
UI5 para desenvolvedores SAP/ABAP

Fabio Pagoti

UI5 para desenvolvedores SAP/ABAP

Fabio Pagoti

Esse livro está à venda em http://leanpub.com/ui5

Essa versão foi publicada em 2015-04-10

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2015 Fabio Pagoti

http://leanpub.com/ui5
http://leanpub.com
http://leanpub.com/manifesto

Tweet Sobre Esse Livro!
Por favor ajude Fabio Pagoti a divulgar esse livro no Twitter!

O tweet sugerido para esse livro é:

Acabo de comprar o livro ”UI5 para desenvolvedores SAP/ABAP” no @Leanpub

A hashtag sugerida para esse livro é #ABAP2UI5.

Descubra o que as outras pessoas estão falando sobre esse livro clicando nesse link para buscar a
hashtag no Twitter:

https://twitter.com/search?q=#ABAP2UI5

http://twitter.com
https://twitter.com/search?q=%23ABAP2UI5
https://twitter.com/search?q=%23ABAP2UI5

Conteúdo

Introdução ao UI5 . 1
O que significa UI5? . 1
Desenvolvimento Front End vs Back End . 1
E o back end? . 2
SAPUI5 vs OpenUI5 . 2
Onde o UI5 é usado? . 3

Ambiente de Desenvolvimento . 5
Baixando o OpenUI5 . 5
Servidores Web . 6
Servidores Web em plataformas SAP . 8
Servidores Web em outras plataformas . 16
Hospedagens gratuitas . 20
IDEs . 21
Navegadores . 24
Outras ferramentas importantes . 24

Criando um Hello World em UI5 . 26
Estrutura básica de uma aplicação UI5 . 28
HTML e <div> principal . 28
Bootstrap . 30
Minificação . 32
Código UI5 e Renderização . 32

Usando o Eclipse e o Paradigma MVC . 35
Criando um projeto UI5 através do Eclipse . 35
Estrutura de uma aplicação UI5 usando MVC . 39

Namespaces . 45
Dependências entre namespaces . 47
sap.ui.Device - Capturando informações sobre dispositivo 48
Bibliotecas de terceiros . 55

Depurando um projeto em UI5 . 59

CONTEÚDO

Controles de UI . 62
Herança de controles . 62
Elementos versus Controles . 63
ManagedObject . 64
Tipos de propriedades de um ManagedObject . 64

Controles Simples . 68
TextView . 71
FormattedTextView . 72
Label . 72
HTML . 73
Button . 74
ToggleButton . 75
Link . 76
Image . 77
ImageMap . 77
Outros controles simples . 79

Controles de Value Holders . 80
TextField . 82
TextArea . 85
PasswordField . 85
ValueHelpField . 86
DatePicker . 87
ComboBox . 87
AutoComplete . 89
DropdownBox . 90
ListBox . 92
InPlaceEdit . 94
SearchField . 95
CheckBox . 95
TriStateCheckBox . 96
RadioButton . 98
RadioButtonGroup . 99
Slider . 100
RangeSlider . 101
RatingIndicator . 102

Controles de Leiaute (Layout) . 103
Vertical Layout . 105
Horizontal Layout . 106
Horizontal Divider . 108
Panel . 109

CONTEÚDO

Border Layout . 111
Matrix Layout . 113
Splitter . 116

Introdução ao UI5
O que significa UI5?

Antes de mais nada, vamos dar nomes aos bois. UI5 é simplesmente um nome curto para UI
development toolkit for HTML5. Trocando em miúdos, uma nada singela caixa de ferramentas para
construção de interfaces gráficas no padrão HTML5.

Logo, quando falamos de UI5 estamos falando de desenvolvimento front end.

Desenvolvimento Front End vs Back End

Se você já trabalhou com desenvolvimento web fora do mundo SAP, seja com ASP, PHP, .NET, Java
etc, tenho certeza que os termos front end e back end são muito claros para você.

Todavia, não podemos descartar o fato de quemuitas das pessoas que estão começando a se aventurar
no mundo UI5 tem uma única passagem no mundo SAP, principalmente com a linguagem de
programação ABAP (eu mesmo sou um exemplo). Apesar de serem pessoas de carne e osso que
trabalham com um sistema empresarial, estes termos acabam não sendo usados. Não os culpe… há
muitos outros termos na esfera SAP.

No mundo não-SAP, desenvolvedores podem ser divididos em dois grandes grupos: front end e back
end. O termo end tem muito a ver com a arquitetura da web, onde temos servidores (computadores
que hospedam sites, por exemplo) e clientes (o navegador da sua máquina, por exemplo). Portanto
temos duas pontas que se comunicam através de algum meio formando uma rede.

Grosseiramente falando, desenvolvedores front end trabalham com a parte “que o usuário vê”.
Em outras palavras, são desenvolvedores que tem em seus currículos palavras como HTML, CSS,
Javascript, jQuery, SVG e Ajax. Na verdade, estes profissionais nem sempre são desenvolvedores
originalmente. Designers gráficos são pessoas que sabem como levar a interface gráfica de uma
aplicação a outro patamar e isso pode vir a ser feito via linhas de código. Se você for hoje um
desenvolvedor front end você pode até se auto-intitular um “artista da era digital”.

Você não estaria errado se falasse que desenvolvedores back end são o contrário dos desenvolvedores
front end. Mas para ilustrar o que isso vem a ser pense nos desenvolvedores preocupados com banco
de dados, tabelas, SQL, complexidade de algoritmos, regra de negócio, UML. Desenvolvedores back
end geralmente tem outras palavras-chave em seus currículos com PHP, Java, .NET, PHP, Node.JS,
algum sistema de banco de dados, etc. Se você for um hoje um desenvolvedor back end você pode
até se auto-intitular um “matemático da era digital”.

Introdução ao UI5 2

Ambos são profissionais que trabalham em conjunto pois em uma aplicação web os dados exibidos
para um usuário no front end tipicamente são armazenados no back end.

E por que esta distinção? Porque simplesmente a vida é muito curta para se aprender tudo. Fazer
esta distinção faz as pessoas terem um foco profissional mais definido. Mas é claro que existem
desenvolvedores que são bons nos dois assuntos mas a bagagem técnica para chegar lá é bem
maior. Leonardo da Vinci era artista, matemático e muitas outras coisas. Com certeza ele usou de
sua criatividade para fins matemáticos e sua matemática para tornar suas obras mais próximas da
perfeição. Desenvolvedor full stack é um termo bastante usado para desenvolvedores que acabam
conhecendo pelo menos um pouco de quase tudo.

Estes termos são mais importantes para alguém que está recrutando um desenvolvedor do que
para os desenvolvedores em si. Independente qual o seu foco, ambos lados podem ser considerados
mundos (quiçá universos) a parte. O aprendizado em qualquer um deles será sempre constante para
quem for interessado.

De que lado está o desenvolvedor ABAP?

ABAP é uma linguagem de quarta geração. Seu propósito é criar aplicações de negócios e ponto
final. No ABAP é muito fácil criar uma tela ou fazer uma seleção no banco de dados. Tão fácil a
ponto de o mesmo profissional ser responsável pelas duas pontas. Por isso no mundo ABAP não
existe esta distinção. O mesmo desenvolvedor ABAP que cria um componente Web Dynpro (front
end) constrói as classes ou módulos de função (back end) que contém a regra de negócio.

Mas se você é um desenvolvedor ABAP hoje, não se surpreenda se daqui um tempo as vagas de
emprego exigirem de você conhecimentos em UI5. Espero que você esteja lendo este livro antes que
isso aconteça para estar preparado.

E o back end?

Você pode se perguntar: “Quer dizer que este livro não abordará nada relacionado a back end?”
O foco principal deste livro é o UI5 e portando a parte de front end de aplicações que usam esta
biblioteca. Mas não é ideal separar totalmente os dois lados pois um conversa com outro. Por isso
sempre que necessário abordaremos um pouco a parte de back end que é interessante para os nossos
fins. Se você é familiar ao ecossistema SAP já lhe adianto quem faria parte do back end: NetWeaver,
Gateway, Hana e HCP são apenas alguns exemplos de produtos da SAP que correspondem a parte
back end de aplicações.

SAPUI5 vs OpenUI5

UI5 é um termo curto e um pouco genérico. Isso porque na verdade a SAP não possui apenas um
toolkit de desenvolvimento para HTML5 mas sim dois. São eles o SAPUI5 e o OpenUI5. Quando

Introdução ao UI5 3

se diz “UI5” estamos querendo dizer qualquer um deles pois a principal diferença entre ambos é
comercial e não técnica.

A primeira biblioteca da para tal finalidade criada foi o SAPUI5. Ela foi criada em meados de 2011
e é entregue juntamente com alguns produtos da SAP como o NetWeaver, Hana e Hana Cloud
Platform. O SAPUI5 não tem nenhum custo adicional para os clientes da SAP mas para ter alguma
destas plataformas uma boa quantidade de dinheiro já foi gasta. O SAPUI5 não está disponível para
download abertamente.

O OpenUI5 é a versão open source do SAPUI5. Por questões legais e comerciais a SAP preferiu dar
um nome novo a última. O OpenUI5 segue a licença Apache 2.0 que permite que a biblioteca seja
usada, distribuída e alterada.

Tecnicamente falando, apesar de quase idênticas as duas bibliotecas divergem. A principal diferença
entre ambas é que o SAPUI5 possui uma API para criação de gráficos e o OpenUI5 não (pelo menos
até o momento). Todavia isso não quer dizer que não seja possível criar gráficos em uma aplicação
OpenUI5. Isso só quer dizer que será necessário utilizar uma biblioteca a parte para tal finalidade.

Um exemplo de biblioteca para criação de gráficos que vem ganhando fama a cada dia é o D3 (Data
Driven Documents). Mas é importante dizer que existem muitas outras. O D3 acaba sendo um pouco
mais especial pois ele é entregue juntamente com o OpenUI5, o que significa que você pode utilizá-lo
com um esforço um pouco menor nas suas futuras aplicações.

Existem outras bibliotecas javascript que são entregues juntamente com o UI5 que serão abordadas
mais adiante.

No mais, ambas bibliotecas são praticamente idênticas e dividem a mesma base de código. Como o
OpenUI5 está disponível publicamente de forma gratuita, usaremos ele no livro. Porém saiba que
aprendendo um você pode se considerar tão bom quanto no outro.

Para saber mais sobre as diferenças entre o OpenUI5 e o SAPUI5 leia o blog de Andreas
Kunz What is OpenUI5 / SAPUI5¹

Onde o UI5 é usado?

Boa parte do que a SAP desenvolve hoje em dia é feito em UI5 na parte do front end. Se você já ouviu
falar em alguns nomes como Gateway, SUP, Hana, Fiori ou HCP saiba que o UI5 está totalmente
inserido nestes contextos.

O ABAPer da próxima geração

O desenvolvedor ABAP da próxima geração, que começou com o advento do Hana, deve ter
conhecimentos em desenvolvimento Web. Saber programar em Web Dynpro não requer profundos

¹http://scn.sap.com/community/developer-center/front-end/blog/2013/12/11/what-is-openui5-sapui5

http://scn.sap.com/community/developer-center/front-end/blog/2013/12/11/what-is-openui5-sapui5
http://scn.sap.com/community/developer-center/front-end/blog/2013/12/11/what-is-openui5-sapui5

Introdução ao UI5 4

conhecimentos Web como padrões, protocolos, arquiteturas ou detalhes de navegadores. No caso
do UI5, é diferente. É preciso entender HTML, CSS, Javascript e ser familiar ao jQuery para então
começar a engatinhar no UI5. E é para este caminho que o ABAPer da próxima geração deve seguir.

No livro “Next generation ABAP development / Rich Heilman, Thomas Jung. — 2nd ed.“, que foi
escrito em 2011 (antes do UI5), dos 20 capítulos do livro 8 são de alguma forma relacionados a
desenvolvimento Web (MVC, web services, Web Dynpro, BSP). O livro “ABAP to the Future / Paul
Hardy” já aborda UI5. E se ainda não está convencido, já há um livro oficial da SAP Press exclusivo
de UI5: “Getting Started with SAPUI5 / Miroslav Antolovic”.

Como autor, não vejo problema algum de citar livros que podem ser entendidos como
“concorrentes” do livro que você lê neste prezado momento. Afinal, meus primeiros passos
no UI5 foram dados graças ao Miroslav e seu excelente livro. O foco deste livro e dos outros
supracitados é diferente mas se você está na dúvida, eu recomendo ler todos.

Ambiente de Desenvolvimento
Baixando o OpenUI5

Conforme dito anteriormente, usaremos o OpenUI5 ao invés do SAPUI5 para os exemplos, exercícios
e aplicações presentes no livro. Para fazer o download da biblioteca, visite a página oficial do
OpenUI5:

OpenUI5.org²

Abra a página “Download”. Você irá notar que há duas pacotes passíveis de serem baixados para a
versão mais recente: o pacote de Runtime e a SDK (sigla para Software Development Toolkit).

Pacote de Runtime

O pacote de Runtime contém toda a biblioteca do OpenUI5 que você pode vir a utilizar em uma
aplicação, seja ela voltada a desktop ou mobile.

Pacote com SDK

O pacote de SDK é mais completo. Além de incluir o pacote de runtime, o SDK contém a
documentação oficial do OpenUI5, guia do desenvolvedor, além de exemplos de códigos, aplicações
de demonstração e informações detalhadas sobre versionamento.

A SDK também está disponível online no endereço abaixo. Apesar
disso, é recomendável que você faça o download da SDK para trabalhar
localmente pois é muito mais rápido do que acessar a versão online.
https://openui5.hana.ondemand.com/#content/Overview.html³

²http://OpenUI5.org
³https://openui5.hana.ondemand.com/#content/Overview.html

http://OpenUI5.org
https://openui5.hana.ondemand.com/#content/Overview.html
http://OpenUI5.org
https://openui5.hana.ondemand.com/#content/Overview.html

Ambiente de Desenvolvimento 6

Servidores Web

Para explicar a importância de servidores web, precisamos falar um pouco sobre os navegadores.

Além de exibir páginas na internet, os navegadores também são capazes de acessar a estrutura de
diretórios do seu sistema operacional (se você nunca fez isso, experimente digitar “file://” na barra de
endereço). Além disso, é possível abrir páginas HTML diretamente a partir do sistema de arquivos
(por exemplo, file://C:/app/index.html).

O UI5 se baseia em páginas estáticas para criação de aplicações. Em outras palavras, todo conteúdo
criado pelo desenvolvedor é definido estaticamente em arquivos .html, .css e .js. Em um primeiro
momento você poderia imaginar que durante a construção das aplicações em UI5 bastaria abrir tais
arquivos .html diretamente no navegador utilizando o sistema de arquivos. Infelizmente isso nem
sempre irá funcionar. Há algumas situações nas quais seu navegador não permitirá que as coisas
saiam como planejado.

Para citar uma destas ocasiões, uma vez que sua aplicação interaja com algum servidor remoto,
por exemplo fazendo uma requisição HTTP GET ou POST, o navegador não permitirá a interação
do arquivo local (sendo acessado através de “file:/.”) com este servidor. Por uma questão técnica
e de segurança relacionada ao funcionamento dos navegadores, isso não é permitido. Há alguns
navegadores que disponibilizam configurações avançadas ou até mesmo add-ons para que este tipo
de bloqueio não seja realizado, mas tais alterações não são recomendáveis por questões de segurança.

Você pode fazer este teste abrindo o arquivo index.html da SDK do OpenUI5 a partir do seu
navegador. Este arquivo está presente na raiz da SDK uma vez que você extraia seu conteúdo. Como
você estará usado o sistema de arquivos, o navegador não exibirá o documento e irá gerar log de
erros que podem ser vistos usando a ferramenta de desenvolvedor no Google Chrome.

Erro: Requisições para outras origens não pode ser feito a partir do sistema de arquivos

Para contornar este problema relacionado a cerne dos navegadores, é necessário a utilização de um
servidor web, que pode ser remoto ou local.

Ambiente de Desenvolvimento 7

Se o servidor web for remoto, isso significa que quando você testar sua aplicação, você com certeza
estará usando um domínio e não a estrutura de diretórios local de seu computador - o que não
impede o navegador de fazer seu trabalho.

Caso o servidor web seja local, além de usar seu computador para criar os arquivos .html, .css, .js,
você também o usará para hospedar sua aplicação - da mesma forma que um serviço de hospedagem
faz com algum website que você tenha.

Usando um servidor web local, você pode acessar os arquivos estáticos no navegador através do seu
próprio endereço IP ou hostname. Na prática, não é necessário descobrir qual o endereço IP de seu
computador ou criar um hostname para ele.o O termo localhost é um hostname pré-definido pelos
sistemas operacionais e que significa “sua própria máquina”. Logo, você poderá acessar os arquivos
usando um endereço como o abaixo:

localhost:8080/app/index.html

8080 é um exemplo de porta muito utilizada por alguns servidores web. O número pode ser
praticamente qualquer um porém os números 8000, 8080 e 8888 são mais comuns de serem
usados.

Se você adora redes e prefere usar um endereço IP, você pode substituir “localhost” pelo IP
127.0.0.1

Neste momento, algumas perguntas pairam no ar:

• Devo utilizar um servidor web remoto ou local?

Você pode usar um outro outro ou até mesmo ambos (local para desenvolvimento e remoto
funcionando como um ambiente produtivo). A melhor escolha vai depender do ambiente e da
plataforma na qual você está desenvolvendo.

• Quais os servidores web remotos disponíveis?

Existe realmente uma infinidade. Uma rápida busca por “hospedagem web” no Google resultará em
milhões de resultados. Apesar de ser possível usar UI5 para criação de sites em nada relacionados a
plataformas SAP, seus propósito não é esse. Logo, as duas plataformas na esfera SAP mais famosas
que atuam como um servidor web remoto são o SAP HANA e o SAP NetWeaver. Ambas são
plataformas capazes de responder a requisições HTTP, e esta é a tarefa de um servidor web! É
totalmente possível desenvolver suas aplicações diretamente nestes servidores remotos e portanto
não há necessidade de se criar um servidor web local nestes casos.

Ambiente de Desenvolvimento 8

• Como tornar minha máquina um servidor local?

Mesmo que a aplicação que você esteja construindo venha a ser executada na plataforma SAPHANA
ou SAP NetWeaver, nada impede que você crie um servidor local para funcionar como um ambiente
de desenvolvimento. Para transformar seu computador em um servidor web você precisa instalar
algum software ou utilizar alguma biblioteca para tal finalidade.

