Das
Vaadin 7
Grundlagenbuch

Roland Kriiger

Das Vaadin 7 Grundlagenbuch

Einstieg in das Vaadin Framework fur Rich Internet
Applications

Roland Kriiger
Dieses Buch wird verkauft, unter http://leanpub.com/vaadinbuch

Diese Version wurde veroffentlicht am 2016-09-18

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2014 - 2016 Roland Kriiger

http://leanpub.com/vaadinbuch
http://leanpub.com/
http://leanpub.com/manifesto

Twitter dieses Buch!

Bitte unterstiitz Roland Kriiger, indem du tiber dieses Buch auf Twitter weiterempfiehlst!
Vorschlag: Verwende den folgenden Hashtag, wenn du tiber dieses Buch twitterst: #vaadinbuch.

Was sagen Andere iiber dieses Buch? Klick hier, um nach diesem Hashtag auf Twitter zu
suchen:

https://twitter.com/search?q=#vaadinbuch

http://twitter.com
https://twitter.com/search?q=%23vaadinbuch
https://twitter.com/search?q=%23vaadinbuch

Inhaltsverzeichnis

Uberden Autor e i
Vorwort: Uber diesesBuch ii
Warum dieses Buch? ii
Was will dieses Buch vermitteln? iii
Was mochte dieses Buch nicht sein? iv
AufbaudesBuches. iv
Konventionen e iv
Beispielcode vi
Feedback e X
Copyrights und Bildnachweise X
Teil 1: Einleitung und erste Schritte 1
1. WasistVaadin? e 2
1.1 Geschichtliches 2
1.2 Technologischer Hintergrund 4
2. HelloVaadin! e 7
2.1 Anlegen eines Projekts Lo L 7
2.2 Grundeigenschaften einer Vaadin-Anwendung 16
3. Ressourcen. 18
3.1 Verwendung von Ressourcen 19
3.2 DasResource-Interface 20
3.3 Connector-Ressourcen i e 20
3.4 Implementierungsklassen vonResource 22

3.5 Zusammenfassungo 31

Uber den Autor

Roland Kriiger, Jahrgang 1978, hat Wirtschaftsinformatik an der Universitdit Mannheim studiert
und arbeitet seit 2011 als Trainer, Berater und Entwickler bei der Orientation in Objects GmbH*
in Mannheim. Dort beschaftigt er sich hauptsdchlich mit der Konzeption und Entwicklung von
professionellen Webanwendungen mit verschiedenen Java Web-Frameworks, mit Softwareent-
wicklungsmethoden, wie Continuous Delivery und DevOps, und berit Kunden zu den Produkten
der Firma Atlassian.

Roland hat das Vaadin Framework im Jahr 2010 kennen und schatzen gelernt. Sein erstes
Projekt mit Vaadin, die Schnappchenjager-Community Spar-Radar (die es heute leider nicht
mehr gibt), konnte er dank des einfachen Programmiermodells in kurzer Zeit erfolgreich
umsetzen und in Produktion bringen. Seine Erfahrungen mit dem Framework hat er bei der
Orientation in Objects GmbH zu einem Seminar zusammengetragen, mit dem er deutschlandweit
als Trainer unterwegs ist. In seiner Vaadin-Schulung vermittelt er Grundlagen und Profiwissen
tiber das Vaadin Toolkit.

Roland ist gliicklich verheiratet und hat eine kleine Tochter. In seiner Freizeit ist er am liebsten
auf Wanderungen im Odenwald oder auf stromgitarrenlastigen Konzerten unterwegs. Dass er
nebenher natiirlich auch hobbyméflig an Vaadin-Anwendungen bastelt, braucht hier sicherlich
nicht besonders hervorgehoben werden ;-).

Man erreicht Roland auf Twitter mit seinem Handle @Roland_Krueger, auf GitHub findet
man seine Repositories unter https://github.com/rolandkrueger, auf Google+ erreicht man ihn
unter +RolandKriiger®, und seine Homepage ist unter der Adresse http://www.rolandkrueger.
info zu erreichen.

Roland bloggt regelmaflig zu Vaadin-bezogenen und anderen Themen auf dem Firmenblog
der OIO GmbH?®.

*hitp://www.oio.de
*https://www.google.com/+RolandKr%C3%BCger
*http://blog.oio.de

http://www.oio.de/
https://github.com/rolandkrueger
https://www.google.com/+RolandKr%C3%BCger
http://www.rolandkrueger.info
http://www.rolandkrueger.info
http://blog.oio.de/
http://www.oio.de/
https://www.google.com/+RolandKr%C3%BCger
http://blog.oio.de/

Vorwort: Uber dieses Buch

Ein deutschsprachiges Vaadin-Buch, herausgegeben im Selbstverlag und vertrieben iiber eine
Online-Plattform, bei der ein Buch schon wahrend seiner Entstehung freigegeben werden kann.
Wie kam es zu diesem Vorhaben?

Die Idee zu diesem Buch entstand, als ich als Seminarleiter mit meiner Vaadin Grundla-
genschulung bei Kunden unterwegs war. Wahrend man mit einem solchen Einsteigerseminar
ein recht solides Grundverstandnis fir dieses spannende Framework schaffen kann, bleiben
naturgemafl bei den Teilnehmern auch nach der Schulung noch Detailfragen offen, oder es
stellen sich bestimmte Fragen tiberhaupt erst zu einem spateren Zeitpunkt. Manche Themen
konnen aufgrund der begrenzten Zeit nur oberflachlich behandelt oder, wenn iiberhaupt, nur
grob angerissen werden. Besonders wenn man sich dann als Neuling das erste Mal auf eigene
Faust mit dem Framework die Hiande schmutzig macht, ergeben sich die meisten Fragen und
Verstandnisschwierigkeiten. Der Trainer ist dann schon langst wieder zu Hause und steht bei den
alltaglichen Problemen, auf die man als Entwickler mit einer neuen Technologie zwangsweise
stoflen wird, nicht mehr zur Verfiigung.

Wenn man dann den Teilnehmern zusatzlich ein tibersichtliches Grundlagenbuch anbieten
konnte — das wire eine feine Sache und wiirde das Seminar zusatzlich abrunden. Die Idee, ein
Buch zu schreiben und meine Kenntnisse und Erfahrungen mit Vaadin darin festzuhalten, wurde
daher immer konkreter. Die Anfrage eines Fachbuchverlages, ob ich nicht Interesse daran hatte,
ein Vaadin-Buch fiir Fortgeschrittene zu schreiben, gab mir schlieflich den letzten Impuls.

Dem Verlag habe ich nach reiflicher Uberlegung abgesagt. Meine Vollzeitstelle bei der OIO
GmbH lief3 es fiir mich realistischerweise einfach nicht zu, mit einer bestimmten vorgegebenen
Abgabefrist ein Vaadin-Buch mit fortgeschrittenen Themen zu verfassen — und das Ganze auch
noch auf Englisch und nicht in meiner Muttersprache. Das war mir dann doch etwas zu heikel,
und ich lehnte das Angebot dankend ab.

Die Idee lieff mich jetzt allerdings nicht mehr los. Ich musste eine andere Moglichkeit finden,
meine Vaadin-Kenntnisse nutzbringend niederzuschreiben, ohne dabei jedoch dem Druck eines
festen Veroffentlichungstermins zu unterliegen.

Leanpub* als Plattform fiir selbstverlegende Autoren kam mir da genau gelegen. Ich kann
das Buch in meinem eigenen Tempo voranbringen und auch schon einen halbfertigen Stand ver-
Offentlichen, sobald dieser meiner Leserschaft schon einen Mehrwert bietet. Aus diesem Grund
ist das Buch bis zu seiner Fertigstellung ausschlieflich unter https://leanpub.com/vaadinbuch zu
beziehen.

Warum dieses Buch?

Ein deutschsprachiges Vaadin-Buch, veréffentlicht ohne Verlag im Riicken, rein elektronisch
tiber eine Online-Plattform vertrieben? Und daneben eine grofle Konkurrenz auf dem Buch-
markt, nicht zuletzt in Form des offiziellen und kostenlosen Book of Vaadin von Vaadin Ltd.,
dem Hersteller des Frameworks. Wieso mache ich das?

“https://leanpub.com/

https://leanpub.com/
https://leanpub.com/vaadinbuch
https://leanpub.com/

Vorwort: Uber dieses Buch iii

Nun, der Hauptgrund ist schlicht: ich habe den Anspruch, es besser zu machen als die anderen
Autoren. Zudem gibt es auf dem deutschsprachigen Buchmarkt noch keine Vaadin-Biicher, die
iber eine oberflachliche Einfithrung in das Framework hinaus gehen. Das will ich dndern.

Fast alle englischsprachigen Vaadin-Biicher, die es zurzeit (aktuell im Januar 2016) auf dem
Markt gibt, wurden von Autoren geschrieben, die Englisch nicht als Muttersprache sprechen.
Dementsprechend holprig lesen sich die jeweiligen Texte dann zum Teil auch (wohingegen die
inhaltliche Qualitat der Biicher meist hoch ist). Inhaltlich gehen die verfiigbaren Biicher nicht
allzu sehr in die Tiefe.

Ausgenommen davon ist das kostenlose Book of Vaadin, welches von Marko Gronroos, einem
Mitarbeiter von Vaadin Ltd., geschrieben und gepflegt wird. Das Buch zeichnet sich durch eine
recht detaillierte Beschreibung des Frameworks aus — was naheliegend ist, da das Buch ja direkt
aus dem Hause des Herstellers von Vaadin stammt.

Dennoch gibt es auch fir dieses Buch noch Verbesserungspotenzial. Obwohl das Buch
recht umfangreich ist und ein sehr weites Themenspektrum abbildet, geht es auf viele Punkte
nur relativ oberflachlich oder gar nicht ein (wie z. B. Ressourcen, Konverter oder JavaScript
Components). Das ist natiirlich auch der Tatsache geschuldet, dass das Book of Vaadin sehr
viele Themen abdecken muss, die vielleicht nicht fiir jeden Leser von Relevanz sind. Schliefilich
besteht auch hier das Problem, dass das englischsprachige Buch nicht von einem Muttersprachler
verfasst worden ist und sich damit stellenweise etwas sperrig liest.

Mit dem vorliegenden Vaadin Grundlagenbuch mochte ich der Entwicklergemeinde eine
deutschsprachige Alternative zu der vorhandenen Literatur bieten.

Was will dieses Buch vermitteln?

Dieses Buch verfolgt das Ziel, der Software-Entwicklerin und dem Software-Entwickler eine
solide und iiberschaubare Einfithrung in das Vaadin Framework zu geben. Mein Hauptanliegen
ist es dabei, gerade so viele Themen in dem Buch unterzubringen, wie unbedingt dazu notwendig
sind, erfolgreich seine ersten einfachen Anwendungen mit Vaadin zu schreiben.

Das Buch will seine Leser daher nicht mit Informationen iiberfrachten. Insbesondere soll es
nicht notwendig sein, sich erst durch einen mehrere hundert Seiten dicken Trimmer lesen zu
miissen, bevor man eine erste einfache Vaadin-Anwendung schreiben kann.

Eines meiner mir gesetzten Ziele als Autor ist es, eine Auswahl an Themen zu treffen, die fiir
den Vaadin-Einstieg unbedingt bekannt sein miissen, bevor eine verniinftige — das heifit wartbare
und sauber strukturierte — Vaadin-Anwendung geschrieben werden kann. Genau das sind die
Themen, die Sie in diesem Grundlagenbuch vorfinden werden. Themen und Informationen,
die in der taglichen Arbeit mit Vaadin zumindest am Anfang noch keine allzu grof3e Relevanz
aufweisen und erst in spateren Projektphasen wichtig werden, werden daher ausgespart.

Das angestrebte Ziel des Buches ist es also, eine tbersichtliche, aber dennoch nicht zu
oberflachliche Einfithrung in das Thema zu geben. Nachdem Sie dieses Buch gelesen haben,
kennen Sie das Vaadin Framework zwar nicht in all seinen Details. Sie wissen dafiir aber wie
das Framework im Inneren tickt und wie man es grundsétzlich anwendet. Durch diesen Ansatz
soll die knappe Zeit, die einem als Entwickler und Entwicklerin zur Verfiigung steht, nicht iiber
Gebiihr beansprucht werden.

Vorwort: Uber dieses Buch iv

Was mochte dieses Buch nicht sein?

Dieses Grundlagenbuch will kein detailliertes Referenzwerk zu jedem Detail und jedem Neben-
aspekt des Vaadin Frameworks sein. Es soll auch vermieden werden, dass wichtige Grundlagen,
die man sich unbedingt aneignen muss, zwischen fortgeschrittenen und zu Beginn irrelevanten
Spezialthemen verloren gehen.

Aber was ist, wenn man spater, bei der tiglichen Arbeit mit dem Framework, an dem
Punkt ankommt, an dem die einfachen Grundlagenkenntnisse nicht mehr fiir das aktuell zu
l6sende Problem ausreichen? Wenn man wissen muss, wie man die Architektur einer Vaadin-
Anwendung am besten gestaltet? Oder wenn man den inneren Aufbau des Frameworks noch
besser verstehen muss, um bestimmte knifflige Problemstellungen zu lésen?

Dann wird man zu dem Begleitbuch greifen konnen, welches ich im Anschluss an die-
ses Grundlagenbuch plane, wenn dafiir bei der Leserschaft Interesse besteht. Dies soll ein
Buch fiir Fortgeschrittene werden, das saimtliche Themen aufgreift und vertieft, die in diesem
Grundlagenbuch nicht oder nur einfithrend behandelt werden konnten. Dieses Buch, Vaadin
fiir Fortgeschrittene (dies ist momentan nur der Arbeitstitel), will hinter die Kulissen von
Vaadin blicken und die Dinge im Detail erkldren. Es sollen Best Practices beschrieben und
Ideen und Impulse zu Themen gegeben werden, die in einem etwas weitergefassten Kontext
stehen als die reine Oberflachenentwicklung mit Vaadin. Dazu gehéren Entwurfsmuster und
Optimierungsmoglichkeiten. Daneben sollen Kernbereiche von Vaadin behandelt werden, die
zwar wichtig fiir das tiefere Verstindnis des Frameworks sind, die aber dennoch in einem
Grundlagenbuch keinen Platz haben. Eines dieser Themen ist beispielsweise die Entwicklung
eigener, clientseitiger Vaadin-Komponenten und Komponenten-Extensions mit GWT. Dies ist
eines der typischen Ecken des Frameworks, die man zu Beginn nicht unbedingt kennen muss.
Man kann problemlos eine ganze Weile sehr produktiv mit Vaadin arbeiten, bevor man in
die Verlegenheit kommt, eine eigene UI-Komponente zu entwickeln — wenn das tiberhaupt
geschieht.

Aufbau des Buches

In diesem Abschnitt wird der Aufbau des Buches und seine Unterteilung in Unterkapitel
beschrieben. Es wird grob aufgefiihrt, welche Kapitel die Leser in diesem Buch vorfinden und
welchen Inhalt sie dort erwartet. Dieser Abschnitt wird nachtraglich vervollstdndigt, wenn das
Buch fertiggestellt wurde.

Konventionen

Dieser Abschnitt beschreibt die in diesem Buch verwendeten Konventionen. Das sind die
Konventionen fiir die Darstellung von Quelltext und fiir Hyperlinks. Auch dieser Abschnitt wird
vervollstandigt werden, kurz bevor das Buch fertiggestellt wird.

Quelltext

Samtliche Quelltexte werden in nichtproportionaler Schrift dargestellt. Java-Klassen, die
das erste Mal erwahnt werden, werden immer mit ihrem vollqualifizierten Klassennamen
ausgeschrieben. Spater wird die Package-Information fiir diese Klassen weggelassen.

