USABLE
SOFTWARE
DESIGN

Contents

1 2 Minute Introduction

2 The Key Questions
Why Usable Software Design?

UX and Usability
SoCraTes UK, XP and Software Craftsmanship
General Design Principles o o

A Coherent Idea From A Mix Of Sources

3 How To Start With Usable Software Design

Personas L
Define and Refine The User Flows
Team Agreement
Feedback

Continuous Conversation

Run Usability Tests

L o 0o oo o L N O ot gt

11
11
12
12
12
13
14
16
17
17
18

CONTENTS

What We Learned Exploring Usable Software Design 21
Most Design Principles Are Valid - In The Right Context 21
Code Navigability 22
Navigability Smellso 23
Design for Navigability L. 23
Consistency 25
Design Elements Lo o 26
Examples of Design Elements 26
What If We Find A Use Case That Doesn’t Match? 30
A Management Perspective 31
Economic Benefits 31
Increased Productivity on Typical Tasks 31
Faster Integration of A New Developer In The Team 33
Increased Motivation 34
Open Questions 37
Who should take care about the usability of software design? 37

Acknowledgments 39

Chapter 1

2 Minute Introduction

One thing is missing when comparing software design with other design disciplines: who
is its user? The common assumption is that the user is the end user of the product, but
that is incorrect. The end user doesn’t care how the product is built, only about what it
can do.

So, who is the user of software design? It took me a while to figure out the answer to this
simple question. But, once found, it opened up a world of possiblities. The answer, is
also obvious once we state it: the user of software design is the developer.

The next question is: can we use some of the techniques from user-centric design and
apply them to software design? Could we benefit from the experience of UX and Usability
practitioners?

Since I spent some time writing this book, it’s obvious that I believe the answer is yes.
Usability is a very succesful idea in design, because it’s a win-win situation. Users get to
solve their problems and enjoy the process, while businesses see higher conversion and
therefore more money. Usability is where user happiness meets business growth.

I hope I made you curios. In the next chapters, we will explore the characteristics of
usability, how we can apply them to software design and, why we should look into it.

CHAPTER 1. 2 MINUTE INTRODUCTION

Chapter 2

The Key Questions

Why Usable Software Design?

I discuss the topic of software development with many developers and managers. Some of
the common complaints of developers are:

e The code I work with is very complicated
e [don’t understand my colleague’s code
e The others don’t get how to write better code

Some of the common complaints of managers are:

e [t takes months for a new developer to become productive in our team
e We have low productivity
e Customers complain about bugs

What if T told you that there’s a way of thinking that has the potential to solve all these
problems?

Ergonomics, User-Centric Design, Usability

In the early 1900s, industry was mostly dependent on human power. Attempts to increase
productivity, like Taylor’s “Scientific Management”, led to the development of ergonomics.
Ergonomics is the study of people’s efficiency in their working environment. Adapting tools
to the job became something very important; Taylor managed to increase the production
and wages at Bethlehem Steel by using different types of shovels for different types of
materials.

While Taylorism is far from being popular nowadays, ergonomics persisted as a domain
of study and experimentation. It especially developped during World War II. It also
expanded past efficiency into areas such as work safety. This is why we still have things
like “ergonomic chairs” for programming.

6 CHAPTER 2. THE KEY QUESTIONS

Fast forward to 1988, when Dr. Donald Norman wrote the seminal book for user centered
design: “The Design of Everyday Things”. The book details examples of good and bad
design and documents issues with them. For example, the Three Mile Island nuclear
accident was partially due to confusion over the status of a valve. The typical reaction
to such an error is that the workers made a mistake. Instead, Donald Norman argues
that it’s a design problem and that the design of machines should change to prevent such
mistakes. The book expands over the design practices and mindset that lead to user
centered design.

Since Donald Norman’s book, user centered design has permeated most design disciplines,
from IKEA’s furniture, to electronic devices such as those created by Apple, Samsung or
HP and even kitchenware and coffee machines. We should thank him for the frustrations
eliminated by designers who followed his principles.

The last step in this revolution has been usability. Usability is mostly associated with
computer programs, how easy it is for end users to learn and to use them. Any developer
doing web applications has certainly heard of this concept, since it is so ingrained into
the way we build applications nowadays.

Given the complaints from developers and managers from over the world, it looks like
the software industry has a similar problem. Because software designs are not usable,
developers have a hard time learning them, using them and avoiding mistakes. What
makes the problem even more complex is the fundamental flexibility of software design.
There are tens, hundreds, thousands of potential solutions for each software problem, and
almost every developer has a different view on what makes a good solution. It is also
easier to change the design of software than to change the design of a chair, of a car or of
a plane. These two things combined create many of the issues we face when designing
software and using code written by other people.

The software industry has reached the point where usability has become increasingly
important. The solution to the usability problem in software design is the same as for
teh design for end-users: a shift in mindset. If we want more productive developers we
should create software designs that help developers be more productive and make less
mistakes. Based on the experience we had with usability in other areas, it’s very likely
that developers will also become happier in the process. Everybody wins.

What Is Usable Software Design?

First of all, Usable Software Design is a change in mindset. We no longer accept the idea
that “the code is what it is and a developer should be able to deal with it”. We actively
pursue the change in design that allows developers to be more productive and make less
mistakes. We do this incrementally and throughout the lifetime of a product.

Second of all, Usable Software Design means structuring the code such that the software
design exhibits qualities similar with usability. We need therefore to start from the design
qualities that define usability in other domains and explore what they mean for software
design. Here are the five design qualities that define usability for products:

1. Learnability: How easy it is to accomplish basic tasks the first time you're using
the design?

WHEN IS USABLE SOFTWARE DESIGN APPROPRIATE? 7

2. Efficiency: How quickly can you perform a task once you've learned the design?

3. Memorability: When you go back to the design after a period of not using it, how
easy is to become efficient again?

4. Errors: How many errors do you make, how severe are they and how easily can
you recover from them?

5. Satisfaction: How pleasant it is to use the design?

As you can see, these characteristics link with the economical benefits:

e Learnability: how quickly can we integrate a new developer into the team
e Efficiency: how fast can a developer do common (not simple) tasks

e Errors: how many bugs do developers introduce and how fast can they fix
them

and with management challenges:
e Satisfaction: directly influences the motivation of the team

Memorability can be approximated with efficiency and learnability, so we will only discuss
it in passing.

When is Usable Software Design appropriate?

It should be obvious at this point that any manager or business owner would like to obtain
the benefits of usable software design. The next question is: can we apply usable software
design in any context?

The simple answer: Yes! A simple analogy can help you see that this is so. Web usability
is used for a wide range of applications, from social networks to accounting applications.
This is possible because web usability is a set of overarching principles that have a very
wide applicability. The specific techniques and design decisions are contextual dependent,
but the web usability principles apply across all web applications.

The same is true for Usable Software Design. Usable Software Design is not a set of design
principles that you should blindly follow. Instead, it’s a target formed by the 5 qualities
of usability: Learnability, Efficiency, Memorability, Errors, Satisfaction.

This also means that Usable Software Design, like user-centered design, is a shift in
mindset. Instead of letting developers live with problems like over-complicated code or
error-prone designs, we put the developers in the center of the system and challenge the
software design with the question: how should the design change so that we don’t have <
problem X > again?

Achieving usable software design will require a number of specific techniques that are
applicable in concrete contexts. Some of these techniques can be borrowed from usability
(Personas, user flows, usability testing, continuous user feedback etc) while others are
unique to the practice of Usable Software Design. In this book we will look at both kinds
of techniques.