• Quais as opções que tenho para transformar meu computador em um servidor web?

Várias. Algumas mais simples outras mais complexas. Veremos mais adiante o processo de prepara-
ção em alguns exemplos bem conhecidos.

Servidores Web em plataformas SAP

HANA

Assunto mais comentado no ecossistema SAP há alguns anos, o SAP HANA émais do que um banco
de dados in-memory, é uma plataforma. Um das capacidades desta plataforma (tanto em sua versão
on-premise quando em núvem) é a de funcionar como o servidor web. O SAP HANA permite que
aplicações sejam construídas diretamente nele usando uma IDE na núvem chamada SAP Web IDE
(discutida mais adiante).

Ambiente de Desenvolvimento 9

Página raiz do servidor web embutido na plataforma SAP HANA

É importante relembrar que a SDK do SAPUI5 é entregue juntamente com algumas plataformas
SAP.O HANA é um bom exemplo. Nele, o SDK do SAPUI5 será sempre disponibilizado de acordo
com o caminho abaixo:

urlServidorHana.com:porta/sap/ui5/1/sdk/

Ambiente de Desenvolvimento 10

SDK do SAPUI5 instalada em um servidor HANA

Ao usar o SDK nas suas aplicações, use sempre URLs relativas (exemplo:
“/sap/ui5/1/sdk/resources/sap-ui-core.js”) pois cada servidor terá seu próprio domínio mas
o caminho para a SDK será sempre o mesmo.

Dependendo do Support Package doHANA, o SAPUI5 pode vir pronto para ser usado ou empacotado
em uma delivery unit que deve ser importada para que o mesmo seja instalado. No último caso, a
importar da delivery unit pode ser feita utilizando o HANA Studio (Eclipse).

Ambiente de Desenvolvimento 11

Importando uma Delivery Unit contendo SAPUI5 - Passo 1

Ambiente de Desenvolvimento 12

Importando uma Delivery Unit contendo SAPUI5 - Passo 2

Ambiente de Desenvolvimento 13

Importando uma Delivery Unit contendo SAPUI5 - Passo 3

NetWeaver

O SAP NetWeaver (ABAP, Java ou em nuvem) também atua como um servidor web. Os serviços
disponíveis estão cadastrados na famosa transação SICF.

O UI5 é entregue como um add-on de ABAP, o que significa que não pode ser desinstalado.
Uma maneira simples de verificar se o UI5 está instalado em algum servidor é procurando pelo
componente “SAP_UI” na lista de componentes de software. Esta lista pode ser acessada usando o
SAP GUI indo em Sistemas > Status.

Ambiente de Desenvolvimento 14

Componente SAP_UI

O Support Package mínimo do NetWeaver necessário para a instalação do componente SAP_UI5
varia conforme a versão da plataforma.

Versão NetWeaver Support Package

700 21
701 06
702 06
731 04

Quando a instalação é realizada um serviço é gerado na transação SICF no caminho abaixo:

sap/public/bc/ui5_ui5/

Ambiente de Desenvolvimento 15

Transação SICF - Serviço UI5

O Eclipse (IDE discutida mais adiante) pode ser usado para criar aplicações SAPUI5 em um servidor
ABAP (NetWeaver). Neste caso quando o desenvolvedor testa a sua aplicação ele o estará fazendo
no ambiente de desenvolvimento que nada mais é que um servidor web remoto.

Para mais informações de como instalar o SAPUI5 nas diferentes plataformas SAP, leia a
OSS Note 1747308.

Ambiente de Desenvolvimento 16

Servidores Web em outras plataformas

Além de utilizar um servidor remoto, você pode tornar seu próprio computador em um servidor
web. Abaixo são listados alguns softwares que são capazes de realizar tal tarefa. Todos eles podem
ser usados para criar um servidor web produtivo mas aqui são listados como forma de criar um
ambiente de desenvolvimento local.

Mongoose

O Mongoose - Cesanta (code.google.com/p/mongoose/)⁴ provavelmente é o servidor web mais
simples de ser instalado e um dos mais leves existente. Está disponível Windows, MacOS e Linux.

Para fazer o download do Mongoose, use o endereço http://cesanta.com/mongoose.shtml⁵

Por padrão, oMongoose transforma o diretório em que ele está situado na pasta raiz do servidor web.
A porta padrão utilizada é a 8080. Abrindo o navegador com o endereço localhost:8080 é possível
ver os arquivos diretamente abaixo deste diretório.

É possível mudar o diretório padrão, porta e outras propriedades do Mongoose através da página de
edição de configuração (clicando com o direito no ícone do Mongoose na barra de aplicações). Com
isso será aberta a página abaixo

⁴https://code.google.com/p/mongoose/
⁵http://cesanta.com/mongoose.shtml

https://code.google.com/p/mongoose/
http://cesanta.com/mongoose.shtml
https://code.google.com/p/mongoose/
http://cesanta.com/mongoose.shtml

Ambiente de Desenvolvimento 17

Configuração do Mongoose - http://localhost:8080/__mg_mc#settings

Experimente mudar o diretório padrão para o diretório no qual você extraiu o SDK do OpenUI5.
Você poderá então ter acesso a documentação da biblioteca localmente.

Ambiente de Desenvolvimento 18

SDK do OpenUI5 acessada localmente

MAMP

O MAMP [mamp.info] é um servidor web de fácil utilização. O tamanho da aplicação é maior se
comparado ao Mongoose pois o MAMP inclui o PHP, um servidor MySQL e o servidor web em si
(que pode ser Apache ou Nginx).

Para fazer o download do MAMP, use o endereço http://www.mamp.info/en/downloads/⁶

Semelhante ao Mongoose, toda a sua configuração pode ser feita através de uma simples interface
gráfica.

⁶http://www.mamp.info/en/downloads/

http://www.mamp.info/en/downloads/
http://www.mamp.info/en/downloads/

Ambiente de Desenvolvimento 19

Configuração do MAMP

Apache Tomcat

O Apache Tomcat é um dos softwares para servidores web mais conhecidos. Ele é amplamente
utilizado por aplicações que usam tecnologia Java, em especial JavaServer Pages.

O processo de instalação e configuração do Tomcat é sensivelmente mais complexo que o do
Mongoose e MAMP. Ainda, o Apache Tomcat contém alguns pré-requisitos como o JRE (Java
Runtime Environment) instalado e algumas variáveis de sistemas definidas.

O principal motivo pelo qual o Apache Tomcat merece alguma atenção no contexto de UI5 é por
conta do Eclipse (uma IDE discutida mais adiante). Esta é uma das IDEs mais indicadas para a
construção de aplicações em UI5. No presente momento, a estrutura de diretórios de um projeto UI5
criado no Eclipse é idêntica a projetos voltados para a tecnologia JavaServer Pages. Se você utilizar o
Eclipse para criar projetos em UI5 a serem testadas usando o Apache Tomcat, é recomendável baixar
plugins para o Eclipse que se integram com o Apache Tomcat e que permitem configurar o ambiente
de teste da sua aplicação de forma automatizada.

Michael Herzog traz uma boa explicação de como montar seu ambiente de desenvolvimento usando
o Apache Tomcat integrado ao Eclipse em seu post How to install a basic development environment
for SAPUI5⁷ na SCN.

⁷http://scn.sap.com/community/developer-center/front-end/blog/2013/06/01/how-to-install-a-basic-development-environment-for-sapui5

http://scn.sap.com/community/developer-center/front-end/blog/2013/06/01/how-to-install-a-basic-development-environment-for-sapui5
http://scn.sap.com/community/developer-center/front-end/blog/2013/06/01/how-to-install-a-basic-development-environment-for-sapui5
http://scn.sap.com/community/developer-center/front-end/blog/2013/06/01/how-to-install-a-basic-development-environment-for-sapui5

Ambiente de Desenvolvimento 20

Node.js

Node.js é um plataforma escrita em JavaScript que nasceu há poucos anos atrás e que já possui um
universo ao seu redor. Com seu conceito de pacotes é possível criar aplicações em poucas linhas de
código JavaScript.

Há inúmeras formas de se criar um servidor web estático usando Node.js, uma das formas de fazer
isso é descrita por John Patterson em seu blog UI5 SDK on Node.js⁸. Apesar do termo ‘SAPUI5’ estar
na URL, o mesmo processo de aplica ao OpenUI5.

Outros servidores Web

Para tornar a lista um poucomais completa, abaixo estão servidores web bastante populares também.
Todos eles, são implementações do projecto Apache HTTP Server que incluem outras bibliotecas e
funcionalidades.

• ApacheHaus
• Apache Lounge
• BitNami WAMP Stack
• WampServer
• XAMPP

Hospedagens gratuitas

Os servidores que possuem o SAP HANA ou o SAP NetWeaver instalado provavelmente não são
desligados com frequência pelas empresas que os têm. Se você quiser criar o seu próprio servidor
web hospedando todas as suas aplicações UI5 e que esteja disponível o tempo todo basta instalar
algum dos softwares listados anteriormente em um computador que esteja ligado constantemente.
Além disso, você vai precisar de um domínio ou IP fixo para que seu servidor seja facilmente
alcançado. Obviamente isso tem um custo. Se você planeja ter centenas ou milhares de visitantes
simultaneamente, talvez seja vantajoso contratar um serviço de hospedagem a parte. Mas se na
verdade o que você precisa simplesmente é ter suas aplicações online para possuir uma espécie de
portfólio que será visto por uma pessoa ou outra, vale a pena conhecer algumas possibilidades de
hospedar suas aplicações UI5 gratuitamente.

Para saber um pouco mais da importante de ter um portfólio online, assista a primeira
metade da minha palestra Uso do GitHub para hospedar aplicações OpenUI5⁹ realizada no
SAP Inside Track São Paulo em 2014.

⁸http://scn.sap.com/community/developer-center/front-end/blog/2014/01/05/sapui5-sdk-on-nodejs
⁹https://www.youtube.com/watch?v=z0diquLx8Q0

http://scn.sap.com/community/developer-center/front-end/blog/2014/01/05/sapui5-sdk-on-nodejs
https://www.youtube.com/watch?v=z0diquLx8Q0
http://scn.sap.com/community/developer-center/front-end/blog/2014/01/05/sapui5-sdk-on-nodejs
https://www.youtube.com/watch?v=z0diquLx8Q0

Ambiente de Desenvolvimento 21

Google Drive

Além de servir como um backup dos seus arquivos na nuvem, o Google Drive permite que você
compartilhe arquivos com outras pessoas. Usando o conceito de compartilhamento do Google Drive,
é possível hospedar seus arquivos gratuitamente. A única desvantagem deste tipo de hospedagem é
que a URL gerada pelo Google é bem longa e não intuitiva. Isso porém não é um problema grande
uma vez que você pode ter um site/blog contendo links para suas aplicações ou até mesmo usar
algum serviço para criação de URLs curtas.

Maurício Lauffer explica na SCN em seu post Hospedando SAPUI5 app no Google Drive¹⁰ como
realizar tal procedimento (que também pode ser feito usando OpenUI5).

GitHub Pages

O GitHub¹¹ é “facebook” dos desenvolvedores. Se você trabalha com desenvolvimento mas nunca
ouviu falar nele, é possível que seu nome seja Lucas Silva e Silva ¹².

Algo que nem todos os usuários do GitHub conhecem é o GitHub Pages¹³. O GitHub pages é um
serviço gratuito que permite usar o GitHub como hospedagem de aplicações web. Em comparação
com o Google Drive, o GitHub tem uma grande vantagem de usar URLs com bons nomes (como por
exemplo http://fabiopagoti.github.io/NYT-Launchpad-UI5/¹⁴). Se você é familiar ao GitHub, saiba
que o nome da URL nada mais é do que seuUsuarioNoGitHub.github.io/repositorio. Logo você pode
ter um conjunto de páginas para cada um dos seus repositórios no GitHub.

Para saber como usar tal serviço, assista a segundametade daminha palestraUso doGitHub
para hospedar aplicações OpenUI5¹⁵ realizada no SAP Inside Track São Paulo em 2014.

IDEs

De posse do pacote de runtime ou (preferencialmente) do SDK do UI5 e de um servidor web
funcional, seja ele qual for, você está bem próximo de começar a colocar a mão na massa. O próximo
passo é escolher uma IDE(Integrated Development Environment) de sua preferência.

Se você não é familiar ao termo IDE, basta entender que ele é um software que facilita a construção
de outros softwares. Existem IDEs gratuitas ou pagas, famosas ou pouco conhecidas, flexíveis
ou engessadas e genéricas ou específicas no que se tange a linguagem de programação utilizada

¹⁰http://scn.sap.com/community/portuguese/blog/2014/08/28/hospedando-sapui5-app-no-google-drive
¹¹www.github.com
¹²Mundo Da Lua
¹³https://pages.github.com/
¹⁴http://fabiopagoti.github.io/NYT-Launchpad-UI5/app/WebContent
¹⁵https://www.youtube.com/watch?v=z0diquLx8Q0

http://scn.sap.com/community/portuguese/blog/2014/08/28/hospedando-sapui5-app-no-google-drive
www.github.com
https://pages.github.com/
http://fabiopagoti.github.io/NYT-Launchpad-UI5/app/WebContent
https://www.youtube.com/watch?v=z0diquLx8Q0
https://www.youtube.com/watch?v=z0diquLx8Q0
http://scn.sap.com/community/portuguese/blog/2014/08/28/hospedando-sapui5-app-no-google-drive
www.github.com
http://pt.wikipedia.org/wiki/Mundo_da_Lua
https://pages.github.com/
http://fabiopagoti.github.io/NYT-Launchpad-UI5/app/WebContent
https://www.youtube.com/watch?v=z0diquLx8Q0

Ambiente de Desenvolvimento 22

nas mesmas. Exemplos de IDEs bem conhecidas são o Eclipse, Netbeans, Visual Studio, Xcode e
SublimeText.

Quem vem do mundo ABAP está acostumado a utilizar a transação SE80 do SAP para criar
aplicações. Logo a SE80 é a IDE mais conhecida de quem trabalha com ABAP (apesar de
ser possível utilizar o Eclipse também já há alguns anos).

Bloco de Notas e outros processadores de texto

O bloco de notas é simplesmente um processador de texto e não uma IDE. Uma IDE conta com
recursos que facilitam a vida do desenvolvedor e qualquer processador de texto embutido num
sistema operacional está longe de prover tais recursos.

Mas vale mencionar que é possível criar aplicações UI5 usando o bloco de notas por exemplo pois
tudo que você irá criar são arquivos .html, .css e .js. Porém, você não será tão produtivo se comparado
a alguém usando uma IDE. Ainda, você terá que redobrar a atenção para não cometer erros de
digitação pois o bloco de notas não irá lhe avisar que você os cometeu.

Se o que você precisa é simplesmente fazer uma pequena alteração em algum arquivo já conhecido,
não há problema algum em fazer esta alteração usando uma processador de texto simples.

Eclipse

O Eclipse é uma IDE usada por desenvolvedores Java, PHP, Javascript, Go, etc. Uma das vantagens
dela é ser extremamente flexível através de seus plugins. A SAP começou a adotar o próximo Eclipse
como IDE em suas plataformas nomeio dos anos 2000, ganhando aindamais destaque com o advento
do SAP HANA.

Para fazer o download do Eclipse visite https://www.eclipse.org/downloads/¹⁶. Atualmente
as versões Luna (4.4) e Kepler (4.3) são suportadas.

Para criar aplicações em UI5 do Eclipse, recomenda-se instalar o SAPUI5 Tools. Este é um plugin que
adapta o Eclipse para o desenvolvimento de aplicações em UI5, criando wizards de projetos, code
completion, e outras funcionalidades.

Para fazer o download do SAPUI5 tools, visite a página https://tools.hana.ondemand.com¹⁷

¹⁶https://www.eclipse.org/downloads/
¹⁷https://tools.hana.ondemand.com/#sapui5

https://www.eclipse.org/downloads/
https://tools.hana.ondemand.com/#sapui5
https://www.eclipse.org/downloads/
https://tools.hana.ondemand.com/#sapui5

Ambiente de Desenvolvimento 23

SAP Web IDE

A fundação Eclipse possui um projeto chamado Orion¹⁸ que é a base para a IDE chamada SAP Web
IDE. O Orion tem por objetivo levar a experiência em desenvolvimento de software para a nuvem
o que significa ter uma IDE rodando no navegador.

O SAP HANA Cloud Platform (HCP) permite a utilização da SAP Web IDE para a construção de
aplicações baseadas em UI5. Além disso, a SAP Web IDE também é usada para a criação, extensão
e adaptação de aplicações Fiori.

No final de 2014 foi lançada uma versão da SAP Web IDE que pode ser instalada On-Premise
(localmente), principalmente para fins de teste. Wouter Lemaire demonstra como realizar tal
processo em seu post Start with the SAP Web IDE On-Premise¹⁹ na SCN.

Além do Eclipse a SAP Web IDE tende a ser as duas IDEs foco da SAP. Infelizmente a versão On-
Premise não conta com vários dos recursos disponíveis no HANA Cloud como code completion,
integração com SAP HANA Cloud, desenvolvimento de templates e plugins e outros.

SublimeText

O SublimeText²⁰ é uma IDE bem leve mas ao mesmo tempo muito poderosa. Semelhante ao
Node.js, esta aplicação trabalha com o conceito de pacotes que permitem flexibilizar muito seu
funcionamento. O SublimeText é tão poderoso que o autor deste livro optou por escrevê-lo nele
ao invés de utilizar processadores de texto como o Microsoft Word ou Google Docs.

Apesar de ser uma IDE extremamente popular, a SAP não contempla o SublimeText como parte da
sua estratégia de desenvolvimento. Contudo isso não impediu que a comunidade de desenvolvedores
SAP criassem pacotes e outros projetos para SublimeText que facilitam o desenvolvimento de
aplicações UI5. Como exemplo,

• SublimeUI5²¹
• Generator-OpenUI5²²
• UI5 SplitApp Boilerplate²³

JSBin e JSFiddle

Em breve!

