

[image: From theory to practice in enterprise-architecture]

 From theory to practice in enterprise-architecture

 Connecting ideas to solve practical challenges

 Tom Graves

 This book is for sale at http://leanpub.com/tp-theorypractice

 This version was published on 2022-06-27

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2022 Tom Graves

 Table of Contents

 	
 FROM THEORY TO PRACTICE: SAMPLE

 	
 Requirements vs constraints

 	
 Agility needs a backbone

 	
 On layers in enterprise-architecture

 	
 Practical implications for enterprise-architectures

 	
 Summary

 	
 Learning and the limits of automation

 	
 Implications for enterprise-architecture

 Guide

 	
 Begin Reading

FROM THEORY TO PRACTICE: SAMPLE

This is a sample of the content from the Tetradian From Theory to Practice anthology.

“Theory informs practice; practice reinforms theory”. This anthology from the Tetradian weblog explores how theory and practice support each other, in the transition from initial plan to real-world implementation of an architecture.

This sample contains around one-tenth of the content from the full anthology. The complete book includes about 35 posts and 45 images from the weblog. These posts are split into two groups:

 	
From Theory - outlines some essential theory and guiding-principles for working on enterprise-architectures and more.

 	
To Practice - provides practical guidance on common issues that can arise during development for various types of architecture.

For further information on enterprise-architectures and more, visit the Tetradian weblog at weblog.tetradian.com. The weblog currently includes some 1400 posts and more than a thousand images, and is at present the world’s primary source on whole-enterprise architecture - methods, principles and practices for architectures that extend beyond IT to the whole enterprise.

For more ebooks and anthologies on enterprise-architecture and more, visit the Tetradian website on Leanpub at leanpub.com/u/tetradian. (Each anthology contains around 30-40 posts from the weblog.)

Some books are also available in print format, from all regular book-retailers. For more details, see the ‘Books’ section on the main Tetradian website at tetradian.com/books/.

 Unless otherwise stated, all text, images and other materials in this anthology are Copyright © Tom Graves / Tetradian 2006-2022.

Requirements vs constraints

This one’s a follow-on to a comment in one of the Content Economy articles I referenced yesterday:

 What is Enterprise Architecture? – “Architecture is the art of matching requirements with constraints in complex situations”.

In conventional requirements-modelling, we only model the requirements. Fair enough: that’s the top-down perspective, of ‘what shall be’ etc.

In any of the decent requirements-toolsets, such as Telelogic DOORS, we also identify tests for each requirement, and model the often many-to-many links between each. As we do design and implementation, we’re likely to add those into the requirements-model too.

But as far as I can tell, the tools don’t model constraints. Which they need to, because (as per that quote above), any implementation of an architecture needs to balance the top-down requirements with the bottom-up constraints (“this is the Real World talking…”) – and specifically the constraints which apply at that time. If we don’t map the constraints as constraints into the requirements-model, we have no way to tell which ‘requirements’ for implementation are actually real requirements, and which are actually constraints masquerading as requirements – for example, a colour-scheme, or an interface-spec, or a particular technology, and so on.

This is particularly important when we remember that we’re dealing with multiple intersecting life-cycles for each implementation: as with requirements, constraints are dynamic over time. Each implementation is a complex trade-off between requirements and constraints: if we embed the constraints into the model as ‘requirements’, we’ll always be finding ourselves limited by apparent constraints that may well be out of date and no longer apply.

My preferred requirements-methodology, Volere, does include constraints as a separate category (section 4 in the template), with some sub-categories, but nothing like the level of detail that it does for requirements – in fact it treats constraints as requirements, which they’re not. Although obviously requirements and constraints are related, we need quite different types of attributes and metadata for each: for example, at the design/logical-level, requirements should be ‘timeless’ and implementation-agnostic, whereas constraints are context- and implementation-specific.

And if “architecture is the art of matching requirements with constraints in complex situations”, we need our architecture to model both, dynamically over time and in different contexts. Which, given that our toolsets are still barely coming to grips with the idea that there could be anything more than a single fixed, static ‘as-is’ and ‘to-be’ in any enterprise-architecture model, is going to be tricky – to say the least – but it needs to be done. Somehow.

I’m trying to address these issues in the architecture-framework and methodology I’m developing for the current ‘mini-book’ on ‘real enterprise-architecture’; but if you happen to have thoughts on this that you’re willing to share, I’d love to hear from you!

Source (Tetradian weblog)

 	
Date: 2008/01/28

 	
URL: requirements-vs-constraints

 	
Comments: (none)

 	
Categories: Business, Complexity / Structure, Enterprise architecture

 	
Tags: Enterprise architecture

Agility needs a backbone

Something that’s been concerning me quite a bit over the past year or so in enterprise-architecture has been the over-obsession with agility: agility for its own sake, perhaps, without much thought behind it, much thought about why or how we need to be so agile.

No matter what it is, it seems – whether in IT-architectures, business-models, the organisation as a whole – agility of any kind is promoted as ‘the answer’. With the increasing hype around cloud-based computing, there’s been plenty of talk amongst the less-realistic IT-centric ‘enterprise’-architects that EA itself is redundant. And perhaps that large organisations don’t even need an IT department any more.

Which, to be blunt, is just plain stupid.

It’s not an ‘either/or’. It’s a ‘both/and’. Sure, over-rigid structures can be a real problem. But agility often needs a backbone to give it some direction – something to push against so it that can do more than merely flop about at random. As usual, it’s a question of balance – getting the right balance between the solid bone and the agile muscle.

