

TPL Dataflow by Example
Dataflow and Reactive Programming in .Net

Matt Carkci

This book is for sale at http://leanpub.com/tpldataflowbyexample

This version was published on 2014-05-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Matt Carkci

http://leanpub.com/tpldataflowbyexample
http://leanpub.com
http://leanpub.com/manifesto

Contents

1 TPL Dataflow Basics . 1
1.1 Blocks . 1

1.1.1 Execution Blocks . 1
1.1.1.1 ActionBlock<T> . 1
1.1.1.2 TransformBlock<T1,T2> . 4
1.1.1.3 Block Configuration . 8
1.1.1.4 Execution Block Options . 8

1 TPL Dataflow Basics
1.1 Blocks

In dataflow, blocks (or nodes) are entities that may send and receive data and are the basic unit of
composition. The TPL Dataflow Library comes with a handful of predefined blocks, while they’re
very basic, they should cover 99% of your needs. Using these predefined blocks, you can build your
own application specific blocks.

Think of the predefined blocks as being equivalent to keywords in C#. You build C# applications
by using the keywords. The predefined blocks similarly define the basic operations of dataflow
programs that you use to build your dataflow application.

Of the predefined blocks offered by the TPL Dataflow library, we can categorize them into three
groups, blocks that process data (execution blocks), blocks that buffer or store data (buffer blocks)
and blocks that group data together into collections (grouping blocks). In the follow sections we’ll
examine each category of block and discover how they work with simple code examples.

1.1.1 Execution Blocks

Execution blocks process data very similar to howmethods accept data and possibly returns a value.
At creation you pass either a Func or an Action that defines what the execution block will do with
the data.

All execution blocks contain an internal buffer that defaults to an unbounded capacity.

1.1.1.1 ActionBlock<T>

An ActionBlock<T> has a single input and no output. It is used when you need to do something with
the input data but won’t need to pass it along to other blocks. It is the equivalent to the Action<T>
class. In dataflow, this type of block is often called a “sink” because the data sinks into it like a black
hole, never to emerge again.

At creation, an ActionBlock<T> accepts an Action<T> that is called when data arrives at the input.

An internal buffer is present on the input of an ActionBlock<T>. The buffer defaults to an unbounded
capacity but this can be changed by using DataflowBlockOptions mentioned later.

ActionBlock<T> Example 1

TPL Dataflow Basics 2

Basic usage, Block threading, Post()

1 �using System;

2 using System.Threading.Tasks.Dataflow;

3

4 namespace TPLDataflowByExample

5 {

6 static class ActionBlockExample1

7 {

8 static public void Run() {

9

10 var actionBlock = new ActionBlock<int>(n => Console.WriteLine(n));

11

12 for (int i = 0; i < 10; i++) {

13 actionBlock.Post(i);

14 }

15

16 Console.WriteLine("Done");

17 }

18 }

19 }

This example shows the basic usage of an ActionBlock<T> and how to send data to all types of
blocks that accept inputs.

The Post() function sends data synchronously to blocks and returns true if the datawas successfully
accepted. If the block refuses the data, the function returns false and it will not attempt to resend
it.

In this example the numbers 0 through 9 are pushed to actionBlock. The block takes each value and
calls the Action<T> that was given at creation. Since, in this example, our action simply prints the
received data, the output to the console looks like:

..

Done

0

1

2

3

4

5

6

TPL Dataflow Basics 3

..

7

8

9

Notice how “Done” was printed first. This is because actionBlock was executed in parallel to the
main thread.

ActionBlock<T> Example 2

Basic usage with a delay

1 �using System;

2 using System.Threading;

3 using System.Threading.Tasks.Dataflow;

4

5 namespace TPLDataflowByExample

6 {

7 class ActionBlockExample2

8 {

9 static public void Run() {

10

11 var actionBlock = new ActionBlock<int>(n => {

12 Thread.Sleep(1000);

13 Console.WriteLine(n);

14 });

15 for (int i = 0; i < 10; i++) {

16 actionBlock.Post(i);

17 }

18

19 Console.WriteLine("Done");

20 }

21 }

22 }

This example is almost identical to example 1 except we are now sleeping for one second before
printing the value to the console to simulate a long running action in the block. The output is the
same as example 1.

TPL Dataflow Basics 4

1.1.1.2 TransformBlock<T1,T2>

A TransformBlock<T1,T2> is very similar to an ActionBlock<T> except it also has an output that
you can connect to other blocks (linking blocks will be covered in a later section). It is equivalent to a
Func<T1,T2> in that it returns a result. Similar to an ActionBlock<T>, it takes a function at creation
that operates on the input data.

This block contains two buffers, one on the input and one on the output but it is best to think of it
as only having a single buffer. Two buffers are needed to ensure that the data is transmitted in the
same order as it arrived. The output buffer is used to restore the original ordering of the data. But
this is an implementation detail that you should know about but not need to worry about normally.