¹⁸http://eclipse.org/orion/
¹⁹http://scn.sap.com/community/developer-center/front-end/blog/2014/12/24/start-with-the-sap-web-ide-on-premise
²⁰http://www.sublimetext.com/
²¹https://github.com/qmacro/SublimeUI5
²²https://github.com/saschakiefer/generator-openui5
²³https://github.com/6of5/UI5SplitApp-Boilerplate

http://eclipse.org/orion/
http://scn.sap.com/community/developer-center/front-end/blog/2014/12/24/start-with-the-sap-web-ide-on-premise
http://www.sublimetext.com/
https://github.com/qmacro/SublimeUI5
https://github.com/saschakiefer/generator-openui5
https://github.com/6of5/UI5SplitApp-Boilerplate
http://eclipse.org/orion/
http://scn.sap.com/community/developer-center/front-end/blog/2014/12/24/start-with-the-sap-web-ide-on-premise
http://www.sublimetext.com/
https://github.com/qmacro/SublimeUI5
https://github.com/saschakiefer/generator-openui5
https://github.com/6of5/UI5SplitApp-Boilerplate

Ambiente de Desenvolvimento 24

Navegadores

Suas aplicações UI5, por serem web, são executadas em navegadores. Diferentemente do desenvol-
vimento em ABAP, o desenvolvimento web preocupa-se com compatibilidade de clients. Logo, você
sempre deveria testar sua aplicação nos diferentes navegadores existentes: Chrome, Firefox, Safari,
Opera e o mais sem graça de todos, Internet Explorer.

E é usando o navegador que você irá testar, explorar e depurar sua aplicação UI5. Se você nunca
utilizou um navegador para depurar uma aplicação web, ficará maravilhado em como o Google
Chrome e o Mozilla Firefox foram criados pensando bastante em quem desenvolve software.

Google Chrome

O Google Chrome conta nativamente com um recurso chamado “Ferramentas do Desenvolvedor”,
através é possível saber tudo que se passa antes, durante e depois que uma página web é carregada
em sua tela.

Mozilla Firefox

O Mozilla Firefox hoje conta com recursos semelhantes ao Google Chrome mas nem sempre foi
assim. O uso add-on Firebug²⁴ que traz tais funcionalidades há anos ainda é muito comum entre
vários desenvolvedores amantes do Firefox.

Outras ferramentas importantes

POSTMAN

Para interagir com o back end, uma aplicação web utiliza chamadas HTTP a servidores remotos.
Estas chamadas devem ser feitas da maneira correta e na qual o servidor remoto exige.

O POSTMAN²⁵ é uma aplicação embarcada do Google Chrome que permite criar requisições HTTP
a partir de uma interface gráfica bem intuitiva. Ela permite também capturar a resposta do servidor
remoto é exibir em diferentes formatos.

Esta ferramenta ajuda muito desenvolvedores back end a testarem serviços criados nos servidores
bem como desenvolvedores front end a entenderem como as requisições devem ser montadas em
suas aplicações.

²⁴http://getfirebug.com/
²⁵https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm

http://getfirebug.com/
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
http://getfirebug.com/
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm

Ambiente de Desenvolvimento 25

XML Viewer

Muitas aplicações web se baseiam no formato XML para construção de suas telas, adaptação,
internacionalização, configuração e consumo de dados. Exibir arquivos num formato que facilite
a sua leitura é uma funcionalidade presente em grande parte das IDEs como o Eclipse. Contudo,
por vezes a maneira mais simples de exibir tal arquivo XML é diretamente no navegador, que por
padrão não costumam nos ajudar indentando o XML.

Isso porém pode ser resolvido através de extensões famosas do Google Chrome e do Mozilla Firefox
por exemplo. Particularmente, uso a extensão XV — XML Viewer²⁶ do Google Chrome.

JSON Formatter

O formato .json também é formato muito comum em aplicações web e que representa um objeto
em JavaScript. Da mesma forma que arquivos XML, arquivos .json podem ser formatados utilizando
extensões dos navegadores. Particularmente utilizo a extensão JSON Formatter²⁷ do Google Chrome.

²⁶https://chrome.google.com/webstore/detail/xv-%E2%80%94-xml-viewer/eeocglpgjdpaefaedpblffpeebgmgddk
²⁷https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa

https://chrome.google.com/webstore/detail/xv-%E2%80%94-xml-viewer/eeocglpgjdpaefaedpblffpeebgmgddk
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa
https://chrome.google.com/webstore/detail/xv-%E2%80%94-xml-viewer/eeocglpgjdpaefaedpblffpeebgmgddk
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa

Criando um Hello World em UI5
Uma vez que você tenha preparado seu ambiente de desenvolvimento, podemos começar a criar
aplicações em UI5. Ansioso? Eu também mal podia esperar por este momento!

Leia o Apêndice 1 para entender a estrutura de diretórios utilizada no livro

Como criaremos nossa primeira aplicação, vamos fazê-la o mais simples possível. Crie uma pasta
chamada ‘hello_world’ no diretório usado por seu servidor web local. Esta pasta armazenará o único
arquivo do nosso projeto. Em seguida, abra um editor de texto ou sua IDE favorita e crie um arquivo
chamado index.html. Nele, copie o conteúdo abaixo (o código será explicado mais adiante).

Hello World

1 <!DOCTYPE html>

2 <html>

3

4 <head>

5 <meta http-equiv='X-UA-Compatible' content='IE=edge' />

6 <title>Hello World</title>

7

8 <!-- Carregando o UI5 instalado localmente -->

9 <script id='sap-ui-bootstrap'

10 src='../../../openui5-sdk/resources/sap-ui-core.js'

11 data-sap-ui-theme='sap_bluecrystal'

12 data-sap-ui-libs='sap.ui.commons'>

13 </script>

14

15 <!-- Carregando o UI5 a partir de CDN

16 <script id='sap-ui-bootstrap'

17 src='https://openui5.hana.ondemand.com/resources/sap-ui-core.js'

18 data-sap-ui-theme='sap_bluecrystal'

19 data-sap-ui-libs='sap.ui.commons'>

20 </script>

21 -->

22

23 <script>

24

Criando um Hello World em UI5 27

25 var hello = new sap.ui.commons.TextView({

26 text: 'Hello World',

27 });

28

29 hello.placeAt('content');

30

31 </script>

32

33 </head>

34

35 <body class='sapUiBody'>

36 <div id='content'></div>

37 </body>

38

39 </html>

Com o servidor web ligado, use o navegador para acessar o arquivo index.html.

Lembre-se: o diretório no qual seus arquivos estarão deve ser alcançável a partir do diretório
configurado no seu servidor web.

O resultado esperado é exibido na imagem abaixo.

Criando um Hello World em UI5 28

Hello World em UI5

Note que na URL estamos usando o endereço localhost, o que indica que estamos acessando o arquivo
com ajuda do nosso servidor web local.

Estrutura básica de uma aplicação UI5

Vamos estudar um pouco o que se passa no nosso arquivo index.html

Por que index.html?
O nome do seu arquivo html poderia ser realmente qualquer um. Porém recomenda-se
o nome index pois isso indica o arquivo principal do diretório. Servidores web (como
o Mangoose) sempre procuram por um arquivo chamado index quando uma requisição
é feita usando o caminho incompleto para um arquivo (quando somente o diretório é
especificado).

HTML e <div> principal

Primeiramente vamos entender como HTML está estruturado.

Criando um Hello World em UI5 29

<!DOCTYPE html>

<html>

<head>

<meta http-equiv='X-UA-Compatible' content='IE=edge' />

<title>Hello World</title>

<!-- ... -->

</head>

<!-- ... -->

<body class='sapUiBody'>

<div id='content'></div>

</body>

</html>

Note que comentários no padrão HTML foram inseridos no lugar dos comandos não
pertinentes no momento.

• A linha <!DOCTYPE html> define que o documento HTML está em sua versão 5.
• O bloco entre <html> e </html> define o documento HTML em si.
• O bloco entre <head> e </head> define alguns metadados sobre o documento e seu título.
Apesar de não ser exibido no trecho acima, é nele foi inserida uma referência a outro arquivo
(bootstrap, discutido mais adiante).

• O bloco entre <body> e </body> define o conteúdo do documento HTML. O que está entre
estas tags será renderizado pelo navegador.

O bloco body é o mais importante neste momento. Independente se sua aplicação UI5 é simples
como um Hello World ou complexa como um aplicativo para acompanhamento de ordens de venda,
o conteúdo pode ser sempre este.

Tecnicamente falando, não há impedimento algumde adicionar tags entre o <div id='content'></div>

ou posterior a ele, porém via de regra não há esta necessidade. O div será populado dinamicamente
usando as classes disponíveis no UI5 via JavaScript.

Se você é familiar aoWeb Dynpro, você pode entender o <div id='content'></div> como
o container “rootUIElementContainer” de uma visão.

Criando um Hello World em UI5 30

Logo, você pode até criar um template de código contendo esta estrutura de HTML a ser usado em
todos seus projetos. Mas é uma boa ideia incluir também neste template o bootstrap do UI5.

Bootstrap

Em um arquivo HTML, é possível fazer referência a um arquivo JavaScript usando a tag <script>,
como o exemplo abaixo:

<head>

<script src="lib/jquery.js"</script>

</head>

Esta referência se faz necessária caso você queira usar os objetos existentes no arquivo .js dentro da
sua página HTML. É possível ainda especificar arquivos usando uma URL absoluta pertencente a
um outro domínio.

<head>

<script src="https://code.jquery.com/jquery-2.1.3.js"</script>

</head>

Quando uma referência como esta é processada pelo navegador, o mesmo realiza o download do
recurso (no caso, um arquivo JavaScript) a partir do servidor web que o possui. Logo, o servidor web
remoto apenas hospeda o código JavaScript mas não o executa. Esta tarefa é realizada pelo próprio
navegador. Em outras palavras, o processamento das páginas e seus scripts é feito no lado do cliente.

Esta é uma grande diferença em relação ao processamento de telas no ABAP, que realizado
pelo servidor NetWeaver.

O UI5 é composto por não um mais vários arquivos JavaScript (todos em versão convencional e
minificada - conceito explicado mais adiante). Felizmente não há necessidade de importar um a um
na sua página HTML. O Bootstrap nada mais é que do que a forma simples de inicializar o UI5.

Criando um Hello World em UI5 31

index.html

<!-- Carregando o UI5 instalado localmente -->

<script id='sap-ui-bootstrap'

src='../../../openui5-sdk/resources/sap-ui-core.js'

data-sap-ui-theme='sap_bluecrystal'

data-sap-ui-libs='sap.ui.commons'>

</script>

A tag <script> utilizada no bootstrap é um pouco mais elaborada. Ela possui algumas propriedades
adicionais exibidas na tabela abaixo:

Nome da propriedade Função

src Especificar o caminho do ‘core’ do UI5, que está presente
no caminho resources/sap-ui-core.js dentro do pacote de
runtime ou SDK

data-sap-ui-theme Tema usado na aplicação. O valor inserido nesta
propriedade afeta o .css que é usado na sua aplicação

data-sap-ui-libs Define quais os controles (elementos de tela) que serão
usados na sua aplicação.

Adapte a propriedade src de acordo com a localização do UI5 no seu computador. No caso
acima, o arquivo sap-ui-core.js está localizado três diretórios acima do diretórios no qual o
arquivo index.html está localizado.

Através do bootstrap é possível carregar apenas partes do UI5 que serão usados em seu código. Isso
evita sobrecarga na aplicação uma vez que o UI5 é compreende mais de 200 controles diferentes.

Note ainda que o bootstrap pode carregar o UI5 diretamente de uma CDN (Content Delivery
Network), usando o endereço abaixo:

SAPUI5 https://sapui5.hana.ondemand.com/resources/sap-ui-core.js
OpenUI5 https://openui5.hana.ondemand.com/resources/sap-ui-core.js

Por conveniência, deixei uma versão de bootstrap usando a CDN comentada no nosso arquivo
index.html.

https://sapui5.hana.ondemand.com/resources/sap-ui-core.js
https://openui5.hana.ondemand.com/resources/sap-ui-core.js

Criando um Hello World em UI5 32

index.html

<!-- Carregando o UI5 a partir de CDN

<script id='sap-ui-bootstrap'

src='https://openui5.hana.ondemand.com/resources/sap-ui-core.js'

data-sap-ui-theme='sap_bluecrystal'

data-sap-ui-libs='sap.ui.commons'>

</script>

-->

Para mais informações sobre o bootstrap, leia a página Initializing and Loading SAPUI5²⁸ (também
disponível na documentação da SDK).

Minificação

Para otimizar o tempo de download de arquivos JavaScript, é comum servidores web armazenarem
versões minificadas dos mesmos. Versão minificadas possuem o mesmo código fonte funcional,
porém sem quebras de linhas e espaços (que fazem com que o tamanho dos arquivos seja maior). A
biblioteca utilizada anteriormente também é disponibilizada em forma minificada: (repare no min
no nome do arquivo).

<head>

<script src="https://code.jquery.com/jquery-2.1.3.min.js"</script>

</head>

Código UI5 e Renderização

No caso da nossa aplicação Hello World, todo o código fonte UI5 estava presente na própria
página principal da aplicação. Essa organização não é indicada para aplicações mais complexas pois
desrespeita o conceitoMVC, o qual é característico doUI5. Contudo, vale a pena expor o que acontece
em detalhes quando se usa o UI5:

²⁸https://openui5.hana.ondemand.com/#docs/guide/a04b0d10fb494d1cb722b9e341b584ba.html

https://openui5.hana.ondemand.com/#docs/guide/a04b0d10fb494d1cb722b9e341b584ba.html
https://openui5.hana.ondemand.com/#docs/guide/a04b0d10fb494d1cb722b9e341b584ba.html

Criando um Hello World em UI5 33

index.html

<script>

var hello = new sap.ui.commons.TextView({

text: 'Hello World',

});

hello.placeAt('content');

</script>

O código acima cria um objeto do tipo TextView, presente no pacote sap.ui.commons, que foi
registrado para uso no bootstrap. Este objeto é armazenado na variável de referência “hello”, que
por sua vez é usada para chamada do método “placeAt”. O método placeAt renderiza o controle em
questão (no caso o TextView) em uma área do documento HTML. Note que ‘content’ é o id do único
<div> inserido no nosso arquivo.

Usando as ferramentas de desenvolvedor do Google Chrome ou Firefox, é possível ver que uma vez
que a página tenha sido completamente carregada, o corpo do documento HTML (bloco entre as
tags <body> </body>) foi modificado, resultando no trecho de código abaixo:

TextView renderizado

<div id="content" data-sap-ui-area="content">

<span

id="__view0"

data-sap-ui="__view0"

title="Hello World"

tabindex="-1"

role="document"

aria-invalid="false"

aria-disabled="false"

class="sapUiTv sapUiTvAlignLeft"

style="direction:inherit">

Hello World

</div>

Em suma, seu objeto TextView é representado em formato HTML conforme a notação acima.
Felizmente, usar UI5 acaba sendo bem mais intuitivo do que ter responsabilidade total sobre o
conteúdo das páginas.

Criando um Hello World em UI5 34

Não se preocupe em entender cada uma destas propriedades da tag . Entenda apenas que você
está criando páginas no padrão HTML5 de uma maneira mais alto nível e de maneira reutilizável.

Parabéns! Você acaba de criar um Hello World usando UI5.

Usando o Eclipse e o Paradigma MVC
Um Hello World é simplesmente o ponto de partida. Agora iremos criar aplicações um pouco mais
elaboradas. Por isso, a partir de agora usaremos o Eclipse com o SAPUI5 Tools devidamente instalado
para as demonstrações deste livro. Ele nos poupará algum trabalho ao criarmos uma aplicação nova
e também quando criamos novas visões.

Você pode usar outra IDE da sua preferência

Criando um projeto UI5 através do Eclipse

Abra o Eclipse e dentro na guia “Project Explorer”, clique com o botão direito e escolha a opçãoNew
> Other.

Criando um novo projeto

Um popup irá se abrir com o tipo de projeto que deve ser criado. Escolha a opção SAPUI5 Application
Development > Application Project.

Usando o Eclipse e o Paradigma MVC 36

Escolhendo o tipo do projeto

A opção exibida acima só estará disponível caso você tenha instalado o SAPUI5 Tools no
Eclipse. Por padrão ela não é disponibilizada.

Dê um nome para seu projeto. No caso, foi usado o nome ‘hello_eclipse’. Escolha também o local
onde o projeto será gravado. A opção Use default location salva seu projeto no workspace sendo
utilizado pelo Eclipse.

Workspaces são formas de organizar vários projetos relacionados. Como você irá criar
vários projetos UI5, recomenda-se ter um workspace para este fim.

OUI5 possui duas bibliotecas principais de controles. Falaremosmais destas bibliotecasmais adiante.
Você pode entender a biblioteca sap.ui.commons como um conjunto de controles desenhados para
aplicações que serão executadas em umDesktop e a biblioteca sap.m sendo voltada para dispositivos
móveis. Marque a primeira opção (sap.ui.commons). Também deixe marcado a opção “Create an
initial view e clique em Next.

Usando o Eclipse e o Paradigma MVC 37

Informações gerais sobre o novo projeto

Como você optou por criar uma visão inicial, é hora de dar um nome a mesma. Chamaremos nossa
visão demain. Como veremos no futuro, uma visão pode ser criada de diferentes formas (JavaScript,
XML, JSON e HTML) no UI5. Usaremos a opção padrão, que é JavaScript. Clique então em finish.
Caso você clique em next será exibido simplesmente um resumo do que foi escolhido durante o
wizard.

Usando o Eclipse e o Paradigma MVC 38

Definindo um nome para a visão inicial

OEclipse cria uma estrutura de diretórios para aplicações UI5 semelhante a usada em aplicações Java.
Por isso uma vez que você crie um projeto no Eclipse pela primeira vez é sugerido a mudança de
perspectiva para Java EE. Não é obrigatório estar nesta perspectiva para desenvolver suas aplicações
em UI5.

Usando o Eclipse e o Paradigma MVC 39

Project Explorer

Uma outra forma de ver os arquivos de seu novo projeto é incluindo a guia Navigator, através do
menuWindows > Show View > Navigator no Eclipse.

Navigator

Por fim, abra o arquivo index.html criado dentro do diretórioWebContent e ajuste a propriedade src
do bootstrap para o caminho correto do UI5 e em seguida teste a sua aplicação (lembre-se de usar
o localhost). Como a visão que foi gerada estará em branco, o melhor indicativo que o caminho do
UI5 está correto é o fundo azul típico do tema sap_bluecrystal.

