

2

Contents
Introduction ...7

Chapter 1 Unity’s Basic Concepts ...8

Scenes ...8

Game Objects ..9

Components (& MonoBehaviours) .. 11

Assets ... 12

Prefabs ... 13

Serialization & Deserialization .. 14

Where Next? ... 14

Chapter 2 Software Practices to Keep, Shed, and Adopt in Unity .. 16

Shed: Keep it all in code .. 16

Adopt: Write your own Custom Editors and Property Drawers .. 17

Keep: Singletons tend to be a code smell .. 18

Shed: Get comfortable with some globals ... 18

Adopt: The Inspector can be your injection framework .. 19

Keep: Unit- and Integration Tests are Always Good ... 19

Chapter 3 Input System, from Basic Principles .. 20

Programmatic Use ... 21

Input Actions .. 24

Final Thoughts ... 31

Chapter 4 The Unity Editor ... 32

Project View ... 33

Scene View ... 34

Hierarchy View .. 35

Inspector ... 36

3

Edit Mode and Play Mode .. 37

What the Editor Does (and Doesn’t) Give You ... 38

Chapter 5 Understanding Unity Engine Objects .. 39

UnityEngine.Object ... 40

GameObject .. 40

Component ... 42

A Note on Inactive Objects and Disabled Components .. 44

Takeaways ... 44

Chapter 6 Async Programming .. 45

Beyond Coroutines: Async/Await in Unity .. 45

Chapter 7 Scriptable Objects .. 49

What is a Scriptable Object ... 49

Creating ScriptableObject s ... 49

Popular Case Studies in the Wild .. 51

Tools in your Toolbox .. 61

Chapter 8 Architecting your game with Dependency Injection ... 62

The Unity-Native Approach: ScriptableObjects as "Injected" Globals .. 62

Dependency Injection Frameworks as an Alternative ... 63

The Hybrid Architecture: Injecting SOs into Pure C# ... 64

Chapter 9 Rendering & Lighting ... 68

Shaders & Materials .. 68

Connecting Shaders to Game Objects ... 70

Rendering Pipelines .. 72

Lighting .. 73

Chapter 10 Audio .. 79

AudioClip, AudioSource, and AudioListener ... 79

4

Playing an Audio Source .. 81

Playing an Audio Source On-Demand ... 83

Sounds & Volume Settings .. 86

Chapter 11 Translating your Development Toolkit to Unity ... 88

Version Control ... 89

Package Management ... 91

Editors & Debugging.. 91

Profiling ... 92

Continuous Integration ... 93

Chapter 12 Using Animations ... 94

Concepts .. 95

Putting it all together .. 101

Where next? .. 103

Chapter 13 Pathfinding with NavMesh ... 105

Navigation Concepts ... 105

Using a NavMesh Agent.. 106

Chapter 14 Physics Raycasting .. 108

How to Raycast ... 109

Pointer Raycasting ... 110

Simple Enemy AI Example .. 110

Collider Raycasting.. 111

Chapter 15 Building User Interfaces .. 112

Which Toolkit Should I Use? .. 112

Unity UI .. 112

UI Toolkit ... 113

Chapter 16 Testing in Unity .. 117

5

Why Testing Unity Feels Wrong ... 117

Setting Up the Environment ... 117

Chapter 17 Performance & Optimization Primer ... 125

Understanding the Frame Budget... 125

Why GC Matters in Unity .. 125

Other Performance Pitfalls ... 129

Chapter 18 Unity DOTS and ECS: Beyond Game Objects ... 132

Why ECS? .. 132

The ECS Approach ... 134

Declaring Components & Systems in Scripts ... 135

Creating ECS Entities in Code .. 139

Creating ECS Entities in the Editor... 140

ECS Entities & Scriptable Object Design .. 142

Parallelizing ECS Systems with Jobs .. 143

Affecting Entities in MonoBehaviour ... 144

So, what are Subscenes? ... 146

Chapter 19 “How Do I Actually Start?” ... 148

Questions you should ask yourself ... 149

I know the mechanics I care about. Now what? ... 150

So I picked a mechanic, but where do I start programming within this mechanic? ... 152

How much time should I spend on one mechanic? ... 153

Are you developing a game or architecting systems? ... 153

References .. 155

Index .. 156

6

7

Introduction

If you’re trying to get into game development as a Software Engineer, finding learning materials with the

right level of context can be challenging. You’ll likely face a choice between following materials introducing

you to rudimentary C# and OOP concepts while also describing Unity concepts or starting with advanced

tutorials and be left to figure out the core concepts deductively.

