Contents

INEFOAUCTION .ttt 7
Chapter 1 Unity's BasiC CONCEPLS ..ottt sttt b bt s s s s snsennns 8
0 o= 1= OO 8
GAME O JECES ottt ettt ettt et bbb st s et s bbb e b ebeAeae et es s bbb esebeseae s s et s st besesennaas 9
(0o TaaToTo = A AR € Y FeT g Y] = =T o F= AV U =) T 11
=T ORI 12
T =T o 17O 13
Serialization & DeSEriAliZAtiON ...t e e bt 14
LA =T at= A= o OSSPSR 14
Chapter 2 Software Practices to Keep, Shed, and Adopt in Unity ... 16
Y aT=To B A T=Y o TN L A= L I o oL [OO 16
Adopt: Write your own Custom Editors and Property Drawers...........c s 17
Keep: Singletons tend t0 be @ COAE SMELL.........ee ettt 18
Shed: Get comfortable With SOME GLODALS...........c et 18
Adopt: The Inspector can be your injection frameWorK ... 19
Keep: Unit- and Integration Tests are ALWays GOOM.ccoririrrrreceeee et 19
Chapter 3 Input System, from BasiC PriNCIPLES ...t 20
et ar=1 0] at= N AT o £ OO 21
T o LU LAY ot 1 o L= 24
T = 1 I T T T |0 OO 31
Chapter 4 The UNITY EdiTOr ...ttt a sttt s e nennen 32
0 1= od A A= OO 33
SCENE VIBW w8611 E R E bRt 34
HIEIATCRY VIBW ..ttt s et a b2t e s s s ses s e e e s e s e bbb s e e e se s et e st es e e e e snsnsen 35
T a1y oT=T ot o il OO OO OO OO PO 36

Edit MOAE @Nd PLAY MOGE ...ttt ettt et bbbt b et s s s s b bbb e s ess s s s s s s 37

What the Editor DOes (AN DOESN'T) GIVE YOU ...oeueieieeeeeeeeeeeeee e eeee et s e e eese et e s eseeesee st et aseseseeeeeseneseeeesesaeseseeseseaeanees 38
Chapter 5 Understanding Unity ENGING ODJECTS ..ottt 39
UNIEYENGINE.ODJECE .ottt ettt s e et et s s s e s s s e s ettt s s s s ssse s et sasan s s ansetesens 40
GAMIBODJECT ...ttt ettt a AR b et A e A SR s e s ARk s st et s s s e e sntetnn 40
COMIPONENT ...ttt ettt ettt e e e s s s s s e e e s e s e b e b b s s e e e s s b8 s s e e e s e b e bt s s e e se s e s et s s s s s nnsnsetee 42
A Note on Inactive Objects and Disabled COMPONENTS.........cooioieiciccceeeeee ettt 44
L L= T) OO 44
Chapter 6 ASYNC ProgramMing ...ttt et et b e e s e e st et ebesess s s s s s sesesesesesnaeas 45
Beyond Coroutines: ASYNC/AWAIT IN UNILY ... s sss s ssseesee e seasnesnannanes 45
Chapter 7 SCriptable ODjJECES ...ttt 49
What iS @ SCrIiPtable OB JECE ...ttt e st sttt et e ss s s s s snesesesetes 49
Creating SCLAPTADLEODTOCES . .o ee s eee s 49
Popular Case STUAIES iN The Wil ...ttt ettt n s st e s en s s 51
TOOLS IN YOUE TOOUBOX ottt ettt s et s e s et s e e e e se s et et s e e e e snseseses s e nnnnas 61
Chapter 8 Architecting your game with Dependency INJECTION ... 62
The Unity-Native Approach: ScriptableObjects as "Injected" Globals.........ccooiiirrneee e 62
Dependency Injection Frameworks as an AlEErNAatiVe ... 63
The Hybrid Architecture: Injecting SOS iNto PUre CH ... 64
Chapter 9 Rendering & LIGNTiNg ...ttt s s e e e st teaesese s s s en et et esesesnsnaeas 68
] = Lo (=T SR N 1Y =) =T ol = OO PTRRTSSR 68
Connecting Shaders t0 Game ODJECES ...ttt 70
=Y aTo L=YaiT oo TN T o1 Kl g =T3P 72
[T | o141 Vo TS OO OO U OO 73
CRAPEEE L0 AUIO ettt ettt a bbb s s st st st s s s et e bbb s s s s s st et s s s s s snsnaetens 79
AudioClip, AudioSource, and AUAIOLISTENET ...ttt 79

