

Das Vaadin 7 Grundlagenbuch
Einstieg in das Vaadin Framework für Rich Internet
Applications

Roland Krüger

Dieses Buch wird verkauft, unter http://leanpub.com/vaadinbuch

Diese Version wurde veröffentlicht am 2016-09-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2014 - 2016 Roland Krüger

http://leanpub.com/vaadinbuch
http://leanpub.com/
http://leanpub.com/manifesto

Twitter dieses Buch!
Bitte unterstütz Roland Krüger, indem du über dieses Buch auf Twitter weiterempfiehlst!

Vorschlag: Verwende den folgenden Hashtag, wenn du über dieses Buch twitterst: #vaadinbuch.

Was sagen Andere über dieses Buch? Klick hier, um nach diesem Hashtag auf Twitter zu
suchen:

https://twitter.com/search?q=#vaadinbuch

http://twitter.com
https://twitter.com/search?q=%23vaadinbuch
https://twitter.com/search?q=%23vaadinbuch

Inhaltsverzeichnis

Über den Autor . i

Vorwort: Über dieses Buch . ii
Warum dieses Buch? . ii
Was will dieses Buch vermitteln? . iii
Was möchte dieses Buch nicht sein? . iv
Aufbau des Buches . iv
Konventionen . iv
Beispielcode . vi
Feedback . x
Copyrights und Bildnachweise . x

Teil 1: Einleitung und erste Schritte 1

1. Was ist Vaadin? . 2
1.1 Geschichtliches . 2
1.2 Technologischer Hintergrund . 4

2. Hello Vaadin! . 7
2.1 Anlegen eines Projekts . 7
2.2 Grundeigenschaften einer Vaadin-Anwendung 16

3. Ressourcen . 18
3.1 Verwendung von Ressourcen . 19
3.2 Das Resource-Interface . 20
3.3 Connector-Ressourcen . 20
3.4 Implementierungsklassen von Resource . 22
3.5 Zusammenfassung . 31

Über den Autor
Roland Krüger, Jahrgang 1978, hat Wirtschaftsinformatik an der Universität Mannheim studiert
und arbeitet seit 2011 als Trainer, Berater und Entwickler bei der Orientation in Objects GmbH¹
in Mannheim. Dort beschäftigt er sich hauptsächlich mit der Konzeption und Entwicklung von
professionellen Webanwendungen mit verschiedenen Java Web-Frameworks, mit Softwareent-
wicklungsmethoden, wie Continuous Delivery undDevOps, und berät Kunden zu den Produkten
der Firma Atlassian.

Roland hat das Vaadin Framework im Jahr 2010 kennen und schätzen gelernt. Sein erstes
Projekt mit Vaadin, die Schnäppchenjäger-Community Spar-Radar (die es heute leider nicht
mehr gibt), konnte er dank des einfachen Programmiermodells in kurzer Zeit erfolgreich
umsetzen und in Produktion bringen. Seine Erfahrungen mit dem Framework hat er bei der
Orientation inObjects GmbH zu einem Seminar zusammengetragen,mit dem er deutschlandweit
als Trainer unterwegs ist. In seiner Vaadin-Schulung vermittelt er Grundlagen und Profiwissen
über das Vaadin Toolkit.

Roland ist glücklich verheiratet und hat eine kleine Tochter. In seiner Freizeit ist er am liebsten
auf Wanderungen im Odenwald oder auf stromgitarrenlastigen Konzerten unterwegs. Dass er
nebenher natürlich auch hobbymäßig an Vaadin-Anwendungen bastelt, braucht hier sicherlich
nicht besonders hervorgehoben werden ;-).

Man erreicht Roland auf Twitter mit seinem Handle @Roland_Krueger, auf GitHub findet
man seine Repositories unter https://github.com/rolandkrueger, auf Google+ erreicht man ihn
unter +RolandKrüger², und seine Homepage ist unter der Adresse http://www.rolandkrueger.
info zu erreichen.

Roland bloggt regelmäßig zu Vaadin-bezogenen und anderen Themen auf dem Firmenblog
der OIO GmbH³.

¹http://www.oio.de
²https://www.google.com/+RolandKr%C3%BCger
³http://blog.oio.de

http://www.oio.de/
https://github.com/rolandkrueger
https://www.google.com/+RolandKr%C3%BCger
http://www.rolandkrueger.info
http://www.rolandkrueger.info
http://blog.oio.de/
http://www.oio.de/
https://www.google.com/+RolandKr%C3%BCger
http://blog.oio.de/

Vorwort: Über dieses Buch
Ein deutschsprachiges Vaadin-Buch, herausgegeben im Selbstverlag und vertrieben über eine
Online-Plattform, bei der ein Buch schon während seiner Entstehung freigegeben werden kann.
Wie kam es zu diesem Vorhaben?

Die Idee zu diesem Buch entstand, als ich als Seminarleiter mit meiner Vaadin Grundla-
genschulung bei Kunden unterwegs war. Während man mit einem solchen Einsteigerseminar
ein recht solides Grundverständnis für dieses spannende Framework schaffen kann, bleiben
naturgemäß bei den Teilnehmern auch nach der Schulung noch Detailfragen offen, oder es
stellen sich bestimmte Fragen überhaupt erst zu einem späteren Zeitpunkt. Manche Themen
können aufgrund der begrenzten Zeit nur oberflächlich behandelt oder, wenn überhaupt, nur
grob angerissen werden. Besonders wenn man sich dann als Neuling das erste Mal auf eigene
Faust mit dem Framework die Hände schmutzig macht, ergeben sich die meisten Fragen und
Verständnisschwierigkeiten. Der Trainer ist dann schon längst wieder zu Hause und steht bei den
alltäglichen Problemen, auf die man als Entwickler mit einer neuen Technologie zwangsweise
stoßen wird, nicht mehr zur Verfügung.

Wenn man dann den Teilnehmern zusätzlich ein übersichtliches Grundlagenbuch anbieten
könnte — das wäre eine feine Sache und würde das Seminar zusätzlich abrunden. Die Idee, ein
Buch zu schreiben und meine Kenntnisse und Erfahrungen mit Vaadin darin festzuhalten, wurde
daher immer konkreter. Die Anfrage eines Fachbuchverlages, ob ich nicht Interesse daran hätte,
ein Vaadin-Buch für Fortgeschrittene zu schreiben, gab mir schließlich den letzten Impuls.

Dem Verlag habe ich nach reiflicher Überlegung abgesagt. Meine Vollzeitstelle bei der OIO
GmbH ließ es für mich realistischerweise einfach nicht zu, mit einer bestimmten vorgegebenen
Abgabefrist ein Vaadin-Buch mit fortgeschrittenen Themen zu verfassen — und das Ganze auch
noch auf Englisch und nicht in meiner Muttersprache. Das war mir dann doch etwas zu heikel,
und ich lehnte das Angebot dankend ab.

Die Idee ließ mich jetzt allerdings nicht mehr los. Ich musste eine andere Möglichkeit finden,
meine Vaadin-Kenntnisse nutzbringend niederzuschreiben, ohne dabei jedoch dem Druck eines
festen Veröffentlichungstermins zu unterliegen.

Leanpub⁴ als Plattform für selbstverlegende Autoren kam mir da genau gelegen. Ich kann
das Buch in meinem eigenen Tempo voranbringen und auch schon einen halbfertigen Stand ver-
öffentlichen, sobald dieser meiner Leserschaft schon einen Mehrwert bietet. Aus diesem Grund
ist das Buch bis zu seiner Fertigstellung ausschließlich unter https://leanpub.com/vaadinbuch zu
beziehen.

Warum dieses Buch?
Ein deutschsprachiges Vaadin-Buch, veröffentlicht ohne Verlag im Rücken, rein elektronisch
über eine Online-Plattform vertrieben? Und daneben eine große Konkurrenz auf dem Buch-
markt, nicht zuletzt in Form des offiziellen und kostenlosen Book of Vaadin von Vaadin Ltd.,
dem Hersteller des Frameworks. Wieso mache ich das?

⁴https://leanpub.com/

https://leanpub.com/
https://leanpub.com/vaadinbuch
https://leanpub.com/

Vorwort: Über dieses Buch iii

Nun, der Hauptgrund ist schlicht: ich habe denAnspruch, es besser zumachen als die anderen
Autoren. Zudem gibt es auf dem deutschsprachigen Buchmarkt noch keine Vaadin-Bücher, die
über eine oberflächliche Einführung in das Framework hinaus gehen. Das will ich ändern.

Fast alle englischsprachigen Vaadin-Bücher, die es zurzeit (aktuell im Januar 2016) auf dem
Markt gibt, wurden von Autoren geschrieben, die Englisch nicht als Muttersprache sprechen.
Dementsprechend holprig lesen sich die jeweiligen Texte dann zum Teil auch (wohingegen die
inhaltliche Qualität der Bücher meist hoch ist). Inhaltlich gehen die verfügbaren Bücher nicht
allzu sehr in die Tiefe.

Ausgenommen davon ist das kostenlose Book of Vaadin, welches vonMarko Grönroos, einem
Mitarbeiter von Vaadin Ltd., geschrieben und gepflegt wird. Das Buch zeichnet sich durch eine
recht detaillierte Beschreibung des Frameworks aus — was naheliegend ist, da das Buch ja direkt
aus dem Hause des Herstellers von Vaadin stammt.

Dennoch gibt es auch für dieses Buch noch Verbesserungspotenzial. Obwohl das Buch
recht umfangreich ist und ein sehr weites Themenspektrum abbildet, geht es auf viele Punkte
nur relativ oberflächlich oder gar nicht ein (wie z. B. Ressourcen, Konverter oder JavaScript
Components). Das ist natürlich auch der Tatsache geschuldet, dass das Book of Vaadin sehr
viele Themen abdecken muss, die vielleicht nicht für jeden Leser von Relevanz sind. Schließlich
besteht auch hier das Problem, dass das englischsprachige Buch nicht von einemMuttersprachler
verfasst worden ist und sich damit stellenweise etwas sperrig liest.

Mit dem vorliegenden Vaadin Grundlagenbuch möchte ich der Entwicklergemeinde eine
deutschsprachige Alternative zu der vorhandenen Literatur bieten.

Was will dieses Buch vermitteln?
Dieses Buch verfolgt das Ziel, der Software-Entwicklerin und dem Software-Entwickler eine
solide und überschaubare Einführung in das Vaadin Framework zu geben. Mein Hauptanliegen
ist es dabei, gerade so viele Themen in dem Buch unterzubringen, wie unbedingt dazu notwendig
sind, erfolgreich seine ersten einfachen Anwendungen mit Vaadin zu schreiben.

Das Buch will seine Leser daher nicht mit Informationen überfrachten. Insbesondere soll es
nicht notwendig sein, sich erst durch einen mehrere hundert Seiten dicken Trümmer lesen zu
müssen, bevor man eine erste einfache Vaadin-Anwendung schreiben kann.

Eines meiner mir gesetzten Ziele als Autor ist es, eine Auswahl an Themen zu treffen, die für
den Vaadin-Einstieg unbedingt bekannt seinmüssen, bevor eine vernünftige – das heißt wartbare
und sauber strukturierte – Vaadin-Anwendung geschrieben werden kann. Genau das sind die
Themen, die Sie in diesem Grundlagenbuch vorfinden werden. Themen und Informationen,
die in der täglichen Arbeit mit Vaadin zumindest am Anfang noch keine allzu große Relevanz
aufweisen und erst in späteren Projektphasen wichtig werden, werden daher ausgespart.

Das angestrebte Ziel des Buches ist es also, eine übersichtliche, aber dennoch nicht zu
oberflächliche Einführung in das Thema zu geben. Nachdem Sie dieses Buch gelesen haben,
kennen Sie das Vaadin Framework zwar nicht in all seinen Details. Sie wissen dafür aber wie
das Framework im Inneren tickt und wie man es grundsätzlich anwendet. Durch diesen Ansatz
soll die knappe Zeit, die einem als Entwickler und Entwicklerin zur Verfügung steht, nicht über
Gebühr beansprucht werden.

Vorwort: Über dieses Buch iv

Was möchte dieses Buch nicht sein?
Dieses Grundlagenbuch will kein detailliertes Referenzwerk zu jedem Detail und jedem Neben-
aspekt des Vaadin Frameworks sein. Es soll auch vermieden werden, dass wichtige Grundlagen,
die man sich unbedingt aneignen muss, zwischen fortgeschrittenen und zu Beginn irrelevanten
Spezialthemen verloren gehen.

Aber was ist, wenn man später, bei der täglichen Arbeit mit dem Framework, an dem
Punkt ankommt, an dem die einfachen Grundlagenkenntnisse nicht mehr für das aktuell zu
lösende Problem ausreichen? Wenn man wissen muss, wie man die Architektur einer Vaadin-
Anwendung am besten gestaltet? Oder wenn man den inneren Aufbau des Frameworks noch
besser verstehen muss, um bestimmte knifflige Problemstellungen zu lösen?

Dann wird man zu dem Begleitbuch greifen können, welches ich im Anschluss an die-
ses Grundlagenbuch plane, wenn dafür bei der Leserschaft Interesse besteht. Dies soll ein
Buch für Fortgeschrittene werden, das sämtliche Themen aufgreift und vertieft, die in diesem
Grundlagenbuch nicht oder nur einführend behandelt werden konnten. Dieses Buch, Vaadin
für Fortgeschrittene (dies ist momentan nur der Arbeitstitel), will hinter die Kulissen von
Vaadin blicken und die Dinge im Detail erklären. Es sollen Best Practices beschrieben und
Ideen und Impulse zu Themen gegeben werden, die in einem etwas weitergefassten Kontext
stehen als die reine Oberflächenentwicklung mit Vaadin. Dazu gehören Entwurfsmuster und
Optimierungsmöglichkeiten. Daneben sollen Kernbereiche von Vaadin behandelt werden, die
zwar wichtig für das tiefere Verständnis des Frameworks sind, die aber dennoch in einem
Grundlagenbuch keinen Platz haben. Eines dieser Themen ist beispielsweise die Entwicklung
eigener, clientseitiger Vaadin-Komponenten und Komponenten-Extensions mit GWT. Dies ist
eines der typischen Ecken des Frameworks, die man zu Beginn nicht unbedingt kennen muss.
Man kann problemlos eine ganze Weile sehr produktiv mit Vaadin arbeiten, bevor man in
die Verlegenheit kommt, eine eigene UI-Komponente zu entwickeln — wenn das überhaupt
geschieht.

Aufbau des Buches
In diesem Abschnitt wird der Aufbau des Buches und seine Unterteilung in Unterkapitel
beschrieben. Es wird grob aufgeführt, welche Kapitel die Leser in diesem Buch vorfinden und
welchen Inhalt sie dort erwartet. Dieser Abschnitt wird nachträglich vervollständigt, wenn das
Buch fertiggestellt wurde.

Konventionen
Dieser Abschnitt beschreibt die in diesem Buch verwendeten Konventionen. Das sind die
Konventionen für die Darstellung von Quelltext und für Hyperlinks. Auch dieser Abschnitt wird
vervollständigt werden, kurz bevor das Buch fertiggestellt wird.

Quelltext
Sämtliche Quelltexte werden in nichtproportionaler Schrift dargestellt. Java-Klassen, die
das erste Mal erwähnt werden, werden immer mit ihrem vollqualifizierten Klassennamen
ausgeschrieben. Später wird die Package-Information für diese Klassen weggelassen.