I started my programming journey around 2003 by picking up Game Maker, a 2D game engine that is still

popular today (its incarnation today, GameMaker: Studio, uses a more stylized spelling). Countless hours

spent coding little games and tools led me to a bigger passion for programming. Eventually, I was at a point

where I focused mainly on Software Engineering. From my peers, I know this is quite a common path that

many of us took to find programming.

Yet, the game development scene has changed significantly from those days. When I went to pick up Unity

after a long absence from game development, I was primarily interested in understanding the basic

concepts: what are the fundamental building blocks of a game? What do I need to know about how these

building blocks are represented in memory or on disk? How is idiomatic code organized? What patterns are

preferred?

https://www.yoyogames.com/gamemaker

8

Chapter 1 Unity’s Basic Concepts

To start with a solid foundation, it is essential to recognize the basic building blocks of Unity. The Unity Editor

organizes every game into Scenes, Game Objects, Components, Assets, and Prefabs. Let’s dig in!

Scenes

A Scene is the largest unit of organizing your objects in-memory. Scenes contain the objects making up your

game.

In basic use, one scene represents a single level in your game, where one scene is loaded at any given point.

In more “advanced” use, you can have two or more active scenes at a time. Scenes can be loaded additively

and unloaded1. Having multiple scenes loaded during gameplay comes especially handy when building a

massive world; keeping far-away areas on-disk rather than in-memory will help you stay within your

performance budget.

Every game object in Unity needs to be in a scene.

Figure 1 Unity Scene editor opening a default empty scene in 3D mode. Empty Scenes in Unity3D will, by default, include Main
Camera and Directional light objects.

1 Still, there can only ever be one “main” active scene at a time.

9

Figure 2 Unity Scene editor showing an example scene, with a few objects selected. You can use the scene view to edit levels in your
game.

Game Objects

A Game Object (in code, GameObject) is one of the basic building blocks of a game.

Game Objects can represent both physical things you see in the game (e.g., a player, the ground, a tree, a

terrain, lights, a weapon, a bullet, an explosion) as well as metaphysical things (e.g., an inventory manager, a

multiplayer controller, etc.) in your game.

Every Game Object has a position and rotation. For metaphysical objects, this doesn’t matter.

Game Objects can nest under each other. Each object’s position and rotation are relative to its parent object.

An object directly in the scene is relative to “world space” coordinates.

Figure 3 A group of objects nested together in a scene under an empty “Interior_Props” object for organizational purposes.

10

You might choose to nest your objects for many reasons. For example, you might decide it organizationally

makes sense to put all your “environment” (e.g., individual pieces that make up a city or village) objects

under an empty parent object. This way, it can be collapsed in the scene view and easily moved together

when building your game.

Figure 4 A group of objects nested under the player. These include the player’s weapon, avatar, and various UI elements rendered
around the player.

Game Object nesting can also have functional significance. For example, a “Car” can be an object with code

that controls the car’s speed and rotation as a whole. But individual child objects might represent the four

wheels (these would spin independently), the car body, windows, etc. Moving the parent car object would

move all the child objects, keeping their relative orientation to the parent (and each other). We might want

the player to interact with a door separately from the rest of the car, for instance.

11

Components (& MonoBehaviours)

Figure 5 The Warrior object from the previous screenshot is shown above in Unity’s “Inspector” window. Each illustrated section (e.g.,
Animator, Rigidbody, Collider) are Components making up this object.

Every Game Object is comprised of Components.

A Component implements a well-defined set of behaviors for a GameObject to execute. Everything that

makes an object what it is would come from the components that make it up:

• A single “visible” piece of a car will have a Renderer component that paints it, and

• It’s also likely to have a Collider component that sets up its collision bounds.

• If a car represents the player, the top-level car object might have a Player Input Controller that takes

key input events and translates these to code moving the car around.

12

While you can write large and complex Components that correspond 1:1 to an object (e.g., a player

component codes the entire player, while an enemy component codes the enemy as a whole), it’s typically

common to factor out your logic into streamlined pieces corresponding to individual traits. For example:

Note

In code, a MonoBehaviour is the ubiquitous parent class representing Components. Most

non-built-in components in the wild inherit from MonoBehaviour , which itself inherits

from Behavior and Component , respectively.

• Whether a Player or an Enemy, all objects with health might have a LivingObject component that

sets an initial health value, takes damage, and triggers a death event once it dies.

• A player might additionally have an input component controlling its movement, while the enemy

might have an AI component that controls its movement instead.