Which is where enterprise-architecture comes into the picture, to help create a proper sense of the whole as whole.

To extend that simple metaphor, yes, it’s true that there are a few creatures, or parts of creatures, that consist only of agile muscle, pushing against itself: the octopus, the cuttlefish, the elephant’s trunk. But most muscle needs something to provide an anchor around which or against which to push and pull. And if we want both agility and speed – as so many companies do – then we’re even more likely to need a backbone: think of the cat, the cheetah, the snake. If you want high efficiency, you’re going to need the right kind of balance between rigid and flexible: think of the kangaroo, that uses less energy the faster it goes. If you want agility in the air – a swallow, a falcon – you’re going to need another kind of balance, another subtle trade-off between rigidity, flexibility, lightness and strength. Many other examples there, of course.

And for large organisations, the much-hated ‘IT Department’ provides a key part of that backbone. You may not like it; you may not like its seemingly slow, lumbering rigidity, its need to get everything right, everything certain. But without it, that organisation is going nowhere. Even if everything in IT could somehow shift to the cloud and to all employee-provided technology – which would involve some massive shifts in itself, for HR and pay and expenses and tax-issues and the rest – there’ll still need to be someone who sets up and maintains the wi-fi networks, the security-policies, the software licenses and all the other myriad of ‘keeping the lights on’ issues that are so often forgotten by the cloud crew. (Yes, folks, even with everything-cloud there’ll still be some software-licenses to worry about: not everything can go onto the cloud, ‘cos you still have to connect to the cloud somehow…)

A real enterprise-architecture would show us that the backbone consists of a variety of different things that can link together in different ways to create different kinds of flexibility:

 	the vision and values of the extended-enterprise, to which the organisation aligns itself – its core ‘Why’

 	the core ‘things’, information, services, events and places that are most relevant to that enterprise – its core ‘What’, ‘How’, ‘When’ and ‘Where’

 	the structures of relationships implemented through the organisation and its partnerships with others – its core ‘Who’

That backbone gives us something around which we can build agility. We can try all kinds of different business-models – as long as they align to that core ‘Why’. We can work on many different kinds of ‘things’, physical, virtual or otherwise – as long they link back to the core ‘things’ of the extended-enterprise. We can work with all kinds of information – but we must be able to link it back to the core-information that defines the scope of the enterprise.

Which, once we think about that for more than a few minutes, makes it plain that no business larger than the smallest start-up should ever even consider storing all of its business-critical data on someone else’s cloud. Not without some really solid questions on escrow, reverse-backup, long-term migration, jurisdictions, business-continuity, disaster-recovery and the rest, at any rate.

And no-one - not even the smallest start-up – should ever consider outsourcing any part of its core-strategy to anyone else. Ever. Whether to the cloud, to some mob of external consultants, to some government department, or to anything else. Outsourcing your strategy is a really quick way to commit commercial suicide…

Agility takes place out at the edge: things happen fast there. But in so many, many cases they can only happen fast out there because the core takes care to move slowly, cautiously, providing the solid, certain backbone for the agile edge to push against. And as in living bodies, getting the right balance between them can be a literal make-or-break. A point that it’s probably wise not to forget?

 Update, twenty minutes later:

Typical. I’ve been working on the ideas behind this post for months, and been brewing how to describe it for at least a week. And literally five minutes after I post it, along comes a really nice summary of some other key issues around agility versus ‘the backbone’: Mark Ferraro’s ‘10 Dynamics of Effective Agile Organizations’. Well, at least the link is here now, anyway: hope it’s useful?

Source (Tetradian weblog)

 	
Date: 2011/04/03

 	
URL: agility-needs-a-backbone

 	
Comments: 8

 	
Categories: Business, Enterprise architecture

 	
Tags: agile, agility, Business, business architecture, business-IT divide, cloud, cloud computing, effectiveness, enterprise, Enterprise architecture, metamodel, RBPEA, strategy, taxonomy, values

On layers in enterprise-architecture

How many layers are there in an enterprise-architecture?

If we read any of the standard texts, you’ll see there are several popular answers. For example, Archimate says there are three: Business, Application and Technology. TOGAF says there are four: Business, Data, Application and Technology (though in the ADM, ‘Data’ and ‘Application’ are bundled together as a single layer, ‘Information-Systems’). I’ve seen others that say five, adding an ‘Information’ layer between ‘Business’ and ‘Data’. The one common factor in all of those layered structures, you’ll note, is that ‘Business’ is at the top, and ‘Technology’ - or, more specifically, IT-hardware and infrastructure - at the bottom.

If we look at the Zachman framework, we’ll find five layers, or six, or sometimes maybe more, or maybe less, depending on interpretation: it kinda varies. And these layers are somewhat different from those in Archimate and TOGAF and the like: there’s sort-of ‘Business’ and ‘Systems’ and ‘Technology’ and so on, but it’s framed in a different way, kinda sideways on from the rest.

And then there are other frameworks such as TMForum’s Frameworx, which in some of its views presents a four-layer layered structure much like TOGAF’s:

 [image:]

But another view of the same nominal framework shows a related-yet-different layered-structure of ‘Integration’; then ‘Business Process’, ‘Information’ and ‘Applications’ as segments in a single layer; then ‘Business Metrics’; and ‘Best Practices’:

 [image:]

And yet another view shows all of this again in an entirely different way, as a whole matrix of intersecting layers:

 [image:]

So which one is the right way to layer an architecture?

