

Making Sense of Services in EA
Structure, design, governance and
value-flow

Tom Graves

This book is for sale at http://leanpub.com/tp-easervices

This version was published on 2022-06-20

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2022 Tom Graves

http://leanpub.com/tp-easervices
https://leanpub.com/
https://leanpub.com/manifesto

Contents

SERVICES: SAMPLE . 1

Services and Enterprise Canvas review - 5: Service-content 3

Service, product, service - a novel concept? 28

Service-design: How long is a service? 32

Product, service and trust 37

SERVICES: SAMPLE
This is a sample of the content from the Tetradian Services and
enterprise-architecture anthology.

This anthology from the Tetradian weblog provides overviews
and commentary on how to make sense of services in enterprise-
architecture and related fields, with an emphasis on how services
need to be structured, and on the relationships between service and
product.

This sample contains around one-tenth of the content from the
full anthology. The complete book includes about 40 posts and 115
images from the weblog. These posts are split into three groups:

• Services and Enterprise Canvas - reviews the role and struc-
ture of the service-oriented Enterprise Canvas model-type.

• Service and Product - explores the relationships between
services and product, and how those relationships work in
practice.

• Services: Other Themes - presents further aspects of services
in enterprise-architecture.

For further information on enterprise-architectures and more, visit
the Tetradian weblog at weblog.tetradian.com¹. The weblog cur-
rently includes some 1400 posts and more than a thousand images,
and is at present the world’s primary source on whole-enterprise
architecture - methods, principles and practices for architectures
that extend beyond IT to the whole enterprise.

¹http://weblog.tetradian.com

http://weblog.tetradian.com/
http://weblog.tetradian.com/

SERVICES: SAMPLE 2

For more ebooks and anthologies on enterprise-architecture
and more, visit the Tetradian website on Leanpub at
leanpub.com/u/tetradian². (Each anthology contains around
30-40 posts from the weblog.)

Some books are also available in print format, from all regular
book-retailers. For more details, see the ‘Books’ section on the main
Tetradian website at tetradian.com/books/³.

Unless otherwise stated, all text, images and other materials in this
anthology are Copyright © Tom Graves / Tetradian 2006-2022.

²https://leanpub.com/u/tetradian
³http://tetradian.com/books/

https://leanpub.com/u/tetradian
http://tetradian.com/books/
https://leanpub.com/u/tetradian
http://tetradian.com/books/

Services and Enterprise
Canvas review - 5:
Service-content

What is a service-oriented architecture - particularly at a whole-
of-enterprise scope? How best could we summarise the content
of each service - the elements that make up its structure? What
do we need, to move beyond the IT-centrism that’s dominated so
much of the previous discussions around service-architectures, and
to give us service-descriptions that really can cover the whole of
the enterprise and its needs?

This is the fifth in a six-part series⁴ on reviewing services and the
Enterprise Canvas⁵ model-type:

• 1 Core: what a service-oriented architecture is and does⁶
• 2 Supplier and customer: modelling inbound and outbound
service-relationships⁷

• 3 Guidance-services: keeping the service on-track to need and
purpose⁸

• 3A: Direction⁹
• 3B: Coordination¹⁰
• 3C: Validation¹¹
• 3D: Investors and beneficiaries¹²
⁴http://weblog.tetradian.com/services-and-ecanvas-review-intro/
⁵http://weblog.tetradian.com/tag/enterprise-canvas/
⁶http://weblog.tetradian.com/services-and-ecanvas-review-1-core/
⁷http://weblog.tetradian.com/services-and-ecanvas-review-2-supplier-customer/
⁸http://weblog.tetradian.com/services-and-ecanvas-review-3-guidance-services/
⁹http://weblog.tetradian.com/services-and-ecanvas-review-3a-direction/
¹⁰http://weblog.tetradian.com/services-and-ecanvas-review-3b-coordination/
¹¹http://weblog.tetradian.com/services-and-ecanvas-review-3c-validation/
¹²http://weblog.tetradian.com/services-and-ecanvas-3d-investors/