Components receive various callbacks throughout their lifetime, known in Unity as Messages. Examples of

Messages include OnEnable /OnDisable , Start , OnDestroy , Update , and others. If an object implements

an Update() method, this method will automagically be called by Unity in every frame of the game loop

while the object is active and the given component is enabled. These methods can be marked private ; the

Unity engine will still call them.

Components can also expose public methods as you’d expect. Other components can take a reference to a

component and call these public methods.

Assets

Assets are the on-disk resources that make up your game project. These include meshes (models), textures,

sprites, sounds, and other resources.

When serialized to the disk, your scenes are represented as assets made up of the Game Objects inside of

them. The following section will discuss how you can make Game Objects you often reuse into an asset

known as a Prefab (p. 13).2

2 The term asset is a bit overloaded. Scenes and Prefabs are serialized and organized in your projects like other assets.
You can browse these in the Asset view alongside code and other assets. If you’re deep in Editor code manipulating an
asset, Prefabs and Scenes cannot usually be treated as assets.

13

Figure 6 Unity Asset view showing visual assets in a game project.

Assets can also represent less tangible things, such as Input Control Maps, Graphics Settings, i18n string

databases, and more. You can also create your own custom asset types using ScriptableObjects (discussed in

Chapter 6, p. 45).

For your in-development project, assets form the key representation of your project’s codebase alongside

your code.

Your built-and-bundled game will include most3 of your assets. These assets will be saved on disk on the

device where the game is installed.

Prefabs

Game Objects, their Components, and their input parameters exist as individual instances in a scene. But

what if a particular class of objects is commonly repeated? Such objects can be made into a Prefab, which is

effectively the object in asset form.

Instances of a prefab in a scene can have local modifications that distinguish it (e.g., if a tree object is a

prefab, you can have tree instances of different heights). Instances of a prefab all inherit and override data

from their prefab.

Nested Prefabs

Starting with Unity 2018.3, Prefabs can be nested just as you expect:

3 You can further optimize your game by loading some assets over the network or employing other asset-management
techniques.

14

1. A parent object with prefab child objects can be a prefab itself. In the parent prefab, the child prefab

instance can have its own modifications. In the scene, the entire prefab hierarchy is instantiated, and

scene-specific modifications can layer on top.

2. A prefab instance in a scene with its own local modifications can be saved as its own “Prefab Variant”

asset. A variant is a prefab asset that inherits from another prefab, applying additional modifications

on top.

These concepts compose; a prefab variant of a nested prefab, or a prefab variant of a prefab variant, for

instance.

Serialization & Deserialization

Your project’s assets, scenes, and objects are all persisted on-disk. When editing your game, these objects

are loaded in memory and saved back to disk using Unity’s serialization system. When playtesting your

game, the objects and scenes in-memory are loaded through the same serialization system. This system also

maps between assets in your compiled bundle and the loaded/unloaded scene objects in-memory.

The Unity Engine’s Serialization/Deserialization flow loads on-disk assets into memory (in your project: for

editing/playtesting; in-game, when loading a scene) and is responsible for saving the state of your edited

objects and components back into their scenes and prefabs.

Therefore, the serialization system is also at the core of the Unity Editor experience itself. For a

MonoBehaviour to take some input on construction when instantiated in a scene, those fields must be

serialized.

Most core Unity types such as GameObject s, MonoBehaviour s, and asset resources are Serializable and

can receive initial values on creation from within the Unity Editor. Public fields on your MonoBehaviour are

serialized by default (if they’re of a serializable type), and private fields need to be marked with Unity’s

[SerializeField] attribute to be serialized as well.

Where Next?

These six concepts cover essential structural pieces for architecting games in Unity. Knowing more about

these and how assets on-disk map to in-memory representation should give you the intuition needed to

follow some of the more advanced tutorials.

There are still significant areas to wrap your head around in Unity. Understanding the Editor and mapping

your Software Engineering best practices to game development best practices (Chapter 2) will help hone

15

your skill. Even more, understanding broad areas such as lighting (Chapter 6), animation controllers

(Chapter 12), navigation meshes (Chapter 13), input handling (Chapter 3) will help you go a long way as well.

Later on, we’ll cover some game architecture best practices (Chapter 7 & Chapter 8), go over performance

considerations (Chapter 17), and also dive deep into Unity’s ultra-high performance DOTS stack, including

Unity ECS and the Jobs System in Chapter 18.

By understanding Unity's basic concepts, I hope you are armed with the knowledge needed to have a more

intuitive understanding of the Engine and its workflows as you learn.