PLaying @N AUGIO SOUMCE ..ottt ettt ettt bbb e e st bbb e b et et e s s as s s s bbb ebesessss s s s s ans 81

Playing an Audio Source ON=DemMand........ccccoirrreiiieeeee ettt bt es st eseses 83
SOUNAS & VOLUME SEELINGS ...ttt bbbttt b bt e et et s s 86
Chapter 11 Translating your Development TOOLlKit t0 UNitycccuiiiiiiecceeee e 88
RV o= T o T O o o1 oY OO PP 89
PaCkage ManagemMENT.... ...ttt b bbb s s st b bt s Rt s s s et et tee 91
[=Xo L1 o I ST B LT o 1UTe o 1 a Yo THu OO 91
0 TRV OO PP 92
CONEINUOUS INEEGIATION ...ttt s ettt et b e s e se e s s st et et esessss s s s ansesesesesesesenens 93
Chapter 12 USIiNG ANIMALIONS ..ottt e ettt b s e s e s e st et ebeseae s s s s s seseseseseseneas 94
0 ot =T o | €O 95
UL AT aTo L1 L oo =14 o 1= oF OO OO OO 101
LA =T at= =D o OO PO TRT 103
Chapter 13 Pathfinding With NaVMESh........c. e 105
N NATo E=1aTo] T 6] g Ted=1 o] =0T OO OO 105
USING @ NAVMESN AGENT.....neieee ettt ettt b e ee e s sttt et et e b ese s s s s sesesebesessas s s annans 106
Chapter 14 PRhYSICS RAYCASTING ...ttt nnen 108
HOW £0 RAYCAST ..ttt b bt s st s e e e e n s e s et et et s s e e e st e st se e se e nnnnnesen 109
o1 L=l = 1Y oF= T3] o OO ST TP 110
SIMPLE ENEMY Al EXAMIPLE 1.ttt s e s st n s 110
(0101 R To L=l = Y of= T3 i T OO TP T TP 111
Chapter 15 BUilding USEr INTEIFACES ..ot 112
WHICh TOOLKIt SROULA [USE7......ei sttt nneen 112
8 T OO 112
UL TOOLKIT ..ttt 113
Chapter 16 TeSting iN UNITY ..ottt ettt bbb s b b s s s s s sne 117

Why TeSting UNity FEELS WIONG ...ttt bbbttt e s s snensebenas 117

Setting Up the ENVIFONMENToo ettt sttt st s 117
Chapter 17 Performance & Optimization Primer ...ttt 125
Understanding the Frame BUAQEeT......... ettt bbb 125
WHY GC MatEers iN UNITY ..ottt ettt s s s st s s s s s e s nnas 125
Other Performance Pitfallsttt 129
Chapter 18 Unity DOTS and ECS: Beyond Game ObjJeCTS. ... 132
WY ECS7 ..ttt s s s 2R e A2 AR RS ARt e A s et 132
THE ECS APPIOACK ..ottt ettt et s e e s e et s et e b e s e s s s s s en st et et et ebesessas s s eeen st besesessanananarans 134
Declaring Components & SYStemMS iN SCIIPES ...ttt es 135
Creating ECS ENHItIES iN GO ...ttt s et naenens 139
Creating ECS Entities iN the EdiTOr. ...ttt ettt en e 140
ECS Entities & Scriptable ODbJeCt DESIGN ...ttt ettt en s 142
Parallelizing ECS Systems With JODS ...ttt 143
Affecting Entities in MONOBENAVIOUL ...ttt ettt en e ene s nnas 144
S0, WA @58 SUDSCENEST ...t ettt et e et e et e e e et e es e st ere et e et eeseeeeesesetese et eeneeseeseesesenene st eneeaneeneeneseeeneneeeneanennen 146
Chapter 19 “How Do | ACTUALLY STart?”ttt 148
Questions YOU ShOULA @SK YOUISELF ...ttt s et snsnnenee 149
| know the mechanics | care about. NOW WHat? ... 150
So | picked a mechanic, but where do | start programming within this mechanic?...........ccccoovninncnnes 152
How much time should | spend on 0ne MECRANICT ... 153
Are you developing a game or architeCting SYSEEMIS? ... 153
=T 1= o =T o< 155
0T 1= OO 156