Vorwort: Uber dieses Buch A

Gleiches gilt fir Methoden: um zu verstehen, aus welcher Klasse eine angesprochene
Methode stammt, wird diese zusammen mit der sie definierenden Klasse angegeben. Es wird
dann die vollstandige Signatur der Methode inklusive vollqualifiziertem Klassennamen und
Typen der Methodenparameter angegeben. Die verwendete Schreibweise orientiert sich dabei an
der Referenzierweise von JavaDoc-Kommentaren. Das heif3t, eine statische oder nicht-statische
Methode wird mit dem #-Zeichen von ihrer definierenden Klasse abgetrennt. Folgendes Beispiel
soll dies verdeutlichen:

com.vaadin.ui.AbstractComponentContainer#*addComponent(com.vaadin.ui.Component)

bezieht sich auf die Methode, mit der eine Vaadin Komponente auf ein Layout gesetzt werden
kann. Im spéteren Verlauf des Textes wird dann nur noch von addComponent () gesprochen.

Méglicherweise muss aufgrund des begrenzten Platzes auf der Seite eine solche langliche
Methodenreferenz kiinstlich umbrochen werden.

Langere Code-Listings erhalten immer eine Zeilennummerierung. Die Zeilennummern wer-
den im Text aber nicht verwendet, um auf bestimmte interessante Stellen im Code hinzuweisen.
Stattdessen werden im betroffenen Quelltext an den Stellen, auf die sich die nachfolgenden
Erlduterungen beziehen, nummerierte Kommentare eingefiigt. Das sieht dann wie in dem
folgenden Beispiel aus:

Nummerierte Code-Stellen in Form von Kommentaren

Label text = new Label(); // {1} //
text.setCaption("Beschriftung");
text.setValue("Text"); /7 {2} /7

In den Erlauterungen zu dem Code-Beispiel wird dann einfach die Nummer der referenzier-
ten Code-Stelle in den Text eingefiigt: In dem Code-Beispiel wird ein Label erzeugt {1} und der
dargestellte Text des Labels mit setValue() gesetzt {2}.

Kommandozeilenaufrufe

Auch Beispiele von Befehlsaufrufen auf der Kommandozeile werden in nichtproportionaler
Schri ft gesetzt. Um deutlich zu machen, dass Beispielcode einen Aufruf auf der Kommandozeile
darstellt, wird diesem fiir Windows-Befehle, analog zur Windows Command Shell, das Symbol
C:\> vorangestellt. Fiir Befehle, die so auch auf unixoiden Systemen ausgefiithrt werden kénnen,
wird das Symbol fiir den Shell Prompt $ vorangestellt.

UML-Diagramme

Samtliche UML-Diagramme in diesem Buch wurden mit dem Open Source Projekt PlantUML®
erstellt. PlantUML erlaubt die Erstellung von verschiedenen UML-Diagrammtypen mithilfe einer
einfachen, textbasierten Sprache. Die Vererbungshierarchie von java.util.AbstractList kann
damit zum Beispiel wie folgt dargestellt werden:

*http://de.plantuml.com

http://de.plantuml.com/
http://de.plantuml.com/

Vorwort: Uber dieses Buch vi

Beispiel fiir ein PlantUML Klassendiagramm

@startuml
interface List<E>
abstract class AbstractList<E>

abstract class AbstractCollection<E>

List <|.. AbstractList
AbstractCollection <|-- AbstractList

@enduml

Dieses Skript wird von PlantUML zu folgendem Diagramm gerendert:

@La’st L @Abstractf:on‘ectﬁon L

@Abstrac tList

Beispiel fiir ein Klassendiagramm von java.util. AbstractList erzeugt mit PlantUML

Was man an diesem Beispieldiagramm gut sehen kann, ist die etwas eigenwillige Darstellung
von PlantUML fiir den generischen Typparameter einer Klasse: Der Parameter E wird oben rechts
an der Klasse in einem weiflen Kastchen dargestellt.

Beispielcode

Der Inhalt dieses Buches wird von vielen, moglichst einfach gehaltenen und verstédndlichen
Codebeispielen begleitet. Natiirlich ist es schwierig bis unméglich, in einem Buch vollstindig
lauffahige und selbsterklarende Codebeispiele unterzubringen. Es konnen immer nur Ausschnitte
in den Text ibernommen werden, die den Kern eines besprochenen Themas beleuchten.

Fiir jemanden, der sich gerade ganz neu in eine Programmierschnittstelle einarbeiten mochte,
ist es jedoch oftmals sehr hilfreich, wenn man kleine, in sich abgeschlossene und lauffdhige
Beispielprojekte zur Hand hat, die ein bestimmtes, eng umfasstes Thema demonstrieren. Am
besten sollte es dazu méglich sein, ein solches Beispielprojekt mit einem einzigen Befehl bauen
und ausfithren zu konnen, ohne dazu erst eine umsténdliche Setup-Prozedur durchfithren zu
miissen.

Aus diesem Grund wird jeder nicht-triviale Beispielcode aus diesem Buch durch ein isoliert
bau- und lauffahiges Demoprojekt erginzt, das man sich aus dem Netz herunterladen kann
und das zu eigenen Experimenten einladt. Dafiir existiert ein GitHub-Projekt “grundlagenbuch-
vaadin7-bsp”®, das samtlichen Beispielcode fiir dieses Buch enthalt.

®https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp

https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp

Vorwort: Uber dieses Buch vii

Die Beispielprojekte basieren auf Java 8 und machen auch Gebrauch von den neuen Features
dieser Java-Version. Das heif3t, es werden Lambda-Ausdriicke und Streams verwendet, um den
Code kurz und biindig zu halten. Insbesondere fiir Vaadins Ereignisbehandlungsroutinen eignen
sich die Lambda-Ausdriicke von Java 8 hervorragend.

Weiterhin verwenden die Projekte alle Apache Maven’ als Build-Management Tool. Dadurch
ist ein sehr einfaches Arbeiten mit den Demoprojekten méglich. Um dies tun zu konnen, sind
keine tieferen Kenntnisse von Maven notwendig. Es geniigt, wenn man Maven installiert hat und
den notwendigen Befehl kennt, um ein solches Maven Projekt zu starten. Dies wird im Folgenden
erlautert.

Organisation der Beispielprojekte

Samtliche Beispielprojekte (bis auf das allererste Beispiel, welches mit Eclipse erzeugt und mit
Apache Ivy gebaut wird) sind in einem sogenannten Maven Multi-Module Projekt organisiert.
Das heif3t, es gibt ein gemeinsames Hauptverzeichnis, unter dem die einzelnen Demos organisiert
sind, und einen gemeinsamen Build Deskriptor, der als Elterndeskriptor alle untergeordneten
Projekte zusammenfasst (dieser Build Deskriptor heif3t bei Maven Project Object Model (POM)
und liegt in der Datei pom.xm1). Uber diesen Elterndeskriptor (Parent POM) lassen sich samtliche
untergeordnete Projekte mit einem einzigen Kommando bauen und paketieren.

Dennoch ist jedes Unterprojekt dabei fiir sich genommen selbstiandig lauffahig. Man kann
also in den Verzeichnissen der einzelnen Beispielprojekte den entsprechenden Maven-Befehl zum
Bauen und Starten des Projektes absetzen und anschlieflend die jeweilige Beispielanwendung in
seinem Browser besuchen.

Notwendige Voraussetzungen

Um die Beispielprojekte auszuprobieren, sind ein paar wenige Dinge als Voraussetzung notwen-
dig. Es wird ein JDK ab Version 1.7 benétigt, und es muss das Build-Management Tool Maven in
der aktuellen Version (mindestens ab Version 3.0.x) installiert sein (Eine Installationsanweisung
fir Maven finden Sie im néchsten Abschnitt). Die Installation eines Servlet Containers, wie z. B.
Tomcat, ist nicht erforderlich.

Fiir das erstmalige Bauen der Beispielprojekte wird eine Internetverbindung benétigt. Maven
ladt sich samtliche Abhéngigkeiten eines Projektes aus einem zentralen Verzeichnis im Internet
(das sogenannte Maven Central) herunter und legt diese lokal in einem Cache ab. Zu diesen Ab-
héngigkeiten gehoren fiir unsere Beispiele auch die Vaadin Bibliotheken. Wenn alle notwendigen
abhéngigen Bibliotheken im Cache verfiigbar sind, kann Maven das Projekt fortan auch offline
bauen.

Installation von Maven

Zur Verwendung von Maven muss man sich das fiir sein Betriebssystem passende Paket von der
Maven Homepage® herunterladen und dieses lokal installieren.

Die Installation von Maven soll im Folgenden kurz beschrieben werden.

Zuerst laden Sie sich im Download-Bereich der Maven Homepage das Zip-Paket der
aktuellen Maven-Version herunter. Diese Zip-Datei entpacken Sie lokal an einen beliebigen Ort,

"http://maven.apache.org
®http://maven.apache.org

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Vorwort: Uber dieses Buch viii

z. B. nach C:\Programme\apache-maven. Unter Linux installieren Sie sich das entsprechende
Paket iiber den jeweiligen Paketmanager Threr Linux-Distribution.

Anschlieffend muss eine Umgebungsvariable M2_HOME eingerichtet werden, die auf dieses
Installationsverzeichnis verweist. Hierbei ist es wichtig zu beachten, dass Sie nicht das \bin-
Verzeichnis der Maven-Installation fiir diese Umgebungsvariable angeben, sondern das Wurzel-
verzeichnis der Installation.

C:\> set M2_HOME=C: \Programme\apache-maven
Unter Linux:
$ export M2_HOME=/path/to/maven/installation

Anschlieflend konnen Sie die PATH-Variable des Systems um das Maven \bin-Verzeichnis
erweitern:

C:\> set PATH=%PATH%;%M2_HOME?%\bin

Unter Linux koénnen Sie einen symbolischen Link auf das Maven Binary mvn in /usr/bin
anlegen.

Wie Sie auf Threm System eine Umgebungsvariable fest einrichten, entnehmen Sie bitte der
Anleitung Thres Betriebssystems.

Haben Sie diese Schritte durchgefiihrt, konnen Sie in einer neu gestarteten Konsole Thre
Installation testen. Der Befehl

$ mvn -version
sollte dann zu einer Ausgabe dhnlich der Folgenden fiithren:

Apache Maven 3.3.3 (7994120775791599e205a5524ec3e@dfe41d4a06; 2015-04-22T13:5\
7:37+02:00)

Maven home: C:\Tools\apache-maven-3.3.3

Java version: 1.8.0_11, vendor: Oracle Corporation

Java home: C:\java\jdk1.8.0_11\jre

Default locale: de_DE, platform encoding: Cp1252

0S name: "windows 7", version: "6.1", arch: "amd64", family: "dos"

4

Damit haben Sie Maven erfolgreich installiert.

Bauen und starten der Beispielprojekte mit Maven

Um die Beispielprojekte verwenden zu koénnen, laden Sie sich diese zuerst von GitHub herunter.
Das geschieht entweder direkt tiber das Versionskontrollsystem Git” oder indem Sie sich
direkt auf der Seite des Projekts auf GitHub (https://github.com/rolandkrueger/grundlagenbuch-
vaadin7-bsp) den Quellcode als Zip-Datei herunterladen.

Das Projekt wird wie folgt mit dem Git Kommandozeilen-Client heruntergeladen (“geklont”):

*http://git-scm.com

http://git-scm.com/
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp
http://git-scm.com/

Vorwort: Uber dieses Buch ix

$ git clone https://github.com/rolandkrueger/grundlagenbuch-vaadin7-bsp.git

Neben dem offiziellen Git Kommandozeilen-Client gibt es auch eine Reihe grafischer Anwen-
dungen, mit denen man fensterbasiert mit einem Git Repository arbeiten kann. Neben den Git-
Integrationen, die alle modernen IDEs mit an Bord haben (z. B. das EGit Plugin fiir Eclipse),
gibt es auch das kostenlose Programm SourceTree? von Atlassian, das unabhéngig von einer
bestimmten Entwicklungsumgebung arbeitet. SourceTree erméglicht ein bequemes, grafisches
Arbeiten mit Git und bietet einen iibersichtlichen Blick auf sein Git Repository. Das Programm
kann kostenfrei genutzt werden; man muss sich allerdings bei der ersten Verwendung mit einer
Email-Adresse bei Atlassian registrieren.

*https://www.sourcetreeapp.com/

Das Projekt grundlagenbuch-vaadin7-bsp steht Gibrigens unter einer Public Domain Lizenz.
Das heifit, Sie diirfen mit dem Beispielcode anstellen, was Sie wollen, ohne mich vorher um
Erlaubnis fragen zu miissen. Nutzen Sie den Code also gerne als Basis, Inspiration oder als
Kopiervorlage in Thren eigenen Projekten.

Die auf Maven basierenden Beispielprojekte fiir dieses Vaadin Grundlagenbuch finden Sie in
dem geklonten Projekt unter /Maven-Projekte. Wechseln Sie in dieses Verzeichnis und fithren
Sie dort den folgenden Befehl aus:

$ mvn package

Alle Beispielprojekte werden dadurch gebaut und konnen anschlieflend mit Maven tiber den
integrierten Jetty Server gestartet werden. Wechseln Sie dazu in ein beliebiges Unterverzeichnis
unterhalb von /Maven-Projekte und fithren Sie den folgenden Befehl aus:

$ mvn jetty:run

Das einzige Projekt, das nicht mit Maven gebaut werden kann, ist /Kap@2_HelloVaadin.
Dies ist ein reines Eclipse-Projekt, das wir im Kapitel “Hello Vaadin” erstellen werden.

Wenn Sie im vorigen Schritt die Demoprojekte erfolgreich gebaut haben, wird nun ein Jetty
Server gestartet, auf dem das Projekt automatisch deployt wird. Ist der Jetty gestartet, konnen
Sie das mit Ihrem Browser die Seite

http://localhost: 8080

besuchen. Es 6ffnet sich daraufhin das jeweilige Demoprojekt in Threm Browser, und Sie
konnen beginnen, damit zu experimentieren.

https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/

Vorwort: Uber dieses Buch X

Feedback

Ich habe mich fiir Leanpub als Veroffentlichungsplattform fiir dieses Buch entschieden, da man
hier sein Buch schon fiir die Allgemeinheit freigeben kann, wahrend man noch daran schreibt.
Dieses Prinzip erlaubt es, schon frithzeitig auf Feedback, Rickmeldungen und Leserwiinsche
einzugehen, und diese in die Entstehung des Buches einflieflen zu lassen.

Damit das fiir dieses Buch richtig funktioniert, bin ich auf Ihre Riickmeldung angewiesen.
Ich freue mich also tber jede Art von Kommentaren, Wiinschen und Meinungen, die ich von
Ihnen bekommen kann. Sie wiinschen sich die bevorzugte oder vertiefendere Behandlung eines
Themas, das fiir Sie besonders interessant ist? Schreiben Sie mir das, und ich werde versuchen,
Thre Wiinsche in die Kapitelplanung einfliefen zu lassen.

Sie konnen mich tiber verschiedene Kanéle erreichen: entweder iber die oben genannten
sozialen Netzwerke (Twitter oder Google+), per Email (mail@rolandkrueger.info) oder tiber die
Kommentarspalte zu diesem Buch auf Leanpub.

Copyrights und Bildnachweise

Rentierkopf auf Titelseite: Bildnummer 328723733 © Khapaev Vladimir/Shutterstock.com
Linux ist ein eingetragenes Warenzeichen von Linus Torvalds. Microsoft und Microsoft
Windows sind eingetragene Warenzeichen der Microsoft Corp., Redmond WA 98052. Vaadin,
}> und Thinking of U and I sind eingetragene Warenzeichen der Vaadin Ltd. Andere aufgefiihrte
Produkt- und Firmennamen sind moglicherweise Marken der jeweiligen Eigentiimer.
Die Abbildungen in diesem Buch wurden inspiriert durch die bikablo® Publikationen,
www.bikablo.com™.

