

Using fullCalendar

Edwood Ocasio

This book is for sale at http://leanpub.com/usingfullcalendar

This version was published on 2018-03-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 Edwood Ocasio

http://leanpub.com/usingfullcalendar
http://leanpub.com/
http://leanpub.com/manifesto

Also By Edwood Ocasio
Python does PDF: pyFPDF

Interviews with leaders of the scientific open source software community Vol. 1

Interviews with leaders of the scientific open source software community Vol. 2

http://leanpub.com/u/eocasio
http://leanpub.com/pythondoespdfpyfpdf
http://leanpub.com/floss-science-interviews-1
http://leanpub.com/floss-science-interviews-2

Contents

Introduction . 1

The basics of fullCalendar . 2
A plain instance of fullCalendar . 2
More navigation buttons . 4
Hiding days . 6
Changing locale . 9

Managing events . 11
Adding events . 11

We must talk about date formats . 11
Using an event array . 11

Selection of date and time slots . 17
Creating an event interactively . 20
Modifying events . 25
Removing events . 27

Introduction
I believe fullCalendar1 is the best JavaScript based calendar solution a developer could wish for.
The features are compelling and the documentation is excellent. If you are reading this I guess you
also agree. ;)

This book follows the same style as my pyFPDF book2. I share many code snippets and advice that you
may find helpful while working with fullCalendar. Although the documentation is excellent and
Google and StackOverflow are a developer’s best friends, I think that by centralizing and organizing
our knowledge in one place, a book for example, we can learn better our tools. This book will be of
help to you as it has already been for me. Trying to teach a subject is one of the best ways to master
it.

This book will be updated every time a learn something new and valuable about fullCalendar. The
updates will be available to you at no additional cost.

I hope this book makes your life easier and helps you make money faster in those client projects that
require a calendar solution.

All code samples are based on fullCalendar version 2.6.1 (2016-02-17)

When you buy the book all code samples and resources will be available in a ZIP package linked
from right here (“Introduction”).

Regards,

Edwood Ocasio
1http://fullcalendar.io/
2https://leanpub.com/pythondoespdfpyfpdf

http://fullcalendar.io/
https://leanpub.com/pythondoespdfpyfpdf
http://fullcalendar.io/
https://leanpub.com/pythondoespdfpyfpdf

The basics of fullCalendar
A plain instance of fullCalendar

This sample has just enough code to have a working fullCalendar instance.

This is the minimal required JavaScript.

Listing fcbasic.js

1 // Create calendar when document is ready

2 $(document).ready(function() {

3

4 // We will refer to $calendar in future code

5 var $calendar = $("#calendar").fullCalendar();

6 }

7);

This is the HTML page:

Listing fcbasic.html

1 <html>

2 <head>

3 <meta http-equiv="Content-Type" content="text/html;charset=utf-8">

4 <title>Using fullCalendar</title>

5

6 <!--

7 All CSS and JS files needed for fullCalendar. Change you

8 files locations accordingly.

9 -->

10

11 <link rel='stylesheet' href='fullcalendar/fullcalendar.css' />

12 <script src='fullcalendar/lib/jquery.min.js'></script>

13 <script src='fullcalendar/lib/moment.min.js'></script>

14 <script src='fullcalendar/fullcalendar.min.js'></script>

15

16 <!-- Some styles for the calendar and other elements -->

17 <style>

The basics of fullCalendar 3

18 #calendar {

19 width: 80%;

20 display: block;

21 margin-left: auto;

22 margin-right: auto;

23 }

24

25 .centered {

26 text-align: center;

27 }

28

29 </style>

30 </head>

31

32 <body>

33 <h1 class="centered">A basic instance of fullCalendar</h1>

34

35 <!-- The calendar container -->

36 <div id="calendar"></div>

37

38 <!-- Calendar creation script -->

39 <script src="fcbasic.js"></script>

40

41 </body>

42 </html>

We could have included the JavaScript code inside the HTML page but further in the book
the code will get more involved and the HTML will just get in the way.