Introduction

If you're trying to get into game development as a Software Engineer, finding learning materials with the
right level of context can be challenging. You'll likely face a choice between following materials introducing
you to rudimentary C# and OOP concepts while also describing Unity concepts or starting with advanced

tutorials and be left to figure out the core concepts deductively.

| started my programming journey around 2003 by picking up Game Maker, a 2D game engine that is still
popular today (its incarnation today, GameMaker: Studio, uses a more stylized spelling). Countless hours
spent coding little games and tools led me to a bigger passion for programming. Eventually, | was at a point
where | focused mainly on Software Engineering. From my peers, | know this is quite a common path that

many of us took to find programming.

Yet, the game development scene has changed significantly from those days. When | went to pick up Unity
after a long absence from game development, | was primarily interested in understanding the basic
concepts: what are the fundamental building blocks of a game? What do | need to know about how these
building blocks are represented in memory or on disk? How is idiomatic code organized? What patterns are

preferred?

https://www.yoyogames.com/gamemaker

Chapter 1 Unity’s Basic Concepts

To start with a solid foundation, it is essential to recognize the basic building blocks of Unity. The Unity Editor

organizes every game into Scenes, Game Objects, Components, Assets, and Prefabs. Let's dig in!

Scenes

A Scene is the largest unit of organizing your objects in-memory. Scenes contain the objects making up your

game.

In basic use, one scene represents a single level in your game, where one scene is loaded at any given point.
In more “advanced” use, you can have two or more active scenes at a time. Scenes can be loaded additively
and unloaded®. Having multiple scenes loaded during gameplay comes especially handy when building a
massive world; keeping far-away areas on-disk rather than in-memory will help you stay within your

performance budget.

Every game object in Unity needs to be in a scene.

Figure 1 Unity Scene editor opening a default empty scene in 3D mode. Empty Scenes in Unity3D will, by default, include Main
Camera and Directional light objects.

L Still, there can only ever be one “main” active scene at a time.

Figure 2 Unity Scene editor showing an example scene, with a few objects selected. You can use the scene view to edit levels in your
game.

Game Objects

A Game Object (in code, GameObject) is one of the basic building blocks of a game.

Game Objects can represent both physical things you see in the game (e.g., a player, the ground, a tree, a
terrain, lights, a weapon, a bullet, an explosion) as well as metaphysical things (e.g., an inventory manager, a

multiplayer controller, etc.) in your game.
Every Game Object has a position and rotation. For metaphysical objects, this doesn’t matter.

Game Objects can nest under each other. Each object’s position and rotation are relative to its parent object.

An object directly in the scene is relative to “world space” coordinates.

Figure 3 A group of objects nested together in a scene under an empty “Interior_Props” object for organizational purposes.

You might choose to nest your objects for many reasons. For example, you might decide it organizationally
makes sense to put all your “environment” (e.g., individual pieces that make up a city or village) objects
under an empty parent object. This way, it can be collapsed in the scene view and easily moved together

when building your game.

Figure 4 A group of objects nested under the player. These include the player’s weapon, avatar, and various Ul elements rendered
around the player.

Game Object nesting can also have functional significance. For example, a “Car” can be an object with code
that controls the car’'s speed and rotation as a whole. But individual child objects might represent the four
wheels (these would spin independently), the car body, windows, etc. Moving the parent car object would

move all the child objects, keeping their relative orientation to the parent (and each other). We might want

the player to interact with a door separately from the rest of the car, for instance.

