocks for details about corner cases
di" delete all characters within a pair of double quotes, regardless of where the cursor
is within the quotes
da' delete all characters within a pair of single quotes along with the quote characters
ci(delete all characters within () and change to Insert mode

o Works even if the parentheses are spread over multiple lines, nesting is taken care

as well
e ya} copy all characters within {} including the {} characters
o Works even if the braces are spread over multiple lines, nesting is taken care as well

~ a

@ You can use a count prefix for nested cases. For example, c2i{ will clear the inner
braces (including the braces, and this could be nested too) and then only the text between
braces for the next level.

@ See :h text-objects for more details.

25

https://vimhelp.org/usr_03.txt.html
https://vimhelp.org/motion.txt.html#tag-blocks
https://vimhelp.org/motion.txt.html#text-objects

You can use lowercase alphabets a-z to save some content for future use. You can also append
some more content to those registers by using the corresponding uppercase alphabets A-Z at

a later stage.

"ayy copy the current line to the "a register
"Ayj append the current line and the line below to the "a register
o "ayy followed by "Ayj will result in total three lines in the "a register
"ap paste content from the "a register
"eyiw copy word under the cursor to the "e register

@ Youcanuse :reg (shortfor :registers)toview the contents of the registers. Spec-
ifying one or more characters (next to each other as a single string) will display contents
only for those registers.

@ The named registers are also used for saving macros (will be discussed in the Macro
chapter). You can record an empty macro to clear the contents, for example gbq clears

the "b register.

Vim has nine other types of registers for different use cases. Here are some of them:

" all yanked/deleted text is stored in this register
o So, the p command is same as specifying ""p

"®@ yanked text is stored in this register

o A possible use case: yank some content, delete something else and then paste the

yanked content using "Op

"l to "9 deleted contents are stored in these registers and get shifted with each new

deletion
o "lp paste the contents of last deletion
o "2p paste the contents of last but one deletion

"+ this register is used to work with the system clipboard contents
o gg"+yG copy entire file contents to the clipboard

o "+p paste content from the clipboard
"* this register stores visually selected text

o contents of this register can be pasted using middle mouse button click or "*p

or Shift + Insert
" black hole register, when you want to delete something without saving it anywhere

Further reading

:h registers

stackoverflow: How to use Vim registers
stackoverflow: Using registers on Command-line mode
Advanced Vim registers

26

https://vimhelp.org/change.txt.html#registers
https://stackoverflow.com/q/1497958/4082052
https://stackoverflow.com/q/3997078/4082052
https://blog.sanctum.geek.nz/advanced-vim-registers/

e * searches the word nearest to the cursor in the forward direction (matches only the
whole word)
o Shift followed by left mouse click can also be used in GVim
e g* searches the word nearest to the cursor in the forward direction (matches as part of
another word as well)
o for example, if you apply this command on the word the , you’ll also get matches
for them , 1lather , etc
searches the word nearest to the cursor in the backward direction (matches only the
whole word)
e g# searches the word nearest to the cursor in the backward direction (matches as part
of another word as well)

@ You can also provide a count prefix to these commands.

e J joins the current line and the next line
o the deleted <EOL> character is replaced with a space, unless there are trailing
spaces or the next line starts witha) character
o indentation from the lines being joined are removed, except the current line
e 3] joins the current line and next two lines with one space in between the lines
e gJ joins the current line and the next line
o <EOL> character is deleted (space character won’t be added)
o indentation won’t be removed

@ joinspaces , cpoptions and formatoptions settings will affect the behavior of
these commands. See :h J and scroll down for more details.

e ~ invert the case of the character under the cursor (i.e. lowercase becomes UPPERCASE
and vice versa)
g~ followed by motion command to invert the case of those characters

o for example: g~e , g~%$, g~iw , etc
gu followed by motion command to change the case of those characters to lowercase

o for example: gue , gu$, guiw , etc

guU followed by motion command to change the case of those characters to UPPERCASE
o for example: gUe , gU$, gUiw , etc

@ You can also provide a count prefix to these commands.