Vorwort: Über dieses Buch v

Gleiches gilt für Methoden: um zu verstehen, aus welcher Klasse eine angesprochene
Methode stammt, wird diese zusammen mit der sie definierenden Klasse angegeben. Es wird
dann die vollständige Signatur der Methode inklusive vollqualifiziertem Klassennamen und
Typen der Methodenparameter angegeben. Die verwendete Schreibweise orientiert sich dabei an
der Referenzierweise von JavaDoc-Kommentaren. Das heißt, eine statische oder nicht-statische
Methode wird mit dem #-Zeichen von ihrer definierenden Klasse abgetrennt. Folgendes Beispiel
soll dies verdeutlichen:

com.vaadin.ui.AbstractComponentContainer#addComponent(com.vaadin.ui.Component)

bezieht sich auf die Methode, mit der eine Vaadin Komponente auf ein Layout gesetzt werden
kann. Im späteren Verlauf des Textes wird dann nur noch von addComponent() gesprochen.

Möglicherweise muss aufgrund des begrenzten Platzes auf der Seite eine solche längliche
Methodenreferenz künstlich umbrochen werden.

Längere Code-Listings erhalten immer eine Zeilennummerierung. Die Zeilennummern wer-
den im Text aber nicht verwendet, um auf bestimmte interessante Stellen im Code hinzuweisen.
Stattdessen werden im betroffenen Quelltext an den Stellen, auf die sich die nachfolgenden
Erläuterungen beziehen, nummerierte Kommentare eingefügt. Das sieht dann wie in dem
folgenden Beispiel aus:

Nummerierte Code-Stellen in Form von Kommentaren

1 Label text = new Label(); // {1} //

2 text.setCaption("Beschriftung");

3 text.setValue("Text"); // {2} //

In den Erläuterungen zu dem Code-Beispiel wird dann einfach die Nummer der referenzier-
ten Code-Stelle in den Text eingefügt: In dem Code-Beispiel wird ein Label erzeugt {1} und der
dargestellte Text des Labels mit setValue() gesetzt {2}.

Kommandozeilenaufrufe
Auch Beispiele von Befehlsaufrufen auf der Kommandozeile werden in nichtproportionaler

Schrift gesetzt. Um deutlich zu machen, dass Beispielcode einen Aufruf auf der Kommandozeile
darstellt, wird diesem für Windows-Befehle, analog zur Windows Command Shell, das Symbol
C:\> vorangestellt. Für Befehle, die so auch auf unixoiden Systemen ausgeführt werden können,
wird das Symbol für den Shell Prompt $ vorangestellt.

UML-Diagramme
Sämtliche UML-Diagramme in diesem Buch wurden mit dem Open Source Projekt PlantUML⁵
erstellt. PlantUML erlaubt die Erstellung von verschiedenenUML-Diagrammtypenmithilfe einer
einfachen, textbasierten Sprache. Die Vererbungshierarchie von java.util.AbstractList kann
damit zum Beispiel wie folgt dargestellt werden:

⁵http://de.plantuml.com

http://de.plantuml.com/
http://de.plantuml.com/

Vorwort: Über dieses Buch vi

Beispiel für ein PlantUML Klassendiagramm

@startuml

interface List<E>

abstract class AbstractList<E>

abstract class AbstractCollection<E>

List <|.. AbstractList

AbstractCollection <|-- AbstractList

@enduml

Dieses Skript wird von PlantUML zu folgendem Diagramm gerendert:

Beispiel für ein Klassendiagramm von java.util.AbstractList erzeugt mit PlantUML

Wasman an diesem Beispieldiagramm gut sehen kann, ist die etwas eigenwillige Darstellung
von PlantUML für den generischen Typparameter einer Klasse: Der Parameter Ewird oben rechts
an der Klasse in einem weißen Kästchen dargestellt.

Beispielcode
Der Inhalt dieses Buches wird von vielen, möglichst einfach gehaltenen und verständlichen
Codebeispielen begleitet. Natürlich ist es schwierig bis unmöglich, in einem Buch vollständig
lauffähige und selbsterklärende Codebeispiele unterzubringen. Es können immer nurAusschnitte
in den Text übernommen werden, die den Kern eines besprochenen Themas beleuchten.

Für jemanden, der sich gerade ganz neu in eine Programmierschnittstelle einarbeitenmöchte,
ist es jedoch oftmals sehr hilfreich, wenn man kleine, in sich abgeschlossene und lauffähige
Beispielprojekte zur Hand hat, die ein bestimmtes, eng umfasstes Thema demonstrieren. Am
besten sollte es dazu möglich sein, ein solches Beispielprojekt mit einem einzigen Befehl bauen
und ausführen zu können, ohne dazu erst eine umständliche Setup-Prozedur durchführen zu
müssen.

Aus diesem Grund wird jeder nicht-triviale Beispielcode aus diesem Buch durch ein isoliert
bau- und lauffähiges Demoprojekt ergänzt, das man sich aus dem Netz herunterladen kann
und das zu eigenen Experimenten einlädt. Dafür existiert ein GitHub-Projekt “grundlagenbuch-
vaadin7-bsp”⁶, das sämtlichen Beispielcode für dieses Buch enthält.

⁶https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp

https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp

Vorwort: Über dieses Buch vii

Die Beispielprojekte basieren auf Java 8 und machen auch Gebrauch von den neuen Features
dieser Java-Version. Das heißt, es werden Lambda-Ausdrücke und Streams verwendet, um den
Code kurz und bündig zu halten. Insbesondere für Vaadins Ereignisbehandlungsroutinen eignen
sich die Lambda-Ausdrücke von Java 8 hervorragend.

Weiterhin verwenden die Projekte alle ApacheMaven⁷ als Build-Management Tool. Dadurch
ist ein sehr einfaches Arbeiten mit den Demoprojekten möglich. Um dies tun zu können, sind
keine tieferen Kenntnisse vonMaven notwendig. Es genügt, wennmanMaven installiert hat und
den notwendigen Befehl kennt, um ein solches Maven Projekt zu starten. Dies wird im Folgenden
erläutert.

Organisation der Beispielprojekte
Sämtliche Beispielprojekte (bis auf das allererste Beispiel, welches mit Eclipse erzeugt und mit
Apache Ivy gebaut wird) sind in einem sogenannten Maven Multi-Module Projekt organisiert.
Das heißt, es gibt ein gemeinsames Hauptverzeichnis, unter dem die einzelnen Demos organisiert
sind, und einen gemeinsamen Build Deskriptor, der als Elterndeskriptor alle untergeordneten
Projekte zusammenfasst (dieser Build Deskriptor heißt bei Maven Project Object Model (POM)
und liegt in der Datei pom.xml). Über diesen Elterndeskriptor (Parent POM) lassen sich sämtliche
untergeordnete Projekte mit einem einzigen Kommando bauen und paketieren.

Dennoch ist jedes Unterprojekt dabei für sich genommen selbständig lauffähig. Man kann
also in den Verzeichnissen der einzelnen Beispielprojekte den entsprechendenMaven-Befehl zum
Bauen und Starten des Projektes absetzen und anschließend die jeweilige Beispielanwendung in
seinem Browser besuchen.

Notwendige Voraussetzungen
Um die Beispielprojekte auszuprobieren, sind ein paar wenige Dinge als Voraussetzung notwen-
dig. Es wird ein JDK ab Version 1.7 benötigt, und es muss das Build-Management Tool Maven in
der aktuellen Version (mindestens ab Version 3.0.x) installiert sein (Eine Installationsanweisung
für Maven finden Sie im nächsten Abschnitt). Die Installation eines Servlet Containers, wie z. B.
Tomcat, ist nicht erforderlich.

Für das erstmalige Bauen der Beispielprojekte wird eine Internetverbindung benötigt. Maven
lädt sich sämtliche Abhängigkeiten eines Projektes aus einem zentralen Verzeichnis im Internet
(das sogenannteMaven Central) herunter und legt diese lokal in einem Cache ab. Zu diesen Ab-
hängigkeiten gehören für unsere Beispiele auch die Vaadin Bibliotheken. Wenn alle notwendigen
abhängigen Bibliotheken im Cache verfügbar sind, kann Maven das Projekt fortan auch offline
bauen.

Installation von Maven
Zur Verwendung von Maven muss man sich das für sein Betriebssystem passende Paket von der
Maven Homepage⁸ herunterladen und dieses lokal installieren.

Die Installation von Maven soll im Folgenden kurz beschrieben werden.
Zuerst laden Sie sich im Download-Bereich der Maven Homepage das Zip-Paket der

aktuellen Maven-Version herunter. Diese Zip-Datei entpacken Sie lokal an einen beliebigen Ort,

⁷http://maven.apache.org
⁸http://maven.apache.org

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Vorwort: Über dieses Buch viii

z. B. nach C:\Programme\apache-maven. Unter Linux installieren Sie sich das entsprechende
Paket über den jeweiligen Paketmanager Ihrer Linux-Distribution.

Anschließend muss eine Umgebungsvariable M2_HOME eingerichtet werden, die auf dieses
Installationsverzeichnis verweist. Hierbei ist es wichtig zu beachten, dass Sie nicht das \bin-
Verzeichnis der Maven-Installation für diese Umgebungsvariable angeben, sondern das Wurzel-
verzeichnis der Installation.

C:\> set M2_HOME=C:\Programme\apache-maven

Unter Linux:

$ export M2_HOME=/path/to/maven/installation

Anschließend können Sie die PATH-Variable des Systems um das Maven \bin-Verzeichnis
erweitern:

C:\> set PATH=%PATH%;%M2_HOME%\bin

Unter Linux können Sie einen symbolischen Link auf das Maven Binary mvn in /usr/bin

anlegen.
Wie Sie auf Ihrem System eine Umgebungsvariable fest einrichten, entnehmen Sie bitte der

Anleitung Ihres Betriebssystems.
Haben Sie diese Schritte durchgeführt, können Sie in einer neu gestarteten Konsole Ihre

Installation testen. Der Befehl

$ mvn -version

sollte dann zu einer Ausgabe ähnlich der Folgenden führen:

Apache Maven 3.3.3 (7994120775791599e205a5524ec3e0dfe41d4a06; 2015-04-22T13:5\

7:37+02:00)

Maven home: C:\Tools\apache-maven-3.3.3

Java version: 1.8.0_11, vendor: Oracle Corporation

Java home: C:\java\jdk1.8.0_11\jre

Default locale: de_DE, platform encoding: Cp1252

OS name: "windows 7", version: "6.1", arch: "amd64", family: "dos"

Damit haben Sie Maven erfolgreich installiert.

Bauen und starten der Beispielprojekte mit Maven
Um die Beispielprojekte verwenden zu können, laden Sie sich diese zuerst von GitHub herunter.
Das geschieht entweder direkt über das Versionskontrollsystem Git⁹ oder indem Sie sich
direkt auf der Seite des Projekts auf GitHub (https://github.com/rolandkrueger/grundlagenbuch-
vaadin7-bsp) den Quellcode als Zip-Datei herunterladen.

Das Projekt wird wie folgt mit demGit Kommandozeilen-Client heruntergeladen (“geklont”):

⁹http://git-scm.com

http://git-scm.com/
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
http://git-scm.com/

Vorwort: Über dieses Buch ix

$ git clone https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp.git

Neben dem offiziellen Git Kommandozeilen-Client gibt es auch eine Reihe grafischer Anwen-
dungen, mit denen man fensterbasiert mit einem Git Repository arbeiten kann. Neben den Git-
Integrationen, die alle modernen IDEs mit an Bord haben (z. B. das EGit Plugin für Eclipse),
gibt es auch das kostenlose Programm SourceTree von Atlassian, das unabhängig von einer
bestimmten Entwicklungsumgebung arbeitet. SourceTree ermöglicht ein bequemes, grafisches
Arbeiten mit Git und bietet einen übersichtlichen Blick auf sein Git Repository. Das Programm
kann kostenfrei genutzt werden; man muss sich allerdings bei der ersten Verwendung mit einer
Email-Adresse bei Atlassian registrieren.

https://www.sourcetreeapp.com/

Das Projekt grundlagenbuch-vaadin7-bsp steht übrigens unter einer Public Domain Lizenz.
Das heißt, Sie dürfen mit dem Beispielcode anstellen, was Sie wollen, ohne mich vorher um
Erlaubnis fragen zu müssen. Nutzen Sie den Code also gerne als Basis, Inspiration oder als
Kopiervorlage in Ihren eigenen Projekten.

Die auf Maven basierenden Beispielprojekte für dieses Vaadin Grundlagenbuch finden Sie in
dem geklonten Projekt unter /Maven-Projekte. Wechseln Sie in dieses Verzeichnis und führen
Sie dort den folgenden Befehl aus:

$ mvn package

Alle Beispielprojekte werden dadurch gebaut und können anschließend mit Maven über den
integrierten Jetty Server gestartet werden. Wechseln Sie dazu in ein beliebiges Unterverzeichnis
unterhalb von /Maven-Projekte und führen Sie den folgenden Befehl aus:

$ mvn jetty:run

Das einzige Projekt, das nichtmitMaven gebaut werden kann, ist /Kap02_HelloVaadin.
Dies ist ein reines Eclipse-Projekt, das wir im Kapitel “Hello Vaadin” erstellen werden.

Wenn Sie im vorigen Schritt die Demoprojekte erfolgreich gebaut haben, wird nun ein Jetty
Server gestartet, auf dem das Projekt automatisch deployt wird. Ist der Jetty gestartet, können
Sie das mit Ihrem Browser die Seite

http://localhost:8080

besuchen. Es öffnet sich daraufhin das jeweilige Demoprojekt in Ihrem Browser, und Sie
können beginnen, damit zu experimentieren.

https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/

Vorwort: Über dieses Buch x

Feedback
Ich habe mich für Leanpub als Veröffentlichungsplattform für dieses Buch entschieden, da man
hier sein Buch schon für die Allgemeinheit freigeben kann, während man noch daran schreibt.
Dieses Prinzip erlaubt es, schon frühzeitig auf Feedback, Rückmeldungen und Leserwünsche
einzugehen, und diese in die Entstehung des Buches einfließen zu lassen.

Damit das für dieses Buch richtig funktioniert, bin ich auf Ihre Rückmeldung angewiesen.
Ich freue mich also über jede Art von Kommentaren, Wünschen und Meinungen, die ich von
Ihnen bekommen kann. Sie wünschen sich die bevorzugte oder vertiefendere Behandlung eines
Themas, das für Sie besonders interessant ist? Schreiben Sie mir das, und ich werde versuchen,
Ihre Wünsche in die Kapitelplanung einfließen zu lassen.

Sie können mich über verschiedene Kanäle erreichen: entweder über die oben genannten
sozialen Netzwerke (Twitter oder Google+), per Email (mail@rolandkrueger.info) oder über die
Kommentarspalte zu diesem Buch auf Leanpub.

Copyrights und Bildnachweise
Rentierkopf auf Titelseite: Bildnummer 328723733 © Khapaev Vladimir/Shutterstock.com

Linux ist ein eingetragenes Warenzeichen von Linus Torvalds. Microsoft und Microsoft
Windows sind eingetragene Warenzeichen der Microsoft Corp., Redmond WA 98052. Vaadin,
}> und Thinking of U and I sind eingetragene Warenzeichen der Vaadin Ltd. Andere aufgeführte
Produkt- und Firmennamen sind möglicherweise Marken der jeweiligen Eigentümer.