Estrutura de uma aplicação UI5 usando MVC

Assim como oWeb Dynpro e muitas outras biblioteca JavaScript, o UI5 usa o conceitoMVC (Model-
View-Controller) para organizar uma aplicação. Em outras palavras, aplicações UI5 terão arquivos
diferentes para diferentes funções:

Usando o Eclipse e o Paradigma MVC 40

• Arquivos descrevendo o desenho das telas que serão renderizadas pelo navegador são
chamados de Views ou Visões

• Arquivos que fazem a ligação dos controles desenhados nas visões com a regra de negócio
(Model) são chamados de Controllers

• Tipicamente, a regra de negócio (Model ou Modelo) de uma aplicação UI5 fica no back end,
que pode ser representado por serviços XSJS no HANA, BAPIs no NetWeaver ou modelos
oData gerados pelo SAP Gateway ou SAP HANA, etc. Caso você precise implementar alguma
regra de negócio na camada de front end isso deve ser feitos em arquivos JavaScript totalmente
desacoplados das suas visões e controllers.

O termo Controller do paradigma MVC não será traduzido para controle para evitar
confusões com o termo controles de interface gráfica, que representa o que pode ser
desenhado dentro das visões como botões, campos de texto, links, etc.

Como estamos usando o Eclipse, temos a criação das visões e controllers simplificados. Vamos
analisar o que se passa no arquivo index.html. Você irá notar que a única diferença entre nosso Hello
World criado anteriormente e o projeto atual é o segundo bloco <script>, localizado diretamente
depois do bootstrap. Algumas quebras de linhas foram feitas para facilitar a leitura do código.

index.html

sap.ui.localResources("hello_eclipse");

var view = sap.ui.view({

id:"idmain1",

viewName:"hello_eclipse.main",

type:sap.ui.core.mvc.ViewType.JS

});

view.placeAt("content");

Ao invés de desenhar um TextView, um outro controle de interface gráfica está sendo criado: uma
visão. Por hora não se prenda a chamada sap.ui.localResources. Note que no final do bloco <script>
também há uma chamada aométodo placeAt que irá renderizar o conteúdo da visão dentro do <div>
principal da página.

Quando optamos por criar uma visão inicial main durante a criação do projeto, o Eclipse se
encarregou de criar uma pasta com o mesmo nome do projeto (hello_eclipse) diretamente abaixo
da pasta WebContent. É nesta pasta que as visões são definidas. Para cada visão, dois arquivos são
criados: um para de definir o conteúdo da visão (main.view.js) e o outro é o controller daquela visão
(main.controller.js).

Por hora não nos preocuparemos com o controller. Abra o arquivo main.view.js.

Usando o Eclipse e o Paradigma MVC 41

WebContent/hello_eclipse/main.view.js

1 sap.ui.jsview("hello_eclipse.main", {

2

3 /** Specifies the Controller belonging to this View.

4 * In the case that it is not implemented, or that "null" is returned, this View\

5 does not have a Controller.

6 * @memberOf hello_eclipse.main

7 */

8 getControllerName : function() {

9 return "hello_eclipse.main";

10 },

11

12 /** Is initially called once after the Controller has been instantiated. It is \

13 the place where the UI is constructed.

14 * Since the Controller is given to this method, its event handlers can be attac\

15 hed right away.

16 * @memberOf hello_eclipse.main

17 */

18 createContent : function(oController) {

19

20 }

21

22 });

Por padrão, uma visão é definida com dois métodos:

• getControllerName - responsável por definir qual o controller da visão em questão (Apesar de
não ser recomendável, um controller pode ser utilizado por várias visões)

• createContent - responsável pela definição dos controles de interface gráfica que serão
renderizados como parte daquela visão.

Além dos métodos, um id também definido para a visão. Este nome nada mais é do que o diretório
no qual a visão está inserida concatenado ao nome do arquivo.

Esta é uma boa hora para olhar a documentação da classe sap.ui.core.mvc.JSView dentro
da guia API Reference na documentação da SDK.

Vamos criar um botão dentro da nossa visão. Dentro do método createContent, insira o código
abaixo:

Usando o Eclipse e o Paradigma MVC 42

WebContent/hello_eclipse/main.view.js

createContent : function(oController) {

var but_press_me = new sap.ui.commons.Button({

text : "Press me!",

press : function() {

alert("Button was pressed");

}

});

return but_press_me;

}

Teste sua aplicação. Você deve ver um botão que ao clicado exibe um popup no navegador.

Botão disparando alerta

Veja a documentação da classe sap.ui.commons.Button na SDK.

Neste exemplo, além de definirmos a propriedade text para o botão, usamos também seu evento
press, que espera uma função JavaScript como argumento. Codificamos uma função que exibe o
popup diretamente no código da função.

É muito comum em JavaScript definirmos funções inline assim como fizemos no argumento do
evento press. Contudo, isso não é recomendável quando o código desta função começa a crescer.
Além de dificultar uma eventual manutenção, código JavaScript responsável por fazer validações,
escritas em logs e comunicação com oModel deve estar nos Controllers segundo o paradigma MVC.
Ter funções definidas diretamente na visão não é abominável, mas deve ser feito com critério.

Vamos então definir uma função chamada onPressButton no nosso controller conforme abaixo.

Usando o Eclipse e o Paradigma MVC 43

WebContent/hello_eclipse/main.controller.js

1 sap.ui.controller("hello_eclipse.main", {

2

3 /**

4 * Called when a controller is instantiated and its View controls (if available) \

5 are already created.

6 * Can be used to modify the View before it is displayed, to bind event handlers \

7 and do other one-time initialization.

8 * @memberOf hello_eclipse.main

9 */

10 // onInit: function() {

11

12 // },

13

14 /**

15 * Similar to onAfterRendering, but this hook is invoked before the controller's \

16 View is re-rendered

17 * (NOT before the first rendering! onInit() is used for that one!).

18 * @memberOf hello_eclipse.main

19 */

20 // onBeforeRendering: function() {

21 //

22 // },

23

24 /**

25 * Called when the View has been rendered (so its HTML is part of the document). \

26 Post-rendering manipulations of the HTML could be done here.

27 * This hook is the same one that SAPUI5 controls get after being rendered.

28 * @memberOf hello_eclipse.main

29 */

30 // onAfterRendering: function() {

31 //

32 // },

33

34 /**

35 * Called when the Controller is destroyed. Use this one to free resources and fi\

36 nalize activities.

37 * @memberOf hello_eclipse.main

38 */

39 // onExit: function() {

40 //

41 // }

Usando o Eclipse e o Paradigma MVC 44

42

43 onPressButton: function() {

44 alert("Button was pressed");

45 }

46

47 });

Note que um controller é definido com algumas funções comentadas. Estas funções são chamadas
automaticamente em momentos específicos do tempo de vida de uma visão, por exemplo quando
uma função é criada ou antes de começar o processo de renderização da mesma.

Precisamos agora usar a nossa função definida no controller no evento press do nosso botão. Volte
a visão main e modifique a criação do botão conforme abaixo:

WebContent/hello_eclipse/main.view.js

createContent : function(oController) {

var but_press_me = new sap.ui.commons.Button({

text : "Press me!",

press : oController.onPressButton

});

return but_press_me;

}

Talvez estemomento seja umdosmais importantes de todo o livro. Por isso não continue a leitura
sem entender o que está acontecendo. Agora, quando o usuário clica no botão o seu evento press é
chamado, conforme anteriormente. A diferença é que agora ao invés de definirmos a função sendo
executada diretamente no código da visão, estamos fazendo uma chamada a função onPressButton
do controller da visão.Quando a função usada como argumento da propriedade createContent é
chamada, uma referência ao controller da visão é passada como parâmetro. No exemplo acima,
esta referência tem o nome oController.

Esta é uma aplicação que usa o paradigma MVC. Lembre-se que a regra de negócio tipicamente
fica no servidor e neste caso não fizemos nenhuma chamada dentro do nosso controller. Chegará o
momento no qual faremos chamadas HTTP a servidores mas antes vamos estudar um pouco mais
em detalhes os diferentes tipos de controles de interface gráfica disponíveis.

Namespaces
JavaScript é uma linguagem orientada a objetos e fracamente tipada. Em outras palavras, variáveis
podem ter seus tipos alterados em tempo de execução. Ainda, não é necessário definir um tipo inicial
na declaração de uma variável. Em linguagens orientadas a objetos e tipadas como Java, C# e ABAP,
classes podem ser entendidas como tipos complexos, os quais podem ser usados para a criação de
referências. As referências por sua vez são usadas para a criação de objetos.

JavaScript por ser uma linguagem fracamente tipada não tem o conceito de classes (mas ainda sim
é orientada a objetos). Praticamente tudo que você vê num código JavaScript é um objeto (ou parte
de um).

Uma boa prática no mundo JavaScript é definir um único Namespace para todo o código da sua
aplicação. Em outras palavras, recomenda-se criar um “objeto principal” que mantém consigo todos
os outros objetos e funções responsáveis pelo código da aplicação. Isso é útil pois simplifica a
manutenção e também evita conflitos entre diferentes bibliotecas sendo usadas no mesmo projeto.

jQuery, provavelmente a bibliotecas mais conhecida e utilizada no mundo JavaScript usa um
namespace chamado $ (cifrão). Toda a funcionalidade do jQuery pode ser acessada através deste
objeto. Por exemplo, para saber a versão do jQuery usando sua API usa-se o código abaixo:

Além do $, pode-se também usar o namespace jQuery, que simplesmente é uma outra
referência ao mesmo objeto.

1 $.fn.jquery

2 // http://api.jquery.com/jquery-2/

Se forma semelhante, para se realizar uma requisição HTTP, a chamada abaixo pode ser usada:

1 $.get("config.json");

Usando o mesmo princípio, toda a biblioteca do UI5 está sob o namespace sap. Para provar que
sap é um objeto, abra a última aplicação UI5 criada usando as ferramenta de desenvolvedor do seu
navegador e digite no console:

1 typeof sap

Namespaces 46

O resultado exibido será object.

digitando typeof jQuery no console será exibido o retorno function (ou função). Não se
preocupe, funções em JavaScript são tipos especiais de objetos que podem ser invocados.

O UI5 é uma biblioteca nada modesta. Para segregar ainda mais as diferentes funcionalidades da
biblioteca, desenvolvedores da SAP optaram por criar namespaces dentro do namespace sap, cada
um com sua responsabilidade.

Diretamente abaixo do namespace sap, temos dois objetos, conforme a tabela abaixo.

Nome Função

sap.ui Namespace com diferentes funcionalidade de JavaScript feitas pela SAP
sap.m Conjunto de controles de interface gráfica próprios para dispositivos

móveis

Diretamente abaixo do namespace sap.ui, temos outros namespaces, conforme tabela abaixo:

Nome Função

sap.ui.app Contém classes depreciadas (Application e MockServer)
sap.ui.base Classes base de todo UI5, nada existiria se não fosse pelas

classes deste namespace
sap.ui.commons Conjunto de controles de interface gráfica próprios para

desktops
sap.ui.core Funcionalidades usadas por todo o UI5. Contém classes

bases de controles de interface gráfica, componentes e MVC
sap.ui.Device Classes para extração de dados sobre dispositivos e

funcionalidades suportadas pelos mesmos
sap.ui.layout Classes que permitem organizar o layout de controles de

interface gráfica
.

sap.ui.model API de Data Binding - A comunicação entre controllers e o
model geralmente será feita por classes deste namespace

sap.ui.suite Alguns controles de interface gráfica em estado experimental
sap.ui.table Controles para criação de tabelas próprias para exibição em

Desktops
sap.ui.test Classes com finalidade de testes
sap.ui.unified Controles unificados para Desktop e dispositivos móveis
sap.ui.ux3 Controles complexos de interface gráfica

Há outros namespaces com finalidades bem específicas mais afundo na estrutura acima.
Todos eles são marcados com “N” na documentação da SDK. Classes são marcadas com
“C”.

Namespaces 47

Classes e Namespaces na documentação da SDK

Dependências entre namespaces

Alguns namespaces possuem classes que dependem de outras para existirem (como no caso de
herança). Logo, antes que uma classe seja utilizada é importante que todas suas dependências já
tenham sido carregadas previamente. Felizmente, no que tange a dependência entre namespaces
criados pela SAP, isso é garantido.

Vejamos o bootstrap utilizado no projeto ‘hello_eclipse’. Nele, carregamos a biblioteca sap.ui.commons
para utilizarmos a classe sap.ui.commons.Button.

1 <script src="../../../../openui5-sdk/resources/sap-ui-core-all.js"

2 id="sap-ui-bootstrap"

3 data-sap-ui-libs="sap.ui.commons"

4 data-sap-ui-theme="sap_bluecrystal">

5 </script>

Caso este namespace não tivesse sido especificado no bootstrap, o botão não seria criado e o erro
abaixo ocorreria no console do navegador.

Uncaught TypeError: Cannot read property ‘Button’ of undefined

Namespaces 48

Observando a documentação da classe sap.ui.commons.Button, podemos perceber que ela é uma
extensão da classe abstrata sap.ui.core.Control, estando portanto em um outro namespace. Como
consequência disso, quando você importa o namespace sap.ui.commons no bootstrap, é necessário
que o namespace sap.ui.core seja carregado de antemão.

Podemos verificar quais as partes da biblioteca estão carregados usando o método getLoadedLibra-
ries da classe sap.ui.core.Core usando a chamada abaixo:

1 sap.ui.getCore().getLoadedLibraries()

Ao executar tal chamada no console do navegador, temos a saída abaixo:

1 Object {

2 sap.ui.core: Object,

3 sap.ui.layout: Object,

4 sap.ui.commons: Object,

5 __proto__: Object

6 }

Percebemos então que apesar de não especificar explicitamente, as dependências do namespace
sap.ui.commons foram carregados na aplicação.

O UI5 utiliza-se de diversas outras bibliotecas JavaScript. Uma delas é o Require.js²⁹ que
tem por função simplificar a inicialização de arquivos e módulos JavaScript.

sap.ui.Device - Capturando informações sobre
dispositivo

Antes de estudarmos os dois namespaces mais famosos (sap.m e sap.ui.commons), vamos fazer uma
pequena aplicação capaz de exibir informações sobre o sistema e o navegador sendo usados pelo
usuário.

É muito comum no JavaScript a verificação de informações sobre o dispositivo uma vez
que algumas funcionalidades podem não ser suportadas por navegadores específicos.

Crie um novo projeto no Eclipse com seguintes propriedades:

²⁹http://requirejs.org

http://requirejs.org
http://requirejs.org

Namespaces 49

Nome do projeto device
Biblioteca principal sap.ui.commons
Criar visão inicial? Sim
Nome da visão inicial device_info
Paradigma de programação JavaScript

Em seguida, ajuste o bootstrap para o caminho correto do UI5.

1 <!DOCTYPE HTML>

2 <html>

3 <head>

4 <meta http-equiv="X-UA-Compatible" content="IE=edge">

5 <meta http-equiv='Content-Type' content='text/html;charset=UTF-8'/>

6

7

8 <script src="../../../../openui5-sdk/resources/sap-ui-core.js"

9 id="sap-ui-bootstrap"

10 data-sap-ui-libs="sap.ui.commons"

11 data-sap-ui-theme="sap_bluecrystal">

12 </script>

13 <!-- add sap.ui.table,sap.ui.ux3 and/or other libraries to 'data-sap-ui-libs' \

14 if required -->

15

16 <script>

17 sap.ui.localResources("device");

18 var view = sap.ui.view({

19 id:"iddevice_info1",

20 viewName:"device.device_info",

21 type:sap.ui.core.mvc.ViewType.JS

22 });

23 view.placeAt("content");

24 </script>

25

26 </head>

27 <body class="sapUiBody" role="application">

28 <div id="content"></div>

29 </body>

30 </html>

Para evitarmos de abordar assuntos que não serão explicados em detalhes por hora, nossa aplicação
terá apenas um TextView (semelhante ao nosso Hello World). Este TextView será preenchido com
algumas informações do dispositivo assim que a visão “device_info” for inicializada.

Na sua visão, crie um TextView conforme abaixo.

Namespaces 50

WebContent/device/device_info.view.js

sap.ui.jsview("device.device_info", {

/** Specifies the Controller belonging to this View.

* In the case that it is not implemented, or that "null" is returned, this View\

does not have a Controller.

* @memberOf device.device_info

*/

getControllerName : function() {

return "device.device_info";

},

/** Is initially called once after the Controller has been instantiated. It is \

the place where the UI is constructed.

* Since the Controller is given to this method, its event handlers can be attac\

hed right away.

* @memberOf device.device_info

*/

createContent : function(oController) {

return new sap.ui.commons.TextView("txv_device_info");

}

});

Não podemos atribuir o valor do TextView estaticamente no código usando a propriedade text por
as informações do dispositivo serem desconhecidas. Por este motivo, demos um “id” para nosso
TextView afim de que consigamos capturá-lo posteriormente no controller, onde será capturado os
detalhes do mesmo.

No seu controller, insira o código abaixo:

WebContent/device/device_info.controller.js

sap.ui.controller("device.device_info", {

/**

* Called when a controller is instantiated and its View controls (if available) \

are already created.

* Can be used to modify the View before it is displayed, to bind event handlers \

and do other one-time initialization.

* @memberOf device.device_info

*/

Namespaces 51

onInit: function() {

var browser_name = this.getBrowserName(sap.ui.Device.browser.name);

var os_name = this.getOSName(sap.ui.Device.os.name);

var system_name;

// Refactor: Using generic functions

// browser_name = this.getGenericName(

// sap.ui.Device.browser.name,

// sap.ui.Device.browser.BROWSER

//);

//

// os_name = this.getGenericName(

// sap.ui.Device.os.name,

// sap.ui.Device.os.OS

//);

system_name = this.getGenericName(

true,

sap.ui.Device.system

);

sap.ui.getCore()

.byId("txv_device_info")

.setText(

"Browser: " + browser_name + "\n" +

"OS: " + os_name + "\n" +

"System Name:" + system_name

);

},

/**

* Similar to onAfterRendering, but this hook is invoked before the controller's \

View is re-rendered

* (NOT before the first rendering! onInit() is used for that one!).

* @memberOf device.device_info

*/

// onBeforeRendering: function() {

//

// },

/**

Namespaces 52

* Called when the View has been rendered (so its HTML is part of the document). \

Post-rendering manipulations of the HTML could be done here.

* This hook is the same one that SAPUI5 controls get after being rendered.

* @memberOf device.device_info

*/

// onAfterRendering: function() {

//

// },

/**

* Called when the Controller is destroyed. Use this one to free resources and fi\

nalize activities.