This gives us a month view calendar with simple navigation and plain appearance:

The basics of fullCalendar 4

More navigation buttons

The following example demonstrates all the navigation buttons available in fullCalendar:

Listing fc-full-navigation.js

1 // Create calendar when document is ready

2 $(document).ready(function() {

3

4 // We will refer to $calendar in future code

5 var $calendar = $("#calendar").fullCalendar(

6

7 { // Start of options

8 header: {

9 left: 'prevYear,nextYear',

10 center: 'title',

11 right: 'today,month,agendaDay,agendaWeek prev,next'

12 },

The basics of fullCalendar 5

13 } // End of options

14

15);

16 });

This is the HTML page:

Listing fc-full-navigation.html

1 <html>

2 <head>

3 <meta http-equiv="Content-Type" content="text/html;charset=utf-8">

4 <title>Using fullCalendar</title>

5

6 <!--

7 All CSS and JS files needed for fullCalendar. Change you

8 files locations accordingly.

9 -->

10

11 <link rel='stylesheet' href='fullcalendar/fullcalendar.css' />

12 <script src='fullcalendar/lib/jquery.min.js'></script>

13 <script src='fullcalendar/lib/moment.min.js'></script>

14 <script src='fullcalendar/fullcalendar.js'></script>

15

16 <!-- Some styles for the calendar and other elements -->

17 <style>

18 #calendar {

19 width: 80%;

20 display: block;

21 margin-left: auto;

22 margin-right: auto;

23 }

24

25 .centered {

26 text-align: center;

27 }

28

29 </style>

30 </head>

31

32 <body>

33 <h1 class="centered">All navigation buttons fullCalendar</h1>

34

The basics of fullCalendar 6

35 <!-- The calendar container -->

36 <div id="calendar"></div>

37

38 <!-- Calendar creation script -->

39 <script src="fc-full-navigation.js"></script>

40

41 </body>

42 </html>

Now the calendar looks like this:

To change the position of the title and buttons just move them in the header object from or within
the left, right or center properties. Use a comma to join buttons that should be adjacent and put
spaces between those that should be separated by a gap.

Hiding days

In some applications you need to hide days because they are not needed. For example, weekends
(Saturday/Sunday) can be hidden in an appointment calendar to avoid been used or to make clear
they are not service days.

In the case of weekends fullCalendar has already a boolean property named weekends. If you set
it to false weekends will not be shown:

The basics of fullCalendar 7

Listing fc-no-weekends.js

1 // Create calendar when document is ready

2

3 $(document).ready(function() {

4 // We will refer to $calendar in future code

5 var $calendar = $("#calendar").fullCalendar(

6

7 { // Start of options

8 // Do not show Saturday/Sunday

9 weekends : false,

10

11 // Calendar header and navigation buttons

12 header: {

13 left: 'title',

14 center: '',

15 right: 'today,month,agendaDay,agendaWeek prev,next'

16 },

17

18 } // End of options

19

20);

21 }

22);

Th HTML page follows the same pattern as in the previous sections. Basically we just changed the
source of the calendar script. It is included in the resource package for the book.

Now the calendar looks like this:

Now let us hide also Wednesdays and Fridays:

The basics of fullCalendar 8

Listing fc-no-wend-friday.js

1 // Create calendar when document is ready

2 $(document).ready(function() {

3 // We will refer to $calendar in future code

4 var $calendar = $("#calendar").fullCalendar(

5

6 { // Start of options

7 // Do not show Saturday/Sunday

8 weekends: false,

9

10 // Hide Wednesday (3) and Friday (5). Week starts with

11 // Sunday (0)

12 hiddenDays: [3, 5],

13

14 // Calendar header and navigation buttons

15 header: {

16 left: 'title',

17 center: '',

18 right: 'today,month,agendaDay,agendaWeek prev,next'

19 },

20

21 } // End of options

22

23);

24 });

Now the calendar looks like this without those days:

The basics of fullCalendar 9

Changing locale

fullCalendar provides good support for internationalization. We can change the locale of our
calendars and display dates and times according to different international regions. There are 52
language files distributed with fullCalendar in the folder lang:

ar.js, ar-ma.js, ar-sa.js, ar-tn.js, bg.js, ca.js, cs.js, da.js, de-at.js, de.js, el.js, en-au.js, en-ca.js, en-
gb.js, en-ie.js, en-nz.js, es.js, fa.js, fi.js, fr-ca.js, fr-ch.js, fr.js, he.js, hi.js, hr.js, hu.js, id.js,is.js, it.js,
ja.js, ko.js, lt.js, lv.js, nb.js, nl.js, pl.js, pt-br.js, pt.js, ro.js, ru.js, sk.js, sl.js, sr-cyrl.js, sr.js, sv.js, th.js,
tr.js, uk.js, vi.js, zh-cn.js, zh-tw.js

For this example we will change the locale to Spanish (“es-ES”). The change only needs to happen
in the HTML page. What we need to do is to include the language files for fullCalendar in the
appropriate order:

1 <!-- Spanish language file loaded after fullcalendar.js -->

2 <script src='fullcalendar/lang/es.js'></script>

To display correctly all international characters when changing locales it is important that the page
charset be declared UTF-8. That is why we have this meta tag on top of every HTML page:

1 <meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The calendar looks like this in Spanish:

The basics of fullCalendar 10

The distribution package of fullCalendar includes a more interesting example in the demo
folder that allows access to all language files.

Managing events
Adding events

fullCalendar provides a fewways to add events: event arrays, an event generation function, a JSON
feed or a Google Calendar feed.

But before we start filling the calendar with events …

Wemust talk about date formats

The date format is very important. fullCalendar since version 2.0 depends on the awesome
MomentJS library. The dates a moment object understands by default are in the ISO 8601 format3. If
they are not, MomentJS falls back to a regular JavaScript Date object, but it issues a warning that
the fall back could be removed in the future.

So, it is always recommended to use the ISO 8601 format in the JSON objects we feed fullCalendar.
For dates use “YYYY-MM-DD” and for combined date and time use one of these: “YYYY-MM-DD
hh:mm:ss” or “YYYY-MM-DDThh:mm:ss”, where a space or the letter “T” separates the time from
the date. The time uses the 24-hour clock format.

One of the common errors when formatting dates for fullCalendar is forgetting to zero-
pad the numbers, in the date or time. This is a valid date: “2016-01-04 08:30:00”, but not this
one “2016-1-4 8:30:00” because some numbers are not zero-padded. Some times finding this
bug in fullCalendar is like searching for a sneaky semicolon in JavaScript code.

When the events are generated by a server side application you must take care of formatting the
start and end dates and times. For example, in Python we will always use this formatting strings:
“%Y-%m-%d” for dates and “%Y%m-%d %H:%M:%S” for date and time.

I should mention that MomentJS is very capable of parsing4 almost any reasonable date/time string,
but I think we should take responsibility for returning what it expects by default. Of course, this will
not always be possible, specially if we do not have control of the application generating the events.

Let’s continue.

Using an event array

In this code we use an event array to create events in the calendar:
3http://en.wikipedia.org/wiki/ISO_8601
4http://momentjs.com/docs/#/parsing/

http://en.wikipedia.org/wiki/ISO_8601
http://momentjs.com/docs/#/parsing/
http://en.wikipedia.org/wiki/ISO_8601
http://momentjs.com/docs/#/parsing/

Managing events 12

Listing fc-events-array.js

1 // Create calendar when document is ready

2

3 $(document).ready(function() {

4

5 // Array of events

6 var events_array = [{

7 title: "Event 1",

8 // Set to 1st of the month at 12:00 am

9 start: moment().startOf('month'),

10 // Set to en the 1st of the month at 1:30 am

11 end: moment().startOf('month').add(90, 'minutes'),

12 color: "red"