Confusing, to say the least… Why all these variations?

It’s because the correct answer to the ‘how many layers’ question is ‘none’.

Within any architecture - ‘enterprise’ or otherwise - every entity can be viewed in multiple ways, and often must be viewed in multiple ways if we’re to make sense of where that entity might best fit in the overall scheme. Any supposed ‘layering’ is therefore an arbitrarily-chosen overlay or filter on the overall view. The layers are an artificial abstraction based on a set of assumptions about ‘how the world works’, that exists for practical convenience only, and for a specific type of purpose only - never more than that.

There’s a crucial distinction here between ‘useful’ and ‘true’. Layering can be useful - no doubt about that. Yet the moment we think that any layering we choose is ‘the truth’ - is somehow ‘real’, in and of itself - then we’d have already lost the plot. We’d no longer have an architecture - instead, we’d already be halfway to a poorly-thought-through design that’s riddled with arbitrary assumptions and fundamental flaws.

The crucial point to understand here is that a layered-type structure can only fully make sense from a single viewpoint - such as, in those cases above, from the viewpoint of someone designing or managing an IT-infrastructure. Probably the simplest analogy here is with an ‘impossible object’ such as a Penrose Triangle: we can sometimes kinda fake it up so that it seems to make sense if we look at it from exactly the right viewpoint (e.g. right-hand photo in image below) - but from anywhere else, it probably won’t:

 [image: 'Penrose Triangle' sculpture, Perth (via Wikimedia)]
 ‘Penrose Triangle’ sculpture, Perth (via Wikimedia)

When seen only from the selected viewpoint, the distortions that are needed needed to make it seem to work can become all but invisible. There’ll often be some warning-signs or symptoms that suggest that something doesn’t quite make sense - yet many people will ignore even those, because everything else does seem so much to make sense from that chosen perspective. To recognise what’s really happening, and to make the distortions visible, we have to look at things somewhat sideways-on - as in this New Scientist video of ‘impossible motion’, or in this YouTube video of ‘impossible balls’.

If we are only going to work from one viewpoint - and only from that one viewpoint - then, yes, subject to a whole string of ifs-buts-and-perhapses, we can sort-of get away with it. For that specific purpose, the practical convenience of a ‘layered’ view would probably outweigh its factual and functional inaccuracies.

But if we do do that, then at that time, by definition, we can’t and won’t be doing any kind of whole-of-context architecture. Instead, we could and would only be working on the architecture of a smaller subset within a larger context, as represented by that single viewpoint into the whole.

Which is why we cannot and must not mislead people by describing the respective architectures as ‘enterprise’-architectures, because they’re not. By definition, they can’t be - they are only a view of the context as viewed from a single viewpoint. For a true ‘architecture of the enterprise’, the only valid approach is to assume that everything and nothing is ‘the centre’, all at the same time. Anything less than this would almost guarantee distracting distortions, awkward ‘invisibilities’ and unfounded assumptions, and in turn all but guarantee the failure of the overall architecture.

Which is where we come back to the classic ‘layered’ models of enterprise-architectures, and how and why they are so problematic and error-prone - especially at a whole-of-enterprise level. There are three key problems in particular, which may also combine together to cause even worse problems: – The layers also act as filters on the overall view - which may not be a problem if the applicable context is only a subset of the view through the layers, but may be seriously-problematic if the context is actually a superset of the view through any layer, or the combination of layers. I could perhaps summarise the scale of implicit risks of this problem with a quote from my post ‘A bit more broken’, discussing examples of current trends that can impact architectures to support new or existing business-models:

 …the emergence and evolution of information technology; also the impact of regulation and deregulation enabling key types of business-models; globalisation; the role of containerisation and other physical-transportation technologies; raising and lowering of tariff-barriers; the role of non-IT-managed ‘tribal knowledge’; nanotechnologies; 3D-printing technologies; patents and other ‘intellectual-property’ regimes; the impacts of organisational culture; jurisdictional clashes; the rise of the BRICS nations and the faltering of many ‘developed’ nations; the increasing role of China and others in Africa with regard to control of key mineral-commodities; the risks to global communications posed by rising levels of space-junk and suchlike; broad-scale political themes such as the Arab Spring; and, increasingly, the impacts of climate-change.

There are immensely complex architectural trade-offs here, immensely complex wicked-problems, of which only one strand is the IT. So if the architecture for the enterprise is based on a ‘layered’ concept that implicitly ignores everything other than IT, we might well find the organisation suddenly struggling to survive, with no means to identify what happened nor any means to respond, because the information needed to make sense of what’s going on has been ‘filtered-out’ from the view.