* @memberOf device.device_info

*/

// onExit: function() {

//

// }

/**

* Given a browser abbreviation, get its name

*/

getBrowserName: function(browser_short_name){

for (var browserName in sap.ui.Device.browser.BROWSER) {

if (browser_short_name == sap.ui.Device.browser.BROWSER[browserName]) {

return browserName.toLowerCase();

}

}

},

/**

* Given a OS abbreviation, get its name

*/

getOSName: function(os_short_name){

for (var osName in sap.ui.Device.os.OS) {

if (os_short_name == sap.ui.Device.os.OS[osName]) {

return osName.toLowerCase();

}

}

},

/**

* Given a enum and a value, get the object property whose value is equal that \

Namespaces 53

value

*/

getGenericName: function(stuff_short_name, stuff_enum){

for (var stuffName in stuff_enum) {

if (stuff_short_name == stuff_enum[stuffName]) {

return stuffName.toLowerCase();

}

}

}

});

Usamos a função onInit para carregarmos o valor do TextView uma vez que a visão seja carregada.
Primeiro, precisamos capturar no controllero objeto que representa nosso TextView. Uma das
maneiras mais fáceis de se fazer isso é usando ométodo byId do retorno da chamada sap.ui.getCore().

Uma vez que tenhamos a referência do TextView, chamamos o método setText que é capaz de alterar
tal propriedade do controle. O argumento passado para o setter é o resultado de uma concatenação
com as informações do dispositivo já carregadas. O código que antecede a chamada do método
setText é um exemplo de uso do namespace sap.ui.Device, que é capaz de capturar informações
sobre o dispositivo. As três informações que requemos estão armazenadas nas propriedades abaixo:

• sap.ui.Device.browser.name - Nome abreviado do navegador
• sap.ui.Device.os.name - Nome abreviado do sistema operacional
• sap.ui.Device.system - informação do tipo de sistema sendo usado (Desktop, Celular, Tablet)

Pela maneira que o UI5 armazena informações nos objetos (de forma abreviada), foram definidos
três métodos adicionais no controller que ajudarão a identificar mais facilmente as informações que
desejamos:

• getBrowserName - Dado uma abreviação de navegador, retorna o nome do mesmo. Exemplo:
Dado “cr”, retorna “CHROME”

• getOSName - Dado uma abreviação de sistema operacional, retorna o nome do mesmo.
Exemplo: Dado “mac”, retorna “MACINTOSH”

• getGenericName - Como o código dos métodos acima é similar, foi criado um método
genérico para fins de estudo - Eis um grande exemplo de reutilização de código dentro de
um controller

Como resultado, temos a saída abaixo:

Namespaces 54

Informações sobre dispositivos

Use a opção de emulação do Google Chrome para simular um smartphone e um tablet
executando a aplicação.

Namespaces 55

Informações sobre dispositivos

Bibliotecas de terceiros

Os outros namespaces inclusos no UI5 são tão importantes e compreensivos que merecem capítulos
especiais no livro. Por hora, vale mencionar também algumas bibliotecas de terceiros (i.e. não criadas
pela SAP) que são usadas internamente no UI5.

Todas as bibliotecas de terceiros podem ser encontradas dentro do pacote de runtime ou
SDK no caminho resources/sap/ui/thirdparty. (leia arquivo readme.html desta pasta
para mais detalhes).

Namespaces 56

Biblioteca Função Copyright

Caja-HTML-Sanitizer³⁰ Biblioteca para garantir
segurança ao embutir
HTML, CSS e

Google

JavaScript de bibliotecas
terceiras em uma aplicação

Crossroads³¹ Sistema de roteamento -
Abstrai caminhos de
navegação reduzindo

Miller Medeiros

assim complexidade do
código

D3³² Criação de documentos
orientado por dados

Michael Bostock

(principalmente usada
para gráficos)

DataJS³³ Biblioteca para criação de
aplicações web
centralizada em dados

Microsoft

(vindos de JSON e oData).
É a base para o
sap.ui.model

Flexie³⁴ CSS3 Flexible Box Model
cross-browser

Richard Herrera

HandleBars³⁵ Construção de templates
semânticos

Yehuda Katz

Hasher³⁶ Conjunto de funções para
controlar o histórico do
navegador

Miller Medeiros

para aplicações rich media

URI³⁷ Biblioteca para trabalhar
com URIs

Rodney Rehm

iScroll³⁸ JavaScript Scroller Matteo Spinelli

³⁰https://code.google.com/p/google-caja/
³¹http://millermedeiros.github.com/crossroads.js
³²http://d3js.org/
³³http://datajs.codeplex.com/
³⁴http://flexiejs.com/
³⁵http://handlebarsjs.com/
³⁶https://github.com/millermedeiros/hasher/
³⁷http://medialize.github.io/URI.js/
³⁸http://iscrolljs.com/

https://code.google.com/p/google-caja/
http://millermedeiros.github.com/crossroads.js
http://d3js.org/
http://datajs.codeplex.com/
http://flexiejs.com/
http://handlebarsjs.com/
https://github.com/millermedeiros/hasher/
http://medialize.github.io/URI.js/
http://iscrolljs.com/
https://code.google.com/p/google-caja/
http://millermedeiros.github.com/crossroads.js
http://d3js.org/
http://datajs.codeplex.com/
http://flexiejs.com/
http://handlebarsjs.com/
https://github.com/millermedeiros/hasher/
http://medialize.github.io/URI.js/
http://iscrolljs.com/

Namespaces 57

Biblioteca Função Copyright

jQuery Mobile³⁹ Sistema de interface
voltado para aplicações
web responsivas

jQuery Foundation

executadas em dispositivos
móveis

JSZip⁴⁰ Classe para geração e
leitura de arquivos .zip

Stuart Knightley

LESS⁴¹ Pré-processados CSS
(adiciona funcionalidades
ao CSS)

Alexis Sellier

Mobify/Scooch⁴² Carrosel de imagens ou
outro conteúdo

Mobify

Punycode⁴³ Conversor Punycode Mathias Bynens

qUnit⁴⁴ Testes unitários em
JavaScript

jQuery Foundation

qUnit Reporter jUnit⁴⁵ Plugin de qUnit para
produzir relatórios de teste
em formato XML

jQuery Foundation

Require⁴⁶ Carregador de módulos e
arquivos. É usado para
carregar

The Dojo Foundation

dependências no UI5

Signals⁴⁷ Sistema de eventos e
mensagens em JavaScript

Miller Medeiros

Sinon⁴⁸ Espiões, stubs e mocks de
teste em JavaScript

Christian Johansen

³⁹http://jquerymobile.com
⁴⁰http://stuartk.com/jszip
⁴¹http://lesscss.org
⁴²https://mobify.github.io/scooch/
⁴³https://github.com/bestiejs/punycode.js
⁴⁴http://qunitjs.com
⁴⁵https://github.com/jquery/qunit-reporter-junit
⁴⁶http://github.com/jrburke/requirejs
⁴⁷http://millermedeiros.github.com/js-signals/
⁴⁸https://github.com/cjohansen/Sinon.JS

http://jquerymobile.com
http://stuartk.com/jszip
http://lesscss.org
https://mobify.github.io/scooch/
https://github.com/bestiejs/punycode.js
http://qunitjs.com
https://github.com/jquery/qunit-reporter-junit
http://github.com/jrburke/requirejs
http://millermedeiros.github.com/js-signals/
https://github.com/cjohansen/Sinon.JS
http://jquerymobile.com
http://stuartk.com/jszip
http://lesscss.org
https://mobify.github.io/scooch/
https://github.com/bestiejs/punycode.js
http://qunitjs.com
https://github.com/jquery/qunit-reporter-junit
http://github.com/jrburke/requirejs
http://millermedeiros.github.com/js-signals/
https://github.com/cjohansen/Sinon.JS

Namespaces 58

Biblioteca Função Copyright

SwipeView⁴⁹ Carrosséis infinitos para
dispositivo móveis

Matteo Spinelli

vkBeautify⁵⁰ Minificador e formatador
(pretty printer) de código

Vadim Kiryukhin

XML, JSON, CSS e SQL

Scroller⁵¹ Efeito de panning e zoom
para DOM e Canvas

Zinga

Note que nem todas estas bibliotecas são carregadas automaticamente no bootstrap. Você pode
importar qualquer uma delas usando uma tag <script> convencional ou utilizar a chamada abaixo:

Importando biblioteca D3

jQuery.sap.require("sap.ui.thirdparty.d3");

A vantagem da chamada acima é que ela pode ser usada para criação de dependências entre objetos.
Caso você queira implementar um controle de interface gráfica customizado que necessite o d3
inicializado, seu controle só será carregado uma vez que o d3 o seja previamente.

Veja a documentação do método jQuery.sap.require.

As bibliotecas de terceiros vistas no capítulo anterior também são entregues em versões minificadas.
Caso precise depurá-las, use o mesmo princípio aplicado no bootstrap.

Importando biblioteca D3

jQuery.sap.require("sap.ui.thirdparty.d3-dbg");

⁴⁹http://cubiq.org/swipeview
⁵⁰http://www.eslinstructor.net/vkbeautify/
⁵¹http://zynga.github.io/scroller/

http://cubiq.org/swipeview
http://www.eslinstructor.net/vkbeautify/
http://zynga.github.io/scroller/
http://cubiq.org/swipeview
http://www.eslinstructor.net/vkbeautify/
http://zynga.github.io/scroller/

Depurando um projeto em UI5
O código que escrevemos em UI5 é processado no front end. Podemos depurar nossa aplicação
usando as ferramentas de desenvolvedor do Google Chrome ou Firefox por exemplo.

Depurando controller usando o Google Chrome

Desenvolvedores ABAP estão acostumados a depurar código da SAP em alguns de seus produtos
como o SAP ECC, SAP GRC, SAP CRM, etc. Esta é uma tarefa que poucos adoram mas que muitas
vezes é necessária para identificar a causa raiz de algum incidente ou até mesmo desvendar como o
sistema faz algum tipo de lógica que (tomara) possa ser reutilizado em uma aplicação customizada.

Também é possível depurar o código fonte do UI5 mas isso geralmente envolve uma pequena

Depurando um projeto em UI5 60

mudança no código do bootstrap. Como via de regra as partes da biblioteca UI5 são carregadas
a partir de arquivos minificados, fica difícil saber o que está se passando internamente.

Depurando sap.ui.core minificado - Péssima ideia

Muito código está namesma linha (note a barra de rolagem horizontal). Isso otimiza emuito
o tempo que o arquivo sap-ui-core é baixado, mas impossibilita que ele seja compreendido.
O arquivo original possui mais de 40mil linhas enquanto a versãominificada possui apenas
150.

Os arquivos não-minificados do UI5 tem o sufixo -dbg em seu nome. Logo, basta alterar o nome
do arquivo no bootstrap e poderemos entender em mais detalhes o que acontece internamente na
biblioteca.

1 <script src="../../openui5-sdk/resources/sap-ui-core-dbg.js"

2 id="sap-ui-bootstrap"

3 data-sap-ui-libs="sap.ui.commons"

4 data-sap-ui-theme="sap_bluecrystal">

5 </script>

Depurando um projeto em UI5 61

Depurando sap.ui.core não-minificado - Boa ideia

Agora que você já sabe como depurar, que tal praticar estudando a função getGenericName do
projeto device no depurador?

Controles de UI
Controles de UI ou controles de interface gráfica são os elementos que o usuário usa como
referência ou interage em uma aplicação: campos de entrada, rótulos, botões, botões de rádio,
checkboxes, e muitos outros. Estes na verdade são apenas alguns exemplos dos controles mais simples
disponíveis. O UI5 possui 7 diferentes tipos de controles:

• Controles simples - Label, Button, Link, TextView, entre outros
• Armazenadores de valores (ou Value Holders) - ComboBox, ListBox, CheckBox, RadioBut-
tonGroup, entre outros

• Leiautes - Formas de organizar outros controles: HorizontalLayout, VerticalLayout, Matrix-
Layout, entre outros

• Complexos - ColorPicker, Table, Menu, entre outros
• Dialogs - Dialog e MessageBox
• UX3 - Semelhantes a controles complexos: QuickView, CollectionInspector, Shell, entre outros
• Outros - Callout, RichTooltip, LocalBusyIndicator

Herança de controles

Todos os controles pré-definidos noUI5 direta ou indiretamente herdamda classe abstrata sap.ui.core.Control.
O método placeAt utilizado na nossa primeira aplicação está definido neste classe. Logo, todos os
controles tem acesso a este método sendo possível inseri-los no DOM manualmente.

Alguns controles foram criados voltados paraDesktops onde a entrada de informações émais simples
pelo tamanho dos monitores, praticidade do teclado e precisão do mouse. A grande maioria destes
controles está do namespace sap.ui.commons. Outros controles foram criados para dispositivos
móveis, onde a área de tela é menor e a interação do usuário não é tão precisa. Estes controles
fazem parte do namespace sap.m. Mais recentemente, foram desenvolvidos controles capazes de se
adaptar paraDesktops ou dispositivos móveis conforme necessidade. Os últimos estão no namespace
sap.ui.unified.

Abaixo é exibido um diagrama com a base da herança até algumas classes de controle de diferentes
tipos.

Controles de UI 63

Controles de interface gráfica

Elementos versus Controles

Elementos são partes de um controle complexo. Observando a imagem acima, vemos a classe
sap.ui.core.Element sendo herdada pela classe sap.ui.core.Control. Por não serem completos, ele-
mentos não podem ser renderizados por si só.

Veja o construtor da classe na documentação da SDK.

Um exemplo de elemento é o sap.ui.table.Column, que representa uma coluna de um objeto do tipo
sap.ui.table.Table, que por sua vez é um controle.

Controles de UI 64

ManagedObject

A classe mãe da sap.ui.core.Element representa um objeto “manipulável”. Estamos falando da classe
sap.ui.base.ManagedObject (veja a imagem da herança das classes).

Esta classe é de extrema importância pois ela define os tipos de propriedades que cada objeto abaixo
de si na herança pode possuir (incluindo os controles de interface gráfica).

Tipos de propriedades de umManagedObject

Ao criar um objeto do tipo sap.ui.base.ManagedObject, temos a opção de definir suas propriedades,
que são divididas em quatro diferentes tipos:

• Simples
• Agregações
• Associações
• Eventos

Vamos usar alguns controles de interface gráfica para exemplificar os diferentes tipos de proprieda-
des de um objeto do tipo sap.ui.base.ManagedObject.

Veja o construtor da classe na documentação da SDK.

Propriedades Simples

Propriedades simples possuem um e somente um valor com tipo simples (números, booleanos, e
strings). Como exemplo, temos a propriedade text da classe sap.ui.commons.TextView.

text:Exemplo de propriedade simples

var hello = new sap.ui.commons.TextView({

text: 'Hello World',

});

Propriedades de Agregação

Propriedades de Agregação são composições de um conjunto de outros objetos. Estes conjuntos
podem ter um limite de um oumais objetos dependendo da propriedade em questão. Como exemplo,
temos a propriedade content da classe sap.ui.core.mvc.View. Quando criamos uma visão do tipo
JavaScript pelo Eclipse, esta propriedade é preenchida pelo método createContent.

Controles de UI 65

Exemplo de propriedade de agregação

createContent : function(oController) {

return new sap.ui.commons.TextView("txv_device_info");

}

Outra maneira de preencher este tipo de propriedade é diretamente na instanciação de um novo
objeto. Veja o seguinte exemplo. Nele, temos um controle do tipo sap.ui.commons.RadioButtonGroup
que possui a propriedade de agregação items. Esta propriedade recebe um array de objetos do tipo
sap.ui.core.Item.

items:Exemplo de agregação preenchida na instanciação

var rad_group =

new sap.ui.commons.RadioButtonGroup({

items : [

new sap.ui.core.Item({

text : "Item 1",

}),

new sap.ui.core.Item({

text : "Item 2",

})

]

});

Propriedades de Associação

Alguns controles estão associados a outros. Diferentemente de agregações que podem aceitar um
conjunto de objetos, uma propriedade do tipo associação somente pode ser preenchida por um e
somente um objeto.

Associações múltiplas não são suportadas ainda. Isso pode ser feito no futuro.

Umexemplo simples de propriedade do tipo associação pode ser encontrado na classe sap.ui.commons.Label.
Esta classe possui a propriedade labelFor que faz a associação do Label com algum outro (e somente
um outro) controle qualquer.

Controles de UI 66

labelFor:Exemplo de propriedade de associação

var lab_name = new sap.ui.commons.Label({

text : "Name",

labelFor : txf_name

});

var txf_name = new sap.ui.commons.TextField();

Propriedades de eventos

Muitos objetos são capazes de disparar eventos. Controles que possuem eventos são aqueles nos
quais o usuário realizará alguma ação como um clique com o mouse ou toque com o dedo (no caso
de dispositivos touch).

Propriedades de eventos são aquelas cujo valor são funções.

Um bom exemplo de uma propriedade de evento é encontrado na classe sap.ui.commons.Button.
Esta classe possui a propriedade press, que recebe uma função. A chamada a esta função será feita
quando o evento ocorrer. No caso, quando o usuário clica no botão.

press:Exemplo de propriedade de evento

var but_press_me = new sap.ui.commons.Button({

text : "Press me!",

press : function() {

alert("Button was pressed");

}

});

Lembre-se que não é ideal definir funções com bastante código fonte nas visões pois isso fere o
paradigma MVC.

Um bom uso de funções definidas em visões são funções anônimas que funcionam como
wrappers de funções parametrizáveis definidas no controller.

Controles de UI 67

press:Chamada de evento em método do controller

var but_press_me = new sap.ui.commons.Button({

text : "Press me!",

press : function() {

alert("Button was pressed");

}

press : oController.onPressButton

});

Esteja sempre atento ao valor da referência this dentro das funções. Uma das maiores
dificuldades de iniciantes em JavaScript é assumir valores desta referência indevidamente.

Controles Simples
Controles simples são amplamente utilizados em aplicações. A maioria deste tipo de controle não
permite entrada do usuário, servindo apenas para exibição de alguma informação (e.g. controles
TextViews e Image). Outros tem o objetivo de dar ao usuário o poder de realizar alguma ação (e.g.
controles Button e Link).

Uma forma interativa de navegar por todos os controles simples é através da página
#content/Controls/SimpleControls/index.html na documentação da SDK.

Controles Simples

Para fins de estudo dos controles simples, recomenda-se criar um novo projeto no Eclipse cha-
mado controls_simple sem uma visão inicial. Como ainda não estudamos os controles de leiaute
(sap.ui.layout), vamos organizar nossos controles usando tags <div> no bloco <body>.