Die Abbildungen in diesem Buch wurden inspiriert durch die bikablo® Publikationen,
www.bikablo.com¹⁰.

¹⁰http://www.bikablo.com

http://www.bikablo.com/
http://www.bikablo.com/

Teil 1: Einleitung und erste Schritte

In diesem Teil des Buches wollen wir unsere ersten Gehversuche mit dem Vaadin Framework
unternehmen. Bevor wir uns das obligatorische Hello World Beispiel (oder vielmehr Hello
Vaadin) anschauen, werfenwir zuerst einen kurzen Blick auf die Geschichte des Frameworks und
auf dessen technologischen Hintergrund. Wir wollen erfahren, wo das Framework herkommt
und welche Merkmale charakteristisch für das Framework sind.

Nachdem wir das Vaadin Framework technologisch eingeordnet haben, stürzen wir uns
sogleich in die Anwendungsentwicklung selbst und schreiben die einfachst mögliche Vaadin-
Applikation an, die man sich vorstellen kann (Gut, nicht ganz. Man kann sich eine noch
einfachere Vaadin-Anwendung vorstellen, aber eine solche würde uns definitiv unterfordern):
die allseits beliebteHello World Anwendung. Wir werden dort die wichtigsten Bestandteile einer
Vaadin-Anwendung und die dazugehörige Grundkonfiguration kennenlernen.

AmEnde des ersten Buchteils habenwir uns ein grundlegendes Verständnis dafür angeeignet,
wie eine Vaadin-Applikation aufgebaut ist und welche Besonderheiten eine Vaadin-Anwendung
auszeichnen. Aus den speziellen Eigenschaften von Vaadin ergeben sich eine Reihe von ganz
bestimmten Vor- und Nachteilen. Diese werden wir kennenlernen, sodass wir eine informierte
Entscheidung darüber treffen können, in welcher Situation das Vaadin Framework eine gute
Wahl ist und wo eher nicht.

1. Was ist Vaadin?
Lassen Sie uns zum Einstieg zunächst einen Blick auf die geschichtlichen und technologischen
Hintergründe des Frameworks werfen. Wir wollen erfahren, wo Vaadin herkommt und welche
Besonderheiten das Framework auszeichnen.

Der Blick auf diese technologischen Besonderheiten gibt uns eine Idee davon, wie wir das
Verhalten des Frameworks zur Laufzeit bewerten können. Anhand der speziellen Vor- und
Nachteile, die sich daraus ergeben, können wir Szenarien ableiten, für die der Einsatz von Vaadin
besonders geeignet, oder für die er eher weniger geeignet ist.

Falls Ihre Neugier auf das Vaadin Framework zu groß ist und Sie sich lieber gleich in die
Programmierung mit Vaadin stürzen wollen, können Sie dieses Kapitel getrost überspringen
und im nächsten Kapitel einsteigen. Es lohnt sich aber sicherlich, später noch einmal hierher
zurückzukehren, um sich ein wenig mit der Herkunft von Vaadin zu beschäftigen.

1.1 Geschichtliches
Das Vaadin Framework ist unter diesem Namen seit dem Jahr 2009 auf dem Markt. Man möchte
fast meinen, dass Vaadin damit ein noch recht junges und vielleicht noch nicht an jeder Stelle
vollständig ausgereiftes Framework ist. Ich habe Ihnen aber nur die halbe Wahrheit erzählt.

In Wahrheit gibt es Vaadin, beziehungsweise dessen technologischen Vorgänger, schon
seit dem Jahr 2000. Seit diesem Jahr wird nämlich von der finnischen Firma IT Mill Ltd. ein
Webframework namens Millstone¹ entwickelt, das später einmal in unser Lieblingsframework
Vaadin umgewandelt werden soll.

Die Firma IT Mill Ltd. gibt es heute unter diesem Namen nicht mehr. Sie wurde im Jahr
2009 in Vaadin Ltd. umbenannt – zeitgleich zu der Umbenennung des hauseigenen Frameworks
nach Vaadin. Man wollte mit dieser Umbenennung den Wunsch unterstreichen, stärker die
Community einzubeziehen.

Vaadin Ltd. ist in der südfinnischen Stadt Turku (oder auf Schwedisch Åbo) ansässig.
Inzwischen gibt es aber auch schon Zweigstellen in Berlin und San Jose, USA. Firmengründer
und Geschäftsführer ist Dr. Joonas Lehtinen, der mit seinem Team das Java Webframework
entwickelt.

Vaadin ist ein Open Source Framework, das unter der freizügigen Apache License 2.0 steht.
Die Firma Vaadin bietet neben dem kostenlosen Framework auch kommerzielle Dienstleistungen
in den Bereichen Beratung, Projektunterstützung und Framework Schulungen an. Daneben
gibt es einige kostenpflichtige Erweiterungen und Zusatztools für Vaadin, die das Framework
um neue Funktionen und Komponenten erweitern. Beispielhaft aus diesem Bereich seien hier
das Vaadin Touchkit zum Schreiben mobiler Anwendungen, der Vaadin Designer zur visuellen
Gestaltung von Benutzeroberflächen oder die Vaadin Charts, eine Sammlung von Statistik- und
Graph-Komponenten, erwähnt. Besuchen Sie für einen Überblick über diese Dienstleistungen
und Angebote einfach die Vaadin Homepage http://www.vaadin.com².

¹engl. für Mühlstein
²http://www.vaadin.com

http://www.vaadin.com/
http://www.vaadin.com/

Was ist Vaadin? 3

Mit Vaadin lassen sich Webanwendungen mit rein serverseitigem Code erstellen. Das heißt,
man programmiert eine Webanwendung vollständig mit Java und bewegt sich dabei komplett
auf der Server-Seite. Der Teil, der den Benutzerinnen und Benutzern im Browser angezeigt wird,
wird auch im Browser erzeugt. Dieser Prozess wird allerdings vom Server aus ferngesteuert.
Anders als bei anderen Technologien, die z. B. auf HTML Templating aufsetzen, generieren
wir hierbei HTML Markup nicht direkt. Dies wird für uns vom Framework übernommen. Wir
stellen lediglich UI-Komponenten auf Layouts zusammen, die dann von Vaadin in das HTML
Dokument “gezeichnet” werden.Manmuss sich dadurch nichtmehr zwingendmit Technologien,
wie HTML, CSS, Templating Engines oder JavaScript herumschlagen.

Das Vaadin Framework verwendete ursprünglich (als es nochMillstone Framework hieß) ein
proprietäres, AJAX-basiertes Kommunikationsmodell zwischen der Client- und der Server-Seite.
Die clientseitige Render Engine, der Teil also, der die UI Komponenten in den Browser zeichnet,
und die Client-Server-Kommunikation waren Eigenentwicklungen. In dieser Version war es nur
sehr schwer möglich, das Framework um eigene clientseitige Komponenten zu erweitern. Eine
bessere Alternative für den proprietären Client-Teil musste gefunden werden.

Integration des Google Web Toolkits
Im Jahr 2006 wurde von Google das Google Web Toolkit (GWT oder auch Gwit ausgesprochen)
veröffentlicht. Das GWT ist ein Framework, das es Entwicklerinnen und Entwicklern ermöglicht,
JavaScript-Anwendungen für den Browser rein mit Java zu entwickeln. Das funktioniert über
einen sogenannten Cross Compiler. Das heißt, man schreibt mit Hilfe einer speziellen Pro-
grammierschnittstelle Java Code, der später mit dem GWT Compiler nach JavaScript übersetzt
wird. Der GWT Cross Compiler arbeitet dabei direkt mit dem Java Source Code und nicht
mit den kompilierten Class-Dateien. Am Ende wird der übersetzte JavaScript-Code im Browser
ausgeführt.

Das Besondere am Google Web Toolkit ist, dass die komplette Webanwendung – sprich die
gesamte Fachlogik – im Browser läuft. Es kann (muss aber nicht) mit Hilfe von Remote Procedure
Calls (entfernten Prozeduraufrufen) mit einem Server-Backend kommuniziert werden, um bspw.
Daten aus einer Datenbank nachzuladen oder diese dort zu persistieren.

Eine weitere Besonderheit ist, dass das GWT JavaScript-Code erzeugt, der genau auf die
Eigenheiten der einzelnen Browser abgestimmt ist. Das bedeutet, dass für jede gewünschte
Browser-Zielplattform genau eine spezielle JavaScript-Datei kompiliert wird, die nur von dem
jeweiligen Browser geladen wird. Man kann damit sichergehen, dass seine Anwendung ohne
gesonderte Anpassung auch in jedem Browser problemlos funktioniert.

Ein solches clientseitiges Framework, das browserabhängigen JavaScript-Code auf Basis von
Java-Quellcode erstellen kann, ist natürlich der ideale Kandidat für den Client-Teil von Vaadin.
GWT-Code kann komplett mit Java geschrieben werden, was gut zu einem Java-Framework wie
Vaadin passt. Und über die Möglichkeit von GWT, auch per Remote Procedure Calls (RPC) mit
einem Server-Backend kommunizieren zu können, kann eine GWT-Anwendung problemlos an
den serverseitigen Teil von Vaadin – in dem ja die Fachlogik läuft – angebunden werden.

Im Jahr 2007 wurde der proprietäre clientseitige Teil von Vaadin über Bord geworfen und
durch eine GWT-Implementierung ersetzt. Dies brachte einige große Vorteile mit sich:

• Das Vaadin-Team muss sich nun nicht mehr um die Weiterpflege einer eigenen clientsei-
tigen Implementierung kümmern und kann sich voll und ganz auf die Verbesserung des
eigentlichen Vaadin-Kerns konzentrieren.

Was ist Vaadin? 4

• Vaadin wurde komplette browserunabhängig, ohne dass dafür ein gesonderter Aufwand
betrieben werden musste.

• Die Weiterentwicklung des clientseitigen Basisframeworks (GWT) erfolgt durch das Team
eines großen Herstellers, nämlich Google. Vaadin hat hier keine großen Aufwände mehr.

• Die Entwicklung clientseitiger Komponenten kann von jedermann durchgeführt werden,
der sich mit dem Google Web Toolkit auskennt. Eine Einarbeitung in eine proprietäre
Programmierschnittstelle ist damit nicht mehr notwendig. Vorhandenes Wissen kann
also zum Einsatz kommen, sodass auf dem Arbeitsmarkt auch eine größere Menge
an potentiellen Entwicklerinnen und Entwicklern für den Einsatz in Vaadin-Projekten
verfügbar ist.

1.2 Technologischer Hintergrund
Seit 2007 basiert also der clientseitige Teil von Vaadin auf demGoogleWeb Toolkit. Was bedeutet
das aus technischer Sicht?

Eine typische GWT-Anwendung besteht aus einer Reihe von Ansichten (Views), die über eine
spezielle Fachlogikmiteinander verbunden sind. Damit behandelt eine GWT-Anwendung immer
ein ganz bestimmtes, klar umrissenes fachliches Thema, z. B. eine Kundendatenverwaltung oder
einen Web Shop. Wie kann man dies nun mit einer Technologie wie Vaadin zusammenbringen,
bei der wir eine Webanwendung rein serverseitig implementieren wollen? Wir wollen ja gerade
nicht dazu gezwungen werden, zusätzlich noch clientseitigen Code schreiben zu müssen.

Die Lösung ist, dass Vaadin eine generische GWT-Anwendung für den Client-Teil mitbringt,
mit der sich jegliche Anwendungslogik umsetzen lässt, ohne dass dieser clientseitige Teil
von uns angepasst werden müsste. Diese generische GWT-Anwendung bildet dabei keine
bestimmte, anwendungsfallbezogene Fachlogik ab, sondern stellt eine Schnittstelle dar, welche
UI-Komponenten im Browser darstellen und mit dem Vaadin-Backend kommunizieren kann.

Diese generische GWT-Anwendung wird in der Vaadin-TerminologieWidget Set (oder auch
Client-Side Engine) genannt. In diesem Widget Set ist die Menge aller verfügbaren Vaadin UI-
Komponenten vorhanden. Zudem enthält es ein Kommunikationsmodul, mit dessen Hilfe dieses
Widget Set mit der serverseitigen Anwendung kommunizieren kann.

Das Grundprinzip einer Vaadin-Anwendung sieht damit wie folgt aus.Wir stellen in unserem
serverseitigen Code eine Benutzerschnittstelle zusammen, indem wir UI-Komponenten (Text-
felder, Checkboxen, Tabellen etc.) auf Layout-Komponenten anordnen. Es ergibt sich dadurch
eine baumartige Struktur von instanziierten UI-Objekten, die innerhalb der HTTP Session eines
Benutzers (also im Speicherbereich des Servers) verwaltet wird. Vaadin kümmert sich nun für
uns hinter den Kulissen darum, dass an den Browser spezielle Anweisungen geschickt werden,
welche vomWidget Set interpretiert und ausgeführt werden können. Diese Anweisungen führen
dazu, dass das Widget Set die UI-Komponenten, die wir auf Server-Seite zusammengestellt
haben, in Form von HTML Markup in den DOM-Baum (Document Object Model) gezeichnet
werden. Wir steuern also mit unserem serverseitigen Code den Vaadin-Teil im Browser indirekt
fern.

Was geschieht als nächstes, wenn die Benutzerin oder der Benutzer mit der Vaadin-
Anwendung im Browser interagiert? Interaktion bedeutet bei Vaadin immer, dass in irgendeiner
Form ein Ereignis ausgelöst wird. Das kann geschehen, wenn auf eine Schaltfläche geklickt
wird, oder wenn ein Textfeld den Eingabefokus verliert, oder wenn man die Sortierung einer

Was ist Vaadin? 5

Tabelle ändert und so weiter. Das Widget Set sorgt nun dafür, dass derartige Ereignisse (Events)
registriert und an den Server geschickt werden. Dort werden diese Ereignisse in Form von
komponentenspezifischen Events (z. B. einButton.ClickEvent wenn auf eine Schaltfläche geklickt
wurde) von unserem Anwendungscode weiterverarbeitet.

Auf jedes Event folgt typischerweise eine anwendungsspezifische Reaktion. Zum Beispiel
können Daten aus einer Datenbank nachgeladen werden, die in einer Tabelle oder einer Liste
angezeigt werden sollen. Oder es werden Formulareingaben in der Datenbank persistiert, und
auf der Benutzeroberfläche wird ein entsprechender Hinweistext angezeigt. In den allermeisten
Fällen muss also in irgendeiner Weise die Benutzeroberfläche angepasst werden. Als Antwort
auf ein solches Anwendungsevent manipulieren wir also in unserem serverseitigen Code die UI-
Komponenten, auf die wir über die HTTP Session Zugriff haben. Beispielsweise ändern wir den
Text, der von einem bestimmten Label angezeigt wird. Diese Änderungen an der dargestellten
Komponentenhierarchie werden von Vaadin als Antwort auf ein Ereignis an das Widget Set im
Browser zurückgeschickt. Dieses sorgt dafür, dass die clientseitig dargestellten UI-Komponenten
entsprechend aktualisiert werden. Dafür werden einfach die jeweiligen HTML-Elemente im
DOM-Baum angepasst, entfernt, oder es werden neue hinzugefügt.