– The view through the layers may be ‘non-reversible’, different from either side - somewhat like the difference between looking upward from the bottom of a well, versus looking downward from far above the top of the well. This subset/superset problem is typified in the layering used in both Archimate and TOGAF, where the effective scope narrows as we move ‘down’ the layers:

 	if we look ‘upward’ from Infrastructure towards Business, everything can be interpreted in terms of its relationship to IT-infrastructure

 	if we look ‘downward’ from Business towards Infrastructure, all non-IT applications, data, resources and technologies become become artificially excluded from the view

The dangers of this kind of unintentional-myopia or tunnel-vision include:

 	key architectural concerns, even for IT alone - such as physical-infrastructure, physical-security, power-supply and cooling for a data-centre - can be missed, by being arbitrarily and inappropriately excluded as ‘out-of-scope’ as we move further ‘down’ into the detail-layers of the architecture

 	alternate options and affordances - including contextually more-appropriate options - can become ‘invisible’ to the architecture and subsequent implementation-designs

 	assessment of cross-context trade-offs can become dangerously skewed

By the way, this problem is by no means specific to IT-oriented aspects of enterprise-architectures. In the military context, for example, hidden architectural-assumptions can and have caused huge problems in issues such as:

 	integration of former Warsaw Pact equipment, processes and protocols into NATO operations

 	creation and operation of temporary alliances with non-compatible systems, such as in Libya (NATO plus Arab League), Somalia (African Union plus US/EU technical support) and Central African Republic (COPAX plus France), and in multi-nation disaster-recovery operations such as the 2011 Japanese tsunami or (at present) Philippines cyclone

 	integration of NGOs and other ‘non-state actors’ into peacekeeping [PDF] and/or disaster-recovery operations

 	over-focus on warfighting-capability resulting in unnecessary constraints on capability for peacekeeping and/or disaster-recovery operations (the latter are becoming increasingly-common reasons for deployment of military assets and personnel)

(For more on this in the military context, see, for example, the work of US military-theorist David S. Alberts, or the links in my post ‘Hybrid-thinking, enterprise architecture and the US Army’.)

– _Layered models tend to incite inappropriate conflation _ - in which logically- and/or functionally-different concepts, attributes or entities become merged or blurred together in inappropriate or misleading ways.

For example, in the classic ‘three-architectures’ layer-model used in both TOGAF and Archimate, in effect anything physical ends up in the ‘Infrastructure’ layer, anything to do with information ends up in the ‘Application’ layer, and anything human ends up in the ‘Business’ layer. In Archimate especially, this conflation appears to be taken to extremes:

 	‘Business’ = anything-human + anything-relational + principle-based (‘vision/values’) decisions + higher-order abstraction + intent

 	‘Application’ = anything-computational + anything-informational + ‘truth-based’ (algorithmic) decisions + virtual (lower-order ‘logical’ abstraction)

 	‘Technology’ = anything-mechanical + anything-physical + physical-law (‘rule-based’) decisions + concrete (‘physical’/tangible abstraction)

One result, as described in my post ‘On human ‘applications’ in EA models’, is that neither framework provides any means to describe any information-manipulation ‘application’ that is not enacted exclusively by IT - such as Amazon’s ‘Mechanical Turk’ (an ‘application’ explicitly designed to be enacted by people) or a kanban board (an ‘application’ that, in its original form, explicitly manages its information via physical cards).

Another is that the conflations make it much harder to see or understand options and opportunities for substitution and the like, either by choice - such as in trade-offs between different service-delivery methods in a multi-method service such as mail-sorting - or enforced by ‘outside’ forces or events - such as in business-continuity and disaster-recovery.

Such conflations also often make it extremely difficult to avoid ‘vendor-driven architectures’ and similar ‘solutioneering’, in part because it makes it all but impossible to describe some context without all of the baggage pulled in along with it. And these conflations are also a primary source of IT-centrism and other forms of ‘anything-centrism’ - which are all but guaranteed to result in incomplete and/or actively-dysfunctional architectures.

Practical implications for enterprise-architectures

Most current ‘enterprise’-architecture is still strongly IT-oriented. For such types of work - especially in the common case of IT-infrastructures to support high-volume transactions for information-oriented industries such as banking, finance, insurance and tax - the classic ‘three layers of architecture’ concept is a fairly good fit for those particular needs. The problems described above do not disappear as such, but the constraints of that ‘inside-out’ layered-view, centred around IT-infrastructure, do fit those specific requirements well enough such that the convenience of a ‘layered’ model will usually outweigh the risks.

Note, however, those points about specificity above: the ‘three-architectures’ model only fits well with that specific set of requirements:

 	
IT-infrastructures - the focus-point for the three-layer ‘stack’

 	
narrow subset of business-needs - in essence, high-repetition, high-certainty, high-volume

 	
narrow subset of industries - primarily IT-based, information-oriented, highly transactional, such as finance, banking, insurance, tax

Conversely, the further we move outside of those specific constraints, the worse will be the fit between the ‘three-architectures’ model and the respective real-world context. Hence the further we move outward, the more problematic and risk-prone that model will become - and, hence, if the framework we use assumes a layer-based model, we will need to compensate in our architecture-practice for those risks and problems.

In effect, that classic ‘three-architectures’ model is merely one instance of a more generic architecture-development pattern which we could summarise as follows:

 	
Big-picture - indirect impact (e.g. ‘Business Architecture’ as ‘anything not-IT that might affect IT-infrastructure’)

 	
Common (or ‘client’) - direct impact (e.g. ‘Applications Architecture’ as ‘anything directly-using IT that might affect IT-infrastructure’)

 	
Detail - the core concern or centre-of-interest

In other words, it doesn’t have to be IT: the same pattern could apply to finance, security, HR or just about anything else in relation to its broader context. Note, though, that whatever domain we use as our focus for this pattern, we would still need to take care with regard to the ‘non-reversible’ problem described above: those problems are not specific to IT-architectures, but more generally to misuse or misunderstanding of the nature and inherent limitations of that ‘layers’-pattern.

