
Using client-go

Writing Golang clients for talking to Kubernetes

Luca Sepe

https://github.com/kubernetes/client-go

Contents

1 Preface 1
1.1 To get the most out of this notebook . 1
1.2 Who this notebook is for . 2
1.3 Download the example code files . 2

2 Setting up a local development environment 3
2.1 Installing cURL . 3
2.2 Installing GNU Make . 3

2.2.1 Installing make on Linux . 4
2.2.2 Installing make on MacOs . 4
2.2.3 Installing make on Windows . 4

2.3 Installing Docker . 4
2.4 Installing kubectl . 5
2.5 Installing KinD . 5
2.6 Installing jq . 6

3 The Kubernetes API Server 8
3.1 API conventions . 9
3.2 Resources . 10
3.3 Custom Resources . 13

3.3.1 (Hands-On)Creating custom resource definition 13
3.3.2 (Hands-On)Creating custom objects . 16

4 Local Kubernetes development with KinD 17
4.1 Using Gnu Make to automate your development workflow 18
4.2 A quick summary about Makefiles and how they works 19

4.2.1 Makefile Rules . 19
4.2.2 Makefile Variables . 20

i

Golang Notebooks Using client-go

5 Exploring the API server using cURL 21
5.1 Role-based access control (RBAC) . 23

5.1.1 Role or ClusterRole . 23
5.1.2 RoleBinding and ClusterRoleBinding 24

6 Introducing client-go 27
6.1 Installing client-go . 27

6.1.1 Using the latest version . 27
6.1.2 Using a specific version . 28

6.2 Types of clients in client-go . 28
6.3 Initializing a client . 29

6.3.1 (Hands-On)Creating a rest.Config using default kubeconfig rules 29
6.3.2 (Hands-On)Creating a rest.Config using flags to specify a custom kubeconfig

file . 30

7 Using rest.RESTClient 31
7.1 (Hands-On)Creating a deployment . 32
7.2 (Hands-On)Listing pods . 34
7.3 (Hands-On)Updating a deployment image . 36
7.4 (Hands-On)Deleting a deployment . 39

8 Using kubernetes.Clientset 41
8.1 (Hands-On)Creating a deployment . 42
8.2 (Hands-On)Listing pods . 44
8.3 (Hands-On)Updating a deployment image . 46
8.4 (Hands-On)Deleting a deployment . 47

9 Using dynamic.Interface 49
9.1 (Hands-On)Listing pods . 50
9.2 (Hands-On)Getting and updating a custom resource 51

10 Using discovery.DiscoveryClient 55
10.1 (Hands-On)Listing Kubernetes API resources . 55

11 Using labels and selectors 58
11.1 (Hands-On)Creating labels and initializing selectors 58
11.2 (Hands-On)List resources using label selectors 60

Luca Sepe v1.0.0 ii

https://github.com/kubernetes/client-go

Golang Notebooks Using client-go

12 (Hands-On) Display clients HTTP calls contents 63

13 Watching for changes 67
13.1 (Hands-On)Watching for changes (using rest.RESTClient) 68
13.2 (Hands-On)Watching for changes (using dynamic.Interface) 72
13.3 (Hands-On)Watching for changes (using kubernetes.Clientset) 74

14 Using RetryWatcher 76
14.1 (Hands-On)Watching for changes using the RetryWatcher 77

15 Digging into tools/cache package 80
15.1 cache.ListerWatcher . 80
15.2 cache.Store and cache.Queue . 80
15.3 cache.Reflector . 81
15.4 cache.DeltaFIFO . 81
15.5 cache.Controller . 82
15.6 cache.Indexer . 82
15.7 The “informer” concept . 83
15.8 cache.SharedInformer . 83
15.9 Recap on Controller, Reflector, DeltaFIFO, SharedIndexInformer . . 84

16 Using informers 86
16.1 (Hands-On)Watching for secrets using SharedInformer 87

17 WorkQueues 90
17.1 (Hands-On)Writing a controller using RateLimitingInterface and SharedIndexInformer . . . 92

18 Using code generators for Custom Resource Defintions (CRD) 100
18.1 (Hands-On)Writing the type definition source code with code generator tags 103
18.2 (Hands-On)Registering your types to the API server 105
18.3 (Hands-On)Executing the code generation for your Custom Resource types 106
18.4 (Hands-On)Using the generated clientset in your program 107

Luca Sepe v1.0.0 iii

https://github.com/kubernetes/client-go

1 Preface

Welcome to:

Using client-go
Writing Kubernetes Client applications using Go

and thanks for choosing to spend some time with me.

This is a Go programming notebook about Kubernetes client-go library; it will:

• cover the foundations and the core ideas
• inspect the packages showing structs and interfaces relations
• introduce you to the whole concepts preparatory tomaster custom controllers implementation
• show you how to create your custom resource and using generators to create clients, listers,
informers etc.

• how to write an operator to reconcile your custom resource (coming soon)

1.1 To get the most out of this notebook

A basic knowledge of the Go language is assumed throughout this book.