Die Ereignisbehandlung geschieht bei Vaadin über AJAX-ähnliche Aufrufe. Die Abkürzung
AJAX steht, wie Sie sicherlich wissen, für Asynchronous JavaScript and XML, also asynchrone
JavaScript-Verarbeitung, bei der Nachrichten imXML-Format verschickt werden. Die Idee hinter
AJAX-basierten Webanwendungen ist, dass Daten zwischen Server und Browser ausgetauscht
und der Inhalt einer aktuell angezeigten Seite verändert werden kann, ohne dass die Seite
komplett neu geladenwerdenmuss. Vaadin arbeitet nach demselben Prinzip: Es wird eine einzige
Seite geladen (die sogenannte Host Page), die als erstes den JavaScript-Code des Widget Sets lädt
und ausführt. Anschließend werden nur noch Teile der Seite ereignisgetrieben abgeändert oder
ausgetauscht. Die Kommunikation mit dem Server geschieht dabei im Hintergrund. Es werden
hierbei nur die Daten zwischen Client und Server ausgetauscht, die zur Bearbeitung des aktuellen
Events notwendig sind. Ein Neuladen der Seite findet nicht statt.

Es gibt bei Vaadin zwei wichtige Unterschiede zum klassischen AJAX: erstens ist die
Kommunikation von Vaadin nicht asynchron. Wenn ein Ereignis zum Server geschickt wurde,
wartet das Widget Set zuerst auf eine Antwort, bevor die Anwendung weiter benutzt werden
kann. Zumeist fällt das gar nicht weiter auf, da die Ereignisbehandlung so schnell abläuft, dass
die Benutzeroberfläche nur für den Bruchteil einer Sekunde blockiert ist — so schnell kann man
gar nicht klicken. Wenn die Ereignisbehandlung allerdings besonders lange dauert, etwa weil
eine langlaufende Berechnung angestoßen wurde, dann wird dies für die Anwenderin oder den
Anwender spürbar.

Zweitens verwendet Vaadin keine XMLNachrichten für die Kommunikation mit dem Server.
Stattdessen setzt das Framework auf JSON³-kodierte Nachrichten, welche durch JavaScript-Code
wesentlich besser interpretierbar und verarbeitbar ist als XML.

Zusammenfassend können wir festhalten, dass eine Vaadin-Anwendung einmalig über eine
Host Page geladen und dann nur noch über leichtgewichtige Serveranfragen gesteuert wird. Die
gesamte Anwendung wird dabei auf einer einzigen Seite betrieben — nämlich die Host Page, die
beim ersten Aufruf der Vaadin-Anwendung geladen wurde. Aus diesem Grund spricht man bei
einer solchen Art von Anwendung auch von einer Single-Page Application: es wird eine Seite
geladen, die den notwendigen JavaScript-Code nachlädt, der dann im Folgenden dynamisch die

³JavaScript Object Notation

Was ist Vaadin? 6

Inhalte dieser Seite austauscht.
Durch diese Eigenschaften und durch die damit möglichen dynamischen UI-Komponenten

(z. B. Menüleisten, Drop-Down Vorschlagslisten, Dialogfenster, Möglichkeiten für Drag-and-
Drop-Verarbeitung, Baumkomponenten usw.) zeigen derartige Anwendungen ein ähnliches
Verhalten, wie herkömmliche Desktop-Applikationen. Sie zeigen ein reichhaltiges Verhalten mit
Bezug auf die Interaktionsmöglichkeiten, und das Ganze findet im Browser über das Internet
statt. Aus diesem Grund werden derartige Anwendungen auch Rich Internet Applications
genannt.

Damit haben wir die Grundeigenschaften von Vaadin herausgearbeitet: Vaadin ist ein
Framework für Rich Internet Applications, welches nicht auf einer Browser-Plugin-Infrastruktur
aufsetzt, sondern nach dem Prinzip einer JavaScript Single-Page Application funktioniert.

2. Hello Vaadin!
Lassen Sie uns nun auf unsere Reise durch die Welt von Vaadin begeben. Wie es in der Literatur
für Computerthemen so üblich ist, wollen auch wir hier mit einem einfachen Hello World
Beispiel beginnen. Mit dessen Hilfe werden wir die grundlegendsten Konzepte des Frameworks
kennenlernen.

In diesem Kapitel werden wir eine erste, sehr einfache Anwendung schreiben, die schon die
wesentlichen Grundbestandteile einer jeden Vaadin-Applikation enthalten wird. Wir begnügen
uns hierbei nicht damit, einfach nur ein simples Label mit dem Text “Hello World” auf den
Bildschirm zu bringen. Wir wollen uns gleich anständig mit Namen begrüßen lassen und sehen
deshalb die Eingabe unseres Namens in ein Textfeld vor. Diese Eingabe müssen wir über eine
Schaltfläche bestätigen. Anschließend werden wir auf eine Seite umgeleitet, auf der wir mit
Namen begrüßt werden.

Damit lernen wir die drei wichtigsten Grundelemente der Programmierung von Vaadin-
Anwendungen kennen: die validierte Eingabe von Daten, die Ereignisbehandlung und die
Seitennavigation innerhalb einer Anwendung.

Anschließend verschaffen wir uns einen Überblick über die wichtigsten Eigenschaften von
Rich Internet Applications, zu denen ja mit Vaadin geschriebene Anwendungen gehören, wie wir
im letzten Kapitel erfahren haben.

2.1 Anlegen eines Projekts
Wir beginnen mit einem neuen Eclipse-Projekt, das wir HelloVaadin nennen wollen. Für
dieses Beispiel verwenden wir das Vaadin Plugin für Eclipse, das wir zuvor über den Eclipse
Marketplace installiert haben.

Um ein neues Vaadin Projekt anzulegen, verwenden wir den Wizard für Vaadin Projekte,
den wir unter File→ New→ Other…→ Vaadin→ Vaadin 7 Project finden. Der erste Dialog des
Wizards erlaubt einige grundlegende Einstellungen.

Hello Vaadin! 8

Anlegen eines neuen Vaadin 7 Projektes mit dem Vaadin Eclipse Plugin

Zunächst können wir den Namen unseres neuen Projektes festlegen. Wir geben hier Hell-
oVaadin ein. Unter Project location wählen wir den Zielort der Projektdateien. Wir lassen das
Projekt einfach in unseren Eclipse Workspace legen.

Als nächstes wählen wir bei der Target runtime den Servlet Container aus, auf dem wir
unser Projekt laufen lassen wollen. Wir müssen in Eclipse unter Window → Preferences →
Server → Runtime Environment mindestens eine Server-Laufzeitumgebung, z. B. einen Tomcat
Server, eingerichtet haben. Wir können hier eine dieser Server-Konfigurationen auswählen.
Sollte in diesem Dialog noch kein Server auswählbar sein, können wir die Option auch einfach
überspringen. Unser Projekt lässt sich ohne Probleme auch später noch auf einer Server-
Umgebung ausführen.

Im nächsten Feld wählen wir die Konfiguration unseres Projekts. Wir haben hier die
Möglichkeit, die Version der verwendeten Servlet-Spezifikation zu wählen. Welche Version
wir auswählen hängt im Wesentlichen davon ab, welche Features der Servlet-Spezifikation
wir benötigen und welche Servlet-Version unsere Server-Zielplattform unterstützt. Für unser
einfaches Hello World-Beispiel genügt uns die Version 2.4 der Servlet-Spezifikation. Über die
Schaltfläche Modify… können wir die vorhandenen Konfigurationsmöglichkeiten anpassen.
Beispielsweise lässt sich hier die verwendete Java Version ändern. Wir definieren damit die
aktiven Eclipse Projekt-Facetten unseres Projekts.

Hello Vaadin! 9

Zu guter Letzt legen wir die Deployment configuration und die verwendete Vaadin-Version
für unser Projekt fest. Mit der Deployment configuration definieren wir, in welcher Umgebung
unsere Vaadin-Anwendung später einmal betrieben werden soll. Es gibt dazu drei Möglichkeiten,
aus denen man wählen kann:

• Servlet: Dies ist die Standardkonfiguration.Manwählt diese, um seine Vaadin-Anwendung
als herkömmliche JavaWebanwendung in einem Servlet Container, wie Tomcat, Jetty oder
GlassFish zu betreiben.

• Google App Engine servlet: Alternativ kann man seine Anwendung auch in der Google
App Engine¹ installieren. Die App Engine ist ein PaaS-Dienst (Platform-as-a-Service) von
Google. Man kann damit seine Vaadin-Anwendung sehr einfach in der Cloud betreiben.

• Generic portlet (Portlet 2.0): Schließlich ist es auch möglich, Vaadin als Portlet in einem
Portal Server laufen zu lassen. Damit bietet es sich z. B. an, Portlets für das Liferay Portal²
mit Hilfe von Vaadin zu implementieren.

Die Konfiguration, die wir hier wählen, legt fest, welches konkrete Vaadin-Servlet in unserem
Projekt eingesetzt wird. Abhängig von der Laufzeitumgebung unserer Anwendung muss ein
spezielles Servlet verwendet werden. So gibt es eine eigene Servlet-Implementierung für die
Google App Engine und für Portal Server.

Wir können uns später jedoch jederzeit für eine andere Laufzeitumgebung entscheiden. Vaa-
din ist so konzipiert, dass der Programmcode einer Anwendung vollständig von der konkreten
Umgebung abstrahiert ist. Egal ob wir unsere Anwendung in die Google App Engine oder in
einem herkömmlichen Servlet Container installieren — unser Anwendungscode bleibt davon
unberührt (zumindest der Vaadin-Teil). Einzig das darunterliegende Servlet muss angepasst
werden.

Nachdemwir nun die Grundkonfiguration für unser Vaadin-Projekt festgelegt haben, können
wir auf Next klicken, um auf dem nächsten Dialog das Quellcode- und Ausgabeverzeichnis
festzulegen. Hier können wir die Standardeinstellungen beibehalten.

Ein weiterer Klick auf Next bringt uns auf den Konfigurationsdialog für das Web-Modul.
Hier legen wir den Context Root unserer Anwendung fest. Das ist der Pfad in der URL zu
unserer Anwendung.Wennwir hier also die Voreinstellung HelloWorld beibehalten, wird unsere
Anwendung später lokal unter der URL http://localhost:8080/HelloWorld erreichbar sein.

Das Content Directory, das wir als nächstes festlegen können, bezeichnet dasjenige Ver-
zeichnis in unserem Projekt, das sämtliche Web-Ressourcen enthalten wird. Unter diesem Pfad
befindet sich das WEB-INF-Verzeichnis und die web.xml (falls vorhanden). Den vorgegebenen
Namen WebContent können wir auch hier beibehalten. Für unser erstes Vaadin Projekt setzen
wir den Haken beiGenerate web.xml deployment descriptor. Damit wird für uns von dem Eclipse
Plugin die Grundkonfiguration des Deployment Descriptors generiert. Wir können diesen später
nach unseren eigenenWünschen anpassen. Falls wir auf der ersten Seite des New ProjectWizards
eine Servlet-Version größer gleich 3.0 angegeben haben, können wir auch auf die web.xml

verzichten und das Servlet im Code rein über Annotationen konfigurieren.
Mit einem Klick auf Next kommen wir auf die letzte Dialogseite des Wizards.

¹https://appengine.google.com
²https://www.liferay.com

https://appengine.google.com/
https://appengine.google.com/
https://www.liferay.com/
https://appengine.google.com/
https://www.liferay.com/

Hello Vaadin! 10

Letzte Dialogseite des Wizards für neue Vaadin 7 Projekte

Dort haken wir die Option Create project template an. Damit wird für uns die Package-
Struktur des Projekts und die Vaadin Hauptklasse erzeugt. Als nächstes geben wir die folgenden
Informationen an:

• Application name: Name der Anwendung. Dieser Wert wird später in der web.xml als
Servlet-Name für das Vaadin Servlet verwendet.

• Base package name: Name des Basis-Packages, unterhalb dessen unsere Anwendung liegt.
• Application class name: Klassenname für die Hauptklasse der Anwendung. Typischerwei-
se heißt diese Klasse wie unsere Anwendungmit angehängtem UI, also z. B. HelloWorldUI.
Wenn wir den Haken bei Create project template gesetzt haben, wird diese Klasse für
uns automatisch angelegt.

• Theme name: Name des Themes, das von unserer Anwendung verwendet werden soll. Ein
Theme definiert das optische Erscheinungsbild einer Vaadin-Applikation. Wir können hier
einen Namen vorgeben, der zu unserer Anwendung passt. Was es mit Themes auf sich hat,
werden wir später erfahren. Wir können es an dieser Stelle erst einmal so hinnehmen, dass
für uns ein eigenes Theme erzeugt wird.

Schließlich können wir noch die Version der verwendeten Portlet-Spezifikation wählen, falls
unsere Vaadin-Anwendung als Portlet betrieben werden soll. Diesen Punkt benötigen wir für

Hello Vaadin! 11

unser Beispiel nicht. Als letzten Konfigurationswert legen wir die Vaadin-Version fest, die für
unser Projekt verwendet werden soll. Hier können wir einfach die jeweils aktuelle Vaadin-
Version wählen.

Als letztes drücken wir nun den Finish-Knopf und lassen Eclipse unser bis hierher konfigu-
riertes Projekt erzeugen. Es wird ein Eclipse-Projekt generiert, das Ivy als Build Tool verwendet.
Die Eclipse Ivy Integration sorgt anschließend dafür, dass alle benötigten Abhängigkeiten (d. h.
die Vaadin Bibliotheken und deren abhängigen Libraries) aufgelöst und heruntergeladen werden.
Mit den vorhandenen Abhängigkeiten kann das Projekt von Eclipse fehlerfrei kompiliert werden.
Als Ergebnis haben wir jetzt ein neues Projekt namens HelloVaadin in unserem Workspace.
Schauen Sie sich gerne ein wenig in den Projektdateien um.

Das Projektlayout unseres brandneuen Hello Vaadin Projekts

Im Folgenden wollen wir einen kurzen Blick auf die erzeugten Projektdateien werfen. Wir
werden dabei die wichtigsten Grundbestandteile einer Vaadin-Anwendung umreißen.

Die Projektdateien
Schauen wir uns einige der generierten Dateien etwas genauer an.

HelloVaadin/src/org/vaadin/hellovaadin/HelloVaadinUI.java
Diese Datei beherbergt die Klassendefinition der Hauptklasse unseres Projekts. Die Klasse
HelloVaadinUI erbt von der kurz und knapp benannten Vaadin Klasse com.vaadin.ui.UI.
Dies ist die Einstiegsklasse für eine Vaadin-Applikation. In ihr muss vor allem die abstrakte
Methode UI#init(VaadinRequest) implementiert werden. Über dieser Methode wird eine
Vaadin-Anwendung initialisiert. Sie wird immer dann aufgerufen, wenn eine Benutzerin oder
ein Benutzer unsere Anwendung mit dem Browser besucht.

Hello Vaadin! 12

Man kann sich die init()-Methode ungefähr wie die main()-Methode eines herkömmlichen
Java-Programms vorstellen. Hier wird der Einstiegspunkt einer Anwendung definiert. Die
Hauptaufgabe dieser Methode ist es also, die Benutzeroberfläche der Anwendung zu initialisie-
ren und die initialen Ereignisbehandlungsroutinen für die Verarbeitung der Benutzeraktionen zu
registrieren.