http://weblog.tetradian.com/services-and-ecanvas-review-intro/
http://weblog.tetradian.com/tag/enterprise-canvas/
http://weblog.tetradian.com/services-and-ecanvas-review-1-core/
http://weblog.tetradian.com/services-and-ecanvas-review-2-supplier-customer/
http://weblog.tetradian.com/services-and-ecanvas-review-2-supplier-customer/
http://weblog.tetradian.com/services-and-ecanvas-review-3-guidance-services/
http://weblog.tetradian.com/services-and-ecanvas-review-3-guidance-services/
http://weblog.tetradian.com/services-and-ecanvas-review-3a-direction/
http://weblog.tetradian.com/services-and-ecanvas-review-3b-coordination/
http://weblog.tetradian.com/services-and-ecanvas-review-3c-validation/
http://weblog.tetradian.com/services-and-ecanvas-3d-investors/
http://weblog.tetradian.com/services-and-ecanvas-review-intro/
http://weblog.tetradian.com/tag/enterprise-canvas/
http://weblog.tetradian.com/services-and-ecanvas-review-1-core/
http://weblog.tetradian.com/services-and-ecanvas-review-2-supplier-customer/
http://weblog.tetradian.com/services-and-ecanvas-review-3-guidance-services/
http://weblog.tetradian.com/services-and-ecanvas-review-3a-direction/
http://weblog.tetradian.com/services-and-ecanvas-review-3b-coordination/
http://weblog.tetradian.com/services-and-ecanvas-review-3c-validation/
http://weblog.tetradian.com/services-and-ecanvas-3d-investors/

Services and Enterprise Canvas review - 5: Service-content 4

• 4 Layers: how we partition service-descriptions¹³
• 5 Service-content: looking inside the service ‘black-box’
• 6 Exchanges: what passes between services, and why

In the earlier parts of the series, we saw how each service needs
support from a variety of other services, to guide and validate
its actions, to coordinate its actions with other services and its
changes over time, and provide support from and for various forms
of investment and the like. We’ve also seen how we can describe
the services, and the architecture as a whole, in terms of a set of
‘layers’ of abstraction and/or realisation. What we need to move to
next is more detail about the structures of the services themselves -
what’s inside the ‘black-box’ represented by each service.

(Note: this post deals only with what happens inside the ‘black-box’
of a service. We also need to describe what passes between services,
of course - but we’ll explore that in the next post in this series, ‘Part
6: Exchanges’.)

This, I’ll admit, was one of the aspects of Enterprise Canvas that
most gave participants some difficulty during the ‘EAMasterclass¹⁴’
series in Australia earlier this year. That’s perhaps not surprising,
though, because all that I gave them at first was this one diagram:

¹³http://weblog.tetradian.com/services-and-ecanvas-review-4-layers/
¹⁴http://weblog.tetradian.com/reflecting-on-ea-masterclass/

http://weblog.tetradian.com/services-and-ecanvas-review-4-layers/
http://weblog.tetradian.com/reflecting-on-ea-masterclass/
http://weblog.tetradian.com/services-and-ecanvas-review-4-layers/
http://weblog.tetradian.com/reflecting-on-ea-masterclass/

Services and Enterprise Canvas review - 5: Service-content 5

In practice we do need all of that detail - but we don’t necessarily
need it all at once! So this time, then, I’ll take it rather more step-
by-step…

Perhaps a first place to start is that, as described in the previous part
of this series, about ‘layers’ and Enterprise Canvas¹⁵, the service-
descriptions are different at different layers of abstraction and
realisation. Because of this, we’re also going to need the ‘layers’
diagram from that post:

You’ll also need to refer to the post ‘Fractals, naming and en-
terprise-architecture¹⁶‘, because that provides definitions and
explanations of the key terms as used here.