®http://www.bikablo.com

http://www.bikablo.com/
http://www.bikablo.com/

Teil 1: Einleitung und erste Schritte

In diesem Teil des Buches wollen wir unsere ersten Gehversuche mit dem Vaadin Framework
unternehmen. Bevor wir uns das obligatorische Hello World Beispiel (oder vielmehr Hello
Vaadin) anschauen, werfen wir zuerst einen kurzen Blick auf die Geschichte des Frameworks und
auf dessen technologischen Hintergrund. Wir wollen erfahren, wo das Framework herkommt
und welche Merkmale charakteristisch fiir das Framework sind.

Nachdem wir das Vaadin Framework technologisch eingeordnet haben, stiirzen wir uns
sogleich in die Anwendungsentwicklung selbst und schreiben die einfachst mégliche Vaadin-
Applikation an, die man sich vorstellen kann (Gut, nicht ganz. Man kann sich eine noch
einfachere Vaadin-Anwendung vorstellen, aber eine solche wiirde uns definitiv unterfordern):
die allseits beliebte Hello World Anwendung. Wir werden dort die wichtigsten Bestandteile einer
Vaadin-Anwendung und die dazugehoérige Grundkonfiguration kennenlernen.

Am Ende des ersten Buchteils haben wir uns ein grundlegendes Verstiandnis dafiir angeeignet,
wie eine Vaadin-Applikation aufgebaut ist und welche Besonderheiten eine Vaadin-Anwendung
auszeichnen. Aus den speziellen Eigenschaften von Vaadin ergeben sich eine Reihe von ganz
bestimmten Vor- und Nachteilen. Diese werden wir kennenlernen, sodass wir eine informierte
Entscheidung dariiber treffen konnen, in welcher Situation das Vaadin Framework eine gute
Wabhl ist und wo eher nicht.

1. Was ist Vaadin?

Lassen Sie uns zum Einstieg zunéchst einen Blick auf die geschichtlichen und technologischen
Hintergriinde des Frameworks werfen. Wir wollen erfahren, wo Vaadin herkommt und welche
Besonderheiten das Framework auszeichnen.

Der Blick auf diese technologischen Besonderheiten gibt uns eine Idee davon, wie wir das
Verhalten des Frameworks zur Laufzeit bewerten kénnen. Anhand der speziellen Vor- und
Nachteile, die sich daraus ergeben, konnen wir Szenarien ableiten, fiir die der Einsatz von Vaadin
besonders geeignet, oder fiir die er eher weniger geeignet ist.

Falls Thre Neugier auf das Vaadin Framework zu grof} ist und Sie sich lieber gleich in die
Programmierung mit Vaadin stiirzen wollen, kénnen Sie dieses Kapitel getrost tiberspringen
und im néchsten Kapitel einsteigen. Es lohnt sich aber sicherlich, spater noch einmal hierher
zurlickzukehren, um sich ein wenig mit der Herkunft von Vaadin zu beschéftigen.

1.1 Geschichtliches

Das Vaadin Framework ist unter diesem Namen seit dem Jahr 2009 auf dem Markt. Man mochte
fast meinen, dass Vaadin damit ein noch recht junges und vielleicht noch nicht an jeder Stelle
vollstandig ausgereiftes Framework ist. Ich habe Thnen aber nur die halbe Wahrheit erzihlt.

In Wahrheit gibt es Vaadin, beziehungsweise dessen technologischen Vorganger, schon
seit dem Jahr 2000. Seit diesem Jahr wird namlich von der finnischen Firma IT Mill Ltd. ein
Webframework namens Millstone' entwickelt, das spater einmal in unser Lieblingsframework
Vaadin umgewandelt werden soll.

Die Firma IT Mill Ltd. gibt es heute unter diesem Namen nicht mehr. Sie wurde im Jahr
2009 in Vaadin Ltd. umbenannt - zeitgleich zu der Umbenennung des hauseigenen Frameworks
nach Vaadin. Man wollte mit dieser Umbenennung den Wunsch unterstreichen, starker die
Community einzubeziehen.

Vaadin Ltd. ist in der siidfinnischen Stadt Turku (oder auf Schwedisch Abo) ansissig.
Inzwischen gibt es aber auch schon Zweigstellen in Berlin und San Jose, USA. Firmengriinder
und Geschéftsfithrer ist Dr. Joonas Lehtinen, der mit seinem Team das Java Webframework
entwickelt.

Vaadin ist ein Open Source Framework, das unter der freiziigigen Apache License 2.0 steht.
Die Firma Vaadin bietet neben dem kostenlosen Framework auch kommerzielle Dienstleistungen
in den Bereichen Beratung, Projektunterstiitzung und Framework Schulungen an. Daneben
gibt es einige kostenpflichtige Erweiterungen und Zusatztools fiir Vaadin, die das Framework
um neue Funktionen und Komponenten erweitern. Beispielhaft aus diesem Bereich seien hier
das Vaadin Touchkit zum Schreiben mobiler Anwendungen, der Vaadin Designer zur visuellen
Gestaltung von Benutzeroberfldchen oder die Vaadin Charts, eine Sammlung von Statistik- und
Graph-Komponenten, erwihnt. Besuchen Sie fiir einen Uberblick tiber diese Dienstleistungen
und Angebote einfach die Vaadin Homepage http://www.vaadin.com®.

lengl. fir Mithlstein
*http://www.vaadin.com

http://www.vaadin.com/
http://www.vaadin.com/

Was ist Vaadin? 3

Mit Vaadin lassen sich Webanwendungen mit rein serverseitigem Code erstellen. Das heifit,
man programmiert eine Webanwendung vollstindig mit Java und bewegt sich dabei komplett
auf der Server-Seite. Der Teil, der den Benutzerinnen und Benutzern im Browser angezeigt wird,
wird auch im Browser erzeugt. Dieser Prozess wird allerdings vom Server aus ferngesteuert.
Anders als bei anderen Technologien, die z. B. auf HTML Templating aufsetzen, generieren
wir hierbei HTML Markup nicht direkt. Dies wird fiir uns vom Framework ibernommen. Wir
stellen lediglich UI-Komponenten auf Layouts zusammen, die dann von Vaadin in das HTML
Dokument “gezeichnet” werden. Man muss sich dadurch nicht mehr zwingend mit Technologien,
wie HTML, CSS, Templating Engines oder JavaScript herumschlagen.

Das Vaadin Framework verwendete urspriinglich (als es noch Millstone Framework hief3) ein
proprietares, AJAX-basiertes Kommunikationsmodell zwischen der Client- und der Server-Seite.
Die clientseitige Render Engine, der Teil also, der die Ul Komponenten in den Browser zeichnet,
und die Client-Server-Kommunikation waren Eigenentwicklungen. In dieser Version war es nur
sehr schwer moglich, das Framework um eigene clientseitige Komponenten zu erweitern. Eine
bessere Alternative fiir den proprietaren Client-Teil musste gefunden werden.

Integration des Google Web Toolkits

Im Jahr 2006 wurde von Google das Google Web Toolkit (GWT oder auch Gwit ausgesprochen)
veroffentlicht. Das GWT ist ein Framework, das es Entwicklerinnen und Entwicklern erméglicht,
JavaScript-Anwendungen fiir den Browser rein mit Java zu entwickeln. Das funktioniert iiber
einen sogenannten Cross Compiler. Das heif3t, man schreibt mit Hilfe einer speziellen Pro-
grammierschnittstelle Java Code, der spater mit dem GWT Compiler nach JavaScript iibersetzt
wird. Der GWT Cross Compiler arbeitet dabei direkt mit dem Java Source Code und nicht
mit den kompilierten Class-Dateien. Am Ende wird der iibersetzte JavaScript-Code im Browser
ausgefihrt.

Das Besondere am Google Web Toolkit ist, dass die komplette Webanwendung — sprich die
gesamte Fachlogik — im Browser lauft. Es kann (muss aber nicht) mit Hilfe von Remote Procedure
Calls (entfernten Prozeduraufrufen) mit einem Server-Backend kommuniziert werden, um bspw.
Daten aus einer Datenbank nachzuladen oder diese dort zu persistieren.

Eine weitere Besonderheit ist, dass das GWT JavaScript-Code erzeugt, der genau auf die
Eigenheiten der einzelnen Browser abgestimmt ist. Das bedeutet, dass fiir jede gewiinschte
Browser-Zielplattform genau eine spezielle JavaScript-Datei kompiliert wird, die nur von dem
jeweiligen Browser geladen wird. Man kann damit sichergehen, dass seine Anwendung ohne
gesonderte Anpassung auch in jedem Browser problemlos funktioniert.

Ein solches clientseitiges Framework, das browserabhéngigen JavaScript-Code auf Basis von
Java-Quellcode erstellen kann, ist natiirlich der ideale Kandidat fiir den Client-Teil von Vaadin.
GWT-Code kann komplett mit Java geschrieben werden, was gut zu einem Java-Framework wie
Vaadin passt. Und tiber die Moglichkeit von GWT, auch per Remote Procedure Calls (RPC) mit
einem Server-Backend kommunizieren zu kénnen, kann eine GWT-Anwendung problemlos an
den serverseitigen Teil von Vaadin - in dem ja die Fachlogik lduft — angebunden werden.

Im Jahr 2007 wurde der proprietare clientseitige Teil von Vaadin iiber Bord geworfen und
durch eine GWT-Implementierung ersetzt. Dies brachte einige grofie Vorteile mit sich:

+ Das Vaadin-Team muss sich nun nicht mehr um die Weiterpflege einer eigenen clientsei-
tigen Implementierung kiimmern und kann sich voll und ganz auf die Verbesserung des
eigentlichen Vaadin-Kerns konzentrieren.

Was ist Vaadin? 4

« Vaadin wurde komplette browserunabhangig, ohne dass dafiir ein gesonderter Aufwand
betrieben werden musste.

+ Die Weiterentwicklung des clientseitigen Basisframeworks (GWT) erfolgt durch das Team
eines grof3en Herstellers, namlich Google. Vaadin hat hier keine groflen Aufwande mehr.

+ Die Entwicklung clientseitiger Komponenten kann von jedermann durchgefithrt werden,
der sich mit dem Google Web Toolkit auskennt. Eine Einarbeitung in eine proprietire
Programmierschnittstelle ist damit nicht mehr notwendig. Vorhandenes Wissen kann
also zum Einsatz kommen, sodass auf dem Arbeitsmarkt auch eine groflere Menge
an potentiellen Entwicklerinnen und Entwicklern fiir den Einsatz in Vaadin-Projekten
verfligbar ist.

1.2 Technologischer Hintergrund

Seit 2007 basiert also der clientseitige Teil von Vaadin auf dem Google Web Toolkit. Was bedeutet
das aus technischer Sicht?

Eine typische GWT-Anwendung besteht aus einer Reihe von Ansichten (Views), die tiber eine
spezielle Fachlogik miteinander verbunden sind. Damit behandelt eine GWT-Anwendung immer
ein ganz bestimmtes, klar umrissenes fachliches Thema, z. B. eine Kundendatenverwaltung oder
einen Web Shop. Wie kann man dies nun mit einer Technologie wie Vaadin zusammenbringen,
bei der wir eine Webanwendung rein serverseitig implementieren wollen? Wir wollen ja gerade
nicht dazu gezwungen werden, zusétzlich noch clientseitigen Code schreiben zu miissen.

Die Losung ist, dass Vaadin eine generische GWT-Anwendung fiir den Client-Teil mitbringt,
mit der sich jegliche Anwendungslogik umsetzen lasst, ohne dass dieser clientseitige Teil
von uns angepasst werden miisste. Diese generische GWT-Anwendung bildet dabei keine
bestimmte, anwendungsfallbezogene Fachlogik ab, sondern stellt eine Schnittstelle dar, welche
UI-Komponenten im Browser darstellen und mit dem Vaadin-Backend kommunizieren kann.

Diese generische GWT-Anwendung wird in der Vaadin-Terminologie Widget Set (oder auch
Client-Side Engine) genannt. In diesem Widget Set ist die Menge aller verfiigbaren Vaadin UlI-
Komponenten vorhanden. Zudem enthalt es ein Kommunikationsmodul, mit dessen Hilfe dieses
Widget Set mit der serverseitigen Anwendung kommunizieren kann.

Das Grundprinzip einer Vaadin-Anwendung sieht damit wie folgt aus. Wir stellen in unserem
serverseitigen Code eine Benutzerschnittstelle zusammen, indem wir UI-Komponenten (Text-
felder, Checkboxen, Tabellen etc.) auf Layout-Komponenten anordnen. Es ergibt sich dadurch
eine baumartige Struktur von instanziierten UI-Objekten, die innerhalb der HTTP Session eines
Benutzers (also im Speicherbereich des Servers) verwaltet wird. Vaadin kiimmert sich nun fiir
uns hinter den Kulissen darum, dass an den Browser spezielle Anweisungen geschickt werden,
welche vom Widget Set interpretiert und ausgefithrt werden kénnen. Diese Anweisungen fithren
dazu, dass das Widget Set die Ul-Komponenten, die wir auf Server-Seite zusammengestellt
haben, in Form von HTML Markup in den DOM-Baum (Document Object Model) gezeichnet
werden. Wir steuern also mit unserem serverseitigen Code den Vaadin-Teil im Browser indirekt
fern.

Was geschieht als nachstes, wenn die Benutzerin oder der Benutzer mit der Vaadin-
Anwendung im Browser interagiert? Interaktion bedeutet bei Vaadin immer, dass in irgendeiner
Form ein Ereignis ausgelost wird. Das kann geschehen, wenn auf eine Schaltflache geklickt
wird, oder wenn ein Textfeld den Eingabefokus verliert, oder wenn man die Sortierung einer

Was ist Vaadin? 5

Tabelle dndert und so weiter. Das Widget Set sorgt nun dafiir, dass derartige Ereignisse (Events)
registriert und an den Server geschickt werden. Dort werden diese Ereignisse in Form von
komponentenspezifischen Events (z. B. ein Button.ClickEvent wenn auf eine Schaltfléache geklickt
wurde) von unserem Anwendungscode weiterverarbeitet.

Auf jedes Event folgt typischerweise eine anwendungsspezifische Reaktion. Zum Beispiel
konnen Daten aus einer Datenbank nachgeladen werden, die in einer Tabelle oder einer Liste
angezeigt werden sollen. Oder es werden Formulareingaben in der Datenbank persistiert, und
auf der Benutzeroberflache wird ein entsprechender Hinweistext angezeigt. In den allermeisten
Féllen muss also in irgendeiner Weise die Benutzeroberflache angepasst werden. Als Antwort
auf ein solches Anwendungsevent manipulieren wir also in unserem serverseitigen Code die UI-
Komponenten, auf die wir tiber die HTTP Session Zugrift haben. Beispielsweise &ndern wir den
Text, der von einem bestimmten Label angezeigt wird. Diese Anderungen an der dargestellten
Komponentenhierarchie werden von Vaadin als Antwort auf ein Ereignis an das Widget Set im
Browser zuriickgeschickt. Dieses sorgt dafiir, dass die clientseitig dargestellten UI-Komponenten
entsprechend aktualisiert werden. Dafiir werden einfach die jeweiligen HTML-Elemente im
DOM-Baum angepasst, entfernt, oder es werden neue hinzugefiigt.

Die Ereignisbehandlung geschieht bei Vaadin tiber AJAX-&hnliche Aufrufe. Die Abkiirzung
AJAX steht, wie Sie sicherlich wissen, fir Asynchronous jJavaScript and XML, also asynchrone
JavaScript-Verarbeitung, bei der Nachrichten im XML-Format verschickt werden. Die Idee hinter
AJAX-basierten Webanwendungen ist, dass Daten zwischen Server und Browser ausgetauscht
und der Inhalt einer aktuell angezeigten Seite verdndert werden kann, ohne dass die Seite
komplett neu geladen werden muss. Vaadin arbeitet nach demselben Prinzip: Es wird eine einzige
Seite geladen (die sogenannte Host Page), die als erstes den JavaScript-Code des Widget Sets ladt
und ausfithrt. Anschliefend werden nur noch Teile der Seite ereignisgetrieben abgedndert oder
ausgetauscht. Die Kommunikation mit dem Server geschieht dabei im Hintergrund. Es werden
hierbei nur die Daten zwischen Client und Server ausgetauscht, die zur Bearbeitung des aktuellen
Events notwendig sind. Ein Neuladen der Seite findet nicht statt.