If you’re using a common ‘enterprise’-architecture framework such as Zachman, TOGAF or Archimate, probably the simplest way to summarise recommended-practice here would be as follows:

 	if you’re doing IT-infrastructure only, use the classic ‘three-architectures’ pattern - it should work well enough

 	if you’re doing IT-oriented application-architecture and/or data-architecture, you’re probably safe enough to use the ‘three-architectures’ pattern - though do beware of the common conflation-problems described above, and do be careful to check for non-IT-based applications and data that run in parallel with the IT-based ones

 	if you’re doing application- and/or data-architecture that does not or should not automatically assume an IT-based implementation (such as in business-continuity planning, kanban-type process-tracking and the like), take especial care to compensate for the inherent IT-centrism of the ‘three-architectures’ model

 	if you’re doing ‘business’-architecture solely and explicitly as ‘anything not-IT that might affect IT’, you’re probably safe enough to use the ‘three-architectures’ pattern - but do ensure that everyone involved is aware of the inherent biases and constraints inherent in doing so

 	if you’re doing ‘business-architecture’ as ‘the architecture of the business of the business’, you should not use the ‘three-architectures’ pattern in its classic form, as it will skew the architecture towards IT-centrism in potentially-dangerous ways

 	if the key focus of your architecture is anything other than the above (e.g. security-architecture, brand-architecture), or if you are doing any other work that explicitly engages concerns beyond the direct remit of IT, you should not use the classic ‘three-architectures’ pattern, because doing so will inevitably filter the required view of the enterprise in seriously-inappropriate ways

Let’s look at the practical implications for each of those three frameworks in a bit more detail.

Zachman

The ‘three-architectures’ problems described above have unfortunately become more prevalent - not less - in the most recent version of Zachman, which now explicitly specifies the same three domains (Business, Application, Technology) of the classic ‘three-architectures’ pattern respectively as the labels for its rows 2, 3 and 4. In previous versions, these were assigned somewhat-more-generic labels such as ‘Business Model (Owner)’, ‘System Model (Designer)’ and ‘Technical Model (Builder)’ respectively.

As a minimum, use an older version - one that does not reinforce the ‘three-architectures’ problems by conflating domains of interest (‘three-architectures’) with levels of abstraction (Zachman-rows). Overall, it’s probably best to do the following:

 	identify the key business-question(s) and enterprise-scope of the work before using the Zachman framework

 	use Zachman rows as levels-of-abstraction - or vision/purpose, business/strategy, near-future/’logical’ and ‘physical’, implementation, deployment

 	moving ‘up’ the rows enables refocus on ‘why’, moving ‘down’ the rows enables refocus on ‘how’

 	iterate up and down the rows as appropriate, adjusting the scope as required

Take especial care to avoid the incipient ‘solutioneering’ that arises from going too fast ‘down’ the rows, and/or failing to hold the view long enough in the ‘higher’ rows.

TOGAF

The ‘three-architectures’ model is hardwired into the TOGAF ADM (Architecture Development Method) as its Phases B (‘Business Architecture’), C (‘Information-Systems Architecture’) and D (‘Infrastructure-Architecture’). At first glance, it would therefore seem that it is not possible to use TOGAF reliably for anything other than IT-infrastructure architecture. That interpretation is not actually correct: there are workarounds to enable use of TOGAF ADM for broader-scope architectures.

The first of these is explicit in the ADM diagram, though perhaps not fully explained in the text. The key point here is that ADM does not assume that the Phases will be executed in a linear step-by-step sequence. Instead, each of the Phases can return or skip-forward to any other Phase, via a bidirectional link that passes through the central Requirements-Repository. It’s therefore legitimate to move back-and-forth between those three Phases, potentially broadening the scope as required, though still constrained primarily to IT.

The next option to use Phase A to identify the business-question and enterprise-scope - much as described for Zachman above - and then, based on that scope, reframe Phases B, C and D in terms of the generic ‘three-architectures’ pattern - Big-picture, Common and Detail - to iterate back-and-forth between broader and narrower subsets of the scope. The constraint here is that the ‘non-reversible’ problem potentially still applies - the ‘detail’-view arbitrarily constraining the ‘big-picture’-view - but again this can be dealt with and allowed for, as long as people are aware of the potential problem.

A third option is somewhat more radical, though in essence is just a matrix-inversion of the procedures in that part of the ADM. In each of the existing Phases B, C and D, we expect to explore the respective scope in terms of a primary time-horizon (usually ‘to-be’), then do the same with one or more comparison time-horizons (usually ‘as-is’ and any intermediate steps), and finally derive a gap-analysis and initial change-roadmap between each of the time-horizons. Hence in this option we drop the predefined ‘three-architectures’ assumptions about scope, instead setting the scope via the business-question(s) in Phase A, as in the previous option. The focus of Phase B then becomes the scope at the primary time-horizon, Phase C the comparison time-horizon(s), and D the respective gap-analysis and roadmap(s).

In each of these options, Phases E, F and G remain essentially unchanged, whilst Phase H can be usefully expanded to include more on benefits-realisation and lessons-learned, much like any other PDCA-type (Plan, Do, Check, Act) continual-improvement process.

Finally, another option is to reframe the whole ADM cycle and scope in terms of the ‘plugins’ concept in the content-metamodel of TOGAF 9, but in which - rather than the existing hardwired ‘three-architectures’ - all of the metamodel’s building-blocks, including the nominal ‘core-content’, are available to assist in identifying the respective scope and content for an ADM cycle.