No seu arquivo index.html faça as seguintes modificações:

1. Ajuste o caminho do sap-ui-core.js no bootstrap. Certifique-se de usar o namespace sap.ui.commons.
2. Modifique o conteúdo da tag <body> conforme abaixo:

Controles Simples 69

index.html

<body class="sapUiBody" role="application">

<div>

TextView

<div id="divTextView"></div>

</div>

<div>

FormattedTextView

<div id="divFormattedTextView"></div>

</div>

<div>

Label

<div id="divLabel"></div>

</div>

<div>

HTML

<div id="divHtml"></div>

</div>

<div>

Button

<div id="divButton"></div>

</div>

<div>

ToggleButton

<div id="divToggleButton"></div>

</div>

Controles Simples 70

<div>

Link

<div id="divLink"></div>

</div>

<div>

Image

<div id="divImage"></div>

</div>

<div>

ImageMap

<div id="divImageMap"></div>

</div>

</body>

1. Use o bloco <script> seguinte ao bootstrap para inserir todos os códigos de exemplos citados
a partir de agora.

O SAPUI5 Tools instalado no seu Eclipse pode te ajudar a criar controles. Para isso, digite o nome de
um controle e pressione “Control + Espaço” (Windows e Mac) para ter uma lista de sugestões.

Code completion - Lista de possibilidades

Então, escolha o controle desejado e aperte “Enter” para que o Eclipse gere o código base para você.

Controles Simples 71

Code completion - Resultado

TextView

O controle TextView é capaz de exibir um texto sem formatação HTML em múltiplas linhas.

TextView

var text_view = new sap.ui.commons.TextView({

text : "This book was written for special folks who are interested in:",

wrapping : true,

width:"50%",

semanticColor : sap.ui.commons.TextViewColor.Critical,

textAlign : sap.ui.core.TextAlign.Center,

tooltip : 'This is a tooltip',

});

text_view.placeAt("divTextView");

As propriedades preenchidas são explicas abaixo:

• text - Define o texto do controle;

Controles Simples 72

• wrapping - Permite se o texto pode ser quebrado em diversas linhas
• width - Largura do controle. No caso, 50% do tamanho do parent, que no caso é o <div>

divTextView
• semanticColor - Uma formatação predefinida pelo UI5 (veja a classe estática sap.ui.commons.TextViewColor
para conhecer os valores válidos)

• textAlign - Posicionamento do texto (a esquerda, direita, centralizado)
• tooltop - Caixa de informação padrão do navegador exibida quando o mouse é posicionado
sobre o controle

Teste a sua aplicação e verifique o TextView criado. Mude o valor de algumas propriedade
e veja qual o efeito causado. Repita este processo para cada um dos controles que serão
vistos mais adiante.

FormattedTextView

O controle FormattedTextView permite exibir um texto com formatações HTML emmúltiplas linhas

FormattedTextView

var some_html_text =

"" +

"HTML" +

"CSS" +

"Javascript" +

"SAP" +

"";

var formatted_text_view = new sap.ui.commons.FormattedTextView({

htmlText : some_html_text

});

formatted_text_view.placeAt("divFormattedTextView");

As propriedades preenchidas são explicas abaixo: * htmlText string contendo o conteúdo do controle

Label

O controle Label permite rotular um outro controle associado.

Controles Simples 73

Label

var label =

new sap.ui.commons.Label({

visible : true,

text : "Country",

required : true,

requiredAtBegin : true,

labelFor : text_view

});

label.placeAt("divLabel");

As propriedades preenchidas são explicas abaixo:

• visible - Define se o controle é visível ao usuário
• text - Texto do controle
• required - Adiciona uma marcação (*) indicando que o preenchimento do controle associado
é obrigatório

• requiredAtBegin - Controla a posição da marcação de obrigatoriedade
• labelFor - Indica qual o controle associado ao Label

HTML

O controle HTML permite pode ser entendido como um wrapper para um bloco de tags que é capaz
de ser inserido em um arquivo HTML (no exemplo abaixo, um SVG). Este controle é muito útil
quando se quer trabalhar com bibliotecas terceiras que manipulam o DOM, como jQuery e D3.

HTML

var flag =

"<svg>" +

"<rect width='200' height='100' fill='#008000' />" +

"<polygon points='100,10 190,50 100,90 10,50' fill='#FFFF00'/>" +

"<circle cx='100' cy='50' r='30' fill='#0000FF' />" +

"<line x1='70' y1='45' x2='130' y2='55' stroke='white' stroke-width='5' />" +

"</svg>";

var html = new sap.ui.core.HTML({

content : flag,

});

html.placeAt("divHtml");

Controles Simples 74

As propriedades preenchidas são explicas abaixo:

• content - Conteúdo que pode ser embutido em HTML

Button

O controle Button cria um botão. Como este é o primeiro controle no qual usaremos uma propriedade
de evento, que tal um exemplo mais complexo?

Button

var handler =

{

onButtonPressed: function(os, browser){

alert(

"You are using a " + browser +

" installed on a " + os + " system"

);

}

};

var button = new sap.ui.commons.Button({

text : "What am I using?",

icon: "sap-icon://sys-monitor",

press :

[

function(oEvent) {

var control = oEvent.getSource();

console.log(

"Button pressed: " +

control.getText()

);

this.onButtonPressed(

sap.ui.Device.os.name,

sap.ui.Device.browser.name

);

},

handler

]

});

button.placeAt("divButton");

Controles Simples 75

As propriedades preenchidas são explicas abaixo:

• text - Texto do controle
• icon - Ícone do controle
• press - Função chamada quando o usuário clica no botão. Além da função, é possível definir
um objeto listener explicitamente

Esteja sempre atento ao valor da referência this dentro das funções. Uma das maiores
dificuldades de iniciantes em JavaScript é assumir valores desta referência indevidamente.

No caso acima, a função chamada pelo evento encapsula outra função que apesar de ser chamada
com a palavra reservada this, está num contexto diferente. Este é omesmo procedimento que fazemos
ao usar uma função definida no controler dentro de uma visão.

Ícones não são imagens mas sim fontes!!!. Para saber mais sobre ícones leia a documen-
tação oficial do SAPUI5 Using Icon Font in SAPUI5⁵²

ToggleButton

O controle ToggleButton é um botão com estados “ligado” e “desligado”.

ToggleButton

var toggle_button =

new sap.ui.commons.ToggleButton({

text : "Off",

lite : false,

style : sap.ui.commons.ButtonStyle.Reject,

pressed : false,

press :

[

function(oEvent) {

var control = oEvent.getSource();

if (this.getPressed() === false) {

this.setStyle(sap.ui.commons.ButtonStyle.Accept);

this.setText("On");

} else {

⁵²https://help.sap.com/saphelp_uiaddon10/helpdata/en/21/ea0ea94614480d9a910b2e93431291/content.htm

https://help.sap.com/saphelp_uiaddon10/helpdata/en/21/ea0ea94614480d9a910b2e93431291/content.htm
https://help.sap.com/saphelp_uiaddon10/helpdata/en/21/ea0ea94614480d9a910b2e93431291/content.htm

Controles Simples 76

this.setStyle(sap.ui.commons.ButtonStyle.Reject);

this.setText("Off");

}

},

toggle_button

]

});

toggle_button.placeAt("divToggleButton");

As propriedades preenchidas são explicas abaixo:

• text - Conteúdo do controle (que no exemplo é alterado posteriormente)
• lite - Muda o formato da exibição do botão quando o mesmo está “desligado”
• style - Uma formatação predefinida pelo UI5 (veja a classe estática sap.ui.commons.ButtonStyle
para conhecer os valores válidos)

• pressed - Estado inicial do botão. Este estado é alterado automaticamente quando o usuário
clica no botão

• press - Função a ser chamada quando o usuário clica no controle

Note que neste caso definimos o listener da função como sendo o próprio objeto do controle. Logo,
quando usamos this na função estamos usando a referência ao objeto ToggleButton.

Link

O controle Link representa um dos principais conceitos da web: um hyperlink.

Link

var link =

new sap.ui.commons.Link({

text : "Find out more",

href : "//hanabrasil.com.br",

target : "_blank"

});

link.placeAt("divLink");

As propriedades preenchidas são explicas abaixo:

Controles Simples 77

• text - Texto do controle
• hred - Referência que é chamada quando o link é clicado
• target - Define onde o link deve ser aberto (“_black” significa “nova aba/janela”);

Cuidado com a propriedade href ! Caso a referência seja para um recurso externo use //
antes no valor a ser usado.

Image

O controle Image exibe uma imagem que pode ser carregada usando uma URI relativa ou absoluta.
É possível carregar imagens de servidores remotos (em um outro domínio).

Image

var image =

new sap.ui.commons.Image({

src : "http://openui5.org/images/OpenUI5_new_big_side.png"

});

image.placeAt("divImage");

As propriedades preenchidas são explicas abaixo:

• src - URI da imagem

ImageMap

O controle ImageMap permite definir várias áreas clicáveis em uma imagem. Veja o exemplo abaixo

Controles Simples 78

ImageMap

var image_ui5_logos =

new sap.ui.commons.Image({

// image size: 217x131

src : "http://abap101.com/wp-content/uploads/2015/02/sapui5-openui5.png",

});

var image_map =

new sap.ui.commons.ImageMap({

name : "map1", // string

areas :

[

new sap.ui.commons.Area({

shape : "rect",

coords : "0,76,217,131" ,

href : "https://sapui5.hana.ondemand.com/sdk/",

alt : "SAPUI5",

}),

new sap.ui.commons.Area({

shape : "rect",

coords : "0,0,217,75" ,

href : "https://openui5.hana.ondemand.com/",

alt : "OpenUI5",

})

]

});

image_ui5_logos.setUseMap("map1");

image_ui5_logos.placeAt("divImageMap");

image_map.placeAt("divImageMap");

As propriedades preenchidas são explicas abaixo:

• name - Nome da área (é usada na propriedade useMap do controle Image)
• areas - Áreas da imagem

Para cada área, as seguintes propriedades foram preenchidas:

• shape - Forma da área
• coords - Coordenadas da área
• href - Referência a ser chamada quando a área é clicada
• alt - Texto alternativo exibido caso a imagem não seja carregada

Controles Simples 79

Outros controles simples

Praticamente esgotamos a lista de controles simples. O único controle que não usamos como exemplo
é ScrollBar. Não temos nada contra ele… apenas não se prenda em decorar o funcionamento de
cada controle. Ao contrário, aprenda o mecanismo dos controles. Todos eles são representados por
propriedades dos 4 diferentes tipos que já estudamos. Este livro não visa ser um substituto para a
documentação oficial da SDK. O UI5 conta com centenas de controles diferentes, e ainda é possível
criar os seus próprios controles!

Também não usamos todas as propriedades de cada um dos controles explicados (somente as mais
comuns). Sempre veja na documentação o que cada controle é capaz de fazer antes de usá-lo.

Crie mais um <div> no seu arquivo index.html e dentro dele crie um ScrollBar preenchendo
pelo menos três de suas propriedades.

Controles de Value Holders
Controles value holders (ou armazenadores de valor) também são amplamente utilizados em
aplicações. A principal diferença deste conjunto de controles frente aos controles simples é que nos
primeiros é permitida a entrada de informações por parte do usuário. O modo como esta entrada é
feita varia de controle para controle. Em alguns o meio principal de entrada é o teclado (e.g. controles
TextFields e SearchField). Outros usam o mouse como a principal forma de entrada (e.g. controles
ListBox e CheckBox).

Uma forma interativa de navegar por todos os controles value holders é através da página
#content/Controls/ValueHolders/index.html na documentação da SDK.

Controles de Value Holders 81

Controles Value Holders

Para fins de estudo dos controles value holders, recomenda-se criar um novo projeto no Eclipse
chamado controls_value_holders sem uma visão inicial. Como ainda não estudamos os controles de
leiaute (sap.ui.layout), vamos organizar nossos controles usando tags <div> no bloco <body>.

No seu arquivo index.html faça as seguintes modificações:

1. Ajuste o caminho do sap-ui-core.js no bootstrap. Certifique-se de usar o namespace sap.ui.commons.
2. Modifique o conteúdo da tag <body> conforme abaixo. Por questões de simplicidade o código

abaixo somente contém divs para os dois primeiros controles.

Controles de Value Holders 82

index.html

<body class="sapUiBody" role="application">

<div>

TextField

<div id="divTextField"></div>

</div>

<div>

TextArea

<div id="divTextArea"></div>

</div>

<!-- Siga o mesmo padrão para cada um dos outros controles -->

</body>

1. Use o bloco <script> seguinte ao bootstrap para inserir todos os códigos de exemplos citados
a partir de agora.

TextField

O controle TextField representa um simples campo para entrada de valores. Ao contrário do
TextView, o texto de um TextField é armazenado na propriedade value (e não text).

TextField

var text_field_first_name =

new sap.ui.commons.TextField("txf_first_name",{

value : "Fabio",

editable : true,

required : true,

width : "30%",

maxLength : 20,

design : sap.ui.core.Design.Standard,

name : "name",

tooltip : "First Name",

change :

[

function(oEvent) {

console.log("change");

Controles de Value Holders 83

var txf_last_name = sap.ui.getCore().byId("txf_last_name");

var full_name =

this.getValue() +

" " +

txf_last_name.getValue();

var txf_full_name = sap.ui.getCore().byId("txf_full_name");

txf_full_name.setValue(full_name);

},

text_field_first_name

]

});

text_field_first_name.placeAt("divTextField");

var text_field_last_name =

new sap.ui.commons.TextField("txf_last_name",{

width : "30%",

design : sap.ui.core.Design.Monospaced,

placeholder : "Last Name",

liveChange :

[

function(oEvent) {

console.log("liveChange");

var txf_first_name = sap.ui.getCore().byId("txf_first_name");

var full_name =

txf_first_name.getValue() +

" " +

oEvent.getParameter("liveValue");

var txf_full_name = sap.ui.getCore().byId("txf_full_name");

txf_full_name.setValue(full_name);

},

text_field_last_name

]

});

text_field_last_name.placeAt("divTextField");

var text_field_full_name =

new sap.ui.commons.TextField("txf_full_name",

{

Controles de Value Holders 84

width: "30%",

value: text_field_first_name.getValue(),

enabled : true,

editable : false,

});

text_field_full_name.placeAt("divTextField");

As propriedades preenchidas são explicas abaixo:

• value - Preenchimento do campo
• editable - Define se o campo está aberto para entrada de valores
• enabled - Não permite foco no elemento
• required - Caso o tema suporte, indica se o campo é obrigatório
• width - Largura do campo. Aceita qualquer unidade de medida CSS
• maxLength - Cumprimento máximo do valor
• design - Padrão ou monoespaçado
• name - Atributo name do HTML. Usado em chamadas POST a servidores web
• tooltip - Atributo title do HTML. Exibe uma pequena caixa com texto quando o cursor é
repousado sobre o controle

• placeholder - Texto de referência exibido quando o controle está sem valor
• change - Evento que indica que valor foi alterado. É chamado quando o foco sai do controle
• liveChange - Qualquer caracter que seja inserido ou deletado do controle disparada este
evento. Ao contrário do evento change, quando este evento é disparado a propriedade value
não está atualizada. É necessário capturar o parâmetro liveValue usando o único argumento
da função.

No caso acima, três TextFields foram criados. Os dois primeiros permitem a entrada de valores
enquanto o último é atualizado com o resultado da concatenação dos seus antecessores. Quando o
valor do primeiro campo é alterado e o usuário tira o foco do mesmo, o último TextField é atualizado
usando o evento change. Já qualquer alteração feita no segundo campo é imediatamente refletida
no último graças ao evento liveChange.

Note que ambos eventos permitem definir um objeto listener diferente do controle em si (segundo
item do array passado nos eventos). Quando este objeto não é passado, a referência this aponta para
o próprio controle em si. Quando um objeto listener é usado a referência this é ajustada para tal
objeto.

A classe TextField possui algumas subclasses que representam campos de entrada com finalidades
um pouco mais específicas. Atualmente há cinco subclasses: ComboBox, DatePicker, PasswordField,
TextArea e ValueHelpField.

Controles de Value Holders 85

TextArea

O controle TextArea representa um campo para entrada com várias linhas de texto.

TextArea

var text_area =

new sap.ui.commons.TextArea({

maxLength : 140,

name : "bio",

cols : 45,

rows : 4,

wrapping : sap.ui.core.Wrapping.Hard,

cursorPos : 0,

explanation : "Some explanation",

});

text_area.placeAt("divTextArea");

As propriedades preenchidas são explicas abaixo:

• maxLength - Tamanho máximo do texto em caracteres
• name - Atributo name do HTML. Usado em chamadas POST a servidores web
• cols - Número de colunas
• rows - Número de linhas
• wrapping - Define como a quebra de texto é realizada
• cursorPos - Posicionamento do cursor
• explanation - Explicação caso ajuda-rápida esteja ligada

PasswordField

O controle PasswordField representa um campo de senha, no qual o que é digitado não pode ser
visto no valor do campo.

Controles de Value Holders 86

PasswordField

var password_field =

new sap.ui.commons.PasswordField("pwd_field",{

required : true,

placeholder : "Password"

});

password_field.placeAt("divPasswordField");

As propriedades preenchidas são explicas abaixo:

• required - Caso o tema suporte, indica se o campo é obrigatório
• placeholder - Texto de referência exibido quando o controle está sem valor

ValueHelpField

O controle ValueHelpField tem o funcionamento muito próximo a um parameter criado em ABAP.
Um botão para a inserção de valores com algum tipo de ajuda é anexado ao campo texto.
Esteticamente este botão é idêntico ao matchcode no ABAP. Em relação a codificação necessária,
diferente do que é feito em ABAP, este controle de UI5 espera que a função de ajuda seja codificada
a parte. Logo, não há um popup criado automaticamente quando o usuário clica no botão de ajuda.

ValueHelpField

var value_help_field = new sap.ui.commons.ValueHelpField({

value : "",

valueHelpRequest :

function(oEvent) {

this.setValue("Value after help");

}

});

value_help_field.placeAt("divValueHelpField");

As propriedades preenchidas são explicas abaixo:

• value - Preenchimento do campo
• valueHelpRequest - Função que é chamada quando o usuário clica no botão de ajuda de valores
(“matchcode”)

Controles de Value Holders 87

DatePicker

O controle de tela DatePicker é usado para inserção de datas. Em relação a sua aparência este é
similar ao ValueHelpField pois contém um botão a direita do campo de entrada. Todavia, este botão
por padrão exibe um pequeno calendário para a inserção de datas quando clicado.