27

https://vimhelp.org/change.txt.html#J

Ctrl + a increment the number under the cursor or the first occurrence of a number to
the right of the cursor

Ctrl + x decrement the number under the cursor or the first occurrence of a number
to the right of the cursor

3 followed by Ctrl + a adds 3 tothe number

1000 followed by Ctrl + x subtracts 1000 from the number

@ Numbers prefixed with 0 , 0x and 0b will be treated as octal, hexadecimal and
binary respectively (you can also use uppercase for x and b).

@ Decimal numbers prefixed with - will be treated as negative numbers. For example,
using Ctrl + a on -100 will give you -99 . While this is handy, this trips me up often
when dealing with date formats like 2021-12-07.

e gf opens a file using the path under the cursor
o See :h gf and :h suffixesadd for more details
o See :h window-tag if you want to open the file under the cursor as a split window, new
tab and other usecases
Ctrl + g display file information like name, number of lines, etc at the bottom of the
screen
o See :h CTRL-G for more details and related commands
e g followed by Ctrl + g display information about the current location of the cursor
(column, line, word, character and byte counts)
e ga shows the codepoint value of the character under the cursor in decimal, octal and
hexadecimal formats
g? followed by motion command to change those characters with rotl3 transformation

o g?e onstart of hello word will change it to uryyb
o g?e onstart of uryyb word will change it to hello

Normal to Insert mode

i place the cursor to the left of the current character (insert)

a place the cursor to the right of the current character (append)

I place the cursor before the first non-blank character of the line (helpful for indented
lines)

gI place the cursor before the first column of the line

gi place the cursor at the same position where it was left last time in the Insert mode
A place the cursor at the end of the line

0 open a new line below the current line and change to Insert mode

0 open a new line above the current line and change to Insert mode

s delete the character under the cursor and change to Insert mode

S delete the current line and change to Insert mode

28

https://vimhelp.org/editing.txt.html#gf
https://vimhelp.org/options.txt.html#%27suffixesadd%27
https://vimhelp.org/windows.txt.html#window-tag
https://vimhelp.org/editing.txt.html#CTRL-G

o cc can also be used
o indentation will be preserved depending on the autoindent setting
e (C delete from the current character to the end of line and change to Insert mode

Normal to Command-line mode

e : change to Command-line mode, awaits further commands
e / change to Command-line mode for searching in the forward direction
e ? change to Command-line mode for searching in the backward direction

Normal to Visual mode

e v visually select the current character
e V visually select the current line
e Ctrl + v visually select column
e gv select previously highlighted visual area

@ See :h mode-switching for a complete table. See also this comprehensive illustration
of navigating modes.

29

https://vimhelp.org/intro.txt.html#mode-switching
https://gist.github.com/kennypete/1fae2e48f5b0577f9b7b10712cec3212
https://gist.github.com/kennypete/1fae2e48f5b0577f9b7b10712cec3212

	Preface
	Prerequisites
	Conventions
	How to use this guide
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Introduction
	Why Vim?
	Installation
	Ice Breaker
	Built-in tutor
	Built-in help
	Vim learning resources
	Modes of Operation
	Identifying the current mode
	Vim philosophy and features
	Vim's history
	Chapters

	Insert mode
	Motion keys and commands
	Deleting
	Autocomplete word
	Autocomplete line
	Autocomplete assist
	Execute a Normal mode command
	Indenting
	Insert register contents
	Insert special characters
	Insert digraphs

	Normal mode
	Arrow motions
	Cut
	Copy
	Paste
	Undo
	Redo
	Replace characters
	Repeat a change
	Open new line
	Moving within the current line
	Character motions
	Word motions
	Text object motions
	Moving within the current file
	Moving within the visible window
	Scrolling
	Reposition the current line
	Indenting
	Mark frequently used locations
	Jumping back and forth
	Edit with motion
	Context editing
	Named registers
	Special registers
	Search word nearest to the cursor
	Join lines
	Changing case
	Increment and Decrement numbers
	Miscellaneous
	Switching modes