10

Components (& MonoBehaviours)

v Animator
Controller

Transfarm

Pasitian

Upd Normal

Culling Mode Cull Update Transforms

at: 180 Euler: 0 e: 180 Mus

ant: 1211 (6 Dense

#y Rigidbody

MNone
Discrete
Constraints

Info

PFlayes input

Actian

8! v capsule Collider

Edit ider

s Trigger

Figure 5 The Warrior object from the previous screenshot is shown above in Unity’s “Inspector” window. Each illustrated section (e.g.,
Animator, Rigidbody, Collider) are Components making up this object.

Every Game Object is comprised of Components.

A Component implements a well-defined set of behaviors for a GameObject to execute. Everything that

makes an object what it is would come from the components that make it up:

e Asingle “visible” piece of a car will have a Renderer component that paints it, and
e It's also likely to have a Collider component that sets up its collision bounds.
e If a carrepresents the player, the top-level car object might have a Player Input Controller that takes

key input events and translates these to code moving the car around.

11

While you can write large and complex Components that correspond 1:1 to an object (e.g., a player
component codes the entire player, while an enemy component codes the enemy as a whole), it's typically

common to factor out your logic into streamlined pieces corresponding to individual traits. For example:

Note

In code, a MonoBehaviour js the ubiquitous parent class representing Components. Most

non-built-in components in the wild inherit from MonoBehaviour, which itself inherits

from Behavior and Component, respectively.

e Whether a Player or an Enemy, all objects with health might have a LivingObject component that
sets an initial health value, takes damage, and triggers a death event once it dies.
e A player might additionally have an input component controlling its movement, while the enemy

might have an Al component that controls its movement instead.

Components receive various callbacks throughout their lifetime, known in Unity as Messages. Examples of
Messages include OnEnable/OnDisable Start OnDestroy, Update and others. If an object implements
an Update() method, this method will automagically be called by Unity in every frame of the game loop

while the object is active and the given component is enabled. These methods can be marked private; the

Unity engine will still call them.

Components can also expose public methods as you'd expect. Other components can take a reference to a

component and call these public methods.

Assets

Assets are the on-disk resources that make up your game project. These include meshes (models), textures,

sprites, sounds, and other resources.

When serialized to the disk, your scenes are represented as assets made up of the Game Objects inside of
them. The following section will discuss how you can make Game Objects you often reuse into an asset

known as a Prefab (p. 13).2

2The term asset is a bit overloaded. Scenes and Prefabs are serialized and organized in your projects like other assets.
You can browse these in the Asset view alongside code and other assets. If you're deep in Editor code manipulating an
asset, Prefabs and Scenes cannot usually be treated as assets.

12

s Project B Console
+
* Favorites - Assets > Environment > Tiles
\ All Materials
\ All Models
. All Prefabs ol O bl i i o
o LR B R
s Assets
I Audio cloud fence midc nd mountains plant ShortBuildi.. TallBuilding TileFloatin..
law Character
I Animations

I Sprites °
I Documentation

Im Editor

@@ Environment TileFloatin TileFloatin
I Sprites
I Tiles

B Mod Assets

M Prefabs

S

v BB Assets/Character

Figure 6 Unity Asset view showing visual assets in a game project.

Assets can also represent less tangible things, such as Input Control Maps, Graphics Settings, i18n string
databases, and more. You can also create your own custom asset types using ScriptableObjects (discussed in
Chapter 6, p. 45).

For your in-development project, assets form the key representation of your project’'s codebase alongside

your code.

Your built-and-bundled game will include most® of your assets. These assets will be saved on disk on the

device where the game is installed.

Prefabs

Game Objects, their Components, and their input parameters exist as individual instances in a scene. But
what if a particular class of objects is commonly repeated? Such objects can be made into a Prefab, which is

effectively the object in asset form.

Instances of a prefab in a scene can have local modifications that distinguish it (e.g., if a tree object is a
prefab, you can have tree instances of different heights). Instances of a prefab all inherit and override data
from their prefab.