Archimate

Unfortunately, the ‘three-architectures’ model is even more deeply embedded in Archimate than it is in TOGAF - it’s actually fundamental to its underlying metamodel. Even though there were some improvements in Archimate version 2 that pushed it somewhat towards the kind of ‘plugin’ concept that we see in TOGAF 9, it still remains inherently IT-centric.

At present, there are no clear workarounds to IT-centrism in Archimate - none that can be classed as ‘legitimate’ in terms of the language-standard, anyway. In principle at least, there is no ‘legal’ way to use Archimate to model something as straightforward as a multi-medium customer-service capability, or existing business-models such as Mechanical Turk, or brand-architecture, security-architecture, or financial-architecture - or how any of those intersect with the IT-specific components that Archimate does support. It’s true that most toolsets do now enable some form of ‘profile’-modification that makes it possible to add extra entities to the language as required - typically based off ‘static-structure’ elements such as ‘Artifact’, ‘Data Object’ or ‘Business Object’ - but by definition these would be ‘non-standard’, and would fail any form of model-validation in accordance with the association-rules specified in the standard.

Again, these problems are fundamental to the Archimate metamodel. It is possible to kludge our way around it somewhat, as per above, but the only real way to resolve the problems is to go back right to the roots of the Archimate metamodel, and rebuild almost from scratch. As documented in my post ‘Unravelling the anatomy of Archimate’, there are ways to do this, that would still be fully backwards-compatible with the existing metamodel: but before that can happen, there needs to be both awareness of the problem, and willingness to address it - both of which, unfortunately, seem to be conspicuous mostly by their absence. Oh well…

Summary

The correct answer to the question ‘how many layers are there in an architecture?’ is none.

Every layers-based pattern for enterprise-architecture - such as in the common ‘three-architectures’ model popularised in TOGAF, Zachman, Archimate and elsewhere - represents an arbitrary set of overlays and assumptions onto the actual enterprise-context, and may be seriously problematic in how it constrains and distorts both the view onto the architecture, and the apparent range of appropriate solutions to that architectural need. These problems and their concomitant risks were summarised above as:

 	Layers act as filters on the overall view

 	The views through the layers may be different, depending on which direction we look

 	Layered models tend to incite inappropriate conflations of terms

In most cases, there are workarounds for these problems, even in nominally ‘IT-centric’ frameworks. First, though, it is necessary to be aware that the problems exist!

Source (Tetradian weblog)

 	
Date: 2013/12/11

 	
URL: on-layers-in-ea

 	
Comments: 7

 	
Categories: Business, Complexity / Structure, Enterprise architecture

 	
Tags: archimate, Business, business architecture, business-IT divide, Enterprise architecture, layered architectures, metamodel, togaf, Zachman

Learning and the limits of automation

One of the themes that came up in the Vlerick Business School session on EA-roadmaps was around how long it takes to learn how to develop the skills needed to do enterprise-architecture - and how and why to learn them, too.

What came up was that it took them 18 months to do their first pass through the architecture-cycle. People complained, loudly, that it had taken too long, and delivered not much apparent business-value. This is the point at which, far too often, the plug is pulled on enterprise-architecture in an organisation. Fortunately, in their case, they had an executive sponsor who did understand what was going on, and did support them through those challenges. Which meant that they did get the chance to do another iteration - which took less time, and delivered more business-value - because they had been able to learn from their previous experience.

In short, enterprise-architecture is a skill - a set of skills that revolve around one core idea, that ‘things work better when they work together, on purpose’. And as with all skills, it takes time, and real-world experience, to be able to learn that skill - in this example, the skill of getting things to work better and work together, on purpose.

By developing skill within a context, we also develop the ability to handle that context’s unpredictability, variance or change: not just a ‘nice to have’, but often utterly essential for survival and more. A direct corollary of that, though, is that, to be able to learn that skill, we also need to have the time to do so, and a ‘safe-enough’ yet still real-enough context in which we can develop experience without causing too much damage and disruption along the way. We could summarise all of this in SCAN terms as follows:

 [image:]

In SCAN terms, much of the learning - developing an understanding of the value of theory, yet also its limitations - takes place in the interaction between the ‘upper’ domains, Complicated and Ambiguous, across a crucial context-boundary that we might describe as ‘the edge of uncertainty’:

 [image:]

The catch, as we can see in both the diagrams above, is that developing skill not only takes time, but much of it necessarily takes place away from the point-of-action, the point within an organisation’s business-model where service and value are delivered, and profit returned.

The result is all too predictable: an urgent hunt in most organisations for anything that could obviate the need for that ‘inefficient’ period of skills-development. Classically, this takes two forms, often in parallel with each other:

 	let someone else cover the costs, by buying-in existing skills

 	use automation to try to bypass the need for any skill at all

In other words, the supposed aim is that we should end up with a bunch of automation, a few trainee-level button-pushers who don’t (in fact shouldn’t) have to think about what they’re doing; and a very small number (preferably zero) of people with master-level skills who can reprogram the machines and fix any oddities that happen to come their way. In SCAN terms, it looks a bit like this - machines and trainee-level operators alike following Simple rules, and the one or two people with Master-level skills who can help trainees respond to and recover from a transit over ‘the edge of panic’ into the Not-known:

 [image:]