TransformBlock<T1,T2> Example 1

Receive()

1 �using System;

2 using System.Threading;

3 using System.Threading.Tasks.Dataflow;

4

5 namespace TPLDataflowByExample

6 {

7 class TransformBlockExample1

8 {

9 static public void Run() {

10 Func<int, int> fn = n => {

11 Thread.Sleep(1000);

12 return n * n;

13 };

14

15 var tfBlock = new TransformBlock<int, int>(fn);

16

17 for (int i = 0; i < 10; i++) {

18 tfBlock.Post(i);

19 }

20

21 for (int i = 0; i < 10; i++) {

TPL Dataflow Basics 5

22 int result = tfBlock.Receive();

23 Console.WriteLine(result);

24 }

25

26 Console.WriteLine("Done");

27 }

28 }

29 }

In this example we create a TransformBlock<T1,T2> with a function that squares the input value
after a one second wait to simulate a long running process.

To extract data from a TransformBlock<T1,T2> (or any block with an output) you use the Receive()
method that operates synchronously. If no data is available, the thread will be suspended until data
is available. We highlight that fact in this example.

Executing this code should display…

..

0

1

4

9

16

25

36

49

64

81

Done

The for loop passes the numbers 0 through 9 to the tfBlock. The function that we passed in at
creation time then squares each value and sends the result to the output where we Receive() them.

Notice that for this example “Done” is only printed after all the output values have been printed.
This is because the Receive() method operates synchronously in the same thread as the for loops.

TransformBlock<T1,T2> Example 2

ReceiveAsync(), Task.Result()

TPL Dataflow Basics 6

1 �using System;

2 using System.Threading;

3 using System.Threading.Tasks;

4 using System.Threading.Tasks.Dataflow;

5

6 namespace TPLDataflowByExample

7 {

8 class TransformBlockExample2

9 {

10 static public void Run() {

11 Func<int, int> fn = n => {

12 Thread.Sleep(1000);

13 return n * n;

14 };

15

16 var tfBlock = new TransformBlock<int, int>(fn);

17

18 for (int i = 0; i < 10; i++) {

19 tfBlock.Post(i);

20 }

21

22 // RecieveAsynch returns a Task

23 for (int i = 0; i < 10; i++) {

24 Task<int> resultTask = tfBlock.ReceiveAsync();

25 int result = resultTask.Result;

26 // Calling Result will wait until it has a value ready

27 Console.WriteLine(result);

28 }

29

30 Console.WriteLine("Done");

31 }

32 }

33 }

This example shows how to receive data, asynchronously, from all blocks with outputs using the
aptly named ReceiveAsync()method. Since it operates asynchronously, the method does not return
a value like the Receive() method does. Instead the ReceiveAsync() method returns a Task<T>

that represents the receive operation. Calling the Result() method on the returned Task forces the
program to wait until data becomes available essentially making it a synchronous operation like the
previous example with the same console output. The next example shows how to create a completely
asynchronous receive.

TPL Dataflow Basics 7

TransformBlock<T1,T2> Example 3

ReceiveAsync(), Task.ContinueWith()

1 �using System;

2 using System.Threading;

3 using System.Threading.Tasks;

4 using System.Threading.Tasks.Dataflow;

5

6 namespace TPLDataflowByExample

7 {

8 class TransformBlockExample3

9 {

10 static public void Run() {

11 Func<int, int> fn = n => {

12 Thread.Sleep(1000);

13 return n * n;

14 };

15

16 var tfBlock = new TransformBlock<int, int>(fn);

17

18 for (int i = 0; i < 10; i++) {

19 tfBlock.Post(i);

20 }

21

22 Action<Task<int>> whenReady = task => {

23 int n = task.Result;

24 Console.WriteLine(n);

25 };

26

27 for (int i = 0; i < 10; i++) {

28 Task<int> resultTask = tfBlock.ReceiveAsync();

29 resultTask.ContinueWith(whenReady);

30 // When 'resultTask' is done,

31 // call 'whenReady' with the Task

32 }

33

34 Console.WriteLine("Done");

35 }

TPL Dataflow Basics 8

36 }

37 }

If we modify the previous example slightly, we can receive data from blocks asynchronously. The
addition of a continuation with the ContinueWith() method allows our main thread to proceed
without having to wait for data to be available to read.

A continuation is just something that will be done after the Task is completed. In this case our
continuation is the whenReady action that will print the result to the console.

When run, the example displays…

..

Done

0

1

4

9

16

25

36

49

64

81

We again have “Done” printed first since the main thread doesn’t have to wait to receive data.