62

Chapter 8 Architecting your game with

Dependency Injection

If you’ve read this far and feel that my advice to take advantage of the Editor and embrace Scriptable

Objects resonates, then hopefully something feels magical when you add a [SerializeField] private

PlayerConfig _config; , drag an asset into the slot, and suddenly your code has data.

In software engineering terms, the Inspector is a Dependency Injection (DI) framework. It is a GUI-based

configuration file that resolves dependencies at scene load.

Many advanced Unity developers take this further, using ScriptableObjects to replace Singletons entirely.

This is a valid, powerful pattern—but as we scale, we need to ensure it doesn't prevent us from writing

testable code.

The Unity-Native Approach: ScriptableObjects as "Injected" Globals

The superior "Unity-Native" alternative to Singleton Hell is the ScriptableObject Architecture we discussed

in Chapter 7. Instead of a PlayerHealth Singleton, you create a FloatVariable ScriptableObject.

• The Player writes to this asset.

• The UI reads from this asset.

• The Save System serializes this asset.

Neither the Player nor the UI knows about the other. They are decoupled, connected only by a shared

"bucket" of data that lives in the project files, not the scene.

This has some advantages and disadvantages:

1. The Good: It effectively implements the Liskov Substitution Principle; you can swap a PlayerHP asset

with a TestHP asset for debugging without changing a line of code. It is "Dependency Injection"

configured via drag-and-drop.

2. The Bad: Any new scene or new test case requires these scriptable object references to be wired up

in the editor by hand, miswiring can be a problem (unless we strongly-type our Scriptable Objects,

i.e. a PlayerHealthVariable that extends FloatVariable), and missed values are an issue when

there are many of these objects to inject

63

3. The Ugly: If you put logic inside these ScriptableObjects, you create a dependency on the Unity

Engine. You cannot new PlayerHealth() in a unit test because

ScriptableObject.CreateInstance requires the Unity engine to be running.

We’ll be discussing how you can inject Scriptable Objects for testing in Chapter 16 on p. 122.

Dependency Injection Frameworks as an Alternative

In the next section, I’ll describe how a hybrid architecture that uses DI frameworks to inject these assets can

be combined with Scriptable Object -driven development to give us a “best of both worlds” approach. To get

there, though, let’s briefly describe what a pure DI-driven approach with pure C# objects would look like.

You will see a few Unity DI frameworks mentioned in the world:

1. Reflex (github.com/gustavopsantos/Reflex) – Lightweight framework that is currently the state of the

art in terms of performance and allocations

2. VContainer (vcontainer.hadashikick.jp/) – Fast framework 5-10x faster than the “gold standard”,

Zenject

3. Zenject (github.com/modesttree/Zenject) – The legacy gold standard for DI, still widely used, but no

longer actively maintained

Feature Zenject VContainer Reflex

Performance Slow (Reflection heavy) Fast (IL Emit / Expression

Trees)

Fastest (~4x vs VContainer)

Allocations High Low Lowest (~28% less vs

VContainer)

Configuration Installers (MonoBehaviour)

+ Contexts

LifetimeScope

(MonoBehaviour)

ProjectScope / SceneScope

(MonoBehaviour)

Entry Points IInitializable ,

ITickable

IStartable , ITickable

(Pure C# Loop)

IInstaller , Standard

Awake/Start

Best For Legacy projects Architectural Rigor Performance

You should consider either VContainer or Reflex as your DI framework of choice.

With a DI framework, you can register a specific ScriptableObject instance as a "Singleton" within the

container. This means any class that asks for GameConfig will receive that specific asset, without you

needing to drag it into the Inspector.

https://github.com/gustavopsantos/Reflex
https://vcontainer.hadashikick.jp/
https://github.com/modesttree/Zenject

64

For this chapter, we will use VContainer as its configuration concepts are not too different from Reflex.

In a pure DI architecture, the IDE knows about our scopes; finding references can help us know where

objects are provided. On the other hand, we lose the ability to interact with the wiring in the editor and non-

technical designers will have trouble reasoning about or extending the structure.

ScriptableObject-Driven

Development VContainer Reflex

Logic Container ScriptableObject Assets Plain C# Objects Plain C# Objects

Dependency Resolution Visual (Inspector drag-and-drop) Programmatic Programmatic

Testing
Asset-based Mocking +

CreateInstance

Plain C# or

Automated Mocking

Plain C# or

Automated Mocking

Designer Accessibility
High

(visual workflow in Inspector)
Low (C# code) Low (C# code)

IDE Navigability
Hard

(assets are data files)
Easy Easy

Performance Impact
Native

(no container overhead)

Small for container

declaration

(no post-resolve GC)

Minimal

Lifecycle Project-wide Scoped Scoped

We’ll show examples of testing VContainer and Reflect in Chapter 16 on p. 123.