HelloVaadin/WebContent/VAADIN/themes/hellovaadin/*
In diesem Verzeichnis befindet sich das sogenannte Theme einer Vaadin-Anwendung. Ein Theme
legt das äußere Erscheinungsbild der Anwendung fest. Hier können wir das Look & Feel für
unser Programm definieren. Im Wesentlichen besteht das aus speziell angepassten Cascading
Stylesheets (CSS) und weiteren Ressourcendateien, wie z. B. Bilder und Icons.

Das Vaadin Eclipse Plugin hat schon ein solches Theme für uns angelegt. Dieses dient
allerdings vorerst nur als Vorlage für unsere eigenen Anpassungen, d. h. das Theme ist zu Beginn
leer. Belassen wir die Theme-Dateien so wie sie im Moment sind, verhält sich unsere Vaadin-
Anwendung genauso, als hätten wir kein eigenes Theme definiert. Wir brauchen uns also vorerst
gar nicht um diese Dateien zu kümmern.

HelloVaadin/WebContent/WEB-INF/web.xml
Die web.xml ist der Deployment Descriptor unserer Webanwendung, der zumindest bei Ver-
wendung von älteren Servlet-Spezifikationen benötigt wird. In ihr wird im einfachsten Fall ein
spezielles Vaadin-Servlet konfiguriert, das wir für unsere Deployment-Umgebung benötigen.
Wollen wir unsere Anwendung in der Google App Engine betreiben, müssen wir eine andere
Servlet-Implementierung verwenden, als für ein Deployment als Portlet in einem Portal Server.

Neben der Festlegung der verwendeten Servlet-Klasse gibt es noch einigeweitere Initialisierungs-
und Kontextparameter, die wir in der web.xml konfigurieren können. Dazu gehören unter
anderem die Festlegung der Hauptklasse, die das Servlet verwenden soll und die Konfiguration,
in welchem Modus die Vaadin-Anwendung betrieben werden soll.

Es gibt zwei Modi, unter denen eine Vaadin-Anwendung laufen kann: der Produktionsmodus
und ein Debug-Modus. Gesteuert wird dieser Modus über den Kontextparameter production-
Mode.

<context-param>

<description>Vaadin production mode</description>

<param-name>productionMode</param-name>

<param-value>false</param-value>

</context-param>

Belegt man diesen Wert wie im Beispiel mit false, so wird die Anwendung im Debug-
Modus betrieben. Wir haben dann Zugriff auf einige zusätzliche Features, die uns das Leben
als Entwickler etwas erleichtern. Dazu gehört unter anderem ein spezielles Debug-Fenster, das
wir zur Laufzeit auf unserer Anwendung anzeigen können. Über dieses Fenster können wir
detaillierte Informationen über den clientseitigen Zustand der Applikation erhalten. Wir werden
uns diesen Debug-Modus später an anderer Stelle noch etwas genauer anschauen.

Wichtig ist, dass wir in der Produktionsumgebung diesen Modus deaktivieren. Dazu belegen
wir den Wert des Kontextparameters productionMode mit true. Es sind dann sämtliche Debug-
Funktionalitäten des Vaadin-Servlets deaktiviert. Das schützt die Interna unserer Anwendung
vor allzu neugierigen Blicken und kommt zudem der Anwendungs-Performance zugute.

Hello Vaadin! 13

Der zweite wichtige Wert, den wir in der web.xml konfigurieren müssen, ist die UI-Klasse,
die vom Vaadin-Servlet verwendet werden soll. Dazu definieren wir den Wert des Servlet Init-
Parameters UI. Mit diesem Parameter geben wir dem Vaadin-Servlet unsere eigene Subklasse
von com.vaadin.ui.UI bekannt, welche ja die Haupteinstiegsklasse unserer Vaadin-Anwendung
darstellt.

<init-param>

<description>Vaadin UI class to use</description>

<param-name>UI</param-name>

<param-value>org.vaadin.hellovaadin.HelloVaadinUI</param-value>

</init-param>

Das Vaadin-Servletmuss, sobald eineAnwenderin oder einAnwender die Vaadin-Applikation
mit dem Browser besucht, eine neue Instanz unserer UI-Klasse erzeugen und diese Instanz in die
HTTP Session stellen. Dieses UI-Objekt enthält unter anderem alle UI-Komponenten, die aktuell
im Browser des Benutzers dargestellt werden, und deren jeweiligen Zustand. Damit das Vaadin-
Servlet neue Instanzen unserer UI-Klasse erstellen kann, muss man ihm den voll qualifizierten
Klassennamen dieser Klasse mitteilen. Dies geschieht mit dem UI-Parameter. Das Servlet kann
damit bei Bedarf per Reflection neue Instanzen erstellen.

Es geht los: Deployment der Anwendung
Das Vaadin Eclipse Plugin hat uns mit diesen Dateien eine voll funktionsfähige Vaadin-
Anwendung generiert. Wir können diese jetzt so wie sie ist in einem Servlet Container deployen
und starten. Lassen Sie uns das an dieser Stelle einfach einmal tun.

Wir müssen dazu vorher eine Server-Laufzeitumgebung in Eclipse eingerichtet haben. Dies
lässt sich in den Einstellungen unterWindow→ Preferences→ Server→ Runtime Environments
bewerkstelligen.

Ist das erledigt, kann unser Projekt auf zweierlei Arten auf dem Server installiert werden.
Wir können einfach per Drag & Drop das Projektverzeichnis aus dem Package Explorer oder
dem Project Explorer auf den Server-Eintrag in der Servers View ziehen. Alternativ können wir
mit der rechten Maustaste auf dem Projekt das Kontextmenü aufrufen und dort unter der Option
Run As → Run on Server den Zielserver auswählen.

Bei beiden Varianten wird anschließend der Server gestartet und die Anwendung darauf
installiert. Wenn der Server hochgefahren ist, kann die Hello Vaadin Anwendung unter der
folgenden URL besucht werden (Eclipse wird dann automatisch ein internes Browserfenster
öffnen):

http://localhost:8080/HelloVaadin/

Sie müssen gegebenenfalls nur den Port 8080 an den von Ihrem Servlet Container verwen-
deten Port angleichen.

Schreiben unseres Anwendungscodes
Lassen Sie uns jetzt den vomVaadin Eclipse Plugin generierten Beispielcodemit unserem eigenen
Code ersetzen. Wir wollen das folgende Beispielprogramm als unsere erste Vaadin-Anwendung
schreiben.

Hello Vaadin! 14

Die Hello Vaadin Beispielanwendung
1 package org.vaadin.hellovaadin;

2

3 import com.vaadin.annotations.Theme;

4 import com.vaadin.server.VaadinRequest;

5 import com.vaadin.ui.Button;

6 import com.vaadin.ui.Button.ClickEvent;

7 import com.vaadin.ui.ComponentContainer;

8 import com.vaadin.ui.Label;

9 import com.vaadin.ui.Notification;

10 import com.vaadin.ui.TextField;

11 import com.vaadin.ui.UI;

12 import com.vaadin.ui.VerticalLayout;

13

14 @Theme("hellovaadin")

15 public class HelloVaadinUI extends UI {

16

17 @Override

18 protected void init(VaadinRequest request) {

19 // {1} //

20 final VerticalLayout layout = new VerticalLayout();

21 layout.setMargin(true);

22 layout.setSpacing(true);

23

24 buildHomeScreen(layout); // {2} //

25 setContent(layout); // {3} //

26 }

27

28 private void buildHomeScreen(final ComponentContainer layout) {

29 // {4} //

30 final TextField nameTextField = new TextField("Wie lautet Ihr Name?");

31 nameTextField.setRequired(true);

32 final Button sayHelloButton = new Button("Sag mal Hallo...");

33

34 // {5} //

35 sayHelloButton.addClickListener(new Button.ClickListener() {

36 @Override

37 public void buttonClick(ClickEvent event) {

38 if (nameTextField.isValid()) { // {6} //

39 layout.removeAllComponents(); // {7} //

40 buildHelloScreen(layout, nameTextField.getValue()); // {8} //

41 } else {

42 Notification.show("Geben Sie bitte Ihren Namen ein."); // {9} //

43 }

44 }

45 });

Hello Vaadin! 15

46

47 // {10} //

48 layout.addComponent(nameTextField);

49 layout.addComponent(sayHelloButton);

50 }

51

52 private void buildHelloScreen(final ComponentContainer layout, String name)\

53 {

54 // {11} //

55 final Label helloLabel = new Label(String.format("Hallo %s!", name));

56 final Button backButton = new Button("<< Zurück");

57

58 backButton.addClickListener(new Button.ClickListener() {

59 @Override

60 public void buttonClick(ClickEvent event) {

61 layout.removeAllComponents(); // {12} //

62 buildHomeScreen(layout); // {13} //

63 }

64 });

65

66 // {14} //

67 layout.addComponent(helloLabel);

68 layout.addComponent(backButton);

69 }

70 }

Zugegeben, dieser Code geht über ein simplesHelloWorld-Programm doch ein wenig hinaus.
Aber wenn wir ehrlich sind, würde es uns, nachdem wir den vom Vaadin Eclipse Plugin
generierten Code gesehen haben, nicht mehr sonderlich aus den Socken hauen, wenn wir uns
anschauen würden, wie man ein simples Label auf die Benutzeroberfläche legt.

Stattdessen sehen wir an diesem einfachen Beispiel die wichtigsten Grundbestandteile, aus
der jede nicht-triviale Vaadin-Anwendung besteht, komprimiert an einer Stelle: Ereignisbehand-
lung, Navigation und Eingabevalidierung.

Schauen wir uns das Beispiel einmal Schritt für Schritt an. Die init()-Methode {1} über-
nimmt typische Konstruktoraufgaben — mit dem Unterschied, dass sie keine Klasse initialisiert,
sondern unsere Vaadin-Anwendung. Hier wird das Hauptlayout eingerichtet {2} und als Inhalt
(Content) der UI-Klasse gesetzt {3}. Mit derMethode UI#setContent(com.vaadin.ui.Component)
wird der Inhalt des Browserfensters festgelegt. Das ist typischerweise eine Layout-Komponente,
die selbst wiederum rekursiv sämtliche geschachtelten Layouts und UI-Komponenten der
Benutzeroberfläche enthält.

Das Zusammenstellen der UI-Komponenten, die auf dem Hauptlayout zu sehen sein sollen,
wurde in eine eigene Methode buildHomeScreen() ausgelagert. Diese Methode werden wir
später noch einmal benötigen.

Werfen wir einen Blick auf buildHomeScreen(). Hier werden zwei UI-Komponenten erzeugt
{4} und auf das Layout gelegt {10}. Wir erstellen uns ein Textfeld, in das die Anwender ihren
Namen eingeben können, und eine Schaltfläche, die uns auf eine zweite Seite leiten wird.

Hello Vaadin! 16

Auf dieser werden die Anwender mit ihrem Namen begrüßt. Die Eingabe in das Textfeld ist
verbindlich. Das Textfeld wird daher mit setRequired(true) als Pflichtfeld konfiguriert.

Auf der Schaltfläche sayHelloButton registrieren wir einen Event Listener für Button Clicks.
Den com.vaadin.ui.Button.ClickListener implementieren wir als anonyme Klasse. In dieser
Ereignisbehandlungsroutine überprüfen wir zuerst, ob die Eingabe in das Textfeld gültig ist {6}.
Ist das nicht der Fall, wird ein Hinweis angezeigt {9}.

Hat man einen Namen angegeben, findet als nächstes eine Navigation auf eine zweite “Seite”
statt. Dazu entfernenwir sämtliche vorhandenen UI-Komponenten von demHauptlayout {7} und
ersetzen diese mit den Komponenten, die in der Methode buildHelloScreen() erzeugt werden
{8}. Dieser Methode übergeben wir den Inhalt des Textfeldes.

Die Methode buildHelloScreen() erzeugt die zweite Seite unserer Beispielanwendung. Hier
wird ein Label mit dem Gruß an die Anwenderin oder den Anwender und ein Zurück-Knopf
{11} auf das Hauptlayout gelegt {14}. Auch hier registrieren wir wieder eine anonyme Klasse als
ClickListener für den Zurück-Knopf. Der Code für diesen Listener ist sehr einfach: wir entfer-
nenwieder sämtliche Komponenten vom Layout {12} und rufen dieMethode buildHomeScreen()
{13} auf, die unsere Benutzeroberfläche in ihren Ursprungszustand zurückversetzt.

2.2 Grundeigenschaften einer Vaadin-Anwendung
Wie am Anfang versprochen, können wir an diesem Beispiel sehr schön die Eigenschaften einer
typischen Vaadin-Anwendung in ihren Grundzügen erkennen: Ereignisbehandlung, Navigation
und Validierung.

Ereignisbehandlung
Das Verhalten einer Vaadin-Applikation ist ereignisgetrieben. Das heißt, nachdem wir die UI-
Komponenten für die Benutzeroberfläche zusammengestellt und im Browser dargestellt haben
(mit com.vaadin.ui.UI#setContent()), besteht der gesamte Rest der Anwendung nur noch aus
der Reaktion auf Benutzeraktionen. Aktionen, die der Benutzer oder die Benutzerin im Browser
durchführt, werden als Event zum Server gesendet und dort von Event Listenern ³ verarbeitet.
Aus diesen Ereignisbehandlungsroutinen heraus wird dann unsere Business-Logik aufgerufen.
Vaadin unterscheidet sich also in dieser Hinsicht nicht von anderen UI-Frameworks, wie Swing,
JavaFX oder dem SWT (das Standard Widget Toolkit von Eclipse).

Validierung
Die Überprüfung von Benutzereingaben ist ein wichtiger Bestandteil jeder Software. Auch das
Vaadin-Framework bringt einige Schnittstellen und Funktionen mit, mit denen uns die Eingabe-
validierung wesentlich erleichtert wird und die uns einen Großteil von immer wiederkehrenden
Aufgaben abnimmt.

Im Beispiel haben wir die Eingabe in das Textfeld für den Benutzernamen erforderlich
(required) gemacht. Mit der Methode isValid(), die wir auf der Eingabekomponente, dem
Textfeld, aufgerufen haben, konnten wir das Framework die Gültigkeit der Benutzereingabe

³Ein anderer gängiger Begriff für diese Ereignisbehandlungsroutinen ist Event Handler. Während die entsprechenden Interfaces beim GWT
das Suffix Handler tragen, heißen diese Routinen bei Vaadin bis auf wenige Ausnahmen Listener. Bspw. werden beim GWT Mausklicks über
die Schnittstelle ClickHandler verarbeitet und bei Vaadin über einen ClickListener.

Hello Vaadin! 17

überprüfen lassen und entsprechend darauf reagieren. In diesem einfachen Fall prüfen wir, ob
überhaupt eine Eingabe gemacht wurde.

Mit der Validierung und den dazugehörigen Validatoren werden wir uns an späterer Stelle
noch intensiv auseinandersetzen.

Single-Page Web Applications
Im Beispielprogramm haben wir gesehen, wie wir die Benutzer von einer Seite der Anwendung
auf eine andere Seite weiterleiten können. Nachdem die Anwender ihren Namen eingegeben
haben, werden sie auf eine zweite Seite geleitet, auf der sie mit Namen begrüßt werden.