O usuário pode inserir manualmente datas no formato AAAAMMDD (ano - mês - dia). Quando o
foco é retirado do controle o seu valor é automaticamente ajustado de acordo com a propriedade
locale.

DatePicker

var yesterday = new Date();

yesterday.setDate(yesterday.getDate() - 1);

var date_picker = new sap.ui.commons.DatePicker({

locale : 'pt-BR',

yyyymmdd : yesterday.toISOString().slice(0,10).replace(/-/g,""),

});

date_picker.placeAt("divDatePicker");

As propriedades preenchidas são explicas abaixo:

• locale - Define o idioma e país. Esta propriedade especifica o formato da data caso data binding
não seja usado

• yyyymmdd - Data inserida no controle, no formato AAAAMMDD.

No exemplo acima, o controle DatePicker é carregado automaticamente com a data do dia anterior
ao dia atual. Como um objeto Date em JavaScript guarda a informação de hora e fuso-horário,
é necessário fazer um tratamento para capturar apenas a data do mesmo antes de preencher a
propriedade yyyymmdd do controle.

ComboBox

O controle ComboBox define um campo de entrada com uma lista de valores possíveis para uso.

Controles de Value Holders 88

ComboBox

var combo_box = new sap.ui.commons.ComboBox({

name : "country",

placeholder : "Country",

maxPopupItems : 4,

displaySecondaryValues : true,

selectedKey : "brazil",

// selectedItemId : "item_default",

items :

[

new sap.ui.core.ListItem({

text : "Brazil",

enabled : true,

key : "brazil",

additionalText : "South America",

}),

new sap.ui.core.ListItem("item_default",{

text : "Canada",

enabled : true,

key : "canada",

additionalText : "North America",

}),

new sap.ui.core.ListItem({

text : "Germany",

enabled : false,

key : "germany",

additionalText : "Europe",

})

],

});

combo_box.placeAt("divComboBox");

As propriedades preenchidas são explicas abaixo:

• name - Atributo name do HTML. Usado em chamadas POST a servidores web
• placeholder - Texto de referência exibido quando o controle está sem valor
• maxPopupItems - Número máximo de itens exibidos quando o ComboBox é aberto

Controles de Value Holders 89

• displaySecondaryValues - Cada item pode estar associado a um valor secundário. Esta
propriedade define se estes valores são mostrados a direita dos itens

• selectedKey - Cada item pode estar associado a uma chave. Esta propriedade define o item
selecionado de acordo com sua chave

• selectedItemId - Cada item pode conter um id. Esta propriedade define o item selecionado de
acordo com este identificador

• items - Lista de itens do ComboBox

No caso acima os itens do ComboBox foram declarados internamente na própria criação do controle,
o que não permite reuso. Caso fosse necessário criar vários controles do tipo ComboBox com
exatamente os mesmos itens, a propriedade listBox (explicada mais adiante) seria mais indicada.

Os itens de um ComboBox podem ser carregados a partir de alguma classe de modelo (JSON, XML
e oData). Neste caso o uso de data binding seria obrigatório.

Cada item do ComboBox é um objeto do tipo sap.ui.core.ListItem. As propriedades preenchidas para
estes elementos são explicas abaixo:

• text - Texto do item
• enabled - Define se o item pode ser escolhido ou não
• key - Chave que representa o item
• additionalText - Texto adicional do item. Este texto é exibido caso a propriedade displaySe-
condaryValues do ComboBox for verdadeira.

Além de ser subclasse de TextField, a classe ComboBox é a superclasse dos controles AutoComplete
e DropdownBox.

AutoComplete

O controle AutoComplete é semelhante ao campo de busca do Google pois permite fazer buscas
instantâneas a uma lista de valores possíveis.

AutoComplete

var auto_complete = new sap.ui.commons.AutoComplete({

items:

[

new sap.ui.core.ListItem({

text: "Fabio",

key: "1",

}),

new sap.ui.core.ListItem({

Controles de Value Holders 90

text: "Feliciana",

key: "2",

}),

new sap.ui.core.ListItem({

text: "Marcel",

key: "3",

}),

new sap.ui.core.ListItem({

text: "Marcelo",

key: "4",

}),

new sap.ui.core.ListItem({

text: "João",

key: "5",

}),

],

});

auto_complete.placeAt("divAutoComplete");

As propriedades preenchidas são explicas abaixo:

• items - Itens carregados enquanto o usuário digita sobre o controle

O controle AutoComplete possui ainda o evento suggest que é automaticamente disparado quando
o usuário faz alguma alteração do campo que atualiza a lista de sugestões.

DropdownBox

O controle DropdownBox pode ser entendido como um ComboBox misturado a um ValueHelpField.
Ele possui uma lista de valores e também pode acionar um função de ajuda de preenchimento, que
deve ser codificada a parte.

Controles de Value Holders 91

DropdownBox

var dropdown = new sap.ui.commons.DropdownBox({

name : "role",

searchHelpEnabled : true,

searchHelpText : "More",

searchHelpAdditionalText : "F4",

displaySecondaryValues : true,

maxHistoryItems : 3,

items :

[

new sap.ui.core.ListItem({

text : "Intern",

key : "intern",

}),

new sap.ui.core.ListItem({

text : "Analyst",

key : "analyst",

}),

new sap.ui.core.ListItem({

text : "Developer",

key : "developer",

}),

new sap.ui.core.ListItem({

text : "Manager",

key : "manager",

}),

new sap.ui.core.ListItem({

text : "Tester",

key : "tester",

})

],

searchHelp : function(oEvent) {

var control = oEvent.getSource();

// open search help form/dialog/view

alert("Search Help");

this.setSelectedKey("tester");

}

});

dropdown.placeAt("divDropdownBox");

Controles de Value Holders 92

As propriedades preenchidas são explicas abaixo:

• name - Atributo name do HTML. Usado em chamadas POST a servidores web
• searchHelpEnabled - Define se uma função de ajuda deve ser exibida. Ao contrário do
ValueHelpField, o matchcode é exibido como o primeiro item da lista de possibilidades

• searchHelpText - Texto exibido para o item que representa a função de ajuda
• searchHelpAdditionalText - Texto adicional para o item que representa a função de ajuda
• displaySecondaryValues - Cada item pode estar associado a um valor secundário. Esta
propriedade define se estes valores são mostrados a direita dos itens

• maxHistoryItems - O controle DropdownBox armazena um histórico de valores escolhidos
localmente. Esta propriedade estabelece o número máximo de entradas neste histórico

• items - Lista de itens do DropdownBox
• searchHelp - Função de ajuda para preenchimento

ListBox

O controle ListBox representa um lista simples de valores. Ao contrário dos elementos citados
anteriormente como o ComboBox, AutoComplete e DropdownBox, um controle do tipo ListBox é
capaz de permitir a seleção de mais de um item.

ListBox

var list_box = new sap.ui.commons.ListBox({

allowMultiSelect : true,

visibleItems : 4,

items :

[

new sap.ui.core.Item({

text : "Car",

key : 'car',

}),

new sap.ui.core.Item({

text : "Flight",

key : 'flight',

}),

new sap.ui.core.Item({

text : "Subway",

key : 'subway-train',

}),

Controles de Value Holders 93

],

});

list_box.placeAt("divListBox");

As propriedades preenchidas são explicas abaixo:

• allowMultiSelect - Define se o usuário pode selecionar mais de um item
• visibleItems - Define quantos item são exibidos
• items - Itens do ListBox, cada um do tipo sap.ui.core.Item ou alguma classe filha a esta

O controle ListBox ainda pode ser usado quando é necessário reutilizar itens de uma lista em mais
de um controle, como em dois DropdownBox conforme o exemplo abaixo.

ListBox reutilizada

var list_box_country = new sap.ui.commons.ListBox({

items:

[

new sap.ui.core.Item({

text: "Brazil",

key: "brazil"

}),

new sap.ui.core.Item({

text: "Canada",

key: "canada"

}),

new sap.ui.core.Item({

text: "Germany",

key: "germany"

}),

]

});

// From

var label_country_from = new sap.ui.commons.Label({

text : "From",

labelFor : dropdown_country_from

});

var dropdown_country_from = new sap.ui.commons.DropdownBox({

listBox : list_box_country,

Controles de Value Holders 94

});

// To

var label_country_to = new sap.ui.commons.Label({

text : "To",

labelFor : dropdown_country_from

});

var dropdown_country_to = new sap.ui.commons.DropdownBox({

listBox : list_box_country,

});

label_country_from.placeAt("divListBoxReused");

dropdown_country_from.placeAt("divListBoxReused");

label_country_to.placeAt("divListBoxReused");

dropdown_country_to.placeAt("divListBoxReused");

A propriedade listBox de ambos DropdownBox foi preenchida com a referência ao mesmo controle
do tipo ListBox. Assim, todos os itens deste controle são usados por ambos DropdownBox. Veja
também que não é necessário renderizar o ListBox usando o método placeAt.

InPlaceEdit

O controle InPlaceEdit é um dos meus preferidos. Ele representa um campo de texto que só pode
ser editado caso o usuário clique no mesmo. Enquanto isso não é feito o controle esteticamente é
semelhante a um TextView.

InPlaceEdit

var in_place_edit = new sap.ui.commons.InPlaceEdit({

valueState: sap.ui.core.ValueState.Success,

content: new sap.ui.commons.TextField({

value: "Focus on me!"

})

});

in_place_edit.placeAt("divInPlaceEdit");

As propriedades preenchidas são explicas abaixo:

• valueState - Marcador para o estado do controle
• content - Controle que é criado internamente quando o usuário clica no InPlaceEdit. Os
controles válidos são: TextField, ComboBox, DropdownBox and Link.

Controles de Value Holders 95

SearchField

Como seu nome já diz, o controle SearchField é apropriado para campos que tem uma função
de busca. Um botão para tal finalidade é acrescido a campo texto. É ainda possível implementar
sugestões para este campo. Para isso é necessário definir um SearchProvider que implementa o
protocolo OpenSearch⁵³.

SearchField

var search_field = new sap.ui.commons.SearchField({

enableListSuggest: true,

showListExpander: true,

enableClear: true,

search: function(o){

alert("Searching for " + o.getParameter("query"));

},

});

search_field.placeAt("divSearchField");

As propriedades preenchidas são explicas abaixo:

• enableListSuggest - Habilita a lista de sugestões
• showListExpander - Exibe lista de resultados expandida
• enableClear - Habilita o botão de limpar
• search - Função chamada quando o usuário realiza uma pesquisa

CheckBox

O controle CheckBox representa uma única caixa para marcação. Não há segredo no uso deste
controle.

⁵³http://www.opensearch.org/Home

http://www.opensearch.org/Home
http://www.opensearch.org/Home

Controles de Value Holders 96

CheckBox

var check_box =

new sap.ui.commons.CheckBox({

checked : false,

text : "I accept the terms of use",

name : "terms",

change :

function(oEvent) {

var control = oEvent.getSource();

if (this.getChecked()) {

this.setValueState(sap.ui.core.ValueState.Success);

} else {

this.setValueState(sap.ui.core.ValueState.Error);

}

}

});

check_box.placeAt("divCheckBox");

As propriedades preenchidas são explicas abaixo:

• checked - Define se a caixa está marcada ou não
• text - Texto de referência da caixa
• name - Atributo name do HTML. Usado em chamadas POST a servidores web
• change - Evento disparado toda vez que o usuário marca ou desmarca o CheckBox

TriStateCheckBox

O controle TriStateCheckBox representa um CheckBox com três valores: marcado, desmarcado e
misto. Este tipo de CheckBox é útil quando há uma opção “Marcar/Desmarcar tudo” em uma
aplicação. O estado misto não pode ser definido pelo usuário clicando no controle mas somente
via chamadas no código.

Controles de Value Holders 97

TriStateCheckBox

var tri_state_check_box =

new sap.ui.commons.TriStateCheckBox("tri",{

selectionState : sap.ui.commons.TriStateCheckBoxState.Mixed,

text : "Select all/none",

change :

function(oEvent) {

if (this.getSelectionState() ==

sap.ui.commons.TriStateCheckBoxState.Checked) {

sap.ui.getCore().byId("chk_1").setChecked(true);

sap.ui.getCore().byId("chk_2").setChecked(true);

sap.ui.getCore().byId("chk_3").setChecked(true);

sap.ui.getCore().byId("chk_4").setChecked(true);

}

else{

sap.ui.getCore().byId("chk_1").setChecked(false);

sap.ui.getCore().byId("chk_2").setChecked(false);

sap.ui.getCore().byId("chk_3").setChecked(false);

sap.ui.getCore().byId("chk_4").setChecked(false);

};

}

});

var mixed = function(o){

sap.ui.getCore()

.byId("tri")

.setSelectionState(

sap.ui.commons.TriStateCheckBoxState.Mixed

)

};

var checkboxes = [

new sap.ui.commons.CheckBox("chk_1", {

text: "CheckBox1",

change: mixed,

}),

new sap.ui.commons.CheckBox("chk_2", {

text: "CheckBox2",

change: mixed,

}),

new sap.ui.commons.CheckBox("chk_3", {

Controles de Value Holders 98

text: "CheckBox3",

change: mixed,

}),

new sap.ui.commons.CheckBox("chk_4", {

text: "CheckBox4",

change: mixed,

})

];

tri_state_check_box.placeAt("divTriStateCheckBox");

for (var current = 0; current < checkboxes.length; current++) {

checkboxes[current].placeAt("divTriStateCheckBox");

}

As propriedades preenchidas são explicas abaixo:

• selectionState - Estado da seleção (marcado, desmarcado e misto)
• text - Texto do TriStateCheckBox
• change - Evento disparado toda vez que o usuário marca ou desmarca o TriStateCheckBox

Note que é necessário implementar a lógica de marcação/desmarcação emmassa. No exemplo acima
o controle TriStateCheckBoxmarca ou desmarca todos osCheckBox de acordo com seu próprio valor.
Enquanto isso a marcação/desmarcação de qualquer um dos CheckBox simplesmente muda o valor
do TriStateCheckBox para misto.

RadioButton

O controle RadioButton representa um único botão de rádio. Este controle deve ser usado quando o
número de opções a serem criadas é conhecido de antemão.

RadioButton

var radio_button1 = new sap.ui.commons.RadioButton({

text : "Inbound",

groupName : "group_bound",

selected: true,

select : [function(oEvent) {

var control = oEvent.getSource();

}, this]

});

Controles de Value Holders 99

var radio_button2 = new sap.ui.commons.RadioButton({

text : "Outbound",

groupName : "group_bound",

select : [function(oEvent) {

var control = oEvent.getSource();

}, this]

});

radio_button1.placeAt("divRadioButton");

radio_button2.placeAt("divRadioButton");

As propriedades preenchidas são explicas abaixo:

• text - Texto do RadioButton
• groupName - Nome do grupo. RadioButton no mesmo grupo são desmarcados automatica-
mente quando um dos controles é marcado

• selected - Define se o controle está selecionado
• select - Evento disparado sempre que o usuário seleciona o RadioButton

RadioButtonGroup

O controle RadioButtonGroup representa um conjunto de RadioButton. A vantagem deste controle
em relação ao RadioButton é que seus itens podem ser associados a um modelo via data binding, o
que viabiliza a criação de botões de rádio de acordo com conteúdo em formato JSON, XML e oData.

RadioButtonGroup

var radio_button_group = new sap.ui.commons.RadioButtonGroup({

columns : 3,

items : [

new sap.ui.core.Item({

text : "Answer 1",

})],

});

for (var i = 2; i < 10; i++) {

radio_button_group.addItem(

new sap.ui.core.Item({

text : ("Answer " + i)

})

Controles de Value Holders 100

);

}

radio_button_group.placeAt("divRadioButtonGroup");

As propriedades preenchidas são explicas abaixo:

• columns - Define quantas colunas serão usadas para renderização dos botões de rádio
• items - Itens do RadioButtonGroup

Slider

O controle Slider define uma barra vertical ou horizontal representando um intervalo possível de
valores e uma marcação que pode ser arrastada pelo usuário para a entrada de um valor

Slider

var slider_value = new sap.ui.commons.TextField({

enabled: false,

width: '3em',

});

var slider = new sap.ui.commons.Slider({

width: "30%",

min: 0,

max: 10,

value: 5,

smallStepWidth: 0.5,

stepLabels: true,

labels: ["0", "2.5", "5", "7.5", "10"],

liveChange:

[

function(o){

this.setValue(o.getParameter("value"));

},

slider_value

],

});

slider_value.setValue(slider.getValue());

slider.placeAt("divSlider");

slider_value.placeAt("divSlider");

Controles de Value Holders 101

As propriedades preenchidas são explicas abaixo:

• width - Largura da barra
• min - Valor mínimo
• max - Valor máximo
• value - Valor atual
• smallStepWidth - Tamanho mínimo de um “passo”. Um passo de 0.5 significa que entre os
valores 0 e 10 há 20 passos.

• stepLabels - Define se os passos são rotulados
• labels - Rótulos a serem exibidos. O controle faz automaticamente o alinhamento de acordo
com a quantidade de elementos neste array.

• liveChange - Evento que é disparado sempre que o valor do Slider é alterado

RangeSlider

O controle RangeSlider é uma especialização do Slider na qual o usuário define dois valores (mínimo
e máximo) entre um intervalo de valores possíveis.

RangeSlider

var range_slider = new sap.ui.commons.RangeSlider({

height: "300px",

vertical: true,

min: 0,

max: 10,

value: 2.5,

value2: 7.5,

stepLabels: true,

labels: ["0", "2.5", "5", "7.5", "10"],

});

range_slider.placeAt("divRangeSlider");

As propriedades preenchidas são explicas abaixo:

• height - Altura da barra
• vertical - Define que o Slider é vertical
• min - Valor mínimo
• max - Valor máximo
• value - Valor mínimo atual

Controles de Value Holders 102

• value2 - Valor máximo atual
• stepLabels - Define se os passos são rotulados
• labels - Rótulos a serem exibidos. O controle faz automaticamente o alinhamento de acordo
com a quantidade de elementos neste array.

RatingIndicator

O RatingIndicator é um excelente controle para coletar algum tipo de feedback do usuário de forma
rápida. Este controle desenha estrelas que correspondem a alguma nota indicada pelo usuário.