The Hybrid Architecture: Injecting SOs into Pure C#

To maintain engineering rigor (testability and separation of concerns) while keeping the workflow benefits of

ScriptableObjects, you may prefer a Hybrid Approach. In this approach, most injectables can still be

Scriptable Objects. Since our scopes are themselves MonoBehaviours living in prefabs and managed via the

Editor as regular assets, those scopes can take in any [SerializedField] it wants to and can be hooked

up by designers that way.

This way:

• Editor-based dependency resolution happens visually in one (or very few) asset defining the project

scope (and optionally a few scene scopes)

• DI system handles propagating those visually injected fields into all the objects (Pure C# classes or

Unity Engine objects) that need them

In this case, a designer:

65

• can inspect, rewire, and understand how global assets and Scriptable Object ‘variables’ are scoped

• can’t see or rewire how each injectable object makes it to each consumer (this is probably good)

Compared to DI, an engineer loses full IDE-based resolution. You can still tell that a variable comes from

some scope, but will need to look into the editor to see what that scope is defined as. The cost of this is much

lower than in pure Scriptable Object-driven design, because there is a very small number of scopes that are

hierarchically arranged and easy to view and reason about.

Figure 25 Demonstrating the Hybrid Approach collecting scriptable objects into GameLifetimeScope then passing that on to classes

that need it.

How it works

We treat ScriptableObjects as Configuration and State Containers, but we use Pure C# Classes for logic.

Unity Engine objects may also receive injectables. We then use a DI Framework to wire them together.

We can use a DI container to treat our ScriptableObjects as "Singletons" that are automatically injected into

our logic classes.

// 1. The Data (ScriptableObject)
[CreateAssetMenu]
public class GameConfig : ScriptableObject {
 public float GlobalGravity = 9.8f ;
 public int MaxPlayers = 4;
}

66

// 2. The Logic (Pure C# - No Unity Dependency*)
// *Except for the Config object, which is just data.
public class PhysicsCalculator {
 private readonly GameConfig _config;

 // We INJECT the ScriptableObject here.
 // We can inject a real config, or a dummy config for testing.
 public PhysicsCalculator (GameConfig config) {
 _config = config;
 }

 public float GetFallSpeed (float time) {
 return _config.GlobalGravity * time; // Logic uses the data
 }
}

Classes like PhysicsCalculator can be used with any DI framework for Unity.

Step 1: Setting up the Scope

Create a LifetimeScope to manage your dependencies (this would be ProjectScope or SceneScope in

Reflex). Since these “scope” classes are Unity Objects (see p. 40), they can have serializable fields on them

and can be configured from within the editor. Designers

public class GameLifetimeScope : LifetimeScope
{
 // We expose the ScriptableObject slot here in stead of on every
 // individual enemy/player.
 [SerializeField] private GameConfig _sharedConfig;
 [SerializeField] private PlayerStats _playerStats;
 protected override void Configure (IContainerBuilder builder)
 {
 // Register the ScriptableObjects as instances
 // Now, any class requesting 'GameConfig' gets this asset.
 builder.RegisterInstance(_sharedConfig);
 builder.RegisterInstance(_playerStats);

 // Register Pure C# Logic classes
 // VContainer sees they need 'GameConfig' in the constructor
 // and injects it automatically.
 builder.Register<PhysicsCalculator>(Lifetime.Singleton);
 builder.Register<DamageSystem>(Lifetime.Singleton);
 }
}

Step 2: The Consumer (Logic)

Now your logic is clean. It defines what it needs in the constructor.

67

public class DamageSystem
{
 private readonly PlayerStats _stats;
 // VContainer automatically passes the ScriptableObject here
 public DamageSystem (PlayerStats stats)
 {
 _stats = stats;
 }
 public void ApplyDamage (int amount)
 {
 _stats.CurrentHP - = amount; // Modifying the SO state
 }
}

Step 3: The Consumer (MonoBehaviour)

For MonoBehaviours (which can't have constructors), we use Method Injection.

public class PlayerHUD : MonoBehaviour
{
 private PlayerStats _stats;

 [Inject] // VContainer calls this automatically
 public void Construct (PlayerStats stats)
 {
 _stats = stats;
 }

 private void Update ()
 {
 // We are reading from the ScriptableObject "Singleton"
 // without having to drag - and - drop it in the Inspector.
 DisplayHP(_stats.CurrentHP);
 }
}