Obwohl das Beispiel extrem simpel ist, demonstriert es doch das Kernprinzip der Seitenna-
vigation mit Vaadin: Anstatt wie es in anderen Web-Frameworks üblich ist, eine komplett neue
HTML-Seite zu rendern, haben wir einfach sämtliche UI-Komponenten von der Benutzerober-
fläche entfernt (removeAllComponents()) und das Basislayout mit den Komponenten gefüllt, die
die nächsten Seite darstellen. Technisch befindet sich der Anwender oder die Anwenderin immer
auf der gleichen HTML-Seite. Das ist diejenige, die beim ersten Annavigieren der Anwendung
geladen wurde. Es werden anschließend nur Teile der Seite oder der gesamte Seiteninhalt
nach Bedarf mit Hilfe von JavaScript-Code ausgetauscht. Es wird somit den Benutzern ein
vollständiger Seitenwechsel nur vorgegaukelt.

Dieses Prinzip, bei dem eine Anwendung nur auf einer einzigen HTML-Seite betrieben wird,
deren Inhalt über JavaScript-Code dynamisch manipuliert wird, ist das definierende Element für
so genannte Single-Page Web Applications.

Single-Page Web Applications (oder auf Deutsch Einzelseiten-Webanwendungen) zeichnen
sich dadurch aus, dass sie, wie der Name schon andeutet, auf einer einzigen HTML-Seite
betrieben werden. Sie unterscheiden sich damit in dieser Hinsicht wesentlich von klassischen
Webanwendungen, bei denen jede Aktion der Benutzer zum Laden einer komplett neuen HTML-
Seite führt.

Der erste HTTP GET-Request, den die Benutzerin oder der Benutzer beim Besuch einer
solchen Anwendung an den Server schickt, lädt die HTML-Seite, auf der die Single-Page Web
Application betrieben wird. Der Seiteninhalt wird anschließend dynamisch, z. B. mit JavaScript,
aufgebaut. Alle weiteren Interaktionen mit der Anwendung finden über asynchrone AJAX-
Requests statt. Als Ergebnis dieser Server-Anfragen werden nur bestimmte Bereiche der HTML-
Seite ausgetauscht oder aktualisiert.

Diese Eigenschaft ist typisch für Rich Internet Applications, einer Klasse von Anwendungen,
die sich dadurch auszeichnen, dass sie sehr reichhaltige Interaktionsmöglichkeiten bieten und
für den Datenaustausch über das Internet mit einem Server kommunizieren können.

Für die Umsetzung von Rich Internet Applications im Browser gibt es viele Ansätze. Dazu
gehören plugin-basierte Lösungen, die die Installation einer bestimmten Erweiterung imBrowser
voraussetzen. Beispiele hierfür sind Microsoft Silverlight oder Adobe Flash. Daneben gibt es
Ansätze, die rein auf HTML5 und JavaScript aufsetzen und die damit ohne die Installation von
Plugins auskommen. Zwei wichtige Vertreter hierfür sind das Google Web Toolkit und natürlich
das darauf aufsetzende Vaadin Framework.

3. Ressourcen
In einer typischen Webanwendung werden wir neben rein textuellen Informationen auch
bestimmte Ressourcenarten, wie zum Beispiel Grafiken, Icons oder Datei-Downloads, einbinden
wollen. Diese Daten können entweder aus unserer Anwendung selbst oder aus einer externen
Quelle stammen. Vaadin unterstützt die Verwendung solcher Ressourcen über eine eigene API.

Ressourcen werden ganz allgemein über das Interface com.vaadin.server.Resource ab-
gebildet. Dieses Interface steht an der Spitze der Vererbungshierarchie der verfügbaren Res-
sourcenarten von Vaadin. Eine Resource-Instanz repräsentiert ein Ressourcenobjekt, das auf
verschiedene Weise in einer Vaadin-Anwendung eingebunden werden kann: als Link, als Bild,
als Icon, als Download oder als eingebettetes Medienobjekt. Damit wird uns zum Beispiel die
Darstellung eines Icons auf einer UI-Komponente, die Anzeige einer Bilddatei, das Einbetten
eines YouTube-Videos oder einer Webseite in einem iFrame oder der Download einer dynamisch
erzeugten Datei ermöglicht.

Vaadin bietet uns eine Reihe von Implementierungsklassen für das Resource-Interface. Diese
erlauben es uns, Datenobjekte aus verschiedenen Quellen in unserer Anwendung einzubinden.
Wir werden in diesem Kapitel die folgenden Ressourcenarten kennenlernen:

• URLs: Mit einer com.vaadin.server.ExternalResource legen wir das Ziel eines Links
oder die Adresse eines eingebundenen Medienobjekts fest.

• Dateien innerhalb eines Vaadin Themes: Dateien, die innerhalb eines Themes abgelegt
sind, können mithilfe einer com.vaadin.server.ThemeResource angesprochen werden.
Themes werden wir in einem späteren Kapitel kennenlernen.

• Dateien aus dem Dateisystem oder dem Klassenpfad werden mit den beiden Klassen
com.vaadin.server.FileResource und com.vaadin.server.ClassResource eingebun-
den.

• Dynamisch generierte Daten: Ressourcen können auch on-the-fly durch die Vaadin-
Anwendung oder von einem beliebigen externen Prozess erzeugt werden. Dies geschieht
über die Klasse com.vaadin.server.StreamResource.

• Font Icons: Dies sind spezielle Schriftarten, deren Zeichen keine Buchstaben, sondern ein-
zelne Piktogramme darstellen. Damit bieten Font Icons eine Alternative zur Verwendung
von Bilddateien. Das Interface com.vaadin.server.FontIcon bildet die Grundlage für
diese Art von Grafiken.

In diesem Kapitel wollen wir uns mit dem Einsatz solcher Ressourcen in einer Vaadin-
Anwendung beschäftigen.Wir werden dazu die verschiedenen Ressourcenarten und die zu ihnen
gehörenden Implementierungsklassen kennenlernen. Außerdem werden wir natürlich auch die
Szenarien ansprechen, für die die einzelnen Ressourcenklassen eingesetzt werden können, und
wir werden herausfinden, in welcher Situation eine bestimmte Ressourcenart am besten geeignet
ist.

Ressourcen 19

3.1 Verwendung von Ressourcen
Ressourcenobjekte können in einer Vaadin-Anwendung an verschiedenen Stellen eingesetzt
werden. Sie werden dabei immer ganz allgemein über das Resource-Interface referenziert. So
gibt man mit einer Resource das Ziel einer Link-Komponente an, oder man definiert mit ihr die
Quelle eines com.vaadin.ui.Image-Objekts, oder man setzt die Adresse für ein BrowserFrame,
einer Komponente, mit der sich ein iFrame in eine Anwendung einbetten lässt.

Einige Methodensignaturen, die das Resource-Interface als Parameter verwenden
com.vaadin.ui.Link#setResource(Resource resource)

com.vaadin.ui.AbstractEmbedded#setSource(Resource source)

com.vaadin.ui.AbstractComponent#setIcon(Resource icon)

com.vaadin.ui.Notification#setIcon(Resource icon)

com.vaadin.ui.Video#Video(String caption, Resource source)

com.vaadin.ui.Video#setPoster(Resource poster)

com.vaadin.ui.BrowserFrame#BrowserFrame(String caption, Resource source)

Die Art und Weise, wie diese Ressource dann behandelt wird – das heißt ob ihre Daten auf
der Programmoberfläche angezeigt werden oder ob sie zum Download angeboten wird – hängt
von der Komponente ab, der man das Resource-Objekt übergibt. So stellt com.vaadin.ui.Link
eine Ressource einfach in einem <a>-Tag als Hyperlink auf die Ressource dar, während die
com.vaadin.server.FileDownloader-Extension die Ressourcendaten als Download bereitstellt
¹.

Eine Ausnahme bei den Resource-Implementierungen bilden Font Icons. Diese können nur
an einer einzigen Stelle, und zwar ausschließlich als Komponenten-Icons verwendet werden. Das
heißt, sie dürfen lediglich als Parameter von Methoden Verwendung finden, mit denen sich ein
Icon für eine Oberflächenkomponente setzen lässt. Ein Font Icon darf also insbesondere nicht als
Quelle für ein Image-Objekt oder als Linkziel benutzt werden. Eine detailliertere Beschreibung
von Font Icons finden Sie am Ende dieses Kapitels.

Ein Beispiel: Setzen eines Links
Bevor wir uns in die Details der verschiedenen Ressourcenarten vertiefen, wollen wir zunächst
mit einem kleinen Beispiel die wohl am häufigsten verwendete Ressourcenklasse ausprobieren:
Wir setzen einen einfachen Hyperlink, der auf die Vaadin-Homepage verweist.

Listing 1: Setzen eines Hyperlinks mit Vaadin
ExternalResource address = new ExternalResource("http://www.vaadin.com");

Link vaadinHomepage = new Link("Zur Vaadin-Homepage", address);

layout.addComponent(vaadinHomepage);

Das war schon alles. Wir erzeugen ein Objekt vom Typ ExternalResource und initialisieren
dieses mit der Adresse http://www.vaadin.com. Dieses Ressourcenobjekt übergeben wir als
nächstes dem Konstruktor der Link-Komponente, die wir anschließend auf einem Layout
platzieren. Im HTML-Code der Anwendung sehen wir dann das folgende Ergebnis:

¹Der Extension-Mechanismus von Vaadin erlaubt es, eine beliebige Vaadin-Komponente mit einer bestimmten Funktionalität zu erweitern.
Dazu gibt es eigene Extension-Komponenten, die sich mit einer normalen UI-Komponente kombinieren lassen. Die Klasse FileDownloader ist
so eine Erweiterung. Wir werden uns in diesem Grundlagenbuch leider nicht näher mit diesem Konzept befassen können. Die Verwendung von
Extensions und die Entwicklung eigener Erweiterungen wird Thema in einem weiteren Buch zu fortgeschrittenen Vaadin-Themen sein.

Ressourcen 20

<div class="v-link v-widget">

Zur Vaadin-Homepage

</div>

3.2 Das Resource-Interface
Die Hauptschnittstelle für Vaadin Ressourcen ist com.vaadin.server.Resource. Dieses Interface
wird von jeder Ressourcenart implementiert. Eine Variable vom Typ Resource kann damit
jede beliebige Ressourcenart repräsentieren. Durch ihren sehr allgemeinen Charakter definiert
Resource kaum eigene Funktionalität. Es wird nur eine einzige Methode deklariert: getMIME-
Type() zum Festlegen des MIME Types einer Ressource. Die Bestimmung des konkreten MIME
Types wird von Vaadin automatisch übernommen. Beim Zugriff auf eine Ressource wird diese
Information immer mitgeschickt und vom Browser entsprechend ausgewertet.

Vererbungshierarchie der Resource-Schnittstelle

Das Resource-Interface wird von den beiden Klassen ExternalResource und ThemeResource
direkt implementiert. Wir werden diese beiden Ressourcenarten weiter unten noch genauer
kennenlernen. Daneben gibt es noch die sogenannten Connector-Ressourcen.

3.3 Connector-Ressourcen
Direkt von Resource abgeleitet ist die Schnittstelle com.vaadin.server.ConnectorResource.
Eine Besonderheit von Connector-Ressourcen ist, dass ihre Daten über einen sogenannten
Connector bereitgestellt werden. Um das zu verstehen, müssen wir erst einmal wissen, was ein
Connector ist. Ein Connector ist derjenige Teil einer UI-Komponente, der für ihre Kommuni-
kation zwischen Client und Server zuständig ist. Jede Vaadin-Komponente hat ihren eigenen
Connector. Damit steht eine Connector-Ressource immer in einer engen Beziehung zu einer
bestimmten UI-Komponenteninstanz.

Mit Connector-Ressourcen können Daten bereitgestellt werden, die aus der Anwendung
selbst stammen und dabei keinen eigenen, vordefinierten URI mitbringen. Dies können zum
Beispiel Daten sein, die erst bei Abruf durch den Browser erzeugt werden.

Die Schnittstelle ConnectorResource deklariert daher auch zwei für diesen Zweck passende
Methoden: getStream() und getFilename(). Während getFilename() den Dateinamen festlegt,

Ressourcen 21

unter dem der Browser die Ressourcendaten herunterladen soll, liefert getStream() die Daten
selbst. Diese Methode gibt ein Objekt vom Typ com.vaadin.server.DownloadStream zurück.
Dieses enthält alle zu einer Connector-Ressource gehörenden Informationen, darunter unter
anderem ein InputStream, der die Ressourcendaten selbst enthält.

Implementiert wird das Interface ConnectorResource von den Klassen ClassResource,
FileResource und StreamResource. Während bei ClassResource und FileResource die Res-
sourcendaten aus dem Klassenpfad bzw. aus dem Dateisystem stammen, haben wir mit einer
StreamResource die Möglichkeit, den InputStream, der über das DownloadStream-Objekt zu-
rückgegeben wird, selbst zu definieren. Damit können wir also dynamisch generierte Daten, wie
zum Beispiel Reports oder Datenexporte, bereitstellen.

Wie weiter oben schon erwähnt, sind dies alles Ressourcen, deren Daten aus der Anwendung
stammen und die keinen eigenen URI besitzen. Weiter wissen wir, dass man ein beliebiges
Resource-Objekt zum Beispiel als Zielressource in eine Link-Komponente stecken kann. Hierbei
haben wir aber scheinbar einen Konflikt, denn wie kann ich eine Ressource ohne eigenen URI
als Ziel eines Links angeben, wenn dieses Ziel doch ein URI sein muss? Wie kann aber eine
dynamisch generierte oder aus dem Klassenpfad gelesene Ressource mit einem eindeutigen URI
adressiert werden? Die Daten liegen ja nicht als durch den Webserver zugreifbare Dateien in
einem Dokumentenverzeichnis. Dieser Frage wollen wir im folgenden Abschnitt nachgehen.

Adressierung von Connector-Ressourcen
Connector-Ressourcen besitzen von Haus aus keinen eigenen URI, unter dem sie abgerufen
werden könnten. Sie liegen nicht wie normale Dateien im Document Root eines Webservers,
sondern werden vom Vaadin-Servlet direkt bereitgestellt und übertragen. Trotzdem kann man
Connector-Ressourcen überall dort verwenden, wo ein URI erwartet wird. Zum Beispiel kann
man eine Connector-Ressource, die dynamisch erzeugte Inhalte bereitstellt, in ein Link-Objekt
setzen. Wie passt das zusammen?

Hier kommt der Connector ins Spiel, der namensgebend für diese Ressourcenart ist. Jede
UI-Komponenteninstanz, die auf einer Benutzeroberfläche platziert ist, wird durch ein eigenes
Connector-Objekt repräsentiert. Jedes dieser Objekte hat eine eindeutige Id, die von Vaadin
intern verwaltet wird. Eine UI-Komponenteninstanz, die auf einer Benutzeroberfläche liegt,
befindet sich immer im Inneren einer Komponentenhierarchie unterhalb eines UI-Objekts. Wie
wir wissen, können sämtliche UI-Instanzen einer HTTP-Session über deren UI Id identifiziert
werden. Zusammen mit dieser UI Id und einer Connector-Id kann also eine ganz bestimmte
UI-Komponenteninstanz innerhalb einer Benutzersession eindeutig adressiert werden.