Nested Prefabs

Starting with Unity 2018.3, Prefabs can be nested just as you expect:

3 You can further optimize your game by loading some assets over the network or employing other asset-management
techniques.

13

1. A parent object with prefab child objects can be a prefab itself. In the parent prefab, the child prefab
instance can have its own modifications. In the scene, the entire prefab hierarchy is instantiated, and
scene-specific modifications can layer on top.

2. A prefabinstance in a scene with its own local modifications can be saved as its own “Prefab Variant”
asset. A variant is a prefab asset that inherits from another prefab, applying additional modifications

on top.

These concepts compose; a prefab variant of a nested prefab, or a prefab variant of a prefab variant, for

instance.

Serialization & Deserialization

Your project’s assets, scenes, and objects are all persisted on-disk. When editing your game, these objects
are loaded in memory and saved back to disk using Unity’s serialization system. When playtesting your
game, the objects and scenes in-memory are loaded through the same serialization system. This system also

maps between assets in your compiled bundle and the loaded/unloaded scene objects in-memory.

The Unity Engine’s Serialization/Deserialization flow loads on-disk assets into memory (in your project: for
editing/playtesting; in-game, when loading a scene) and is responsible for saving the state of your edited

objects and components back into their scenes and prefabs.

Therefore, the serialization system is also at the core of the Unity Editor experience itself. For a
MonoBehaviour to take some input on construction when instantiated in a scene, those fields must be

serialized.

Most core Unity types such as GameObjects MonoBehaviours and asset resources are Serializable and
can receive initial values on creation from within the Unity Editor. Public fields on your MonoBehaviour are
serialized by default (if they're of a serializable type), and private fields need to be marked with Unity’s

[SerializeField] attribute to be serialized as well.

Where Next?

These six concepts cover essential structural pieces for architecting games in Unity. Knowing more about
these and how assets on-disk map to in-memory representation should give you the intuition needed to

follow some of the more advanced tutorials.

There are still significant areas to wrap your head around in Unity. Understanding the Editor and mapping

your Software Engineering best practices to game development best practices (Chapter 2) will help hone

14

your skill. Even more, understanding broad areas such as lighting (Chapter 6), animation controllers
(Chapter 12), navigation meshes (Chapter 13), input handling (Chapter 3) will help you go a long way as well.
Later on, we'll cover some game architecture best practices (Chapter 7 & Chapter 8), go over performance

considerations (Chapter 17), and also dive deep into Unity’s ultra-high performance DOTS stack, including

Unity ECS and the Jobs System in Chapter 18.

By understanding Unity's basic concepts, | hope you are armed with the knowledge needed to have a more

intuitive understanding of the Engine and its workflows as you learn.

15

Chapter 8 Architecting your game with

Dependency Injection

If you've read this far and feel that my advice to take advantage of the Editor and embrace Scriptable
Objects resonates, then hopefully something feels magical when you add a [SerializeField] private

PlayerConfig _config;, drag an asset into the slot, and suddenly your code has data.

In software engineering terms, the Inspector is a Dependency Injection (DI) framework. It is a GUI-based

configuration file that resolves dependencies at scene load.

Many advanced Unity developers take this further, using ScriptableObjects to replace Singletons entirely.
This is a valid, powerful pattern—but as we scale, we need to ensure it doesn't prevent us from writing

testable code.

The Unity-Native Approach: ScriptableObjects as "Injected" Globals

The superior "Unity-Native" alternative to Singleton Hell is the ScriptableObject Architecture we discussed

in Chapter 7. Instead of a PlayerHealth Singleton, you create a FloatVariable ScriptableObject.

o The Player writes to this asset.
e The Ul reads from this asset.

e The Save System serializes this asset.

Neither the Player nor the Ul knows about the other. They are decoupled, connected only by a shared

"bucket" of data that lives in the project files, not the scene.
This has some advantages and disadvantages:

1. The Good: It effectively implements the Liskov Substitution Principle; you can swap a PlayerHP asset
with a TestHP asset for debugging without changing a line of code. It is "Dependency Injection”

configured via drag-and-drop.