13 }, {

14 title: "Event 2",

15 // Set to 1st of the month at 12:00 am

16 start: moment().startOf('month').add(1, 'days'),

17 // Set to end the 1st of the month at 3:00 am

18 end: moment().startOf('month').add({

19 'days': 1,

20 'hours': 3

21 }),

22 color: "green"

23 }, {

24 title: "Multi-day event",

25 // Set to start the 1st of the month

26 start: moment().startOf('month'),

27 // Set to end one week after the start of the month

28 end: moment().startOf('month').add(1, 'weeks'),

29 color: "blue",

30 // This is an all-day event

31 allDay: true

32 },

33

34];

35 // We will refer to $calendar in future code

36 var $calendar = $("#calendar").fullCalendar(

37

38 { // Start of options

39 header: {

40 left: 'title',

41 center: '',

Managing events 13

42 right: 'today,month,agendaDay,agendaWeek prev,next'

43 },

44

45 events: events_array

46 } // End of options

47

48);

49 });

Notice the use of the MomentJS library to fabricate the start and end dates for each event. That is
not fullCalendar’s functionality, but since fullCalendar 2.* requires MomentJS, those utilities are
at our disposal.

Let’s delve for a “moment” in MomentJS.

Study this line:

1 moment().startOf('month').add(90,'minutes')

What do you think it does?

That line creates a date object representing the first day of the current month at 12:00 am and then
it adds 90 minutes to it. The final date should be (if we are in march 2016): “2016-03-01 01:30:00”.

This other line creates a date also at the first day of the month and then adds one day and 3 hours
to that date:

1 moment().startOf('month').add({'days':1, 'hours':3 })

The final date should be (if we are in march 2016): “2016-03-02 03:00:00”.

I used startOf() just to force the events to appear at the top of the calendar for your viewing
pleasure.

To learn more about manipulating dates and times with MomentJS check the Moment.js
Documentation5

This is the HTML page:

5http://momentjs.com/docs/#/manipulating/

http://momentjs.com/docs/#/manipulating/
http://momentjs.com/docs/#/manipulating/
http://momentjs.com/docs/#/manipulating/

Managing events 14

Listing fc-events-array.html

1 <html>

2 <head>

3 <meta http-equiv="Content-Type" content="text/html;charset=utf-8">

4 <title>Using fullCalendar</title>

5

6 <!--

7 All CSS and JS files needed for fullCalendar. Change you

8 files locations accordingly.

9 -->

10

11 <link rel='stylesheet' href='fullcalendar/fullcalendar.css' />

12 <script src='fullcalendar/lib/jquery.min.js'></script>

13 <script src='fullcalendar/lib/moment.min.js'></script>

14 <script src='fullcalendar/fullcalendar.js'></script>

15

16 <!-- Some styles for the calendar and other elements -->

17

18 <style>

19 #calendar {

20 width: 80%;

21 display: block;

22 margin-left: auto;

23 margin-right: auto;

24 }

25

26 .centered {

27 text-align: center;

28 }

29

30 </style>

31 </head>

32

33 <body>

34 <h1 class="centered">Events stored in a JavaScript array</h1></h1>

35

36 <!-- The calendar container -->

37 <div id="calendar"></div>

38

39 <!-- Calendar creation script -->

40

41 <script src="fc-events-array.js"></script>

Managing events 15

42

43 </body>

44 </html>

These are the views:

Managing events 16

Managing events 17

Selection of date and time slots

By default fullCalendar does nothing when we click on a date/time slot or try to select a range of
them. To enable selection we must set the property selectable to true.

Once that is done we can respond to user selections through the eventClick callback.