Mithilfe dieser Adressierung kann Vaadin nun für Connector-Ressourcen einen künstlichen
URI erzeugen. Der generierte URI beinhaltet neben dem Dateinamen der Ressource (wird durch
getFilename() geliefert) die Connector-Id der UI-Komponenteninstanz und die Id des UI-
Objekts, in dem sich die Instanz befindet. Diese Connector-URIs werden durch das Vaadin-
Servlet interpretiert und behandelt. Damit das Vaadin-Servlet weiß, welche Ressourcendaten
durch eine bestimmte Komponente bereitgestellt werden sollen, muss es das dazugehörige
Resource-Objekt kennen. Anhand des Connector-URIs kann sich das Vaadin-Servlet dieses
Objekt gezielt aus der HTTP-Session fischen. Dadurch wird es möglich, auch dynamisch
generierte Ressourcen eindeutig zu adressieren.

Schauen wir uns ein einfaches Beispiel dazu an. Wir wollen eine Datei Readme.txt, die im
lokalen Dateisystem liegt, mithilfe eines Links zum Download anbieten. Dazu verwenden wir

Ressourcen 22

eine FileResource und die Link-Komponente.

Verlinkung einer lokalen Dateiressource

1 FileResource fileResource = new FileResource(new File("C:/readme.txt"));

2 Link link = new Link("Download readme.txt", fileResource);

3 mainLayout.addComponent(link);

Wenn wir jetzt den HTML-Code betrachten, der durch dieses Beispiel erzeugt wird, sehen
wir folgendes Ergebnis:

Von Vaadin erzeugter Connector-URI für die Datei readme.txt

<div class="v-link v-widget">

Download readme.txt

</div>

Hier bekommen wir den künstlichen URI

http://localhost:8080/APP/connector/1/19/href/readme.txt

Dieser enthält die Id 1 des aktuellen UI-Objekts und die Id 19 des Connectors für das Link-
Objekt. Anhand dieser Information kann das Vaadin-Servlet das Link-Objekt aus der HTTP-
Session ermitteln und dessen FileResource-Objekt auslesen. Mit der Information aus dieser
Dateiressource kann Vaadin nun den Inhalt von readme.txt als Download ausliefern.

Auch wenn der Connector für uns eindeutige URIs generiert, so muss man hierbei
beachten, dass diese temporär und damit nicht stabil sind. Sie haben außerhalb des
aktuellen Session-Kontextes keinerlei Bedeutung. Man darf diese URIs also nicht
auslesen und an anderer Stelle als Referenz auf die Ressource verwenden. Genauso
wenig eignen sich diese künstlichen URIs für die Weitergabe an andere Nutzer, zum
Beispiel über einen per Email geschickten Link. Das liegt darin begründet, dass in den
generierten URIs die Ids von Connector und UI-Objekt einkodiert sind, und die sind
vom Zustand einer ganz bestimmten HTTP-Session abhängig. Jeder Anwender sieht
also in seinem Browser einen anderen URI für das gleiche Link-Objekt!

Sie können das einmal nachvollziehen, indem Sie eine Anwendung, in der ein Link-
Objekt mit einer Connector-Ressource verwendet wird, in zwei Browser-Tabs öffnen.
Wenn Sie sich dann das Linkziel des Link-Objekts im HTML-Quelltext anschauen,
sehen Sie, dass Sie hier zwei unterschiedliche Zieladressen bekommen.

3.4 Implementierungsklassen von Resource

Es ist nun an der Zeit, sich die verschiedenen Ressourcenimplementierungen ein wenig genauer
anzuschauen.

Ressourcen 23

ExternalResource

Die einfachste Ressourcenart haben wir am Anfang schon in einem Beispiel gesehen. Wir
verwenden ExternalResource, um eine externe Ressource über deren URI zu definieren. Die
Klasse erwartet eine gültige URL als Konstruktorargument. Diese kann entweder als String oder
als Objekt vom Typ java.net.URL übergeben werden.

Neben der Definition der Zieladresse für einen Link ist ein weiterer typischer Verwendungs-
zweck von ExternalResource die Angabe der Quelle eines com.vaadin.ui.Image-Objekts. Mit
der Image-Komponente lässt sich ein Bild auf einer Seite anzeigen.

ThemeResource

Die Ressourcenart ThemeResource ermöglicht das Einbinden von Dateien, die unterhalb eines
Vaadin Themes abgelegt sind. Als Theme wird die Anpassung der optischen Gestaltung einer
Vaadin-Anwendung mithilfe von Cascading Style Sheets und Bilddateien bezeichnet. Wie wir
in dem Kapitel über Themes noch sehen werden, besteht ein Theme aus einem speziellen
Wurzelverzeichnis, dem weitere Dateien und Verzeichnisse untergeordnet sind. Unter anderem
befinden sich darin CSS-Dateien, die das Erscheinungsbild einer Vaadin-Anwendung anpassen.
Man kann daneben aber auch weitere Ressourcen ablegen, wie zum Beispiel Bilder, Icons oder
andere Mediendateien. Mithilfe einer ThemeResource kann eine solche Datei immer in Bezug auf
das aktuell verwendete Theme referenziert werden.

Das Besondere an Theme-Ressourcen ist, dass erst zur Laufzeit abhängig vom aktuell verwen-
deten Theme bestimmt wird, welche konkrete Datei von der Ressource tatsächlich referenziert
wird. Wechselt man das Theme, werden dadurch von den Theme-Ressourcen auch andere
Dateien referenziert. Theme-Ressourcen werden immer über relative Pfadangaben definiert, die
sich auf das aktive Theme beziehen.

Theme-Ressourcen werden in erster Linie für Bilddateien verwendet, die vom aktiven
Theme abhängig sein sollen, also zum Beispiel Icons, Logos oder grafische Gestaltungselemente.
Beispielsweise kannman damit theme-abhängige Icon-Sets definieren.Wenn das aktuelle Theme
gewechselt wird, sollen dadurch natürlich auch die von der Anwendung dargestellten Icons
ausgetauscht werden, so dass ein zur Optik des Themes passendes Icon-Set verwendet wird.

Mit dieser Fähigkeit lassen sich sehr leicht mandantenfähige Anwendungen erstellen, die sich
in ihrem Erscheinungsbild an die jeweiligen Mandanten anpassen können, ohne dass für neue
Mandanten der Quelltext der Anwendung angefasst werden müsste. Eine solche Anwendung
kann dann für verschiedene Kunden oder Anwenderkreise unterschiedlich aussehen.

Stellen Sie sich vor, Sie hätten zwei für Ihre Kunden zugeschnittene ThemesAcmeCorpTheme
und InitechTheme. Beide Themes enthalten in einem Unterverzeichnis img jeweils eine Grafik
companyLogo.png, welche das Firmenlogo des jeweiligen Kunden darstellt. Das folgende Schau-
bild zeigt die Verzeichnisstruktur, die sich für die beiden Themes in Ihrem Projekt ergibt.

Ressourcen 24

Verzeichnisstruktur für zwei Themes innerhalb des VAADIN/themes-Verzeichnisses

Sie können dieses Logo wie folgt auf Ihrer Programmoberfläche einbinden:

Verwendung einer ThemeResource zum Einbinden eines Logos
ThemeResource logoResource = new ThemeResource("img/companyLogo.png");

Image image = new Image("", logoResource);

layout.addComponent(image);

Wie Sie sehen, müssen wir hier keine explizite Referenz auf ein bestimmtes Theme angeben.
Wir spezifizieren lediglich einen relativen Pfad, dessenWurzel sich immer auf das Basisverzeich-
nis des aktiven Themes bezieht. Ist z. B. das Theme für den Kunden Initech aktiv, wird auch das
Firmenlogo aus diesem Theme angezeigt. Damit stellen wir sicher, dass für jeden Kunden immer
das passende Logo angezeigt wird.

Der Pfad zu einer Theme-Ressource darf nicht mit einem / beginnen, das heißt die
Pfadangabe für eine Theme-Ressource muss immer relativ sein. Sie werden sonst eine
IllegalArgumentException erhalten.

FileResource

Mit einer FileResource lässt sich eine beliebige Datei aus dem lokalen Dateisystem als Ressource
einbinden. Dabei spielt es keine Rolle, ob die Datei im Kontext (im Document Root) der
Webanwendung liegt. Die einzige Voraussetzung ist, dass die Datei durch den System-User lesbar
ist, mit dem der Web Server betrieben wird, und dass der Java Security Manager den Zugriff auf
das lokale Dateisystem zulässt.

Initialisiert wird eine FileResource mit einem java.io.File-Objekt. Das folgende Beispiel
fügt ein PDF-Dokument aus einem lokalen Verzeichnis in eine Anwendung ein.

Ressourcen 25

Verwendung einer FileResource als Linkziel

1 File file = new File("/home/rkrueger/documents/agb.pdf");

2 FileResource resource = new FileResource(file);

3 Link link = new Link("AGB herunterladen", resource);

4 layout.addComponent(link);

Vorsicht ist hier bei der Angabe von relativen Pfaden für ein File-Objekt geboten!
Das Basisverzeichnis für ein File-Objekt, das mit einem relativen Pfad initialisiert
wurde, bezieht sich immer auf das aktuelle Arbeitsverzeichnis des Java-Prozesses, in
dem die Anwendung läuft. Im Falle einer Vaadin-Anwendung ist dies der Prozess des
Web Servers. Die Verwendung von relativen Pfaden bei Dateiressourcen sollte daher
möglichst vermieden werden, um sich nicht an die Ausführungsumgebung des Servlet
Containers zu binden.

Bei der Verwendung von Dateiressourcen sollte man auch besonders vorsichtig sein,
um nicht aus Versehen dieMöglichkeit für eineDirectory Traversal Attacke zu schaffen.
Bei diesem Angriffsvektor versucht ein Angreifer, durch manipulierte Pfadangaben
auf Dateien zuzugreifen, die außerhalb eines öffentlich freigegebenen Verzeichnisses
liegen. Dies kann immer dann geschehen, wenn Benutzereingaben ungeprüft von der
Anwendungslogik verwendet werden.

Gibt man zum Beispiel den Anwendern die Möglichkeit, eine bestimmte Datei aus
einem öffentlich zugänglichen Verzeichnis durch Eingabe des Dateinamens auszu-
wählen, sollte man sicherstellen, dass die eingegebenen Dateinamen keine relativen
Verzeichnisangaben enthalten. Sonst ist es einem Angreifer möglich, zum Beispiel die
folgende Datei abzurufen: ../../../etc/passwd.

Directory Traversal Attacken gehören zu den Angriffsvektoren, die durch das OWASP-
Projekt² ³ dokumentiert sind. Sie werden dort als Path Traversal Attacks⁴ aufgeführt.

Die Einsatzmöglichkeiten von Dateiressourcen sind relativ beschränkt. Aus Sicherheitsgrün-
den rate ich nach Möglichkeit von der Verwendung dieser Ressourcenart ab. Insbesondere
sollten Dateiressourcen nicht zur Auslieferung von Standardressourcen einer Webanwendung
verwendet werden. Dazu gehören eingebettete Bilder und Icons. Einer der Gründe hierfür liegt
darin, dass diese Ressourcen durch die künstlichen und veränderlichen URIs von Connector-
Ressourcen nur schlecht vom Browser gecacht werden können. Je nach Anwendung wird der
Browser dieselbe Ressource unter Umständen mehrmals unter verschiedenen URIs cachen.
Verwenden Sie für solche Ressourcen möglichst einen dedizierten Web Server, der die Daten
unter festen URIs ausliefert. Die oben kennengelernte Klasse ExternalResource ist dann der
richtige Kandidat.

²https://www.owasp.org
³Open Web Application Security Project
⁴https://www.owasp.org/index.php/Path_Traversal

https://www.owasp.org/
https://www.owasp.org/
https://www.owasp.org/index.php/Path_Traversal
https://www.owasp.org/
https://www.owasp.org/index.php/Path_Traversal

Ressourcen 26

ClassResource

Ressourcen vom Typ ClassResource beziehen ihre Daten aus dem Klassenpfad der Anwendung.
Bei einer Webanwendung setzt sich der Klassenpfad aus verschiedenen Orten zusammen.
Dazu gehört das Verzeichnis WEB-INF/classes und WEB-INF/lib innerhalb des Deployment-
Verzeichnisses der Webanwendung selbst. Dateien, die an diesen Orten abliegen, können mit
einer ClassResource referenziert werden.

Um die Daten einer Ressource aus dem Klassenpfad auszulesen, holen sich ClassResource-
Objekte über die Methode java.lang.Class#getResourceAsStream() eines bestimmten Klas-
senobjekts einen InputStream auf die referenzierte Datei. Damit wird auf die Ressource über
denjenigen Classloader zugegriffen, der das angegebene Klassenobjekt geladen hat. Zum Laden
einer ClassResource ist also immer die Angabe eines Klassenobjekts notwendig. Die Klasse
bietet daher die folgenden beiden Konstruktoren an:

• ClassResource(Class<?> associatedClass, String resourceName)

• ClassResource(String resourceName)

Mit dem ersten Konstruktor wird das Klassenobjekt explizit vorgegeben, über deren Class-
loader die Ressource geladen werden soll. Der zweite Konstruktor verwendet standardmäßig die
UI-Klasse der Anwendung als Referenzklasse.

Wurde die Referenzklasse aus einer bestimmten Jar-Datei geladen, so können mit einer
ClassResource Dateien eingebunden werden, die aus dieser Jar-Datei stammen.

Wenn Sie Maven als Buildtool verwenden, können Sie Ihre Klassenpfadressourcen im
Verzeichnis src/main/resources/ ablegen. Dateien aus diesem Verzeichnis werden in den
Klassenpfad der Anwendung (nach WEB-INF/classes) kopiert. Beispielsweise können Sie die
Bilddatei src/main/resources/logo.gif mit der folgenden ClassResource referenzieren:

Resource logo = new ClassResource("/logo.gif");

Achten Sie hier auf die Angabe eines absoluten Pfades. Ein relativer Pfad bezieht
sich immer auf das Package der von der ClassResource referenzierten Klasse. Hät-
ten Sie in dem Beispiel also statt “/logo.gif” den Wert “logo.gif” verwendet, dann
würde diese Datei im Package Ihrer UI-Klasse gesucht werden, also z. B. unter
/com/example/myapp/logo.gif, wenn Ihre UI-Klasse im Package com.example.myapp
liegt.

Wenn Sie also einmal eine ClassResource in Ihrer Anwendung einbinden, und die
Datenwerden scheinbar nicht geladen, dann überprüfen Sie zuerst, ob der angegebenen
Pfad der Ressource korrekt ist.

Die Verwendung von Klassenpfadressourcen bietet sich vor allem dann an, wenn die anderen
Ressourcenarten nicht oder nur eingeschränkt zur Verfügung stehen. Hat man zum Beispiel
keinen Zugriff auf das Dateisystem oder es steht kein externer Webserver zur Verfügung, der die
statischen Ressourcen einer Anwendung ausliefern kann, bleiben einemnur noch ClassResource
oder ThemeResource zum Einbinden von Ressourcen.