That ‘automate-everything’ whole approach is very, very popular - or at least, openly much-desired - by just about every modern-day manager. Yet it’s not just a modern-day malaise: in fact it’s been popular since the very first ‘automation’, when someone first got innovative enough to rid themselves of that whole tedious effort and nonsense of nomadic hunting and gathering - I mean, in the name of the gods, now we have farming to feed us all, who needs the skills of the hunter any more? (Yeah, we really do need to hear the quite cacophony of hidden “Oops…” there: the list of cultures and civilisations that have collapsed in the face of climate-change and farming-failure is very long…)

The assumption and ideal, of course, is that the automation never fails: it’s perfect, once it’s started, we never need do anything else. Everything under absolute control, absolute certainty, everywhere, forever - the archetypal manager’s perfect dream! Plenty of people to pocket the profit from pushing that dream, too - whether realistic or not…

And the blunt reality is that that dream is not realistic: in fact is best described as ‘wishful thinking’, usually of the most dangerous kind - the kind of dream that turns into a really nasty nightmare, because Reality Department is just not that unchanging, certain, predictable, and nor is it that forgiving of complacency, laziness or self-delusion. The blunt reality is that, in the real world, when (not ‘if’) the automation fails, and we’ve lost all of the skills behind them, we’d have nothing left with which to recover - and we probably won’t have time to recover those skills in time, either. (Yeah, definitely “Oops…”)

An excellent article on the US National Public Radio website, ‘Hands Free, Mind Free: What We Lose Through Automation’, warns about the real results that arise from this:

 As a result of autopilot, though, pilots aren’t getting enough practice in manual flying. So when something bad happens, pilots are rusty and often make mistakes.

Want a real-world example? We need look no further than the tragedy of Air France Flight AF447 (official report). That’s what happens when people get too reliant on the automation, and don’t have the requisite skills to take over in a hurry when the automation fails.

But note that it isn’t the automation itself that’s the problem here: the same automation that was a key cause of the failure in the Air France 447 was a key factor in the success of the US Airways 1549 ditching - the so-called ‘Miracle On The Hudson’ - because the self-levelling technology of the Airbus flight-control allowed Sullenberger and his crew to concentrate fully on the water-landing itself. The crucial difference between those two incidents was that Sullenberger and his crew were able to cross over ‘the edge of panic’ that hit when the automation alone was not enough; but on the Air France flight, the crew were not able to make that jump - they each individually had the requisite experience, perhaps, but not the skills to work together as a crew to resolve the loss of automation in a real-world crisis.

To put it at its simplest, the real killer is complacency: the complacency that arises from the delusion that once the automation exists, we never have to think again. Even in the aviation-industry, we’re seeing assertions that Sullenberger and his ilk are ‘the last of their kind’, that their skills are no longer needed:

 “Twenty-five years ago, we were a step below astronauts,” says one veteran pilot. “Now we’re a step above bus drivers. And the bus drivers have a better pension.”

But Reality Department has other ideas about that - it always has ‘other ideas’, beyond any comforting delusions of certainty or ‘control’, whether we wish it so or not. And the only way to cope, when Reality Department does throw us into the Not-known, over the far side of ‘the edge of panic’, is to have the requisite skills available to make sense of that Not-known, make the right decisions in that Not-known, and take the right actions within that Not-known - right here, right now. If not, we’re dead - metaphorically if not literally. Which means that whenever there’s some form of automation in use, the skills to override and take over from that automation need to be there, and be available at all times - even though, or even because, the automation exists. As another quote from the ‘Hands Free, Mind Free’ article puts it:

 If the car of the future will make decisions for us, how will it decide what to do when a collision is unavoidable and a computer is in charge of the steering? “You have to start programming difficult moral, ethical decisions into the car,” Carr says. “If you are gonna crash into something, what do you crash into? Do you go off the road and crash into a telephone pole rather than hitting a pedestrian? … Once we start taking our moral thinking and moral decision-making away from us and putting it into the hands not of a machine really, but of the programmers of that machine, then I think we’re starting to give up something essential to what it means to be a human being.”

The other blunt reality is that if we rely on the presence of those with existing Master-level skills, with no means to replace them, then over time we’ll lose even those skills too. People leave; people retire; people die. When that happens, what we’d be left with is Simple-level automation and Simple-level button-pushers, with no means whatsoever to handle Reality Department’s inevitable excursions into the Not-known: over ‘the edge of panic’ indeed, when that happens…

It no doubt looks like a winner: avoid all of the costs and disruption and ‘inefficiencies’ of skills-development - or, if absolutely essential, find some way to make them ‘Somebody Else’s Problem’ - and then reap in all of the profits from those savings. But in reality it’s a huge risk that is almost guaranteed to eventuate in the medium to longer term: a specific class of risk called a ‘kurtosis-risk’, which, when it eventuates, wipes out and more all of the gains made from ignoring that risk.

Another key kurtosis-risk here occurs wherever potential skills-loss arises from inadequately-thought-through outsourcing. In the US a couple of decades back, for example, there was a huge rush to ‘save money’ by outsourcing all of the manufacturing to China, retaining only the design-capability in the US. This worked well, for a while - ‘well’ in the sense of greater short-term monetary-profit, at least - but quite suddenly the design-quality from the US went steeply down, at the same time as design-quality from China went steeply up. (I’m old enough to remember that much the same happened with outsourcing to post-war Japan: for a long time the quality was low, dismissed as ‘cheap Japanese rubbish’, but by the 1970s it suddenly changed to perhaps the highest quality in the world. Deming’s work might have had something to do with that, of course…)

The key reason for the change in design-capability and design-quality, for both the US and the China, is that development of design-capability depends on ‘thinking with the hands’ - direct hands-on engagement in the work, yet also in ‘safe-fail’ contexts just one step removed from front-line work. Or, in SCAN terms as above, the direct, personal, hands-on interaction between Complicated and Ambiguous, with brief deep-dives down into Simple (to do the work) and/or Not-known (to experience the real-world outcomes from that work).