Es gibt bei Vaadin zwei wichtige Unterschiede zum klassischen AJAX: erstens ist die
Kommunikation von Vaadin nicht asynchron. Wenn ein Ereignis zum Server geschickt wurde,
wartet das Widget Set zuerst auf eine Antwort, bevor die Anwendung weiter benutzt werden
kann. Zumeist fallt das gar nicht weiter auf, da die Ereignisbehandlung so schnell ablauft, dass
die Benutzeroberflache nur fiir den Bruchteil einer Sekunde blockiert ist — so schnell kann man
gar nicht klicken. Wenn die Ereignisbehandlung allerdings besonders lange dauert, etwa weil
eine langlaufende Berechnung angestoflen wurde, dann wird dies fiir die Anwenderin oder den
Anwender spiirbar.

Zweitens verwendet Vaadin keine XML Nachrichten fiir die Kommunikation mit dem Server.
Stattdessen setzt das Framework auf JSON?*-kodierte Nachrichten, welche durch JavaScript-Code
wesentlich besser interpretierbar und verarbeitbar ist als XML.

Zusammenfassend konnen wir festhalten, dass eine Vaadin-Anwendung einmalig iiber eine
Host Page geladen und dann nur noch tiber leichtgewichtige Serveranfragen gesteuert wird. Die
gesamte Anwendung wird dabei auf einer einzigen Seite betrieben — ndmlich die Host Page, die
beim ersten Aufruf der Vaadin-Anwendung geladen wurde. Aus diesem Grund spricht man bei
einer solchen Art von Anwendung auch von einer Single-Page Application: es wird eine Seite
geladen, die den notwendigen JavaScript-Code nachladt, der dann im Folgenden dynamisch die

*JavaScript Object Notation

Was ist Vaadin? 6

Inhalte dieser Seite austauscht.

Durch diese Eigenschaften und durch die damit moéglichen dynamischen UI-Komponenten
(z. B. Meniileisten, Drop-Down Vorschlagslisten, Dialogfenster, Moglichkeiten fiir Drag-and-
Drop-Verarbeitung, Baumkomponenten usw.) zeigen derartige Anwendungen ein dhnliches
Verhalten, wie herkommliche Desktop-Applikationen. Sie zeigen ein reichhaltiges Verhalten mit
Bezug auf die Interaktionsmoglichkeiten, und das Ganze findet im Browser iiber das Internet
statt. Aus diesem Grund werden derartige Anwendungen auch Rich Internet Applications
genannt.

Damit haben wir die Grundeigenschaften von Vaadin herausgearbeitet: Vaadin ist ein
Framework fiir Rich Internet Applications, welches nicht auf einer Browser-Plugin-Infrastruktur
aufsetzt, sondern nach dem Prinzip einer JavaScript Single-Page Application funktioniert.

2. Hello Vaadin!

Lassen Sie uns nun auf unsere Reise durch die Welt von Vaadin begeben. Wie es in der Literatur
fir Computerthemen so iiblich ist, wollen auch wir hier mit einem einfachen Hello World
Beispiel beginnen. Mit dessen Hilfe werden wir die grundlegendsten Konzepte des Frameworks
kennenlernen.

In diesem Kapitel werden wir eine erste, sehr einfache Anwendung schreiben, die schon die
wesentlichen Grundbestandteile einer jeden Vaadin-Applikation enthalten wird. Wir begniigen
uns hierbei nicht damit, einfach nur ein simples Label mit dem Text “Hello World” auf den
Bildschirm zu bringen. Wir wollen uns gleich anstdndig mit Namen begriifien lassen und sehen
deshalb die Eingabe unseres Namens in ein Textfeld vor. Diese Eingabe miissen wir iiber eine
Schaltflache bestatigen. AnschlieBend werden wir auf eine Seite umgeleitet, auf der wir mit
Namen begriifit werden.

Damit lernen wir die drei wichtigsten Grundelemente der Programmierung von Vaadin-
Anwendungen kennen: die validierte Eingabe von Daten, die Ereignisbehandlung und die
Seitennavigation innerhalb einer Anwendung.

Anschlieflend verschaffen wir uns einen Uberblick tiber die wichtigsten Eigenschaften von
Rich Internet Applications, zu denen ja mit Vaadin geschriebene Anwendungen gehoren, wie wir
im letzten Kapitel erfahren haben.

2.1 Anlegen eines Projekts

Wir beginnen mit einem neuen Eclipse-Projekt, das wir HelloVaadin nennen wollen. Fir
dieses Beispiel verwenden wir das Vaadin Plugin fiir Eclipse, das wir zuvor iiber den Eclipse
Marketplace installiert haben.

Um ein neues Vaadin Projekt anzulegen, verwenden wir den Wizard fiir Vaadin Projekte,
den wir unter File — New — Other... = Vaadin — Vaadin 7 Project finden. Der erste Dialog des
Wizards erlaubt einige grundlegende Einstellungen.

Hello Vaadin! 8

I8 New Vaadin 7 Project = X

Vaadin Project .
Create a Vaadin Dynamic Web project. | @

Project name: HelloVaadin

Project location
Use default location

Chworkspace\HelloVaadin Browse...

Target runtime

’ApacheTomcatv?.U VI [Newﬁuntime...]

Configuration

|Vaadin 7, Java 6, Serviet 24 || Modify.. |

Vaadin project running on Java 6.0, Serviet 2.4
Vaadin
Deployment configuration:

Serviet (default) -

Vaadin version: [7.1.15 VI

@ <Back | Neta> |[Ensh |[Cancel |

Anlegen eines neuen Vaadin 7 Projektes mit dem Vaadin Eclipse Plugin

Zunichst konnen wir den Namen unseres neuen Projektes festlegen. Wir geben hier Hell-
oVaadin ein. Unter Project location wahlen wir den Zielort der Projektdateien. Wir lassen das
Projekt einfach in unseren Eclipse Workspace legen.

Als nachstes wahlen wir bei der Target runtime den Servlet Container aus, auf dem wir
unser Projekt laufen lassen wollen. Wir missen in Eclipse unter Window — Preferences —
Server — Runtime Environment mindestens eine Server-Laufzeitumgebung, z. B. einen Tomcat
Server, eingerichtet haben. Wir konnen hier eine dieser Server-Konfigurationen auswéihlen.
Sollte in diesem Dialog noch kein Server auswahlbar sein, konnen wir die Option auch einfach
tiberspringen. Unser Projekt lasst sich ohne Probleme auch spater noch auf einer Server-
Umgebung ausfiihren.

Im néchsten Feld wahlen wir die Konfiguration unseres Projekts. Wir haben hier die
Moglichkeit, die Version der verwendeten Servlet-Spezifikation zu wahlen. Welche Version
wir auswahlen héngt im Wesentlichen davon ab, welche Features der Servlet-Spezifikation
wir benétigen und welche Servlet-Version unsere Server-Zielplattform unterstiitzt. Fir unser
einfaches Hello World-Beispiel gentigt uns die Version 2.4 der Servlet-Spezifikation. Uber die
Schaltflache Modify... kénnen wir die vorhandenen Konfigurationsmoglichkeiten anpassen.
Beispielsweise lasst sich hier die verwendete Java Version dndern. Wir definieren damit die
aktiven Eclipse Projekt-Facetten unseres Projekts.

Hello Vaadin! 9

Zu guter Letzt legen wir die Deployment configuration und die verwendete Vaadin-Version
fiir unser Projekt fest. Mit der Deployment configuration definieren wir, in welcher Umgebung
unsere Vaadin-Anwendung spater einmal betrieben werden soll. Es gibt dazu drei Moglichkeiten,
aus denen man wahlen kann:

+ Servlet: Dies ist die Standardkonfiguration. Man wahlt diese, um seine Vaadin-Anwendung
als herkommliche Java Webanwendung in einem Servlet Container, wie Tomcat, Jetty oder
GlassFish zu betreiben.

« Google App Engine servlet: Alternativ kann man seine Anwendung auch in der Google
App Engine' installieren. Die App Engine ist ein PaaS-Dienst (Platform-as-a-Service) von
Google. Man kann damit seine Vaadin-Anwendung sehr einfach in der Cloud betreiben.

« Generic portlet (Portlet 2.0): Schliellich ist es auch méglich, Vaadin als Portlet in einem
Portal Server laufen zu lassen. Damit bietet es sich z. B. an, Portlets fiir das Liferay Portal®
mit Hilfe von Vaadin zu implementieren.

Die Konfiguration, die wir hier wahlen, legt fest, welches konkrete Vaadin-Servlet in unserem
Projekt eingesetzt wird. Abhangig von der Laufzeitumgebung unserer Anwendung muss ein
spezielles Servlet verwendet werden. So gibt es eine eigene Servlet-Implementierung fir die
Google App Engine und fiir Portal Server.

Wir kénnen uns spéter jedoch jederzeit fiir eine andere Laufzeitumgebung entscheiden. Vaa-
din ist so konzipiert, dass der Programmcode einer Anwendung vollstandig von der konkreten
Umgebung abstrahiert ist. Egal ob wir unsere Anwendung in die Google App Engine oder in
einem herkdmmlichen Servlet Container installieren — unser Anwendungscode bleibt davon
unberiihrt (zumindest der Vaadin-Teil). Einzig das darunterliegende Servlet muss angepasst
werden.

Nachdem wir nun die Grundkonfiguration fiir unser Vaadin-Projekt festgelegt haben, konnen
wir auf Next klicken, um auf dem néichsten Dialog das Quellcode- und Ausgabeverzeichnis
festzulegen. Hier konnen wir die Standardeinstellungen beibehalten.

Ein weiterer Klick auf Next bringt uns auf den Konfigurationsdialog fiir das Web-Modul.
Hier legen wir den Context Root unserer Anwendung fest. Das ist der Pfad in der URL zu
unserer Anwendung. Wenn wir hier also die Voreinstellung Hel1loWor 1d beibehalten, wird unsere
Anwendung spater lokal unter der URL http://localhost:8080/HelloWorld erreichbar sein.

Das Content Directory, das wir als néachstes festlegen konnen, bezeichnet dasjenige Ver-
zeichnis in unserem Projekt, das samtliche Web-Ressourcen enthalten wird. Unter diesem Pfad
befindet sich das WEB-INF-Verzeichnis und die web.xml (falls vorhanden). Den vorgegebenen
Namen WebContent konnen wir auch hier beibehalten. Fiir unser erstes Vaadin Projekt setzen
wir den Haken bei Generate web.xml deployment descriptor. Damit wird fiir uns von dem Eclipse
Plugin die Grundkonfiguration des Deployment Descriptors generiert. Wir konnen diesen spéater
nach unseren eigenen Wiinschen anpassen. Falls wir auf der ersten Seite des New Project Wizards
eine Servlet-Version grofier gleich 3.0 angegeben haben, konnen wir auch auf die web.xml
verzichten und das Servlet im Code rein tiber Annotationen konfigurieren.

Mit einem Klick auf Next kommen wir auf die letzte Dialogseite des Wizards.

"https://appengine.google.com
*https://www.liferay.com

https://appengine.google.com/
https://appengine.google.com/
https://www.liferay.com/
https://appengine.google.com/
https://www.liferay.com/

Hello Vaadin! 10

[m
&3

[.3 MNew Vaadin 7 Project

Vaadin project
Configure Vaadin specific project details

(o

Application

Create project template

Application name:
Helloworld Application
Base package name:
org.vaadin.helloworld

Application class name:
HelleWerldUI

Theme name:

hellowerld

Portlet

Portlet version: | g portlet -

HelloWorld

Yaadin Versicn

Vaadin version: [7.1.15 -

“a
l\‘?_,' Mext > Finish] ’ Cancel

Letzte Dialogseite des Wizards fiir neue Vaadin 7 Projekte

Dort haken wir die Option Create project template an. Damit wird fiir uns die Package-
Struktur des Projekts und die Vaadin Hauptklasse erzeugt. Als nachstes geben wir die folgenden
Informationen an:

« Application name: Name der Anwendung. Dieser Wert wird spater in der web.xml als
Servlet-Name fiir das Vaadin Servlet verwendet.

« Base package name: Name des Basis-Packages, unterhalb dessen unsere Anwendung liegt.

« Application class name: Klassenname fiir die Hauptklasse der Anwendung. Typischerwei-
se heift diese Klasse wie unsere Anwendung mit angehéngtem U1, also z. B. Hel loWor1dUI.
Wenn wir den Haken bei Create project template gesetzt haben, wird diese Klasse fiir
uns automatisch angelegt.

« Theme name: Name des Themes, das von unserer Anwendung verwendet werden soll. Ein
Theme definiert das optische Erscheinungsbild einer Vaadin-Applikation. Wir kénnen hier
einen Namen vorgeben, der zu unserer Anwendung passt. Was es mit Themes auf sich hat,
werden wir spater erfahren. Wir konnen es an dieser Stelle erst einmal so hinnehmen, dass
fiir uns ein eigenes Theme erzeugt wird.

Schlief3lich konnen wir noch die Version der verwendeten Portlet-Spezifikation wahlen, falls
unsere Vaadin-Anwendung als Portlet betrieben werden soll. Diesen Punkt bendtigen wir fiir

Hello Vaadin! 11

unser Beispiel nicht. Als letzten Konfigurationswert legen wir die Vaadin-Version fest, die fiir
unser Projekt verwendet werden soll. Hier konnen wir einfach die jeweils aktuelle Vaadin-
Version wéhlen.

Als letztes driicken wir nun den Finish-Knopf und lassen Eclipse unser bis hierher konfigu-
riertes Projekt erzeugen. Es wird ein Eclipse-Projekt generiert, das Ivy als Build Tool verwendet.
Die Eclipse Ivy Integration sorgt anschlielend dafiir, dass alle benétigten Abhangigkeiten (d. h.
die Vaadin Bibliotheken und deren abhéngigen Libraries) aufgelost und heruntergeladen werden.
Mit den vorhandenen Abhangigkeiten kann das Projekt von Eclipse fehlerfrei kompiliert werden.
Als Ergebnis haben wir jetzt ein neues Projekt namens HelloVaadin in unserem Workspace.
Schauen Sie sich gerne ein wenig in den Projektdateien um.

f# Package Explorer &7 E | ¥ =0
4 [%4 HelloVaadin
4 [sre

4 f org.vaadinhellovaadin
. [J] HelloVaadinULjava
- =4 JRE System Library [JavaSE-1.6]
» B vy ivyxmnl [default]
> B vy ivyxmnl [widgetset-compile]
= build
4 = WebContent
4 [= META-INF
= MANIFEST.MF
4 = VAADIN
4 [~ themes
4 [~ hellovaadin
addons.scss
hellovaadin.scss
styles.scss
4 [= WEB-INF
= lib
¥| web.xml
b ivyxml

ton ivysettings.xml

Fl 17 2

Das Projektlayout unseres brandneuen Hello Vaadin Projekts

Im Folgenden wollen wir einen kurzen Blick auf die erzeugten Projektdateien werfen. Wir
werden dabei die wichtigsten Grundbestandteile einer Vaadin-Anwendung umreiflen.

Die Projektdateien

Schauen wir uns einige der generierten Dateien etwas genauer an.