If you are not yet familiar with this programming language, consider running through the online
tutorial before you begin reading (go.dev/tour).

To run the examples, you will need:

• Go installed - examples were written using the 1.17 version
• GNU Make tool

1

https://github.com/kubernetes/client-go
https://go.dev/tour/list
https://go.dev/doc/install

Golang Notebooks Using client-go

• Docker required to make kindwork
• KinD to run Kubernetes on your local computer
• kubectl to run commands against Kubernetes clusters
• jq to slice, filter, map and transform kubectl JSON output

I will step through the process of installing all the tools required throughout this notebook.

1.2 Who this notebook is for

You’re a cloud-native developer or an SRE or are you just interested in writing client applications
wanting to get the maximum out of Kubernetes.

1.3 Download the example code files

You can download the example code files for this notebook from GitHub at:

» https://github.com/lucasepe/using-client-go
In case there’s an update to the code, it will be updated on the existing GitHub repository.

Luca Sepe v1.0.0 2

https://github.com/kubernetes/client-go
https://github.com/lucasepe/using-client-go

7 Using rest.RESTClient

rest.RESTClient provides rich APIs for various settings and a fluent interface to simplify Ku-
bernetes API calls.

• has support for core and custom resources
• it is the base on which the other types of clients are built

The basic steps to perform one of the possible operations (i.e. get, delete, create, update etc…)
using rest.RESTClient are:

1. define the type of resource to use and the related group, version and operation (get, create,
list, delete, etc.)

2. load and configure the rest.Client configuration
3. once you get the configuration object set the necessary values for the APIs you need to call

(such as the required path, group, version, serialization and deserialization tools, etc.)
4. create a rest.RESTClient instance, using the the configuration object as input parameter
5. using the fluent API on the rest.RESTClient instance, define all the parameters (namespace,

resources, eventually the payload, the result object, etc.)

You will see how to apply these steps to:

• create a deployment
• list pods
• update a deployment image
• delete a deployment

Source code @ https://github.com/lucasepe/using-client-go/tree/main/using-rest-client.

For each example the equivalent kubectl command will be shown.

31

https://github.com/kubernetes/client-go/blob/master/rest/client.go
https://github.com/lucasepe/using-client-go/tree/main/using-rest-client

Golang Notebooks Using client-go

7.1 (Hands-On) Creating a deployment

» This example emulate the command: kubectl create deployment nginx --image=nginx.

The type of resource is a Deployment and the related operation is a create (POST); searching the
Kubernetes API reference you can find path, group, version and required body:

package main

import (
"context"
"encoding/json"
"fmt"

appsv1 "k8s.io/api/apps/v1"
corev1 "k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/kubernetes/scheme"
"k8s.io/client-go/rest"
"k8s.io/client-go/tools/clientcmd"

)

func main() {
configLoader := clientcmd.NewNonInteractiveDeferredLoadingClientConfig(

clientcmd.NewDefaultClientConfigLoadingRules(),
&clientcmd.ConfigOverrides{},

)

namespace, _, err := configLoader.Namespace()
if err != nil {

panic(err)
}

cfg, err := configLoader.ClientConfig()
if err != nil {

panic(err)
}

// POST /apis/apps/v1/namespaces/{namespace}/deployments

// the base API path "/apis"
cfg.APIPath = "apis"
// the Deployment group and version "/apps/v1"
cfg.GroupVersion = &appsv1.SchemeGroupVersion
// specify the serializer
cfg.NegotiatedSerializer = scheme.Codecs.WithoutConversion()

Luca Sepe v1.0.0 32

https://github.com/kubernetes/client-go
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/deployment-v1/#create-create-a-deployment

10 Using discovery.DiscoveryClient

While the clients seen so far have themain purpose of retrieving andmanaging Kubernetes objects,
discovery.DiscoveryClient provides ways to discover server-supported API groups, versions and
resources.

Let’s see how to use it to implement a functionality similar to the kubectl api-resources command.

Source code @ https://github.com/lucasepe/using-client-go/tree/main/using-discovery-client.

10.1 (Hands-On) Listing Kubernetes API resources

package main

import (
"encoding/json"
"fmt"

"k8s.io/apimachinery/pkg/util/errors"
"k8s.io/client-go/discovery"
"k8s.io/client-go/tools/clientcmd"

)

func main() {
configLoader := clientcmd.NewNonInteractiveDeferredLoadingClientConfig(

clientcmd.NewDefaultClientConfigLoadingRules(),
&clientcmd.ConfigOverrides{},

)

rc, err := configLoader.ClientConfig()
if err != nil {

panic(err)
}

// create a new DiscoveryClient using the given config

55

https://github.com/lucasepe/using-client-go/tree/main/using-discovery-client

15 Digging into tools/cache package

In order to understand Informers let’s dig more into tools/cache package.

15.1 cache.ListerWatcher

ListWatcher is something that list all resources of a specific kind (pods, deployments, namespaces,
etc..) and then sets up watches on them.