With the following code we respond with a JavaScript alert box to a click or a range selection in any
view of the calendar:

Listing fc-select.js

1 // Create calendar when document is ready

2 $(document).ready(function() {

3

4 // We will refer to $calendar in future code

5 var $calendar = $("#calendar").fullCalendar({

6 // Start of calendar options

7 header: {

8 left: 'title',

9 center: '',

10 right: 'today,month,agendaDay,agendaWeek prev,next'

11 },

12

13 // Make possible to respond to clicks and selections

14 selectable: true,

15

Managing events 18

16 // This is the callback that will be triggered when a selection is made

17 select: function(start, end, jsEvent, view) {

18 alert(start.format("MM/DD/YYYY hh:mm a") + " to " + end.format("MM/DD/YYYY h\

19 h:mm a") + " in view " + view.name);

20

21 }

22 } // End of calendar options

23);

24 });

The code also shows how to format the date and time objects associated to each calendar slot:

1 start.format("MM/DD/YYYY hh:mm a")

To learn more about date and time formatting visit the MomentJS library documentation6

Notice also that the current view name is obtained from view.name.

This is the HTML page:

Listing fc-select.html

1 <html>

2 <head>

3 <meta http-equiv="Content-Type" content="text/html;charset=utf-8">

4 <title>Using fullCalendar</title>

5

6 <!--

7 All CSS and JS files needed for fullCalendar. Change you

8 files locations accordingly.

9 -->

10

11 <link rel='stylesheet' href='fullcalendar/fullcalendar.css' />

12 <script src='fullcalendar/lib/jquery.min.js'></script>

13 <script src='fullcalendar/lib/moment.min.js'></script>

14 <script src='fullcalendar/fullcalendar.js'></script>

15

16 <!-- Some styles for the calendar and other elements -->

17

6http://momentjs.com/docs/#/displaying/

http://momentjs.com/docs/#/displaying/
http://momentjs.com/docs/#/displaying/

Managing events 19

18 <style>

19 #calendar {

20 width: 80%;

21 display: block;

22 margin-left: auto;

23 margin-right: auto;

24 }

25

26 .centered {

27 text-align: center;

28 }

29

30 </style>

31 </head>

32

33 <body>

34 <h1 class="centered">Click on any place inside the calendar or select multiple d\

35 ays or hours</h1></h1>

36

37

38 <!-- The calendar container -->

39 <div id="calendar"></div>

40

41 <!-- Calendar creation script -->

42 <script src="fc-select.js"></script>

43

44 </body>

45 </html>

This is what you should see after clicking on a calendar slot or selecting many slots by dragging the
mouse (Firefox web browser on Linux):

Managing events 20

Creating an event interactively

The following sample code will allow us to ask for a title for an event, create the event and then
store it in the fullCalendar internal array of events. You can navigate away from the day of the
event to other month, week or year and it will be kept in memory, unless you refresh the page.

Listing fc-interactive-event.js

1 // Create calendar when document is ready

2 $(document).ready(function() {

3

4 // We will refer to $calendar in future code

5 var $calendar = $("#calendar").fullCalendar({

6 // Start of calendar options

7 header: {

8 left: 'title',

Managing events 21

9 center: '',

10 right: 'today,month,agendaDay,agendaWeek prev,next'

11 },

12

13 // Make possible to respond to clicks and selections

14 selectable: true,

15

16 // This is the callback that will be triggered when a selection is made.

17 // It gets start and end date/time as part of its arguments

18 select: function(start, end, jsEvent, view) {

19

20 // Ask for a title. If empty it will default to "New event"

21 var title = prompt("Enter a title for this event", "New event");

22

23 // If did not pressed Cancel button

24 if (title != null) {

25 // Create event

26 var event = {

27 title: title.trim() != "" ? title : "New event",

28 start: start,

29 end: end

30 };

31

32

33 // Push event into fullCalendar's array of events

34 // and displays it. The last argument is the

35 // "stick" value. If set to true the event

36 // will "stick" even after you move to other

37 // year, month, day or week.

38

39 $calendar.fullCalendar("renderEvent", event, true);

40 };

41 // Whatever happens, unselect selection

42 $calendar.fullCalendar("unselect");

43

44 } // End select callback

45 } // End of calendar options

46);

47 });

Notice the use of the following methods:

Managing events 22

1 $calendar.fullCalendar("renderEvent", event, true);

That call to renderEvent displays the event in the calendar and sets the stick argument value to
true to keep the new events from disappearing when we navigate away from them.