HelloVaadin/src/org/vaadin/hellovaadin/HelloVaadinUl.java

Diese Datei beherbergt die Klassendefinition der Hauptklasse unseres Projekts. Die Klasse
HelloVaadinUI erbt von der kurz und knapp benannten Vaadin Klasse com.vaadin.ui.UI.
Dies ist die Einstiegsklasse fiir eine Vaadin-Applikation. In ihr muss vor allem die abstrakte
Methode UI#init(VaadinRequest) implementiert werden. Uber dieser Methode wird eine
Vaadin-Anwendung initialisiert. Sie wird immer dann aufgerufen, wenn eine Benutzerin oder
ein Benutzer unsere Anwendung mit dem Browser besucht.

Hello Vaadin! 12

Man kann sich die init()-Methode ungefahr wie die main()-Methode eines herkommlichen
Java-Programms vorstellen. Hier wird der Einstiegspunkt einer Anwendung definiert. Die
Hauptaufgabe dieser Methode ist es also, die Benutzeroberflache der Anwendung zu initialisie-
ren und die initialen Ereignisbehandlungsroutinen fiir die Verarbeitung der Benutzeraktionen zu
registrieren.

HelloVaadin/WebContent/VAADIN/themes/hellovaadin/*

In diesem Verzeichnis befindet sich das sogenannte Theme einer Vaadin-Anwendung. Ein Theme
legt das duflere Erscheinungsbild der Anwendung fest. Hier konnen wir das Look & Feel fiir
unser Programm definieren. Im Wesentlichen besteht das aus speziell angepassten Cascading
Stylesheets (CSS) und weiteren Ressourcendateien, wie z. B. Bilder und Icons.

Das Vaadin Eclipse Plugin hat schon ein solches Theme fiir uns angelegt. Dieses dient
allerdings vorerst nur als Vorlage fiir unsere eigenen Anpassungen, d. h. das Theme ist zu Beginn
leer. Belassen wir die Theme-Dateien so wie sie im Moment sind, verhalt sich unsere Vaadin-
Anwendung genauso, als hatten wir kein eigenes Theme definiert. Wir brauchen uns also vorerst
gar nicht um diese Dateien zu kiimmern.

HelloVaadin/WebContent/WEB-INF/web.xml

Die web.xml ist der Deployment Descriptor unserer Webanwendung, der zumindest bei Ver-
wendung von alteren Servlet-Spezifikationen benétigt wird. In ihr wird im einfachsten Fall ein
spezielles Vaadin-Servlet konfiguriert, das wir fiir unsere Deployment-Umgebung bendétigen.
Wollen wir unsere Anwendung in der Google App Engine betreiben, miissen wir eine andere
Servlet-Implementierung verwenden, als fiir ein Deployment als Portlet in einem Portal Server.

Neben der Festlegung der verwendeten Servlet-Klasse gibt es noch einige weitere Initialisierungs-
und Kontextparameter, die wir in der web.xml konfigurieren konnen. Dazu gehoéren unter
anderem die Festlegung der Hauptklasse, die das Servlet verwenden soll und die Konfiguration,
in welchem Modus die Vaadin-Anwendung betrieben werden soll.

Es gibt zwei Modi, unter denen eine Vaadin-Anwendung laufen kann: der Produktionsmodus
und ein Debug-Modus. Gesteuert wird dieser Modus tiber den Kontextparameter production-
Mode.

<context-param>
<description>Vaadin production mode</description>
<param-name>productionMode</param-name>
<param-value>false</param-value>

</context-param>

Belegt man diesen Wert wie im Beispiel mit false, so wird die Anwendung im Debug-
Modus betrieben. Wir haben dann Zugriff auf einige zusatzliche Features, die uns das Leben
als Entwickler etwas erleichtern. Dazu gehdrt unter anderem ein spezielles Debug-Fenster, das
wir zur Laufzeit auf unserer Anwendung anzeigen konnen. Uber dieses Fenster konnen wir
detaillierte Informationen iiber den clientseitigen Zustand der Applikation erhalten. Wir werden
uns diesen Debug-Modus spéter an anderer Stelle noch etwas genauer anschauen.

Wichtig ist, dass wir in der Produktionsumgebung diesen Modus deaktivieren. Dazu belegen
wir den Wert des Kontextparameters productionMode mit true. Es sind dann samtliche Debug-
Funktionalitaten des Vaadin-Servlets deaktiviert. Das schiitzt die Interna unserer Anwendung
vor allzu neugierigen Blicken und kommt zudem der Anwendungs-Performance zugute.

Hello Vaadin! 13

Der zweite wichtige Wert, den wir in der web.xml konfigurieren miissen, ist die UI-Klasse,
die vom Vaadin-Servlet verwendet werden soll. Dazu definieren wir den Wert des Servlet Init-
Parameters UI. Mit diesem Parameter geben wir dem Vaadin-Servlet unsere eigene Subklasse
von com.vaadin.ui.UI bekannt, welche ja die Haupteinstiegsklasse unserer Vaadin-Anwendung
darstellt.

<init-param>
<description>Vaadin UI class to use</description>
<param-name>UI</param-name>
<param-value>org.vaadin.hellovaadin.HelloVaadinUI</param-value>
</init-param>

Das Vaadin-Servlet muss, sobald eine Anwenderin oder ein Anwender die Vaadin-Applikation
mit dem Browser besucht, eine neue Instanz unserer UI-Klasse erzeugen und diese Instanz in die
HTTP Session stellen. Dieses UI-Objekt enthalt unter anderem alle UI-Komponenten, die aktuell
im Browser des Benutzers dargestellt werden, und deren jeweiligen Zustand. Damit das Vaadin-
Servlet neue Instanzen unserer UI-Klasse erstellen kann, muss man ihm den voll qualifizierten
Klassennamen dieser Klasse mitteilen. Dies geschieht mit dem UI-Parameter. Das Servlet kann
damit bei Bedarf per Reflection neue Instanzen erstellen.

Es geht los: Deployment der Anwendung

Das Vaadin Eclipse Plugin hat uns mit diesen Dateien eine voll funktionsfihige Vaadin-
Anwendung generiert. Wir konnen diese jetzt so wie sie ist in einem Servlet Container deployen
und starten. Lassen Sie uns das an dieser Stelle einfach einmal tun.

Wir miissen dazu vorher eine Server-Laufzeitumgebung in Eclipse eingerichtet haben. Dies
lasst sich in den Einstellungen unter Window — Preferences — Server — Runtime Environments
bewerkstelligen.

Ist das erledigt, kann unser Projekt auf zweierlei Arten auf dem Server installiert werden.
Wir kénnen einfach per Drag & Drop das Projektverzeichnis aus dem Package Explorer oder
dem Project Explorer auf den Server-Eintrag in der Servers View ziehen. Alternativ konnen wir
mit der rechten Maustaste auf dem Projekt das Kontextmeni aufrufen und dort unter der Option
Run As — Run on Server den Zielserver auswahlen.

Bei beiden Varianten wird anschlielend der Server gestartet und die Anwendung darauf
installiert. Wenn der Server hochgefahren ist, kann die Hello Vaadin Anwendung unter der
folgenden URL besucht werden (Eclipse wird dann automatisch ein internes Browserfenster
offnen):

http://localhost:8080/HelloVaadin/

Sie miissen gegebenenfalls nur den Port 8080 an den von Threm Servlet Container verwen-
deten Port angleichen.

Schreiben unseres Anwendungscodes

Lassen Sie uns jetzt den vom Vaadin Eclipse Plugin generierten Beispielcode mit unserem eigenen
Code ersetzen. Wir wollen das folgende Beispielprogramm als unsere erste Vaadin-Anwendung
schreiben.

W N O Ol & W N =

[OGN
O O b WON O O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Hello Vaadin!

Die Hello Vaadin Beispielanwendung

package org.vaadin.hellovaadin;

import
import
import
import
import
import
import
import
import

import

com

com.

com

com.
com.
com.

com

com.
com.
com.

.vaadin.annotations.Theme;
vaadin.server.VaadinRequest;
.vaadin.ui.Button;
vaadin.ui.Button.ClickEvent;
vaadin.ui.ComponentContainer;
vaadin.ui.Label;
.vaadin.ui.Notification;
vaadin.ui.TextField;
vaadin.ui.UI;
vaadin.ui.VerticallLayout;

@Theme("hellovaadin")
public class HelloVaadinUI extends UI {

@Override

protected void init(VaadinRequest request) {
/A1)
final Verticallayout layout = new Verticallayout();

layout.setMargin(true);

layout.setSpacing(true);

buildHomeScreen(layout); // {2} //
setContent(layout); /7 A3} //

private void buildHomeScreen(final ComponentContainer layout) {
/7 {4} /7
final TextField nameTextField = new TextField("Wie lautet Ihr Name?");

nameTextField.setRequired(true);

final Button sayHelloButton = new Button("Sag mal Hallo...");

// {5} //

sayHelloButton.addClicklListener(new Button.ClicklListener() {
@0verride
public void buttonClick(ClickEvent event) {

});

if

}

(nameTextField.isValid()) { // {6} //
layout . removeAl lComponents(); /ATy /7
buildHelloScreen(layout, nameTextField.getValue()); // {8} //
else {

Notification.show("Geben Sie bitte Ihren Namen ein."); // {9} //

46
47
48
49
50
o1
52
53
o4
55
56
S7
58
99
60
61
62
63
64
65
66
67
68
69
70

Hello Vaadin! 15

/7 {1e} s/
layout .addComponent (nameTextField);
layout .addComponent (sayHelloButton);

private void buildHelloScreen(final ComponentContainer layout, String name)\
{
/7 {11} 7/
final Label hellolLabel = new Label(String.format("Hallo %s!", name));
final Button backButton = new Button("<< Zurick");

backButton.addClicklListener(new Button.ClicklListener() {
@0verride
public void buttonClick(ClickEvent event) {
layout.removeAllComponents(); // {12} //
buildHomeScreen(layout); // {13} //
}
1),

// {14} //
layout.addComponent(hellolLabel);
layout .addComponent (backButton);

Zugegeben, dieser Code geht iiber ein simples Hello World-Programm doch ein wenig hinaus.
Aber wenn wir ehrlich sind, wiirde es uns, nachdem wir den vom Vaadin Eclipse Plugin
generierten Code gesehen haben, nicht mehr sonderlich aus den Socken hauen, wenn wir uns
anschauen wiirden, wie man ein simples Label auf die Benutzeroberflache legt.

Stattdessen sehen wir an diesem einfachen Beispiel die wichtigsten Grundbestandteile, aus
der jede nicht-triviale Vaadin-Anwendung besteht, komprimiert an einer Stelle: Ereignisbehand-
lung, Navigation und Eingabevalidierung.

Schauen wir uns das Beispiel einmal Schritt fiir Schritt an. Die init()-Methode {1} iiber-
nimmt typische Konstruktoraufgaben — mit dem Unterschied, dass sie keine Klasse initialisiert,
sondern unsere Vaadin-Anwendung. Hier wird das Hauptlayout eingerichtet {2} und als Inhalt
(Content) der UI-Klasse gesetzt {3}. Mit der Methode UI#setContent(com.vaadin.ui.Component)
wird der Inhalt des Browserfensters festgelegt. Das ist typischerweise eine Layout-Komponente,
die selbst wiederum rekursiv samtliche geschachtelten Layouts und UI-Komponenten der
Benutzeroberfldche enthalt.

Das Zusammenstellen der UI-Komponenten, die auf dem Hauptlayout zu sehen sein sollen,
wurde in eine eigene Methode buildHomeScreen() ausgelagert. Diese Methode werden wir
spater noch einmal benétigen.

Werfen wir einen Blick auf bui 1dHomeScreen(). Hier werden zwei UI-Komponenten erzeugt
{4} und auf das Layout gelegt {10}. Wir erstellen uns ein Textfeld, in das die Anwender ihren
Namen eingeben konnen, und eine Schaltflache, die uns auf eine zweite Seite leiten wird.

Hello Vaadin! 16

Auf dieser werden die Anwender mit ihrem Namen begriifit. Die Eingabe in das Textfeld ist
verbindlich. Das Textfeld wird daher mit setRequired(true) als Pflichtfeld konfiguriert.

Auf der Schaltflache sayHelloButton registrieren wir einen Event Listener fiir Button Clicks.
Den com.vaadin.ui.Button.ClickListener implementieren wir als anonyme Klasse. In dieser
Ereignisbehandlungsroutine tiberpriifen wir zuerst, ob die Eingabe in das Textfeld giiltig ist {6}.
Ist das nicht der Fall, wird ein Hinweis angezeigt {9}.

Hat man einen Namen angegeben, findet als nachstes eine Navigation auf eine zweite “Seite”
statt. Dazu entfernen wir sdmtliche vorhandenen UI-Komponenten von dem Hauptlayout {7} und
ersetzen diese mit den Komponenten, die in der Methode buildHelloScreen() erzeugt werden
{8}. Dieser Methode tibergeben wir den Inhalt des Textfeldes.

Die Methode buildHelloScreen() erzeugt die zweite Seite unserer Beispielanwendung. Hier
wird ein Label mit dem Gruf§ an die Anwenderin oder den Anwender und ein Zurtick-Knopf
{11} auf das Hauptlayout gelegt {14}. Auch hier registrieren wir wieder eine anonyme Klasse als
ClickListener fiir den Zuriick-Knopf. Der Code fiir diesen Listener ist sehr einfach: wir entfer-
nen wieder simtliche Komponenten vom Layout {12} und rufen die Methode bui 1dHomeScreen()
{13} auf, die unsere Benutzeroberflache in ihren Ursprungszustand zuriickversetzt.

2.2 Grundeigenschaften einer Vaadin-Anwendung

Wie am Anfang versprochen, konnen wir an diesem Beispiel sehr schon die Eigenschaften einer
typischen Vaadin-Anwendung in ihren Grundziigen erkennen: Ereignisbehandlung, Navigation
und Validierung.

Ereignisbehandlung

Das Verhalten einer Vaadin-Applikation ist ereignisgetrieben. Das heifSt, nachdem wir die UI-
Komponenten fiir die Benutzeroberfldche zusammengestellt und im Browser dargestellt haben
(mit com.vaadin.ui.UI*setContent()), besteht der gesamte Rest der Anwendung nur noch aus
der Reaktion auf Benutzeraktionen. Aktionen, die der Benutzer oder die Benutzerin im Browser
durchfihrt, werden als Event zum Server gesendet und dort von Event Listenern > verarbeitet.
Aus diesen Ereignisbehandlungsroutinen heraus wird dann unsere Business-Logik aufgerufen.
Vaadin unterscheidet sich also in dieser Hinsicht nicht von anderen Ul-Frameworks, wie Swing,
JavaFX oder dem SWT (das Standard Widget Toolkit von Eclipse).

Validierung

Die Uberpriifung von Benutzereingaben ist ein wichtiger Bestandteil jeder Software. Auch das
Vaadin-Framework bringt einige Schnittstellen und Funktionen mit, mit denen uns die Eingabe-
validierung wesentlich erleichtert wird und die uns einen Grof3teil von immer wiederkehrenden
Aufgaben abnimmt.

Im Beispiel haben wir die Eingabe in das Textfeld fiir den Benutzernamen erforderlich
(required) gemacht. Mit der Methode isvalid(), die wir auf der Eingabekomponente, dem
Textfeld, aufgerufen haben, konnten wir das Framework die Giiltigkeit der Benutzereingabe

*Ein anderer géngiger Begriff fiir diese Ereignisbehandlungsroutinen ist Event Handler. Wihrend die entsprechenden Interfaces beim GWT
das Suffix Handler tragen, heiflen diese Routinen bei Vaadin bis auf wenige Ausnahmen Listener. Bspw. werden beim GWT Mausklicks tiber
die Schnittstelle ClickHandler verarbeitet und bei Vaadin tiber einen ClickListener.

Hello Vaadin! 17

tiberpriifen lassen und entsprechend darauf reagieren. In diesem einfachen Fall priifen wir, ob
iiberhaupt eine Eingabe gemacht wurde.