Das kann beispielsweise dann der Fall sein, wenn man seine Anwendung in der Google App
Engine⁵ betreibt. Dort hat eine Anwendung nur eingeschränkten Zugriff auf ihre Umgebung. So

⁵https://cloud.google.com

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/

Ressourcen 27

ist zum Beispiel der Zugriff auf ein lokales Dateisystem nicht möglich. Alle Ressourcen, auf die
eine Anwendung zugreifen möchte, müssen deshalb innerhalb der Anwendung selbst liegen und
mit ihr ausgeliefert werden. Hier bietet es sich besonders an, die Ressourcen in den Klassenpfad
der Anwendung zu legen und mit ClassResource-Objekten auf diese zuzugreifen.

StreamResource

Mit Ressourcen vom Typ StreamResource können wir dynamisch generierte Daten bereitstellen.
Mit ihnen haben wir die Möglichkeit, die Ressourcendaten selbst und bei Bedarf zu erzeugen. Um
dies zu erreichen, müssen wir uns selbst um die Erzeugung der Daten kümmern, die von dem
InputStream des Ressourcenobjekts geliefert werden.

Die Klasse StreamResource erlaubt uns damit, dynamisch generierte Ressourcen, wie zum
Beispiel Datenexporte oder ad-hoc erzeugte Grafiken, zu verwenden.

Um eine StreamResource zu erstellen, müssen wir uns um zwei Dinge kümmern. Zum einen
müssen wir den Dateinamen angeben, unter dem die generierte Ressource angesprochen werden
soll. Zum anderen müssen wir die Daten der Ressource selbst erzeugen. Die Daten werden von
einer Klasse geliefert, die das Interface StreamResource.StreamSource implementiert.

Dieses Interface ist wie folgt definiert:

Die StreamSource-Schnittstelle

1 public interface StreamSource extends Serializable {

2 public InputStream getStream();

3 }

StreamSource ist also eine Fabrikschnittstelle zur Erzeugung von InputStreams, die über
getStream() die Daten der dynamisch erzeugten Ressource liefert.

StreamSource als Fabrikschnittstelle

Verwendet wird eine Instanz von StreamSource dann als Konstruktorargument für Stream-
Resource:

Ressourcen 28

com.vaadin.server.StreamResource#StreamResource(StreamSource streamSource,

String filename)

Man mag sich an dieser Stelle vielleicht fragen, warum hier der Zwischenschritt über
ein spezielles Interface gegangen wird. Kann man die StreamResource nicht gleich mit
dem InputStream initialisieren? Zur Beantwortung dieser Fragen muss man sich in
Erinnerung rufen, dass ein InputStream nur genau einmal ausgelesen werden kann.
Er kann nicht wieder zurückgesetzt werden. Würde man StreamResource direkt mit
dem InputStream initialisieren, könnte die Ressource auch nur genau ein einziges
Mal gelesen werden. Das wäre natürlich bei der Verwendung einer solchen Ressource
als Linkziel für den Download einer Datei fatal. Der Link würde genau einmal
funktionieren und dann beim zweiten Klick einen Fehler werfen. Aus diesem Grund
definieren wir mit StreamResource.StreamSource ein Fabrikobjekt für InputStreams.
Diese Fabrik kann beliebig viele Stream-Instanzen erzeugen — eben für jeden Klick auf
den Link eine neue.

Wollen wir mit StreamResource bei jeder Anforderung durch den Browser die Ressour-
cendaten neu generieren lassen, müssen wir beachten, dass der Browser eine einmal erzeugte
StreamResource im Cache behält und weitere Anforderungen der Ressource daraus bedient
werden. Soll eine StreamResource wirklich jedes Mal neu erzeugt werden, können wir mit
StreamResource#setCacheTime(0) die Zeitdauer, die die Ressource im Browser-Cache liegen
darf, auf 0 Millisekunden festlegen.

Schauen wir uns ein Beispiel für eine StreamResource an. Um unsere Anwender vor
Spammern zu schützen, die automatisiert Email-Adressen von Webseiten fischen, wollen wir
alle Email-Adressen, die irgendwo angezeigt werden, generell als Grafik darstellen. Die Adressen
erscheinen dann nicht imHTML-Quelltext, undwir zwingen unsere Anwender damit, bei Bedarf
die Email-Adressen abzutippen. Wir müssen dazu Strings in Bilder umwandeln können. Dies
erreichen wir mit der Klasse EmailImageResource, die von StreamResource abgeleitet ist.

Die Klasse EmailImageResource, die eine gegebene Email-Adresse in ein Bild umwandelt

1 public class EmailImageResource extends StreamResource {

2 public EmailImageResource(String emailAddress, String filename) {

3 super(new EmailImageSource(emailAddress), filename);

4 }

5 }

Wie Sie sehen, ist diese Klasse relativ unspektakulär. Wir rufen einfach nur den Super-
Konstruktor auf und übergeben eine Instanz unserer eigenen Implementierung der StreamSour-
ce-Schnittstelle. Diese sieht wie folgt aus:

Ressourcen 29

Implementierung von StreamSource, die den übergebenen String in einem Bild ausgibt

1 public class EmailImageSource implements StreamResource.StreamSource {

2 private String emailAddress;

3

4 public EmailImageSource(String emailAddress) {

5 this.emailAddress = emailAddress; // {1} //

6 }

7

8 @Override

9 public InputStream getStream() {

10 BufferedImage image = new BufferedImage(

11 125, 30, BufferedImage.TYPE_3BYTE_BGR); // {2} //

12 Graphics graphics = image.getGraphics();

13 graphics.setColor(Color.white);

14 graphics.fillRect(0, 0, 125, 30);

15 graphics.setColor(Color.black);

16 graphics.drawString(emailAddress, 10, 20); // {3} //

17 try {

18 ByteArrayOutputStream buffer = new ByteArrayOutputStream();

19 ImageIO.write(image, "png", buffer);

20 return new ByteArrayInputStream(

21 buffer.toByteArray()); // {4} //

22 } catch (IOException e) {

23 e.printStackTrace(); // {5} //

24 return null;

25 }

26 }

27 }

Hier merken wir uns die über den Konstruktor mitgegebene Email-Adresse, damit wir diesen
Text später bei Bedarf in ein Bild einfügen können {1}. Interessant ist hier die Implementierung
von getStream(). Diese Methode soll ja den InputStream liefern, der die Daten unserer
Ressource enthält. Wir erzeugen uns daher mit den Klassen aus dem java.awt-Package ein
BufferedImage-Objekt, mit dem wir programmatisch ein Bild erzeugen können {2}. Auf dieses
Bild zeichnen wir die als Konstruktorargument übergebene Email-Adresse {3}. Wenn das Bild
fertig konfiguriert ist, können wir es in einen ByteArrayInputStream umwandeln und diesen als
Rückgabewert von getStream() zurückliefern {4}. Der Umgang mit Exceptions sollte natürlich
in einer echten Anwendung etwas eleganter gelöst werden, als in diesem Beispiel {5}.

Unsere eigene Ressourcenimplementierung EmailImageResource kann nun als Datenquelle
für ein Image-Objekt verwendet werden:

Ressourcen 30

Verwendung der EmailImageResource als Datenquelle für ein Image-Objekt

1 Image emailImage = new Image(

2 "Erreichen Sie uns unter folgender Email-Adresse:",

3 new EmailImageResource("info@example.com", "email.png"));

4 mainLayout.addComponent(emailImage);

Das Ergebnis sieht auf der Programmoberfläche dann wie folgt aus:

Eine Email-Adresse dargestellt in einem Grafikobjekt

Sie finden den vollständigen Code von diesem Beispiel im Modul Kap10.4_StreamResource
in den Maven-Beispielprojekten zu diesem Buch.

FontIcon und FontAwesome

Über das Interface FontIcon haben wir in unserer Anwendung die Möglichkeit, Font Icons
für Icon-Ressourcen zu verwenden. Font Icons sind eine ressourcenschonende Alternative zu
Grafikdateien.

Herkömmliche Icons, die über Bilddateien eingebunden werden, haben zwei wesentliche
Nachteile: Icons bestehen üblicherweise aus kleinen Dateien, die einzeln vom Server geladen
werden müssen. Dieser Ladevorgang kann bei einer großen Anzahl von Icons den Seitenaufbau
spürbar verlangsamen. Dies ist unter anderem der Tatsache geschuldet, dass ein Browser immer
nur eine bestimmte, fest vorgegebene Anzahl von Ressourcen gleichzeitig vom Webserver
nachladen kann. Die maximal erlaubte Anzahl gleichzeitig geöffneter Server-Verbindungen ist
von Browser zu Browser unterschiedlich, bewegt sich aber bei jedem Browser-Typ im niedrigen
zweistelligen Bereich.

Ein weiterer Nachteil von Bilddateien ist, dass diese nicht skalierbar sind. Es handelt sich
hierbei eben um Rastergrafiken, die man ohne Qualitätsverlust nicht beliebig vergrößern kann.
Auch ist ihre Farbgebung fest vorgegeben.

Font Icons verfolgen einen anderen Ansatz. Ein Satz von Font Icons wird durch eine spezielle
Schriftart definiert. Eine solche Schriftart setzt sich nicht aus Buchstaben zusammen, sondern aus
Piktogrammen — dies ist vergleichbar mit der Windows-Schriftart Webdings. Jeder Buchstabe
dieser Schriftart stellt damit ein bestimmtes Symbol dar.

Dieser Ansatz hat den Vorteil, dass zum einen der gesamte Satz aller verfügbaren Icons
einer Anwendung mit einem Mal (nämlich beim Laden der Schriftart) vom Server geholt wird.
Zum anderen sind Font Icons beliebig und ohne Qualitätsverlust skalierbar — Schriftarten
bestehen eben aus Vektorgrafiken. Der einzige Nachteil von Font Icons: man kann sie immer nur
einfarbig darstellen. Dafür können Font Icons aber mit allen Mitteln, die einem Cascading Style
Sheets bieten, beliebig gestaltet werden. Somit kann man die gleichen Icons in verschiedener
Darstellung verwenden: schattiert, rotiert, skaliert, durchsichtig, mit Leuchteffekt, usw. — nur
eben einfarbig.

FontIcon ist nur eine Schnittstelle zur Definition eigener Font Icon Sets. Wenn wir Font Icons
in unserer Anwendung verwenden wollen, müssen wir eine Implementierungsklasse von diesem

Ressourcen 31

Interface verwenden. Vaadin bringt von Hause aus die Icons des Font Awesome-Projekts⁶ mit, die
über die Enum-Klasse com.vaadin.server.FontAwesome verfügbar sind. Diese Klasse definiert
eine lange Liste von Enum-Konstanten, von denen jede ein bestimmtes Font Icon repräsentiert.

Wir können diese Konstanten zum Setzen von Komponenten-Icons verwenden, also immer
im Zusammenhang mit der Methode com.vaadin.ui.Component#setIcon() (neben einigen
anderen Stellen im Vaadin-Framework, wo wir ein Icon setzen können).

Eine Verwendung der Font Icons als Ziel für Links oder Bilder ist nicht möglich. Der
Versuch, eine Font Icon-Ressource als Quelle für ein Image-Objekt zu verwenden wird
zwar kompilieren, ergibt dann auf der Programmoberfläche aber einen Darstellungs-
fehler.

Wir können zum Beispiel eine Schaltfläche mit einem Font Icon aufwerten:

Verwendung eines FontAwesome-Icons auf einer Schaltfläche

1 Button okButton = new Button("Ok");

2 okButton.setIcon(FontAwesome.CHECK);

Im Ergebnis sieht diese Schaltfläche wie folgt aus:

Eine Schaltfläche mit Font Icon

Der FontAwesome Icon Font ist automatisch in Vaadins Valo Theme eingebunden. Möchte
man FontAwesome (oder einen anderen Icon Font) mit einem anderen Theme verwenden, so
muss dies explizit für das Theme aktiviert werden. Wie das funktioniert, werden wir uns in dem
Kapitel über Vaadin Themes genauer anschauen.

3.5 Zusammenfassung
Dieses Kapitel hat uns mit dem Ressourcen-Mechanismus von Vaadin bekannt gemacht. Res-
sourcen sind für Vaadin Daten, die von einer Anwendung eingebunden und angezeigt werden
können. Das können Bilder, Icons oder beliebige andere Datei-Downloads sein. Die Daten
können entweder von der Anwendung selbst zur Verfügung gestellt werden oder sie stammen
aus einer externen Quelle.

Ressourcen können von unterschiedlichen UI-Komponenten dargestellt werden. Der häufigs-
te Fall wird die Verwendung einer ExternalResource zusammen mit einer Link-Komponente
sein, um einen Hyperlink zu erhalten. Ressourcen können aber auch als Grafiken oder andere
Medienobjekte eingebunden und als Piktogramm, Bild-, Video- oder Audio-Datei verwendet
werden.

Vaadin stellt uns einige Ressourcenimplementierungen zur Verfügung, die ihre Daten aus
unterschiedlichen Quellen beziehen. Hier haben wir ExternalResource zur Adressierung einer
Ressource über eine URL und ThemeResource für Ressourcen aus einem Vaadin Theme kennen-
gelernt.

⁶http://fontawesome.io

http://fontawesome.io/
http://fontawesome.io/

Ressourcen 32

Weiter haben wir Bekanntschaft mit Connector-Ressourcen gemacht, eine Klasse von Res-
sourcen, die aus der Vaadin-Anwendung selbst stammen und die keinen eigenen URI haben.
Damit diese Art von Ressourcen dennoch bspw. zusammen mit einem Link-Objekt verwendet
werden können, kümmert sich Vaadin um die Erzeugung eines künstlichen URIs für diese
Ressourcen. In diesem URI steckt die Connector-Id der UI-Komponente und die UI Id der
aktuellen UI-Instanz.

Vaadin bietet uns drei verschiedene Connector-Ressourcenarten an. Mit FileResource

können wir eine beliebige Datei aus dem lokalen Dateisystem als Ressource einbinden. ClassRe-
source erlaubt uns den Zugriff auf Ressourcen, die imKlassenpfad einer Anwendung liegen. Und
StreamResource ermöglicht uns die dynamische Generierung der Ressourcendaten bei Bedarf,
indem wir selbst den InputStream der Ressource erzeugen.

Als letzte Ressourcenart haben wir die Font Icons kennengelernt. Font Icons bestehen aus
einer speziellen Schriftart, deren Buchstaben einzelne Piktogramme darstellen. Damit sind Font
Icons wesentlich besser skalierbar und performanter als einzelne Bilddateien, können aber immer
nur mit einer Vordergrund- und einer Hintergrundfarbe dargestellt werden. Vaadin liefert über
das Valo-Theme die Font Icons des Font Awesome-Projekts mit, auf die wir mit der Enum-Klasse
FontAwesome zugreifen können.

	Inhaltsverzeichnis
	Über den Autor
	Vorwort: Über dieses Buch
	Warum dieses Buch?
	Was will dieses Buch vermitteln?
	Was möchte dieses Buch nicht sein?
	Aufbau des Buches
	Konventionen
	Beispielcode
	Feedback
	Copyrights und Bildnachweise

	Teil 1: Einleitung und erste Schritte
	Was ist Vaadin?
	Geschichtliches
	Technologischer Hintergrund

	Hello Vaadin!
	Anlegen eines Projekts
	Grundeigenschaften einer Vaadin-Anwendung

	Ressourcen
	Verwendung von Ressourcen
	Das Resource-Interface
	Connector-Ressourcen
	Implementierungsklassen von Resource
	Zusammenfassung