This call to the unselect method removes the selection after the event is created or after the action
is canceled:

1 $calendar.fullCalendar("unselect");

In the HTML page just change the source of the script tag:

1 <script src="fc-interactive-event.js"></script>

Some views of the action:

Managing events 23

Managing events 24

Managing events 25

Modifying events

There is not much to be done here, basically just tell fullCalendar that it should allow events to be
editable.

Really. That’s it.

To make the event responsive to clicks and to mouse dragging we must set the editable flag to
true. The editable flag can be set globally for all events or locally for each event. We will go for
the global flag in this example.

The code also shows how to edit the title of the event when we click on it.

Listing fc-modify-event-simple.js

1 // Create calendar when document is ready

2 $(document).ready(function() {

3

4 // We will refer to $calendar in future code

5 var $calendar = $("#calendar").fullCalendar({

6 // Start of calendar options

7 header: {

8 left: 'title',

9 right: 'today,month,agendaDay,agendaWeek prev,next'

10 },

Managing events 26

11

12 // Make possible to respond to clicks and selections

13 selectable: true,

14

15 // This is the callback that will be triggered when a selection is made.

16 // It gets start and end date/time as part of its arguments

17 select: function(start, end, jsEvent, view) {

18

19 // Ask for a title. If empty it will default to "New event"

20 var title = prompt("Enter a title for this event", "New event");

21

22 // If did not pressed Cancel button

23 if (title != null) {

24 // Create event

25 var event = {

26 title: title.trim() != "" ? title : "New event",

27 start: start,

28 end: end

29 };

30

31

32 // Push event into fullCalendar's array of events

33 // and displays it. The last argument is the

34 // "stick" value. If set to true the event

35 // will "stick" even after you move to other

36 // year, month, day or week.

37

38 $calendar.fullCalendar("renderEvent", event, true);

39 };

40 // Whatever happens, unselect selection

41 $calendar.fullCalendar("unselect");

42

43 }, // End select callback

44

45 // Make events editable, globally

46 editable : true,

47

48 // Callback triggered when we click on an event

49

50 eventClick: function(event, jsEvent, view){

51 // Ask for a title. If empty it will default to "New event"

52 var newTitle = prompt("Enter a new title for this event", event.title);

Managing events 27

53

54 // If did not pressed Cancel button

55 if (newTitle != null) {

56 // Update event

57 event.title = newTitle.trim() != "" ? newTitle : event.title;

58

59 // Call the "updateEvent" method

60 $calendar.fullCalendar("updateEvent", event);

61

62 }

63 } // End callback eventClick

64 } // End of calendar options

65);

66 });

In the HTML page just change the source of the script tag:

1 <script src="fc-modify-event-simple.js"></script>

Now create some events and then then click, extend, contract, drag or drop them.

Removing events

The challenge of removing events is mostly how to make it easier for the user. There are many ways
to expose this functionality. It is a matter of creativity.

In this example we will show a “Delete” link inside the event. When clicked, a confirm dialog
will appear and the code will delete the event if the user answers “OK”. It sounds simple enough.
Unfortunately, there will be some unexpected behavior. But there will also be a fix.

Some screenshots:

Managing events 28

Thanks for reading. This is the end of the sample. I hope this fraction of the book has already been
useful to you. After buying the book all updates to the content will be free.

Other topics I will cover are: using JQuery dialogs to manage events, using multiple event sources,
recurrent events, persisting events in a database and controlling a calendar with external widgets
like datepickers, checkboxes and dropdown lists. Get the booka.

ahttps://usingfullcalendar.wordpress.com/using-fullcalendar-book/

https://usingfullcalendar.wordpress.com/using-fullcalendar-book/
https://usingfullcalendar.wordpress.com/using-fullcalendar-book/

	Table of Contents
	Introduction
	The basics of fullCalendar
	A plain instance of fullCalendar
	More navigation buttons
	Hiding days
	Changing locale

	Managing events
	Adding events
	We must talk about date formats
	Using an event array

	Selection of date and time slots
	Creating an event interactively
	Modifying events
	Removing events