The core point here, again, is that the content that we need to
identify, collate and describe will be different at different layers
- particularly between rows 0-3.

(Between rows 3-5, the content-types themselves remain much
the same - it’s mainly just the types and levels of detail that
change between those layers. Row-6 ‘Action-Records’ is different,
but mainly because it’s much simpler - but in essence most of it

¹⁵http://weblog.tetradian.com/services-and-ecanvas-review-4-layers/
¹⁶http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/

http://weblog.tetradian.com/services-and-ecanvas-review-4-layers/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
http://weblog.tetradian.com/services-and-ecanvas-review-4-layers/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/

Services and Enterprise Canvas review - 5: Service-content 6

is a subset or description of what’s happened in row-5 and in the
transition through the ‘travelling-NOW’, and we probably don’t
need to deal with that here in this review.)

At the topmost layer, row-0 ‘Enterprise’, there is no service-
content as such. That’s because this layer represents the ‘ultimate
‘Why’¹⁷’, the final ‘Because.’, to which everything else is anchored -
or, to put it another way, it’s what all of the services in the shared-
enterprise ultimately aim to serve.

The content that we do find at this layer is anything which defines
the enterprise as a shared-enterprise:

• vision, purpose or promise (and similar ultimate-anchor
terms)

• derived values that act as the driver and anchor for the Value-
Proposition and the validation-services¹⁸

• principles, guidelines, root-level laws or regulations, and
other actionable guidance for the direction-services¹⁹

To use the ZapaMex example from the ‘Layers’ post in this series:

Remember that this is not about the organisation alone: the shared-
enterprise has a much larger scope than that, and this layer of con-
tent is about identifying what drives the overall shared-enterprise -
not solely the organisation or its own specific services. In the terms
used in Enterprise Canvas, the organisation itself is merely one

¹⁷http://weblog.tetradian.com/two-kinds-of-why/
¹⁸http://weblog.tetradian.com/services-and-ecanvas-review-3c-validation/
¹⁹http://weblog.tetradian.com/services-and-ecanvas-review-3a-direction/

http://weblog.tetradian.com/two-kinds-of-why/
http://weblog.tetradian.com/two-kinds-of-why/
http://weblog.tetradian.com/services-and-ecanvas-review-3c-validation/
http://weblog.tetradian.com/services-and-ecanvas-review-3a-direction/
http://weblog.tetradian.com/two-kinds-of-why/
http://weblog.tetradian.com/services-and-ecanvas-review-3c-validation/
http://weblog.tetradian.com/services-and-ecanvas-review-3a-direction/

Services and Enterprise Canvas review - 5: Service-content 7

potential player amongstmanywithin the overall shared-enterprise
- see the post ‘Organisation and enterprise²⁰’ for more detail on this.

(If we ever get this one wrong, and allow our modelling to become
‘business-centric’ rather than whole-enterprise holistic, we’ll soon
find ourselves in deep, deep trouble - architecturally-speaking, at
least - without being able to understand why. You Have Been
Warned, etc?)

As we move downward to row-1 ‘Scope’, we start to need real
content about services. For here, though, all we need are lists of
‘what’s needed to make the enterprise happen’ - and for this, the
basic Zachman interrogatives will usually suffice:

Using the respective ZapaMex example again:

Note that these are just lists: we don’t describe any connections
between things at this stage, in this layer. Our organisation and its
services or service-elements should appear in some way or other in
most or all of these lists, of course.