1.1.1.3 Block Configuration

All of the pre-defined blocks in the TPL Dataflow library can be configured by passing an
options object to the blocks’ constructor. Execution blocks use the ExecutionDataflowBlockOptions
class, grouping blocks use the GroupingDataflowBlockOptions class and buffering blocks use the
DataflowBlockOptions class. ExecutionDataflowBlockOptions and GroupingDataflowBlockOptions
both inherit from the DataflowBlockOptions class (described in the Grouping Blocks section).

1.1.1.4 Execution Block Options

In addition to the options provided by its base class, ExecutionDataflowBlockOptions also includes
the options, MaxDegreeOfParallelism and SingleProducerConstrained.

ExecutionDataflowBlockOptions Example 1

TPL Dataflow Basics 9

MaxDegreeOfParallelism

1 �using System;

2 using System.Threading;

3 using System.Threading.Tasks.Dataflow;

4

5 namespace TPLDataflowByExample

6 {

7 class ExecutionDataflowBlockOptionsExample1

8 {

9 static public void Run() {

10

11 var generator = new Random();

12 Action<int> fn = n => {

13 Thread.Sleep(generator.Next(1000));

14 Console.WriteLine(n);

15 };

16 var opts = new ExecutionDataflowBlockOptions {

17 MaxDegreeOfParallelism = 2

18 };

19

20 var actionBlock = new ActionBlock<int>(fn, opts);

21

22 for (int i = 0; i < 10; i++) {

23 actionBlock.Post(i);

24 }

25

26 Console.WriteLine("Done");

27 }

28 }

29 }

Blocks can be configured to operate on more than one piece of data at a time. The default is for
each value to be processed one at a time. The MaxDegreeOfParallelism option tells the computer to
operate on multiple values at a time in parallel.

This example is a modification of the ActionBlock Example 2. We added a random delay to
actionBlock to more closely approximate a real world situation. Running this example shows how
the output order of values differs from the input order due to different delays.

On my machine running the example produces…

TPL Dataflow Basics 10

..

Done

1

0

2

3

4

5

7

6

9

8

ExecutionDataflowBlockOptions Example 2

SingleProducerConstrained

1 �using System;

2 using System.Diagnostics;

3 using System.Threading;

4 using System.Threading.Tasks.Dataflow;

5

6 namespace TPLDataflowByExample

7 {

8 // http://blogs.msdn.com/b/pfxteam/archive/2011/09/27/10217461.aspx

9 class ExecutionDataflowBlockOptionsExample2

10 {

11 static public void Benchmark1() {

12 var sw = new Stopwatch();

13 const int ITERS = 6000000;

14 var are = new AutoResetEvent(false);

15

16 var ab = new ActionBlock<int>(i => { if (i == ITERS) are.Set(); });

17 while (true) {

18 sw.Restart();

19 for (int i = 1; i <= ITERS; i++) ab.Post(i);

TPL Dataflow Basics 11

20 are.WaitOne();

21 sw.Stop();

22 Console.WriteLine("Messages / sec: {0:N0}",

23 (ITERS / sw.Elapsed.TotalSeconds));

24 }

25 }

26 static public void Benchmark2() {

27 var sw = new Stopwatch();

28 const int ITERS = 6000000;

29 var are = new AutoResetEvent(false);

30

31 var ab = new ActionBlock<int>(i => { if (i == ITERS) are.Set(); },

32 new ExecutionDataflowBlockOptions {

33 SingleProducerConstrained = true

34 });

35 while (true) {

36 sw.Restart();

37 for (int i = 1; i <= ITERS; i++) ab.Post(i);

38 are.WaitOne();

39 sw.Stop();

40 Console.WriteLine("Messages / sec: {0:N0}",

41 (ITERS / sw.Elapsed.TotalSeconds));

42 }

43 }

44 }

45 }

The option SingleProducerConstrained is an optimization for situationswhere there is only a single
block feeding data to another block. The creator of the TPL Dataflow library, Stephen Toub, explains
its usage:

Dataflow blocks by default are usable by any number of threads concurrently. While
flexible, this also places more synchronization requirements, and therefore cost, on the
blocks than might otherwise be necessary. If a block is only ever going to be used by
a single producer at a time, meaning only one thread at a time will be using methods
like Post, OfferMessage, and Complete on the block, this property may be set to true to
inform the block that it need not apply extra synchronization. For blocks that observe
this property, you can significantly reduce synchronization overheads by setting this
property to true. Right now, only ActionBlock pays attention to this property, but more
blocks could in the future as necessary.

(from http://blogs.msdn.com/b/pfxteam/archive/2011/09/27/10217461.aspx)

TPL Dataflow Basics 12

Using his code (above) for a performance comparison, he measured an ActionBlock<T> throughput
of 10,942,715 without the SingleProducerConstrained option (Benchmark1()), and 37,456,691 with
the option set (Benchmark2()).

	Table of Contents
	TPL Dataflow Basics
	Blocks
	Execution Blocks
	ActionBlock<T>
	TransformBlock<T1,T2>
	Block Configuration
	Execution Block Options