RatingIndicator

var rating_indicator = new sap.ui.commons.RatingIndicator({

maxValue: 7,

visualMode: sap.ui.commons.RatingIndicatorVisualMode.Half ,

});

rating_indicator.placeAt("divRatingIndicator");

As propriedades preenchidas são explicas abaixo:

• maxValue - Número de estrelas que representam o valor máximo da nota
• visualMode - Definir como o arredondamento da nota é realizado

Controles de Leiaute (Layout)
Controles de leiaute permitem organizar a posição e ordem de outros controles. Até o momento
criamos controles diretamente abaixo de tags <div>. Todavia, não é necessário (nem recomendável)
organizar o leiaute de uma aplicação UI5 usando somente tags de HTML e CSS. Ao invés disso,
cria-se controles de leiaute os quais serão responsáveis pela organização de seu próprio conteúdo.

Uma forma interativa de navegar por todos os controles simples é através da página
#content/Controls/Layout/index.html na documentação da SDK.

Controles de Leiaute

Alguns controles de leiaute usados neste capítulo pertencem ao namespace sap.ui.layout.

Controles de Leiaute (Layout) 104

Para fins de estudo dos controles de leiaute, recomenda-se criar um novo projeto no Eclipse chamado
controls_layout com uma visão própria para cada controle de leiaute a ser estudado. Ao criar o
projeto use a biblioteca sap.ui.commons. E dê o nome da sua visão inicial de vertical_layout.

No seu arquivo index.html faça as seguintes modificações:

1. Ajuste o caminho do sap-ui-core.js no bootstrap. Certifique-se de usar o namespace sap.ui.commons.
2. Desta vez, não altere o conteúdo da tag <body>.
3. Dentro da tag <script> após o bootstrap, modifique o id da visão inicial para idview e

conforme aprender novos layouts, modifique o atributo viewName conforme abaixo.

index.html

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta http-equiv='Content-Type' content='text/html;charset=UTF-8'/>

<script src="../../../../openui5-sdk/resources/sap-ui-core.js"

id="sap-ui-bootstrap"

data-sap-ui-libs="sap.ui.commons"

data-sap-ui-theme="sap_bluecrystal">

</script>

<!-- add sap.ui.table,sap.ui.ux3 and/or other libraries to 'data-sap-ui-\

libs' if required -->

<script>

sap.ui.localResources("controls_layout");

var view = sap.ui.view({

id:"idview",

viewName:"controls_layout.vertical_layout",

// viewName:"controls_layout.horizontal_layout",

// viewName:"controls_layout.horizontal_divider",

// viewName:"controls_layout.xxx",

type:sap.ui.core.mvc.ViewType.JS

});

view.placeAt("content");

</script>

</head>

Controles de Leiaute (Layout) 105

<body class="sapUiBody" role="application">

<div id="content"></div>

</body>

</html>

Ao alterar o atributo viewName, não esqueça de comentar as outras ocorrências do mesmo.

Vertical Layout

O leiaute Vertical Layout permite organizar controles um abaixo do outro.

Dentro da sua visão vertical_layout.view.js, altere o método createContent conforme abaixo.

Vertical Layout

createContent: function(oController)

{

var text_field = new sap.ui.commons.TextField(

{

value: "Fabio",

});

var vertical_layout = new sap.ui.layout.VerticalLayout(

{

content: [

new sap.ui.commons.Label(

{

text: "Name",

labelFor: text_field

}),

text_field

]

})

vertical_layout.addContent(

new sap.ui.commons.CheckBox(

{

text: "Writting this book during Easter?",

value: true,

Controles de Leiaute (Layout) 106

})

);

var link = sap.ui.commons.Link(

{

text: "hanabrasil.com.br",

href: "//www.hanabrasil.com.br",

target: "_blank"

});

vertical_layout.insertContent(link, 2);

return vertical_layout;

}

As propriedades preenchidas são explicas abaixo:

• content - Conteúdo do layout. Cada controle posto no array é adicionado em ordem, um
abaixo do outro. Note que é possível criar um controle on the fly ou passar uma referência a
um controle já existente

Alguns métodos úteis do controle também foram usados * addContent - Adiciona um controle
por último no leiaute. * insertContent - Insere um controle na posição especificada pelo segundo
parâmetro. A posição inicia em zero.

Horizontal Layout

O leiaute Horizontal Layout permite definir controles um a direita do outro. É possível controlar
também a quebra de linha dos controles caso a largura do navegador não comporte todos o conteúdo
horizontal.

Crie uma nova visão chamada horizontal_layout e modifique o método createContent conforme
abaixo.

Antes de testar a sua nova visão, não esqueça de alterar o atributo viewName no arquivo index.html.

Controles de Leiaute (Layout) 107

Horizontal Layout

createContent: function(oController)

{

var text_field = new sap.ui.commons.TextField(

{

value: "Fabio",

});

var horizontal_layout = new sap.ui.layout.HorizontalLayout(

{

allowWrapping: true,

content: [

new sap.ui.commons.Label(

{

text: "Name",

labelFor: text_field

}),

text_field

]

})

horizontal_layout.addContent(

new sap.ui.commons.CheckBox(

{

text: "Writting this book during Easter?",

value: true,

})

);

var link = sap.ui.commons.Link(

{

text: "hanabrasil.com.br",

href: "//www.hanabrasil.com.br",

target: "_blank"

});

horizontal_layout.insertContent(link, 2);

return horizontal_layout;

}

Controles de Leiaute (Layout) 108

As propriedades preenchidas são explicas abaixo:

• allowWrapping - Define se há quebra de linha caso a largura do navegador não seja suficiente
para exibir todos controles

• content - Conteúdo do layout. Cada controle posto no array é adicionado em ordem, um a
direita do outro. Note que é possível criar um controle on the fly ou passar uma referência a
um controle já existente

Horizontal Divider

Desde os tempos mais primórdios do HTML, a tag <hr> era usada para separar partes de uma página
através de uma linha horizontal. O controle Horizontal Divider renderiza uma linha do tipo com
exatamente a mesma tag. Logo, este controle não possui conteúdo em si mas ajuda na estruturação
de um leiaute.

Em uma nova visão chamada horizontal_divider, insira o código que segue.

Horizontal Divider

createContent: function(oController)

{

var main_layout = new sap.ui.layout.VerticalLayout(

{

content: [

new sap.ui.commons.TextView(

{

text: "Area 1"

}),

new sap.ui.commons.HorizontalDivider(

{

type: sap.ui.commons.HorizontalDividerType.Area,

height: sap.ui.commons.HorizontalDividerHeight.Large

}),

new sap.ui.commons.TextView(

{

text: "Area 2 - Page 1"

}),

new sap.ui.commons.HorizontalDivider(

{

type: sap.ui.commons.HorizontalDividerType.Page,

Controles de Leiaute (Layout) 109

height: sap.ui.commons.HorizontalDividerHeight.Ruleheight

}),

new sap.ui.commons.TextView(

{

text: "Area 2 - Page 2"

})

]

});

return main_layout;

}

As propriedades preenchidas são explicas abaixo:

• type - Tipo de dividor: Area ou Page. No tema blue_crystal a diferença entre estes dois tipos é
meramente estética e sutil. O divisor de área é uma linha horizontal simples com apenas uma
cor enquanto o dividor de página possui cores diferentes para o topo e rodapé da borda. (Isso
é feito através das propriedades border-top-color e border-bottom-color do CSS).

• height - Altura do divisor incluindo as margens superior e inferior. Possibilidades: Small,
Medium, Large e Ruleheight. O último não insere margens.

Panel

O controle Panel é um agrupador de controles com algumas especificidades porém que não organiza
seu conteúdo. Ele contém uma barra superior que pode conter um título e um conjunto de botões.
Esta barra pode ser contraída pelo usuário clicando no botão collapse caso ele seja exibido. Logo
abaixo desta barra o conteúdo do Panel é exibido.

Em uma nova visão chamada panel_layout, insira o código que segue.

Panel

createContent: function(oController)

{

var panel_layout = new sap.ui.commons.Panel(

{

width: "auto",

height: "auto",

scrollLeft: 0,

scrollTop: 0,

Controles de Leiaute (Layout) 110

applyContentPadding: true,

collapsed: false,

areaDesign: sap.ui.commons.enums.AreaDesign.Plain,

borderDesign: sap.ui.commons.enums.BorderDesign.Box,

showCollapseIcon: true,

// text: "Employee",

content: [

new sap.ui.layout.VerticalLayout(

{

content: [

new sap.ui.commons.Label(

{

labelFor: "txf_name",

text: "Name",

}),

new sap.ui.commons.TextField("txf_name")

]

})

],

title: new sap.ui.core.Title(

{

text: "Employee",

icon: "sap-icon://employee"

}),

buttons: [

new sap.ui.commons.Button(

{

text: "Create"

}),

new sap.ui.commons.Button(

{

text: "Change"

}),

new sap.ui.commons.Button(

{

text: "Delete"

})

]

});

return panel_layout;

Controles de Leiaute (Layout) 111

}

As propriedades preenchidas são explicas abaixo:

• width - Largura do Panel. Use “auto” para que ele se ajuste de acordo com seu conteúdo
• height - Altura do Panel. Use “auto” para que ele se ajuste de acordo com seu conteúdo
• scrollLeft - Caso o Panel possua uma rolagem horizontal, é possível controlar a posição da
rolagem usando esta propriedade

• scrollTop - Caso o Panel possua uma rolagem vertical, é possível controlar a posição da rolagem
usando esta propriedade

• applyContentPadding - Aplica um padding aos controles internos. Use esta opção para não
deixar os controles colados a esquerda do Panel

• collapsed - Define se o Panel está contraído ou não
• areaDesign - Desenho da área interna
• borderDesign - Desenho da borda do Panel
• showCollapseIcon - Define se o botão para contração (collapse) do Panel é exibido
• text - Texto usado como título caso a propriedade title não seja usada
• content - Conteúdo do Panel. Use outro leiaute internamente para organizar o conteúdo
• title - Título do Panel
• button - Barra de botões do Panel

Border Layout

O leiaute Border Layout cria um container dividido em 5 partes: Top (Topo), Begin (a esquerda),
Center (Meio), End (direita) e Bottom (rodapé).

Border Layout

createContent: function(oController)

{

var border_layout = new sap.ui.commons.layout.BorderLayout(

{

width: "500px",

height: "500px",

top: new sap.ui.commons.layout.BorderLayoutArea(

{

overflowX: "visible",

overflowY: "visible",

contentAlign: "center",

Controles de Leiaute (Layout) 112

content: [

new sap.ui.commons.Image(

{

src: "http://openui5.org/images/OpenUI5_new_big_side.png"

})

]

}),

begin: new sap.ui.commons.layout.BorderLayoutArea(

{

overflowX: "visible",

overflowY: "visible",

contentAlign: "center",

content: [

new sap.ui.commons.Link(

{

text: "Begin"

})

]

}),

center: new sap.ui.commons.layout.BorderLayoutArea(

{

overflowX: "visible",

overflowY: "visible",

contentAlign: "center",

content: [

new sap.ui.commons.TextArea(

{

value: "Center",

rows: 20

})

]

}),

end: new sap.ui.commons.layout.BorderLayoutArea(

{

overflowX: "visible",

overflowY: "visible",

contentAlign: "center",

content: [

new sap.ui.commons.CheckBox(

{

text: "End"

})

Controles de Leiaute (Layout) 113

]

}),

bottom: new sap.ui.commons.layout.BorderLayoutArea(

{

overflowX: "visible",

overflowY: "visible",

contentAlign: "center",

content: [

new sap.ui.commons.Button(

{

text: "Bottom",

width: "100%"

})

]

})

});

return border_layout;

}

As propriedades preenchidas são explicas abaixo:

• width - Largura do leiaute
• height - Altura do leiaute
• top - Controles que fazem parte do topo do container
• begin - Controles que fazem parte da esquerda do container
• center - Controles que fazem parte do centro do container
• end - Controles que fazem parte da direita do container
• bottom - Controles que fazem parte do rodapé do container

Matrix Layout

O leiaute Matrix Layout permite definir um conjunto de controles em forma de matriz, com linhas
e colunas alinhadas cuja dimensão é NxM. A diferença de um leiaute Matrix para as matrizes que
aprendemos na escola é que no caso do UI5 um item da matriz pode ocupar mais de uma linha ou
coluna. Para nossa alegria também não precisamos descobrir uma determinante.

Controles de Leiaute (Layout) 114

Matrix Layout

createContent: function(oController)

{

var matrix_layout = new sap.ui.commons.layout.MatrixLayout(

{

width: "500px",

// height: "500px",

layoutFixed: true,

columns: 3,

widths: ["10%", "20%", "70%"],

rows: []

});

this.myCreateRow(matrix_layout);

this.myCreateRow(matrix_layout);

this.myCreateRow(matrix_layout);

return matrix_layout;

},

current_value: 1,

myCreateCell: function(row, value)

{

var cell = new sap.ui.commons.layout.MatrixLayoutCell(

{

backgroundDesign: sap.ui.commons.layout.BackgroundDesign.Fill1,

colSpan: 1,

hAlign: sap.ui.commons.layout.HAlign.Center,

padding: sap.ui.commons.layout.Padding.End,

rowSpan: 1,

separation: sap.ui.commons.layout.Separation.SmallWithLine,

vAlign: sap.ui.commons.layout.VAlign.Middle,

content: [

new sap.ui.commons.TextView(

{

text: value,

})

]

});

Controles de Leiaute (Layout) 115

row.addCell(cell);

},

myCreateRow: function(matrix)

{

var row = new sap.ui.commons.layout.MatrixLayoutRow(

{

height: "100px",

cells: []

});

matrix.addRow(row);

this.myCreateCell(row, this.current_value++);

this.myCreateCell(row, this.current_value++);

this.myCreateCell(row, this.current_value++);

}

As propriedades preenchidas são explicas abaixo:

• width - Largura do leiaute
• height - Altura do leiaute (caso não seja especificado pode-se usar a altura das linhas)
• layoutFixed - controla se a largura das colunas é definida pelo leiaute ou pelo conteúdo das
colunas

• columns - Número de colunas do leiaute
• widths - Um array com a largura das colunas
• rows - Array representando as linhas do leiaute. Cada linha é uma instância do tipo
MatrixLayoutRow

MatrixLayoutRow

Define uma linha de umMatrixLayout. Uma linha pode ser entendida como nada mais nada menos
que um conjunto de células do tipo MatrixLayoutCell.

As propriedades preenchidas são explicas abaixo:

• height - Altura da linha
• cells - Conjunto de células

Controles de Leiaute (Layout) 116

MatrixLayoutCell

Uma célula de um MatrixLayout pode ocupar mais de uma linha ou coluna no leiaute. Cada célula
pode por sua vez possuir zero ou mais controles.

As propriedades preenchidas são explicas abaixo:

• backgroundDesign - Define o plano de fundo da célula
• colSpan - Quantidade de colunas que a célula ocupa no leiaute
• hAlign - Alinhamento horizontal do conteúdo da célula
• padding - Espaçamento interno da célula
• rowSpan - Quantidade de linhas que a célula ocupa no leiaute
• separation - Seperador entre células
• vAlign - Alinhamento vertical
• content - Conteúdo da célula (array de controles)

Splitter

O controle Splitter separa horizontalmente ou verticalmente dois conjuntos de controles.

Splitter

createContent: function(oController)

{

var splitter_layout = new sap.ui.commons.Splitter(

{

splitterOrientation: sap.ui.core.Orientation.Vertical,

splitterPosition: "50%",

minSizeFirstPane: "20%",

minSizeSecondPane: "10%",

width: "600px",

// height: "300px",

showScrollBars: false,

splitterBarVisible: true,

firstPaneContent: [

new sap.ui.commons.Image(

{

src: "http://openui5.org/resources/OpenUI5_text_right_small.png"

})

],

secondPaneContent: [

new sap.ui.commons.Image(

Controles de Leiaute (Layout) 117

{

src: "//openui5.org/resources/OpenUI5_text_below_small.png"

})

]

});

return splitter_layout;

}

As propriedades preenchidas são explicas abaixo:

• splitterOrientation - Orientação do divisor: vertical ou horizontal
• splitterPosition - Posição inicial (ou atual) do splitter, use 50% para inicializar o divisor no
meio dos dois painéis.

• minSizeFirstPane - Tamanho minimo do primeiro painel (a esquerda ou em cima)
• minSizeSecondPane - Tamanho minimo do primeiro painel (a direita ou em baixo)
• width - Largura do Splitter
• height - Altura do Splitter. Ajusta-se de acordo com seu conteúdo
• showScrollBars - Caso o tamanho do Splitter não comporte seu conteúdo, é possível exibir
exibir barras de rolagem

• splitterBarVisible - Caso o usuário não possa redimensionar os painéis, a barra do Splitter
pode ser definida como oculta

• firstPaneContent - Conteúdo do primeiro painel
• secondPaneContent - Conteúdo do segundo painel

	Índice analítico
	Introdução ao UI5
	O que significa UI5?
	Desenvolvimento Front End vs Back End
	E o back end?
	SAPUI5 vs OpenUI5
	Onde o UI5 é usado?

	Ambiente de Desenvolvimento
	Baixando o OpenUI5
	Servidores Web
	Servidores Web em plataformas SAP
	Servidores Web em outras plataformas
	Hospedagens gratuitas
	IDEs
	Navegadores
	Outras ferramentas importantes

	Criando um Hello World em UI5
	Estrutura básica de uma aplicação UI5
	HTML e <div> principal
	Bootstrap
	Minificação
	Código UI5 e Renderização

	Usando o Eclipse e o Paradigma MVC
	Criando um projeto UI5 através do Eclipse
	Estrutura de uma aplicação UI5 usando MVC

	Namespaces
	Dependências entre namespaces
	sap.ui.Device - Capturando informações sobre dispositivo
	Bibliotecas de terceiros

	Depurando um projeto em UI5
	Controles de UI
	Herança de controles
	Elementos versus Controles
	ManagedObject
	Tipos de propriedades de um ManagedObject

	Controles Simples
	TextView
	FormattedTextView
	Label
	HTML
	Button
	ToggleButton
	Link
	Image
	ImageMap
	Outros controles simples

	Controles de Value Holders
	TextField
	TextArea
	PasswordField
	ValueHelpField
	DatePicker
	ComboBox
	AutoComplete
	DropdownBox
	ListBox
	InPlaceEdit
	SearchField
	CheckBox
	TriStateCheckBox
	RadioButton
	RadioButtonGroup
	Slider
	RangeSlider
	RatingIndicator

	Controles de Leiaute (Layout)
	Vertical Layout
	Horizontal Layout
	Horizontal Divider
	Panel
	Border Layout
	Matrix Layout
	Splitter