As we move down to row-2 ‘Business-Model’, we do need to
start modelling the relationships between the various entities. At
first this can consist of simple modelling of relative roles - self,
competitor, supplier, regulator, customer and so on. And yes, given

²⁰http://weblog.tetradian.com/organisation-and-enterprise/

http://weblog.tetradian.com/organisation-and-enterprise/
http://weblog.tetradian.com/organisation-and-enterprise/

Services and Enterprise Canvas review - 5: Service-content 8

that we have already established that the shared-enterprise is larger
in scope than the organisation, for this purpose we can safely place
the organisation at the centre of our modelling - as in this example
for ZapaMex:

For these first stages, we’ll use those lists that we derived in row-
1, based on the Zachman-interrogatives. But we’ll soon find, as
we start to go into any depth at all, that those interrogatives
alone won’t be enough - even for an overly-simplistic transaction-
oriented summary of ZapaMex’s business-model:

At which point, the simple interrogatives…

…need to morph into terms that are more descriptive, and capable
of much more depth:

Services and Enterprise Canvas review - 5: Service-content 9

The full details for these terms are in that post ‘Fractals, naming
and enterprise-architecture²¹’, but as a quick summary:

• Asset (‘What’) - a resource for which the enterprise acknowl-
edges responsibility

• Function (external of ‘How’) - external-facing interface, re-
sponsible for service-contracts, protocols, SLAs, etc; accepts
and returns assets

• Location (‘Where’) - a position within the terms of a specific
schema

• Capability (‘Who’ / ‘How’ / ‘with-What’) - the ability to do
something; includes the agent that enacts the capability, the
action-type or asset-type acted upon, and the skill-level or
competence of the agent

• Event (‘When’) - trigger for a function and underlying capa-
bility

• Decision / Reason (‘Why’) - sensemaking / decision-making
for the service, and/or its type of guidance or governance

There are several points there that probably need a bit of extra
explanation:

– There’s no ‘Who’. That’s not a mistake, it’s a deliberate omission
- and its intentional absence is meant to force us to thinkmuchmore
carefully about what ‘Who’ really means in real-world practice.

One aspect is that the ‘Who-as-actor’ part is sort-of subsumed into
Capabilities - in particular, in the Agent, and the Skill-level of that
agent. Yet note, though, that trying to equate that with ‘Who’ can

²¹http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/

http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/

Services and Enterprise Canvas review - 5: Service-content 10

be misleading, because although the agent is indeed sometimes a
real-person, it’s just as probable that the agent could be a machine,
an IT-application, or even - for some types of services - something
completely intangible, such as a brand. Shifting to the neutral term
‘agent’ allows us to to describe activities without always being
forced to specify how they’re implemented - an implementation-
neutral stance that we certainly need in row-2 work, and most of
row-3 work as well. It also allows us to explore substitutability,
where one type of agent can take over the same task from another:
often a fundamental need in business-process redesign, for example,
where an IT-applicationmight replace a human agent; or in disaster-
recovery, where the opposite might need to occur.

The other supposedly-natural place for ‘Who’ would be as an Asset,
in line with that usually-well-meant phrase “Our people are our
greatest assets!” For me, though - and this, to me, is an absolute
and non-negotiable fundamental for all enterprise-architecture -
we must insist that people are not ‘assets’: it is the relationship
with the person that is the asset. Hence the asset-dimension
of ‘relational-assets’, as we’ll see later. We link to real-people
via relational-assets, but people themselves are never part of the
architecture.

(Okay, there’s the extreme special-case of the anchorite²² - but I
doubt that many people these days would have sufficient religious-
fervour for their organisation’s enterprise that they’d willingly
present themselves to be permanently bricked-up inside the corpo-
ration’s walls… :-))

– ‘Capability’ isn’t a Zachman-primitive. No, it’s not - and
again, that’s intentional. Capabilities are made up of other Services
(and also assets as Products or Exchanges, as we’ll see in Part 6
of this series), which in turn are composed of other services, that
are themselves made up of other services, and so on, and so on,
potentially ad-infinitum. The fact that Capability isn’t a primitive

²²http://en.wikipedia.org/wiki/Anchorite

http://en.wikipedia.org/wiki/Anchorite
http://en.wikipedia.org/wiki/Anchorite

Services and Enterprise Canvas review - 5: Service-content 11

is what enables the recomposition and fractal-recursion that are so
essential to a service-oriented architecture.