» https://github.com/kubernetes/client-go/blob/master/tools/cache/listwatch.go

15.2 cache.Store and cache.Queue

ListWatcher, using a Kubernetes client, collects resources of a particular kind and some related
events; then these things are saved in a generic object storage - the Store.

» https://github.com/kubernetes/client-go/blob/master/tools/cache/store.go

» https://github.com/kubernetes/client-go/blob/master/tools/cache/fifo.go

80

https://github.com/kubernetes/client-go/tree/master/tools/cache
https://github.com/kubernetes/client-go/tree/master/tools/cache
https://github.com/kubernetes/client-go/blob/master/tools/cache/listwatch.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/listwatch.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/store.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/fifo.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/store.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/fifo.go

Golang Notebooks Using client-go

Queue is a Store, but with a Pop() function.

15.3 cache.Reflector

Reflector reflects the contents of a Kubernetes message channel into a cache.

• puts into the Store the results of the ListerWatcher List(...) function
• turns the incoming WatchEvents into updates, removals and additions of items in the Store

» https://github.com/kubernetes/client-go/blob/master/tools/cache/reflector.go

Then if you want to do something in your program with resources of a particular kind, you can look
to the cache rather than to the API server itself.

15.4 cache.DeltaFIFO

Is the Store implementation used by Reflector.

» https://github.com/kubernetes/client-go/blob/master/tools/cache/delta_fifo.go

Luca Sepe v1.0.0 81

https://github.com/kubernetes/client-go
https://github.com/kubernetes/client-go/blob/master/tools/cache/reflector.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/reflector.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/delta_fifo.go
https://github.com/kubernetes/client-go/blob/master/tools/cache/delta_fifo.go

18 Using code generators for Custom Resource
Defintions (CRD)

The Kubernetes API server is easily extendable by Custom Resource Defintions (CRD).

code-generators can be used to build native, versioned clients, informers and other helpers for
your Custom Resource Definition (CRD). Infact, client-go requires that runtime.Object types (that
must be implemented by your custom resources) must have DeepCopy()methods.

Besides many code-generators are available:

• deepcopy-gen creates a method func (t* T) DeepCopy() *T for each type T

• client-gen creates clientsets for your custom resource API groups
• lister-gen creates listers for your custom resurces
• informer-gen creates informers for your custom resurces

To show how these generators work let’s create a custom resource definition to expose expressions
to evaluate.

Then we will create a program that using the generated clientset, fetch the specified expression
resource and evaluate it (using the spec data) saving the result in the resource status.

Before we start coding, we need to define the CRDs that the program will handle. As with any other
API, Kubernetes allows you to define its custom API objects using OpenAPI specification.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:

name must match the spec fields below, and be in the form: <plural>.<group>
name: expressions.example.org

spec:
group name to use for REST API: /apis/<group>/<version>
group: example.org
names:

kind is normally the CamelCased singular type. Your resource manifests use this.

100

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://github.com/kubernetes/code-generator
https://github.com/kubernetes/code-generator/cmd
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#schemaObject

Golang Notebooks Using client-go

kind: Expression
listKind: ExpressionList
plural name to be used in the URL: /apis/<group>/<version>/<plural>
plural: expressions
singular name to be used as an alias on the CLI and for display
singular: expression
shortNames allow shorter string to match your resource on the CLI
shortNames:
- exp

either Namespaced or Cluster
scope: Namespaced
list of versions supported by this CustomResourceDefinition
versions:
- name: v1alpha1

additionalPrinterColumns:
- jsonPath: .spec.body
description: The expression to evaluate
name: Expression
type: string

- jsonPath: .status.result
description: The evaluation result
name: Result
type: string

schema:
openAPIV3Schema:
type: object
properties:

spec:
properties:
body:

type: string
data:

type: string
required:
- body
- data
type: object

status:
properties:
result:

type: string
error:

type: string
type: object

type: object
Each version can be enabled/disabled by Served flag
served: true
One and only one version must be marked as the storage version
storage: true

Luca Sepe v1.0.0 101

https://github.com/kubernetes/client-go

Golang Notebooks Using client-go

subresources:
status: {}

status:
acceptedNames:

kind: ""
plural: ""

conditions: []
storedVersions: []

Place it in the manifests/crds folder. Below the folder layout:

using-codegen
└── manifests

 ├── crds # contains Custom Resource Definition YAML files
 │ └── expression-crd.yaml
 └── examples # contains Custom Resource examples YAML files
 ├── demo1.yaml
 ├── demo2.yaml
 ├── demo3.yaml
 └── demo4.yaml

Here is how an expression appears (this is in the manifests/examples directory):

apiVersion: example.org/v1alpha1
kind: Expression
metadata:

name: demo1
namespace: default

spec:
body: x + y + z
data: |-

{
"x": 8,
"y": 1,
"z": 7

}

Now, we can write the type definition with the tags to generate deepcopy functions and the
clientset.

Luca Sepe v1.0.0 102

https://github.com/kubernetes/client-go