2. The Bad: Any new scene or new test case requires these scriptable object references to be wired up
in the editor by hand, miswiring can be a problem (unless we strongly-type our Scriptable Objects,

i.e. a PlayerHealthVariable that extends FloatVariable), and missed values are an issue when

there are many of these objects to inject

62

3. The Ugly: If you put logic inside these ScriptableObjects, you create a dependency on the Unity
Engine. You cannot new PlayerHealth() in a unit test because

ScriptableObject.Createlnstance requires the Unity engine to be running.

We'll be discussing how you can inject Scriptable Objects for testing in Chapter 16 on p. 122.

Dependency Injection Frameworks as an Alternative

In the next section, I'll describe how a hybrid architecture that uses DI frameworks to inject these assets can
be combined with Scriptable Object -driven development to give us a “best of both worlds” approach. To get

there, though, let’s briefly describe what a pure DI-driven approach with pure C# objects would look like.
You will see a few Unity DI frameworks mentioned in the world:

1. Reflex (github.com/gustavopsantos/Reflex) - Lightweight framework that is currently the state of the

art in terms of performance and allocations
2. VContainer (vcontainer.hadashikick.jp/) - Fast framework 5-10x faster than the “gold standard”,

Zenject
3. Zenject (github.com/modesttree/Zenject) - The legacy gold standard for DI, still widely used, but no

longer actively maintained

Feature Zenject VContainer Reflex

Performance Slow (Reflection heavy) Fast (IL Emit / Expression Fastest (~4x vs VContainer)
Trees)

Allocations High Low Lowest (~28% less vs

VContainer)

Configuration Installers (MonoBehaviour) LifetimeScope ProjectScope /SceneScope
+ Contexts (MonoBehaviour) (MonoBehaviour)

Entry Points IInitializable, IStartable ITickable IInstaller, Standard
ITickable (Pure C# Loop) Awake/Start

Best For Legacy projects Architectural Rigor Performance

You should consider either VContainer or Reflex as your DI framework of choice.

With a DI framework, you can register a specific ScriptableObject instance as a "Singleton" within the
container. This means any class that asks for GameConfig will receive that specific asset, without you

needing to drag it into the Inspector.

63

https://github.com/gustavopsantos/Reflex
https://vcontainer.hadashikick.jp/
https://github.com/modesttree/Zenject

For this chapter, we will use VContainer as its configuration concepts are not too different from Reflex.

In a pure DI architecture, the IDE knows about our scopes; finding references can help us know where
objects are provided. On the other hand, we lose the ability to interact with the wiring in the editor and non-

technical designers will have trouble reasoning about or extending the structure.

ScriptableObject-Driven

Development VContainer Reflex
Logic Container ScriptableObject Assets Plain C# Objects Plain C# Objects
Dependency Resolution Visual (Inspector drag-and-drop) Programmatic Programmatic
Testin Asset-based Mocking + Plain C# or Plain C# or
g CreateInstance Automated Mocking Automated Mocking
High
Designer Accessibility |.g , Low (C# code) Low (C# code)
(visual workflow in Inspector)
Hard

IDE Navigability Easy Easy

(assets are data files)

. Small for container
Native

Performance Impact . declaration Minimal
(no container overhead)
(no post-resolve GC)

Lifecycle Project-wide Scoped Scoped
We'll show examples of testing VContainer and Reflect in Chapter 16 on p. 123.