Mit der Validierung und den dazugehorigen Validatoren werden wir uns an spéaterer Stelle
noch intensiv auseinandersetzen.

Single-Page Web Applications

Im Beispielprogramm haben wir gesehen, wie wir die Benutzer von einer Seite der Anwendung
auf eine andere Seite weiterleiten konnen. Nachdem die Anwender ihren Namen eingegeben
haben, werden sie auf eine zweite Seite geleitet, auf der sie mit Namen begriifit werden.

Obwohl das Beispiel extrem simpel ist, demonstriert es doch das Kernprinzip der Seitenna-
vigation mit Vaadin: Anstatt wie es in anderen Web-Frameworks iiblich ist, eine komplett neue
HTML-Seite zu rendern, haben wir einfach samtliche Ul-Komponenten von der Benutzerober-
flache entfernt (removeAllComponents()) und das Basislayout mit den Komponenten gefiillt, die
die néchsten Seite darstellen. Technisch befindet sich der Anwender oder die Anwenderin immer
auf der gleichen HTML-Seite. Das ist diejenige, die beim ersten Annavigieren der Anwendung
geladen wurde. Es werden anschlieBend nur Teile der Seite oder der gesamte Seiteninhalt
nach Bedarf mit Hilfe von JavaScript-Code ausgetauscht. Es wird somit den Benutzern ein
vollstandiger Seitenwechsel nur vorgegaukelt.

Dieses Prinzip, bei dem eine Anwendung nur auf einer einzigen HTML-Seite betrieben wird,
deren Inhalt iiber JavaScript-Code dynamisch manipuliert wird, ist das definierende Element fiir
so genannte Single-Page Web Applications.

Single-Page Web Applications (oder auf Deutsch Einzelseiten-Webanwendungen) zeichnen
sich dadurch aus, dass sie, wie der Name schon andeutet, auf einer einzigen HTML-Seite
betrieben werden. Sie unterscheiden sich damit in dieser Hinsicht wesentlich von klassischen
Webanwendungen, bei denen jede Aktion der Benutzer zum Laden einer komplett neuen HTML-
Seite fiihrt.

Der erste HTTP GET-Request, den die Benutzerin oder der Benutzer beim Besuch einer
solchen Anwendung an den Server schickt, ladt die HTML-Seite, auf der die Single-Page Web
Application betrieben wird. Der Seiteninhalt wird anschliefend dynamisch, z. B. mit JavaScript,
aufgebaut. Alle weiteren Interaktionen mit der Anwendung finden tiber asynchrone AJAX-
Requests statt. Als Ergebnis dieser Server-Anfragen werden nur bestimmte Bereiche der HTML-
Seite ausgetauscht oder aktualisiert.

Diese Eigenschatft ist typisch fiir Rich Internet Applications, einer Klasse von Anwendungen,
die sich dadurch auszeichnen, dass sie sehr reichhaltige Interaktionsmoglichkeiten bieten und
fir den Datenaustausch iiber das Internet mit einem Server kommunizieren konnen.

Fiir die Umsetzung von Rich Internet Applications im Browser gibt es viele Ansatze. Dazu
gehoren plugin-basierte Losungen, die die Installation einer bestimmten Erweiterung im Browser
voraussetzen. Beispiele hierfiir sind Microsoft Silverlight oder Adobe Flash. Daneben gibt es
Ansatze, die rein auf HTML5 und JavaScript aufsetzen und die damit ohne die Installation von
Plugins auskommen. Zwei wichtige Vertreter hierfiir sind das Google Web Toolkit und natiirlich
das darauf aufsetzende Vaadin Framework.

3. Ressourcen

In einer typischen Webanwendung werden wir neben rein textuellen Informationen auch
bestimmte Ressourcenarten, wie zum Beispiel Grafiken, Icons oder Datei-Downloads, einbinden
wollen. Diese Daten konnen entweder aus unserer Anwendung selbst oder aus einer externen
Quelle stammen. Vaadin unterstiitzt die Verwendung solcher Ressourcen iiber eine eigene APL

Ressourcen werden ganz allgemein iiber das Interface com.vaadin.server.Resource ab-
gebildet. Dieses Interface steht an der Spitze der Vererbungshierarchie der verfiigbaren Res-
sourcenarten von Vaadin. Eine Resource-Instanz reprasentiert ein Ressourcenobjekt, das auf
verschiedene Weise in einer Vaadin-Anwendung eingebunden werden kann: als Link, als Bild,
als Icon, als Download oder als eingebettetes Medienobjekt. Damit wird uns zum Beispiel die
Darstellung eines Icons auf einer Ul-Komponente, die Anzeige einer Bilddatei, das Einbetten
eines YouTube-Videos oder einer Webseite in einem iFrame oder der Download einer dynamisch
erzeugten Datei ermdglicht.

Vaadin bietet uns eine Reihe von Implementierungsklassen fiir das Resource-Interface. Diese
erlauben es uns, Datenobjekte aus verschiedenen Quellen in unserer Anwendung einzubinden.
Wir werden in diesem Kapitel die folgenden Ressourcenarten kennenlernen:

« URLs: Mit einer com.vaadin.server.ExternalResource legen wir das Ziel eines Links
oder die Adresse eines eingebundenen Medienobjekts fest.

« Dateien innerhalb eines Vaadin Themes: Dateien, die innerhalb eines Themes abgelegt
sind, konnen mithilfe einer com.vaadin.server.ThemeResource angesprochen werden.
Themes werden wir in einem spateren Kapitel kennenlernen.

+ Dateien aus dem Dateisystem oder dem Klassenpfad werden mit den beiden Klassen
com.vaadin.server.FileResource und com.vaadin.server.ClassResource eingebun-
den.

« Dynamisch generierte Daten: Ressourcen koénnen auch on-the-fly durch die Vaadin-
Anwendung oder von einem beliebigen externen Prozess erzeugt werden. Dies geschieht
iiber die Klasse com.vaadin.server.StreamResource.

« Font Icons: Dies sind spezielle Schriftarten, deren Zeichen keine Buchstaben, sondern ein-
zelne Piktogramme darstellen. Damit bieten Font Icons eine Alternative zur Verwendung
von Bilddateien. Das Interface com.vaadin.server.FontIcon bildet die Grundlage fiir
diese Art von Grafiken.

In diesem Kapitel wollen wir uns mit dem Einsatz solcher Ressourcen in einer Vaadin-
Anwendung beschéftigen. Wir werden dazu die verschiedenen Ressourcenarten und die zu ihnen
gehorenden Implementierungsklassen kennenlernen. Auflerdem werden wir natiirlich auch die
Szenarien ansprechen, fiir die die einzelnen Ressourcenklassen eingesetzt werden kénnen, und
wir werden herausfinden, in welcher Situation eine bestimmte Ressourcenart am besten geeignet
ist.

Ressourcen 19

3.1 Verwendung von Ressourcen

Ressourcenobjekte konnen in einer Vaadin-Anwendung an verschiedenen Stellen eingesetzt
werden. Sie werden dabei immer ganz allgemein iiber das Resource-Interface referenziert. So
gibt man mit einer Resource das Ziel einer Link-Komponente an, oder man definiert mit ihr die
Quelle eines com.vaadin.ui.Image-Objekts, oder man setzt die Adresse fiir ein BrowserFrame,
einer Komponente, mit der sich ein iFrame in eine Anwendung einbetten lasst.

Einige Methodensignaturen, die das Resource-Interface als Parameter verwenden

com.vaadin.ui.Link#setResource(Resource resource)
com.vaadin.ui.AbstractEmbedded*#setSource(Resource source)
com.vaadin.ui.AbstractComponent#*setIcon(Resource icon)
com.vaadin.ui.Notification#setIcon(Resource icon)
com.vaadin.ui.Video#Video(String caption, Resource source)
com.vaadin.ui.Video*setPoster (Resource poster)
com.vaadin.ui.BrowserFrame#BrowserFrame(String caption, Resource source)

Die Art und Weise, wie diese Ressource dann behandelt wird — das heif3t ob ihre Daten auf
der Programmoberflidche angezeigt werden oder ob sie zum Download angeboten wird — hangt
von der Komponente ab, der man das Resource-Objekt iibergibt. So stellt com.vaadin.ui.Link
eine Ressource einfach in einem <a>-Tag als Hyperlink auf die Ressource dar, wahrend die
com.vaadin.server.FileDownloader-Extension die Ressourcendaten als Download bereitstellt
1

Eine Ausnahme bei den Resource-Implementierungen bilden Font Icons. Diese konnen nur
an einer einzigen Stelle, und zwar ausschlie3lich als Komponenten-Icons verwendet werden. Das
heifit, sie diirfen lediglich als Parameter von Methoden Verwendung finden, mit denen sich ein
Icon fiir eine Oberflachenkomponente setzen lésst. Ein Font Icon darf also insbesondere nicht als
Quelle fiir ein Image-Objekt oder als Linkziel benutzt werden. Eine detailliertere Beschreibung
von Font Icons finden Sie am Ende dieses Kapitels.

Ein Beispiel: Setzen eines Links

Bevor wir uns in die Details der verschiedenen Ressourcenarten vertiefen, wollen wir zunachst
mit einem kleinen Beispiel die wohl am haufigsten verwendete Ressourcenklasse ausprobieren:
Wir setzen einen einfachen Hyperlink, der auf die Vaadin-Homepage verweist.

Listing 1: Setzen eines Hyperlinks mit Vaadin
ExternalResource address = new ExternalResource("http://www.vaadin.com");

Link vaadinHomepage = new Link("Zur Vaadin-Homepage", address);
layout . addComponent (vaadinHomepage) ;

Das war schon alles. Wir erzeugen ein Objekt vom Typ ExternalResource und initialisieren
dieses mit der Adresse http://www.vaadin.com. Dieses Ressourcenobjekt tibergeben wir als
nachstes dem Konstruktor der Link-Komponente, die wir anschlieend auf einem Layout
platzieren. Im HTML-Code der Anwendung sehen wir dann das folgende Ergebnis:

"Der Extension-Mechanismus von Vaadin erlaubt es, eine beliebige Vaadin-Komponente mit einer bestimmten Funktionalitit zu erweitern.
Dazu gibt es eigene Extension-Komponenten, die sich mit einer normalen UI-Komponente kombinieren lassen. Die Klasse FileDownloader ist
so eine Erweiterung. Wir werden uns in diesem Grundlagenbuch leider nicht ndher mit diesem Konzept befassen kénnen. Die Verwendung von
Extensions und die Entwicklung eigener Erweiterungen wird Thema in einem weiteren Buch zu fortgeschrittenen Vaadin-Themen sein.

Ressourcen 20

<div class="v-1link v-widget">

Zur Vaadin-Homepage

</div>

3.2 Das Resource-Interface

Die Hauptschnittstelle fiir Vaadin Ressourcen ist com.vaadin.server.Resource. Dieses Interface
wird von jeder Ressourcenart implementiert. Eine Variable vom Typ Resource kann damit
jede beliebige Ressourcenart reprasentieren. Durch ihren sehr allgemeinen Charakter definiert
Resource kaum eigene Funktionalitat. Es wird nur eine einzige Methode deklariert: getMIME-
Type() zum Festlegen des MIME Types einer Ressource. Die Bestimmung des konkreten MIME
Types wird von Vaadin automatisch ibernommen. Beim Zugriff auf eine Ressource wird diese
Information immer mitgeschickt und vom Browser entsprechend ausgewertet.

@ Resource

Y v\ —
- - 7 ! H‘H‘““--_.
- - £ \&H"‘Hﬁ--.

@ThemeResource @E}(ternaIResource @Connectorﬁesource

T~

@Fontrcon
L g AN N
|

- - \ ~
-

r N |
@StreamResource @CIassRescurce @FiIeResource @FontAwesome @GenericFontlcon

Vererbungshierarchie der Resource-Schnittstelle

Das Resource-Interface wird von den beiden Klassen ExternalResource und ThemeResource
direkt implementiert. Wir werden diese beiden Ressourcenarten weiter unten noch genauer
kennenlernen. Daneben gibt es noch die sogenannten Connector-Ressourcen.

3.3 Connector-Ressourcen

Direkt von Resource abgeleitet ist die Schnittstelle com.vaadin.server.ConnectorResource.
Eine Besonderheit von Connector-Ressourcen ist, dass ihre Daten iiber einen sogenannten
Connector bereitgestellt werden. Um das zu verstehen, miissen wir erst einmal wissen, was ein
Connector ist. Ein Connector ist derjenige Teil einer UI-Komponente, der fiir ihre Kommuni-
kation zwischen Client und Server zustindig ist. Jede Vaadin-Komponente hat ihren eigenen
Connector. Damit steht eine Connector-Ressource immer in einer engen Beziehung zu einer
bestimmten UI-Komponenteninstanz.

Mit Connector-Ressourcen konnen Daten bereitgestellt werden, die aus der Anwendung
selbst stammen und dabei keinen eigenen, vordefinierten URI mitbringen. Dies konnen zum
Beispiel Daten sein, die erst bei Abruf durch den Browser erzeugt werden.

Die Schnittstelle ConnectorResource deklariert daher auch zwei fiir diesen Zweck passende
Methoden: getStream() und getFilename(). Wéahrend getFilename() den Dateinamen festlegt,

Ressourcen 21

unter dem der Browser die Ressourcendaten herunterladen soll, liefert getStream() die Daten
selbst. Diese Methode gibt ein Objekt vom Typ com.vaadin.server.DownloadStream zurick.
Dieses enthélt alle zu einer Connector-Ressource gehorenden Informationen, darunter unter
anderem ein InputStream, der die Ressourcendaten selbst enthilt.

Implementiert wird das Interface ConnectorResource von den Klassen ClassResource,
FileResource und StreamResource. Wihrend bei ClassResource und FileResource die Res-
sourcendaten aus dem Klassenpfad bzw. aus dem Dateisystem stammen, haben wir mit einer
StreamResource die Moglichkeit, den InputStream, der iiber das DownloadStream-Objekt zu-
riickgegeben wird, selbst zu definieren. Damit konnen wir also dynamisch generierte Daten, wie
zum Beispiel Reports oder Datenexporte, bereitstellen.

Wie weiter oben schon erwéhnt, sind dies alles Ressourcen, deren Daten aus der Anwendung
stammen und die keinen eigenen URI besitzen. Weiter wissen wir, dass man ein beliebiges
Resource-Objekt zum Beispiel als Zielressource in eine L ink-Komponente stecken kann. Hierbei
haben wir aber scheinbar einen Konflikt, denn wie kann ich eine Ressource ohne eigenen URI
als Ziel eines Links angeben, wenn dieses Ziel doch ein URI sein muss? Wie kann aber eine
dynamisch generierte oder aus dem Klassenpfad gelesene Ressource mit einem eindeutigen URI
adressiert werden? Die Daten liegen ja nicht als durch den Webserver zugreifbare Dateien in
einem Dokumentenverzeichnis. Dieser Frage wollen wir im folgenden Abschnitt nachgehen.

Adressierung von Connector-Ressourcen

Connector-Ressourcen besitzen von Haus aus keinen eigenen URI, unter dem sie abgerufen
werden konnten. Sie liegen nicht wie normale Dateien im Document Root eines Webservers,
sondern werden vom Vaadin-Servlet direkt bereitgestellt und tibertragen. Trotzdem kann man
Connector-Ressourcen iiberall dort verwenden, wo ein URI erwartet wird. Zum Beispiel kann
man eine Connector-Ressource, die dynamisch erzeugte Inhalte bereitstellt, in ein Link-Objekt
setzen. Wie passt das zusammen?