We need to remember, too, that the Not-known is, by definition, the only place where new ideas, new information, new innovation, can arise. We apply those ideas in the Simple domain, but the ideas themselves arise from pretty much exactly where Simple least wants to be - a point nicely illustrated in this Tweet by Alex Osterwalder:

 	
AlexOsterwalder: “Individuals and companies go into slow decline when their appetite for panic slackens.” — Alain de Botton

There’s another SCAN crossmap that likewise illustrates the sequence in which we identify and apply new ideas:

 [image:]

Yet notice that in some ways this goes the opposite way to skills-development: it takes a moment of Mastery to let go enough into new ideas, and to bring them back for experiment and test. In that sense, yes, skills-development is recursive, fractal - as is the full development and exploitation of new ideas. But crucial stages of skills-development, going one way, and idea-development, going the other, both depend on periods and contexts where we’re somewhat removed from the action - and a place where automation alone cannot reach.

If we don’t develop ideas, we won’t be able to adjust to change. If we don’t develop skill, we never gain the benefits of that skill. And no skill within a context equals no ability to handle that context’s volatility, variance or change: not a good idea…

In short: automation is useful, but we need to be aware of its limits - and of the learning we need so as to compensate for those limits, too.

Implications for enterprise-architecture

Whenever any kind of automation - IT-based or otherwise - is under consideration for use within an architecture, always remember to include the following check-points:

 	Given the total system within which the automation is to operate, what are the elements of that system that the automation would not cover?

 	What processes, services and skills would be required to cover the parts of the overall system that the automation would not cover?

 	What processes, service and skills would be required to take over from the automation when (not ‘if’) the automation fails, or comes across contexts which it is not competent to cover?

 	What signals would be required to warn that automation has either failed or moved ‘out-of-competence’ for the respective real-world context? In case of such failure, how fast will each type of transition need to be?

 	What processes, services and skills would be required to handle the transition to non-automated operation, and return from non-automated operation - including any update of records and the like, from the period of non-automated operation?

 	What impacts would such transitions to or from non-automated services have on overall service-delivery contracts and service-level agreements?

 	What processes, services and skills would be needed to maintain the automation?

 	What processes, services and skills would be needed to amend, design and develop the automation, and to cover those aspects of the total system not covered by the automation itself, in respect to changing business contexts and business needs?

 	Given the list of skills identified in those questions above, how would those skills be developed and maintained? How would tacit narrative-knowledge and ‘body-knowledge’ - ‘learning with the hands’ - be transferred and maintained across the generations?

In short, know the limits of automation, and design for the learning needed for all of those contexts not covered by automation - rather than pretending that they don’t exist, or are some ‘Somebody Else’s Problem’.

Remember that whilst solution-architecture or domain-architecture may have convenient boundaries where they can seemingly handball the problem to an imagined ‘Somebody Else’, at the enterprise-architecture level there is no ‘Somebody Else’: by definition, the working of the enterprise as a whole is always our problem - so whenever someone plays ‘Somebody Else’s Problem’, we are that ‘Somebody Else’! Tricky… but that is what the job entails, after all.

Leave it at that for now: over to you for comment, perhaps?

Source (Tetradian weblog)

 	
Date: 2014/10/11

 	
URL: learning-and-the-limits-of-automation

 	
Comments: (none)

 	
Categories: Business, Enterprise architecture, Knowledge

 	
Tags: automation, Business, capability, effectiveness, enterprise, Enterprise architecture, Knowledge, knowledge management, learning, narrative knowledge, risk, skills, skills development

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/swamp-ihtl.png
theory .=, hypothesis
(Scientist, 477 «(Technologist|
“outer fruth) “*1” outer value)

(Atit,
“inner value)

the orosyr barer|/

OEBPS/images/640px-Perth_Impossible_Triangle.jpg

OEBPS/images/scan-skills.png
apprentice | journeyman
eam e heony | © A dspends,
100:1000Hvsy -~ 17000:10000 ve)
Coinplicated | A

not-
" repeatable

fow varation high veraton
i Tunque)

OEBPS/images/scan-edges-ca.png
(indefinite
future)

Complicated : &2 Ambiguous

Not-known

Now!

(increasingly
Certain uncertain)

OEBPS/images/scan-edges-ns.png
(indefinite
future)

Complicated Ambiguous

Now!

(increasingly
Certain uncertain)

OEBPS/images/frameworx-layers.png
Business Process Framework (eTOM,

Information Framework (SID)

Application Framework (TAM

Integration Framework - architecture and standard
interfaces

OEBPS/images/frameworx-disk.png

OEBPS/images/etom.png
Strategy, Infrastructure & Product

Enterprise Management
lmm:lsmm ”Emwn!‘]

Enterprise mmn.—l l Knowledge & Research I

ot | (s | (g |

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
the Tetradian weblogs

From Theory to
Practice in EA

Connecting ideas to solve practical challenges