The Hybrid Architecture: Injecting SOs into Pure C#

To maintain engineering rigor (testability and separation of concerns) while keeping the workflow benefits of
ScriptableObjects, you may prefer a Hybrid Approach. In this approach, most injectables can still be
Scriptable Objects. Since our scopes are themselves MonoBehaviours living in prefabs and managed via the
Editor as regular assets, those scopes can take in any [SerializedField] it wants to and can be hooked

up by designers that way.
This way:

e Editor-based dependency resolution happens visually in one (or very few) asset defining the project
scope (and optionally a few scene scopes)
e DI system handles propagating those visually injected fields into all the objects (Pure C# classes or

Unity Engine objects) that need them

In this case, a designer:

64

e can inspect, rewire, and understand how global assets and Scriptable Object ‘variables’ are scoped

e can't see or rewire how each injectable object makes it to each consumer (this is probably good)

Compared to DI, an engineer loses full IDE-based resolution. You can still tell that a variable comes from
some scope, but will need to look into the editor to see what that scope is defined as. The cost of this is much
lower than in pure Scriptable Object-driven design, because there is a very small number of scopes that are

hierarchically arranged and easy to view and reason about.

Scriptable Objects

13 N1 Sy NG

DI Scope (MonoBehaviour)
GamelLifetimeScope

Pure C# classes register(led in the scope GameObjects that need to Irecelve a
are provided their dependenmes via the dependency use the [Inject] attrlbute and
constructor when |nstant|ated get it automatlcally

Physics Calculator Damage System @ Q

Figure 25 Demonstrating the Hybrid Approach collecting scriptable objects into GameLifetimeScope then passing that on to classes
that need it.

How it works

We treat ScriptableObjects as Configuration and State Containers, but we use Pure C# Classes for logic.

Unity Engine objects may also receive injectables. We then use a DI Framework to wire them together.

We can use a DI container to treat our ScriptableObjects as "Singletons" that are automatically injected into

our logic classes.

// 1. The Data (ScriptableObject)

[CreateAssetMenu]

public class GameConfig : ScriptableObject {
public float GlobalGravity = 9.8f;
public int MaxPlayers = 4;

65

// 2. The Logic (Pure C# — No Unity Dependency*)
// *Except for the Config object, which is just data.
public class PhysicsCalculator {

private readonly GameConfig _config;

// We INJECT the ScriptableObject here.
// We can inject a real config, or a dummy config for testing.

public PhysicsCalculator(GameConfig config) {
_config = config;
}

public float GetFallSpeed(float time) {
return _config.GlobalGravity * time; // Logic uses the data
}

Classes like PhysicsCalculator can be used with any DI framework for Unity.

Step 1: Setting up the Scope
Create a LifetimeScope to manage your dependencies (this would be ProjectScope or SceneScope in

Reflex). Since these “scope” classes are Unity Objects (see p. 40), they can have serializable fields on them

and can be configured from within the editor. Designers

public class GameLifetimeScope : LifetimeScope

{
// We expose the ScriptableObject slot here instead of on every
// individual enemy/player.
[SerializeField] private GameConfig _sharedConfig;
[SerializeField] private PlayerStats _playerStats;
protected override void Configure(IContainerBuilder builder)
{
// Register the ScriptableObjects as instances
// Now, any class requesting 'GameConfig' gets this asset.
builder.RegisterInstance(_sharedConfig);
builder.RegisterInstance(_playerStats);
// Register Pure C# Logic classes
// VContainer sees they need 'GameConfig' in the constructor
// and injects it automatically.
builder.Register<PhysicsCalculator>(Lifetime.Singleton);
builder.Register<DamageSystem>(Lifetime.Singleton);
}
}

Step 2: The Consumer (Logic)

Now your logic is clean. It defines what it needs in the constructor.

66

public class DamageSystem
{
private readonly PlayerStats _stats;
// VContainer automatically passes the ScriptableObject here
public DamageSystem(PlayerStats stats)
{

}
public void ApplyDamage(int amount)
{

}

_stats = stats;

_stats.CurrentHP —= amount; // Modifying the SO state
}

Step 3: The Consumer (MonoBehaviour)

For MonoBehaviours (which can't have constructors), we use Method Injection.

public class PlayerHUD : MonoBehaviour
{

private PlayerStats _stats;

[Inject] // VContainer calls this automatically
public void Construct(PlayerStats stats)

{

}

_stats = stats;

private void Update()

{
// We are reading from the ScriptableObject "Singleton"
// without having to drag-and-drop it in the Inspector.
DisplayHP(_stats.CurrentHP);

67