Hier kommt der Connector ins Spiel, der namensgebend fiir diese Ressourcenart ist. Jede
UIl-Komponenteninstanz, die auf einer Benutzeroberfliache platziert ist, wird durch ein eigenes
Connector-Objekt reprasentiert. Jedes dieser Objekte hat eine eindeutige Id, die von Vaadin
intern verwaltet wird. Eine UI-Komponenteninstanz, die auf einer Benutzeroberflache liegt,
befindet sich immer im Inneren einer Komponentenhierarchie unterhalb eines UT-Objekts. Wie
wir wissen, konnen samtliche UI-Instanzen einer HTTP-Session uiber deren UI Id identifiziert
werden. Zusammen mit dieser Ul Id und einer Connector-Id kann also eine ganz bestimmte
UI-Komponenteninstanz innerhalb einer Benutzersession eindeutig adressiert werden.

Mithilfe dieser Adressierung kann Vaadin nun fiir Connector-Ressourcen einen kiinstlichen
URI erzeugen. Der generierte URI beinhaltet neben dem Dateinamen der Ressource (wird durch
getFilename() geliefert) die Connector-Id der Ul-Komponenteninstanz und die Id des UI-
Objekts, in dem sich die Instanz befindet. Diese Connector-URIs werden durch das Vaadin-
Servlet interpretiert und behandelt. Damit das Vaadin-Servlet weif3, welche Ressourcendaten
durch eine bestimmte Komponente bereitgestellt werden sollen, muss es das dazugehorige
Resource-Objekt kennen. Anhand des Connector-URIs kann sich das Vaadin-Servlet dieses
Objekt gezielt aus der HTTP-Session fischen. Dadurch wird es moglich, auch dynamisch
generierte Ressourcen eindeutig zu adressieren.

Schauen wir uns ein einfaches Beispiel dazu an. Wir wollen eine Datei Readme . txt, die im
lokalen Dateisystem liegt, mithilfe eines Links zum Download anbieten. Dazu verwenden wir

Ressourcen 22

eine FileResource und die Link-Komponente.

Verlinkung einer lokalen Dateiressource

FileResource fileResource = new FileResource(new File("C:/readme.txt"));
Link link = new Link("Download readme.txt", fileResource);
mainLayout .addComponent(link);

Wenn wir jetzt den HTML-Code betrachten, der durch dieses Beispiel erzeugt wird, sehen
wir folgendes Ergebnis:

Von Vaadin erzeugter Connector-URI fiir die Datei readme.txt

<div class="v-link v-widget">

Download readme.txt

</div>

Hier bekommen wir den kiunstlichen URI
http://localhost:8080/APP/connector/1/19/href/readme.txt

Dieser enthalt die Id 1 des aktuellen UT-Objekts und die Id 19 des Connectors fiir das Link-
Objekt. Anhand dieser Information kann das Vaadin-Servlet das Link-Objekt aus der HTTP-
Session ermitteln und dessen FileResource-Objekt auslesen. Mit der Information aus dieser
Dateiressource kann Vaadin nun den Inhalt von readme. txt als Download ausliefern.

A Auch wenn der Connector fiir uns eindeutige URIs generiert, so muss man hierbei
beachten, dass diese temporar und damit nicht stabil sind. Sie haben auflerhalb des
aktuellen Session-Kontextes keinerlei Bedeutung. Man darf diese URIs also nicht
auslesen und an anderer Stelle als Referenz auf die Ressource verwenden. Genauso
wenig eignen sich diese kiinstlichen URIs fiir die Weitergabe an andere Nutzer, zum
Beispiel tiber einen per Email geschickten Link. Das liegt darin begriindet, dass in den
generierten URIs die Ids von Connector und UI-Objekt einkodiert sind, und die sind
vom Zustand einer ganz bestimmten HTTP-Session abhangig. Jeder Anwender sieht

also in seinem Browser einen anderen URI fiir das gleiche Link-Objekt!

Sie konnen das einmal nachvollziehen, indem Sie eine Anwendung, in der ein Link-
Objekt mit einer Connector-Ressource verwendet wird, in zwei Browser-Tabs 6ffnen.
Wenn Sie sich dann das Linkziel des Link-Objekts im HTML-Quelltext anschauen,
sehen Sie, dass Sie hier zwei unterschiedliche Zieladressen bekommen.

3.4 Implementierungsklassen von Resource

Es ist nun an der Zeit, sich die verschiedenen Ressourcenimplementierungen ein wenig genauer
anzuschauen.

Ressourcen 23

ExternalResource

Die einfachste Ressourcenart haben wir am Anfang schon in einem Beispiel gesehen. Wir
verwenden ExternalResource, um eine externe Ressource iiber deren URI zu definieren. Die
Klasse erwartet eine giiltige URL als Konstruktorargument. Diese kann entweder als String oder
als Objekt vom Typ java.net.URL iibergeben werden.

Neben der Definition der Zieladresse fiir einen Link ist ein weiterer typischer Verwendungs-
zweck von ExternalResource die Angabe der Quelle eines com.vaadin.ui . Image-Objekts. Mit
der Image-Komponente lasst sich ein Bild auf einer Seite anzeigen.

ThemeResource

Die Ressourcenart ThemeResource ermdglicht das Einbinden von Dateien, die unterhalb eines
Vaadin Themes abgelegt sind. Als Theme wird die Anpassung der optischen Gestaltung einer
Vaadin-Anwendung mithilfe von Cascading Style Sheets und Bilddateien bezeichnet. Wie wir
in dem Kapitel iiber Themes noch sehen werden, besteht ein Theme aus einem speziellen
Wurzelverzeichnis, dem weitere Dateien und Verzeichnisse untergeordnet sind. Unter anderem
befinden sich darin CSS-Dateien, die das Erscheinungsbild einer Vaadin-Anwendung anpassen.
Man kann daneben aber auch weitere Ressourcen ablegen, wie zum Beispiel Bilder, Icons oder
andere Mediendateien. Mithilfe einer ThemeResource kann eine solche Datei immer in Bezug auf
das aktuell verwendete Theme referenziert werden.

Das Besondere an Theme-Ressourcen ist, dass erst zur Laufzeit abhéngig vom aktuell verwen-
deten Theme bestimmt wird, welche konkrete Datei von der Ressource tatsachlich referenziert
wird. Wechselt man das Theme, werden dadurch von den Theme-Ressourcen auch andere
Dateien referenziert. Theme-Ressourcen werden immer tiber relative Pfadangaben definiert, die
sich auf das aktive Theme beziehen.

Theme-Ressourcen werden in erster Linie fur Bilddateien verwendet, die vom aktiven
Theme abhangig sein sollen, also zum Beispiel Icons, Logos oder grafische Gestaltungselemente.
Beispielsweise kann man damit theme-abhéngige Icon-Sets definieren. Wenn das aktuelle Theme
gewechselt wird, sollen dadurch natiirlich auch die von der Anwendung dargestellten Icons
ausgetauscht werden, so dass ein zur Optik des Themes passendes Icon-Set verwendet wird.

Mit dieser Fahigkeit lassen sich sehr leicht mandantenfihige Anwendungen erstellen, die sich
in ihrem Erscheinungsbild an die jeweiligen Mandanten anpassen kdnnen, ohne dass fiir neue
Mandanten der Quelltext der Anwendung angefasst werden miisste. Eine solche Anwendung
kann dann fiir verschiedene Kunden oder Anwenderkreise unterschiedlich aussehen.

Stellen Sie sich vor, Sie hatten zwei fiir Thre Kunden zugeschnittene Themes AcmeCorpTheme
und InitechTheme. Beide Themes enthalten in einem Unterverzeichnis img jeweils eine Grafik
companyLogo . png, welche das Firmenlogo des jeweiligen Kunden darstellt. Das folgende Schau-
bild zeigt die Verzeichnisstruktur, die sich fiir die beiden Themes in Ihrem Projekt ergibt.

Ressourcen 24

VAADIN/themes

/AcmeCorpTheme

4 2 8 2 4 8 22 2 2 9 @ "8 8 gOeE e e
- s am s 0
-
L]
L]

;....E

companylogo.png
Verzeichnisstruktur fiir zwei Themes innerhalb des VAADIN/themes-Verzeichnisses

Sie konnen dieses Logo wie folgt auf Threr Programmoberflache einbinden:

ThemeResource logoResource = new ThemeResource("img/companylLogo.png");

nn

Image image = new Image("", logoResource);

layout . addComponent (image);

Wie Sie sehen, miissen wir hier keine explizite Referenz auf ein bestimmtes Theme angeben.
Wir spezifizieren lediglich einen relativen Pfad, dessen Wurzel sich immer auf das Basisverzeich-
nis des aktiven Themes bezieht. Ist z. B. das Theme fiir den Kunden Initech aktiv, wird auch das
Firmenlogo aus diesem Theme angezeigt. Damit stellen wir sicher, dass fiir jeden Kunden immer
das passende Logo angezeigt wird.

- Der Pfad zu einer Theme-Ressource darf nicht mit einem / beginnen, das heifit die
’[‘ Pfadangabe fiir eine Theme-Ressource muss immer relativ sein. Sie werden sonst eine
I1legalArgumentException erhalten.

FileResource

Mit einer FileResource lésst sich eine beliebige Datei aus dem lokalen Dateisystem als Ressource
einbinden. Dabei spielt es keine Rolle, ob die Datei im Kontext (im Document Root) der
Webanwendung liegt. Die einzige Voraussetzung ist, dass die Datei durch den System-User lesbar
ist, mit dem der Web Server betrieben wird, und dass der Java Security Manager den Zugrift auf
das lokale Dateisystem zulasst.

Initialisiert wird eine FileResource mit einem java.io.File-Objekt. Das folgende Beispiel
fiigt ein PDF-Dokument aus einem lokalen Verzeichnis in eine Anwendung ein.

B W N -

Ressourcen

Verwendung einer FileResource als Linkziel

25

File file = new File("/home/rkrueger/documents/agb.pdf");

FileResource resource = new FileResource(file);

Link link = new Link("AGB herunterladen", resource);

layout .addComponent(link);

A

Vorsicht ist hier bei der Angabe von relativen Pfaden fiir ein File-Objekt geboten!
Das Basisverzeichnis fiir ein File-Objekt, das mit einem relativen Pfad initialisiert
wurde, bezieht sich immer auf das aktuelle Arbeitsverzeichnis des Java-Prozesses, in
dem die Anwendung lauft. Im Falle einer Vaadin-Anwendung ist dies der Prozess des
Web Servers. Die Verwendung von relativen Pfaden bei Dateiressourcen sollte daher
moglichst vermieden werden, um sich nicht an die Ausfithrungsumgebung des Servlet
Containers zu binden.

Bei der Verwendung von Dateiressourcen sollte man auch besonders vorsichtig sein,
um nicht aus Versehen die Moglichkeit fiir eine Directory Traversal Attacke zu schaffen.
Bei diesem Angriffsvektor versucht ein Angreifer, durch manipulierte Pfadangaben
auf Dateien zuzugreifen, die aulerhalb eines 6ffentlich freigegebenen Verzeichnisses
liegen. Dies kann immer dann geschehen, wenn Benutzereingaben ungepriift von der
Anwendungslogik verwendet werden.

Gibt man zum Beispiel den Anwendern die Moglichkeit, eine bestimmte Datei aus
einem offentlich zuginglichen Verzeichnis durch Eingabe des Dateinamens auszu-
wibhlen, sollte man sicherstellen, dass die eingegebenen Dateinamen keine relativen
Verzeichnisangaben enthalten. Sonst ist es einem Angreifer moglich, zum Beispiel die
folgende Datei abzurufen: ../../../etc/passwd.

Directory Traversal Attacken gehoren zu den Angriffsvektoren, die durch das OWASP-
Projekt® * dokumentiert sind. Sie werden dort als Path Traversal Attacks* aufgefiihrt.

Die Einsatzmoglichkeiten von Dateiressourcen sind relativ beschrankt. Aus Sicherheitsgriin-
den rate ich nach Mdglichkeit von der Verwendung dieser Ressourcenart ab. Insbesondere
sollten Dateiressourcen nicht zur Auslieferung von Standardressourcen einer Webanwendung

verwendet werden. Dazu gehoren eingebettete Bilder und Icons. Einer der Griinde hierfiir liegt

darin, dass diese Ressourcen durch die kunstlichen und verdnderlichen URIs von Connector-

®https://WWw.owasp.org

*0Open Web Application Security Project

“https://www.owasp.org/index.php/Path_Traversal

Ressourcen nur schlecht vom Browser gecacht werden konnen. Je nach Anwendung wird der
Browser dieselbe Ressource unter Umstanden mehrmals unter verschiedenen URIs cachen.
Verwenden Sie fiir solche Ressourcen moglichst einen dedizierten Web Server, der die Daten
unter festen URIs ausliefert. Die oben kennengelernte Klasse ExternalResource ist dann der
richtige Kandidat.

https://www.owasp.org/
https://www.owasp.org/
https://www.owasp.org/index.php/Path_Traversal
https://www.owasp.org/
https://www.owasp.org/index.php/Path_Traversal

Ressourcen 26

ClassResource

Ressourcen vom Typ ClassResource beziehen ihre Daten aus dem Klassenpfad der Anwendung.
Bei einer Webanwendung setzt sich der Klassenpfad aus verschiedenen Orten zusammen.
Dazu gehort das Verzeichnis WEB-INF/classes und WEB-INF/lib innerhalb des Deployment-
Verzeichnisses der Webanwendung selbst. Dateien, die an diesen Orten abliegen, kénnen mit
einer ClassResource referenziert werden.

Um die Daten einer Ressource aus dem Klassenpfad auszulesen, holen sich ClassResource-
Objekte tber die Methode java.lang.Class#*getResourceAsStream() eines bestimmten Klas-
senobjekts einen InputStream auf die referenzierte Datei. Damit wird auf die Ressource tiber
denjenigen Classloader zugegriffen, der das angegebene Klassenobjekt geladen hat. Zum Laden
einer ClassResource ist also immer die Angabe eines Klassenobjekts notwendig. Die Klasse
bietet daher die folgenden beiden Konstruktoren an:

e ClassResource(Class<?> associatedClass, String resourceName)
e ClassResource(String resourceName)

Mit dem ersten Konstruktor wird das Klassenobjekt explizit vorgegeben, iiber deren Class-
loader die Ressource geladen werden soll. Der zweite Konstruktor verwendet standardmaflig die
UI-Klasse der Anwendung als Referenzklasse.

Wurde die Referenzklasse aus einer bestimmten Jar-Datei geladen, so konnen mit einer
ClassResource Dateien eingebunden werden, die aus dieser Jar-Datei stammen.

Wenn Sie Maven als Buildtool verwenden, konnen Sie Thre Klassenpfadressourcen im
Verzeichnis src/main/resources/ ablegen. Dateien aus diesem Verzeichnis werden in den
Klassenpfad der Anwendung (nach WEB-INF/classes) kopiert. Beispielsweise konnen Sie die
Bilddatei src/main/resources/logo.gif mit der folgenden ClassResource referenzieren:

Resource logo = new ClassResource("/logo.gif");

Q Achten Sie hier auf die Angabe eines absoluten Pfades. Ein relativer Pfad bezieht
sich immer auf das Package der von der ClassResource referenzierten Klasse. Hat-
ten Sie in dem Beispiel also statt “/logo.gif” den Wert “logo.gif” verwendet, dann
wiirde diese Datei im Package Ihrer UI-Klasse gesucht werden, also z. B. unter
/com/example/myapp/logo.gif, wenn Thre UI-Klasse im Package com.example.myapp

liegt.

Wenn Sie also einmal eine ClassResource in lhrer Anwendung einbinden, und die
Daten werden scheinbar nicht geladen, dann tiberpriifen Sie zuerst, ob der angegebenen
Pfad der Ressource korrekt ist.

Die Verwendung von Klassenpfadressourcen bietet sich vor allem dann an, wenn die anderen
Ressourcenarten nicht oder nur eingeschrankt zur Verfiigung stehen. Hat man zum Beispiel
keinen Zugriff auf das Dateisystem oder es steht kein externer Webserver zur Verfiigung, der die
statischen Ressourcen einer Anwendung ausliefern kann, bleiben einem nur noch ClassResource
oder ThemeResource zum Einbinden von Ressourcen.