The other elements form sort-of-homogenous composition/aggre-
gation-hierarchies: there are differences created by different com-
binations of the asset-dimensions, for example, but each of those
core-types is still fundamentally discrete - an asset is not an event
is not a function-interface is not a location, and is not in itself a
decision or reason either. By contrast, a capability will always be
heterogeneous, a compound-entity, a mixture of different-things-
coming-together-to-make-things-happen - and yet that’s precisely
where its power resides. Without capability as a compound-entity,
there would be no way to bring everything together as a service,
and nothing would happen - which is why we need it here as an
‘equal citizen’ alongside the nominal Zachman-style ‘primitives’.

(Another way to put this: if ‘event’ - for example - is a ‘something’s-
happened’ entity, and ‘asset is a ‘do-something-with-or-to’ entity,
then capability is a ‘bringing-things-together’ entity. Makes sense,
I hope?)

– ‘Function’, ‘Capability’ and ‘Service’ could all seem to be the
same thing. Yes, without sufficient care, they might indeed seem
to be the same - and that’s the problem. In many business-contexts,
they are regarded as sort-of essentially the same thing, kind-of, but
at different levels, maybe, sort-of… - and it’s precisely that type of
blurry confusion that the more precise terminology for Enterprise
Canvas is designed to prevent.

Re-read those definitions above. Function is just an interface: on
its own, it can’t do anything at all. Capability is the ability to do
something, but until it’s linked with a Function (and everything
else) it literally has no function. It’s only when they’re all linked
together in and as a Service that things really start to happen - that
needs can genuinely be served. As a quick visual summary:

Services and Enterprise Canvas review - 5: Service-content 12

There’s more on this in other posts here, such as ‘On function,
capability and service²³’, ‘Service, function and capability (again)²⁴’
and ‘Function, capability and affordance²⁵’.

– There’s no ‘Process’. Yes - and that again is another deliberate
omission. In part it’s because, yet again, business-folks seem to
have a really bad habit of using the word ‘process’ for what is
actually a type or level of Service - in other words, creating yet
more blurriness and ambiguity, which really doesn’t help when
we’re trying to sort the resultant mess of miscommunications…

The reality is that, within a service-oriented architecture, process
is just a way in which services are linked together into a usable
sequence of some kind, to deliver some kind of broader collective
‘service’. Because it’s just a sequence, the boundary of a process is
always arbitrary: the boundary is where we say it is²⁶ - nothing
more than that. And as soon as we put a boundary around it, it
becomes a type of Service, because it has a boundary that now
needs function-interfaces and trigger-events and business-rules on
that boundary. Hence we really don’t need a separate term for
‘process’: other than that point about sequence, it’s already implicit
anyway in the concept and definition of a Service, and flows of
Exchanges between those services.

– There doesn’t seem to be an explicit ‘How’. You’d perhaps

²³http://weblog.tetradian.com/on-function-capability-service/
²⁴http://weblog.tetradian.com/service-function-capability-again/
²⁵http://weblog.tetradian.com/function-capability-and-affordance/
²⁶http://weblog.tetradian.com/what-is-boundary-of-a-service/

http://weblog.tetradian.com/on-function-capability-service/
http://weblog.tetradian.com/on-function-capability-service/
http://weblog.tetradian.com/service-function-capability-again/
http://weblog.tetradian.com/function-capability-and-affordance/
http://weblog.tetradian.com/what-is-boundary-of-a-service/
http://weblog.tetradian.com/on-function-capability-service/
http://weblog.tetradian.com/service-function-capability-again/
http://weblog.tetradian.com/function-capability-and-affordance/
http://weblog.tetradian.com/what-is-boundary-of-a-service/

Services and Enterprise Canvas review - 5: Service-content 13

have to dig a bit deeper to notice this one… :-) - but if Function is
only an interface with protocols and service-level agreements and
suchlike, and Capability can consist of other Services but of itself
is only an agent and an action-on something at a given skill-level,
then where exactly is the ‘How’? The answer is yes, it’s true, that
when we look deeper here there’s no explicit ‘How’ in the usual
sense expected in, say, a process-model - and again, that absence is
intentional, for much the same reasons as that there’s no explicit
‘Who’.