Das kann beispielsweise dann der Fall sein, wenn man seine Anwendung in der Google App
Engine’® betreibt. Dort hat eine Anwendung nur eingeschrankten Zugriff auf ihre Umgebung. So

*https://cloud.google.com

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/

Ressourcen 27

ist zum Beispiel der Zugriff auf ein lokales Dateisystem nicht moglich. Alle Ressourcen, auf die
eine Anwendung zugreifen mochte, miissen deshalb innerhalb der Anwendung selbst liegen und
mit ihr ausgeliefert werden. Hier bietet es sich besonders an, die Ressourcen in den Klassenpfad
der Anwendung zu legen und mit ClassResource-Objekten auf diese zuzugreifen.

StreamResource

Mit Ressourcen vom Typ StreamResource konnen wir dynamisch generierte Daten bereitstellen.
Mit ihnen haben wir die Moglichkeit, die Ressourcendaten selbst und bei Bedarf zu erzeugen. Um
dies zu erreichen, miissen wir uns selbst um die Erzeugung der Daten kiimmern, die von dem
InputStream des Ressourcenobjekts geliefert werden.

Die Klasse StreamResource erlaubt uns damit, dynamisch generierte Ressourcen, wie zum
Beispiel Datenexporte oder ad-hoc erzeugte Grafiken, zu verwenden.

Um eine StreamResource zu erstellen, miissen wir uns um zwei Dinge kiimmern. Zum einen
miissen wir den Dateinamen angeben, unter dem die generierte Ressource angesprochen werden
soll. Zum anderen missen wir die Daten der Ressource selbst erzeugen. Die Daten werden von
einer Klasse geliefert, die das Interface StreamResource. StreamSource implementiert.

Dieses Interface ist wie folgt definiert:

Die StreamSource-Schnittstelle

public interface StreamSource extends Serializable {
public InputStream getStream();

StreamSource ist also eine Fabrikschnittstelle zur Erzeugung von InputStreams, die iiber
getStream() die Daten der dynamisch erzeugten Ressource liefert.

&f/””— e IO e | i T Y

Eﬂ'i StreamSource
/ \

StreamSource als Fabrikschnittstelle

K

Verwendet wird eine Instanz von StreamSource dann als Konstruktorargument fiir Stream-
Resource:

O = W N =

Ressourcen 28

com.vaadin.server.StreamResource#StreamResource(StreamSource streamSource,
String filename)

0 Man mag sich an dieser Stelle vielleicht fragen, warum hier der Zwischenschritt tiber
ein spezielles Interface gegangen wird. Kann man die StreamResource nicht gleich mit
dem InputStream initialisieren? Zur Beantwortung dieser Fragen muss man sich in
Erinnerung rufen, dass ein InputStream nur genau einmal ausgelesen werden kann.
Er kann nicht wieder zuriickgesetzt werden. Wiirde man StreamResource direkt mit
dem InputStream initialisieren, kénnte die Ressource auch nur genau ein einziges
Mal gelesen werden. Das wire natiirlich bei der Verwendung einer solchen Ressource
als Linkziel fiir den Download einer Datei fatal. Der Link wiirde genau einmal
funktionieren und dann beim zweiten Klick einen Fehler werfen. Aus diesem Grund
definieren wir mit StreamResource.StreamSource ein Fabrikobjekt fiir InputStreams.
Diese Fabrik kann beliebig viele Stream-Instanzen erzeugen — eben fiir jeden Klick auf

den Link eine neue.

Wollen wir mit StreamResource bei jeder Anforderung durch den Browser die Ressour-
cendaten neu generieren lassen, miissen wir beachten, dass der Browser eine einmal erzeugte
StreamResource im Cache behélt und weitere Anforderungen der Ressource daraus bedient
werden. Soll eine StreamResource wirklich jedes Mal neu erzeugt werden, konnen wir mit
StreamResource*setCacheTime(0) die Zeitdauer, die die Ressource im Browser-Cache liegen
darf, auf 0 Millisekunden festlegen.

Schauen wir uns ein Beispiel fiir eine StreamResource an. Um unsere Anwender vor
Spammern zu schiitzen, die automatisiert Email-Adressen von Webseiten fischen, wollen wir
alle Email-Adressen, die irgendwo angezeigt werden, generell als Grafik darstellen. Die Adressen
erscheinen dann nicht im HTML-Quelltext, und wir zwingen unsere Anwender damit, bei Bedarf
die Email-Adressen abzutippen. Wir miissen dazu Strings in Bilder umwandeln konnen. Dies
erreichen wir mit der Klasse EmailImageResource, die von StreamResource abgeleitet ist.

Die Klasse EmaillmageResource, die eine gegebene Email-Adresse in ein Bild umwandelt

public class EmaillmageResource extends StreamResource {
public EmaillImageResource(String emailAddress, String filename) {
super (new EmaillImageSource(emailAddress), filename);

Wie Sie sehen, ist diese Klasse relativ unspektakuldar. Wir rufen einfach nur den Super-
Konstruktor auf und iibergeben eine Instanz unserer eigenen Implementierung der StreamSour -
ce-Schnittstelle. Diese sieht wie folgt aus:

Ressourcen 29

Implementierung von StreamSource, die den iibergebenen String in einem Bild ausgibt

public class EmaillmageSource implements StreamResource.StreamSource {
private String emailAddress;

public EmaillmageSource(String emailAddress) {
this.emailAddress = emailAddress; /7 {1} /7

@0Override
public InputStream getStream() {
BufferedImage image = new BufferedImage(

125, 30, BufferedImage.TYPE 3BYTE_BGR); /7 {2} //
Graphics graphics = image.getGraphics();
graphics.setColor(Color.white);
graphics. fillRect(0, 0, 125, 30);
graphics.setColor(Color.black);
graphics.drawString(emailAddress, 10, 20); // {3} //
try {

ByteArrayOutputStream buffer = new ByteArrayOutputStream();
ImagelO.write(image, "png", buffer);
return new ByteArraylInputStream(

buffer.toByteArray()); /7 {4} //
} catch (IOException e) {
e.printStackTrace(); // {5} //
return null;

Hier merken wir uns die tiber den Konstruktor mitgegebene Email-Adresse, damit wir diesen
Text spater bei Bedarf in ein Bild einfiigen konnen {1}. Interessant ist hier die Implementierung
von getStream(). Diese Methode soll ja den InputStream liefern, der die Daten unserer
Ressource enthilt. Wir erzeugen uns daher mit den Klassen aus dem java.awt-Package ein
BufferedImage-Objekt, mit dem wir programmatisch ein Bild erzeugen konnen {2}. Auf dieses
Bild zeichnen wir die als Konstruktorargument iibergebene Email-Adresse {3}. Wenn das Bild
fertig konfiguriert ist, konnen wir es in einen ByteArrayInputStream umwandeln und diesen als
Riickgabewert von getStream() zuriickliefern {4}. Der Umgang mit Exceptions sollte natiirlich
in einer echten Anwendung etwas eleganter gelost werden, als in diesem Beispiel {5}.

Unsere eigene Ressourcenimplementierung Email ImageResource kann nun als Datenquelle
fiir ein Image-Objekt verwendet werden:

B W N -

Ressourcen 30

Verwendung der EmaillmageResource als Datenquelle fiir ein Image-Objekt

Image emaillmage = new Image(

"Erreichen Sie uns unter folgender Email-Adresse:",

new EmaillmageResource("info@example.com", "email.png"));
mainLayout.addComponent(emaillmage);

Das Ergebnis sieht auf der Programmoberflache dann wie folgt aus:

Erreichen Sie uns unter folgender Email-Adresse:

info@example.cam

Eine Email-Adresse dargestellt in einem Grafikobjekt

Sie finden den vollstandigen Code von diesem Beispiel im Modul Kap10.4 StreamResource
in den Maven-Beispielprojekten zu diesem Buch.

FontIcon und FontAwesome

Uber das Interface FontIcon haben wir in unserer Anwendung die Moglichkeit, Font Icons
fiir Icon-Ressourcen zu verwenden. Font Icons sind eine ressourcenschonende Alternative zu
Grafikdateien.

Herkémmliche Icons, die Giber Bilddateien eingebunden werden, haben zwei wesentliche
Nachteile: Icons bestehen iiblicherweise aus kleinen Dateien, die einzeln vom Server geladen
werden miissen. Dieser Ladevorgang kann bei einer groflen Anzahl von Icons den Seitenaufbau
splrbar verlangsamen. Dies ist unter anderem der Tatsache geschuldet, dass ein Browser immer
nur eine bestimmte, fest vorgegebene Anzahl von Ressourcen gleichzeitig vom Webserver
nachladen kann. Die maximal erlaubte Anzahl gleichzeitig gedffneter Server-Verbindungen ist
von Browser zu Browser unterschiedlich, bewegt sich aber bei jedem Browser-Typ im niedrigen
zweistelligen Bereich.

Ein weiterer Nachteil von Bilddateien ist, dass diese nicht skalierbar sind. Es handelt sich
hierbei eben um Rastergrafiken, die man ohne Qualitatsverlust nicht beliebig vergroflern kann.
Auch ist ihre Farbgebung fest vorgegeben.

Font Icons verfolgen einen anderen Ansatz. Ein Satz von Font Icons wird durch eine spezielle
Schriftart definiert. Eine solche Schriftart setzt sich nicht aus Buchstaben zusammen, sondern aus
Piktogrammen — dies ist vergleichbar mit der Windows-Schriftart Webdings. Jeder Buchstabe
dieser Schriftart stellt damit ein bestimmtes Symbol dar.

Dieser Ansatz hat den Vorteil, dass zum einen der gesamte Satz aller verfiigbaren Icons
einer Anwendung mit einem Mal (ndmlich beim Laden der Schriftart) vom Server geholt wird.
Zum anderen sind Font Icons beliebig und ohne Qualitatsverlust skalierbar — Schriftarten
bestehen eben aus Vektorgrafiken. Der einzige Nachteil von Font Icons: man kann sie immer nur
einfarbig darstellen. Dafiir konnen Font Icons aber mit allen Mitteln, die einem Cascading Style
Sheets bieten, beliebig gestaltet werden. Somit kann man die gleichen Icons in verschiedener
Darstellung verwenden: schattiert, rotiert, skaliert, durchsichtig, mit Leuchteffekt, usw. — nur
eben einfarbig.

FontIcon ist nur eine Schnittstelle zur Definition eigener Font Icon Sets. Wenn wir Font Icons
in unserer Anwendung verwenden wollen, miissen wir eine Implementierungsklasse von diesem

Ressourcen 31

Interface verwenden. Vaadin bringt von Hause aus die Icons des Font Awesome-Projekts® mit, die
tiber die Enum-Klasse com.vaadin.server.FontAwesome verfiigbar sind. Diese Klasse definiert
eine lange Liste von Enum-Konstanten, von denen jede ein bestimmtes Font Icon reprasentiert.

Wir konnen diese Konstanten zum Setzen von Komponenten-Icons verwenden, also immer
im Zusammenhang mit der Methode com.vaadin.ui.Component#setIcon() (neben einigen
anderen Stellen im Vaadin-Framework, wo wir ein Icon setzen konnen).

ﬂ Eine Verwendung der Font Icons als Ziel fiir Links oder Bilder ist nicht méglich. Der
Versuch, eine Font Icon-Ressource als Quelle fiir ein Image-Objekt zu verwenden wird

zwar kompilieren, ergibt dann auf der Programmoberflache aber einen Darstellungs-
fehler.

Wir konnen zum Beispiel eine Schaltflache mit einem Font Icon aufwerten:

Verwendung eines FontAwesome-Icons auf einer Schaltflache

1 Button okButton = new Button("Ok");
2 okButton.setIcon(FontAwesome.CHECK);

Im Ergebnis sieht diese Schaltfldche wie folgt aus:

v Ok

Eine Schaltfliche mit Font Icon

Der FontAwesome Icon Font ist automatisch in Vaadins Valo Theme eingebunden. Méchte
man FontAwesome (oder einen anderen Icon Font) mit einem anderen Theme verwenden, so
muss dies explizit fiir das Theme aktiviert werden. Wie das funktioniert, werden wir uns in dem
Kapitel tiber Vaadin Themes genauer anschauen.

3.5 Zusammenfassung

Dieses Kapitel hat uns mit dem Ressourcen-Mechanismus von Vaadin bekannt gemacht. Res-
sourcen sind fiir Vaadin Daten, die von einer Anwendung eingebunden und angezeigt werden
konnen. Das konnen Bilder, Icons oder beliebige andere Datei-Downloads sein. Die Daten
konnen entweder von der Anwendung selbst zur Verfiigung gestellt werden oder sie stammen
aus einer externen Quelle.

Ressourcen konnen von unterschiedlichen UI-Komponenten dargestellt werden. Der haufigs-
te Fall wird die Verwendung einer ExternalResource zusammen mit einer Link-Komponente
sein, um einen Hyperlink zu erhalten. Ressourcen konnen aber auch als Grafiken oder andere
Medienobjekte eingebunden und als Piktogramm, Bild-, Video- oder Audio-Datei verwendet
werden.

Vaadin stellt uns einige Ressourcenimplementierungen zur Verfiigung, die ihre Daten aus
unterschiedlichen Quellen beziehen. Hier haben wir ExternalResource zur Adressierung einer
Ressource iiber eine URL und ThemeResource fiir Ressourcen aus einem Vaadin Theme kennen-
gelernt.

®http://fontawesome.io

http://fontawesome.io/
http://fontawesome.io/

Ressourcen 39

Weiter haben wir Bekanntschaft mit Connector-Ressourcen gemacht, eine Klasse von Res-
sourcen, die aus der Vaadin-Anwendung selbst stammen und die keinen eigenen URI haben.
Damit diese Art von Ressourcen dennoch bspw. zusammen mit einem L ink-Objekt verwendet
werden konnen, kiimmert sich Vaadin um die Erzeugung eines kiinstlichen URIs fiir diese
Ressourcen. In diesem URI steckt die Connector-Id der Ul-Komponente und die UI Id der
aktuellen UI-Instanz.

Vaadin bietet uns drei verschiedene Connector-Ressourcenarten an. Mit FileResource
konnen wir eine beliebige Datei aus dem lokalen Dateisystem als Ressource einbinden. ClassRe-
source erlaubt uns den Zugriff auf Ressourcen, die im Klassenpfad einer Anwendung liegen. Und
StreamResource ermoglicht uns die dynamische Generierung der Ressourcendaten bei Bedarf,
indem wir selbst den InputStream der Ressource erzeugen.

Als letzte Ressourcenart haben wir die Font Icons kennengelernt. Font Icons bestehen aus
einer speziellen Schriftart, deren Buchstaben einzelne Piktogramme darstellen. Damit sind Font
Icons wesentlich besser skalierbar und performanter als einzelne Bilddateien, konnen aber immer
nur mit einer Vordergrund- und einer Hintergrundfarbe dargestellt werden. Vaadin liefert iiber
das Valo-Theme die Font Icons des Font Awesome-Projekts mit, auf die wir mit der Enum-Klasse
FontAwesome zugreifen konnen.

	Inhaltsverzeichnis
	Über den Autor
	Vorwort: Über dieses Buch
	Warum dieses Buch?
	Was will dieses Buch vermitteln?
	Was möchte dieses Buch nicht sein?
	Aufbau des Buches
	Konventionen
	Beispielcode
	Feedback
	Copyrights und Bildnachweise

	Teil 1: Einleitung und erste Schritte
	Was ist Vaadin?
	Geschichtliches
	Technologischer Hintergrund

	Hello Vaadin!
	Anlegen eines Projekts
	Grundeigenschaften einer Vaadin-Anwendung

	Ressourcen
	Verwendung von Ressourcen
	Das Resource-Interface
	Connector-Ressourcen
	Implementierungsklassen von Resource
	Zusammenfassung