The aim here is to force us, as architects, to look much more
carefully at how things actually work in the real-world: and the
reality here is that ‘How’ is an emergent outcome - one that
arises from the interaction between Function, Capability and De-
cision/Reason, and to some extent the other elements too. Look at
an ISO9000²⁷-type work-instruction: it’s a list of action-on a given
Asset, by a given agent, at a given skill-level, in accordance with
a specific request from some interface, and all done in accordance
with a set of applicable business-rules and assigned-responsibilities
(‘procedures’) and policies and guidelines and validations and so
on. There is no distinct ‘How’ as such: ‘How’ is just an emergent
outcome from the ways that all of those elements interact.

The assumption that there should always be an explicit, identifi-
able, hardwired ‘How’ probably arises from too much exposure
to attempts at service-implementation by automation alone - such
as in poorly-thought-through business-process-reengineering and
the like. In automation, yes, we generally do need to hardwire the
‘How’, because that’s all that machines can cope with: but as soon
as we need to change the agent - as ISO9000 explicitly warns us -
then the ‘How’ inherently changes too. And in most architectures
we’ll need to allow for substitutability of agents and suchlike - at
least, if we’re to have an architecture that can cope with such key
concerns as problem-escalation and disaster-recovery.

Hunting for a predefined ‘How’ is much the same mistake as

²⁷http://en.wikipedia.org/wiki/ISO_9000

http://en.wikipedia.org/wiki/ISO_9000
http://en.wikipedia.org/wiki/ISO_9000

Services and Enterprise Canvas review - 5: Service-content 14

hankering too much for a predefined ‘process’: it’s trying to apply
the ‘in-the-box’ arbitrary boundaries of linear-thinking to a context
where, in reality, everything is inherently fractal and recursive,
where such ‘boxes’ don’t actually make much sense, and where
linear-thinking really doesn’t work well at all. Instead of looking
for a ‘How’, we need to explore more carefully the business-need
(as specified in the Function), the ability of something to satisfy
that need (as in the services-within-services of the Capability), the
guidance that that ‘something’ would require (from the Decision
elements), and the ways in which these and the other elements all
interact in order to satisfy that business-need.

Yes, it’s a different discipline, a different kind of rigour, than
what many people might expect. But unless the architecture is
solely about implementing fairly low-level IT- or machine-based
automation - and nothing else at all than that - we’re going to need
that additional rigour and discipline if our architectures are to work
well.

By the time we get down to row-3 ‘System-Model’, and onward
into ever-finer implementation-detail in row-4 ‘Design-Model’
and row-5 ‘Deployment-Model’, those coarse-grained categories
alone will not be enough: we need to be more specific about what
each of those elements is made up of, so as to know how they go
together. This is where we discover that not only are the Zachman-
primitives a bit misleading for architecture - such as around ‘Who’
and ‘How’, as we’ve seen - but there’s actually an entire dimension
missing from that framework. Which is what brings us to this
expanded visual-checklist, with which we started here:

Services and Enterprise Canvas review - 5: Service-content 15

The key concern that’s driving this, and also driving that movement
‘up’ and ‘down’ between the abstract and the concrete, is this:

Services are usable to the extent that they are architecturally-
complete; services are reusable to the extent that they are
architecturally-incomplete

By ‘architecturally-complete’, I mean that all of the elements for
the service are in place: we know exactly what assets are or will
be in play, what interfaces and protocols will be used, at what
locations, using which capabilities with which agents acting on
what types of assets withwhat skill-levels, triggered bywhat events,
in accordance with what principles and business-rules. As the
service passes through ‘the travelling-NOW’, the exact moment of
service-delivery, all those things are and must be, for that moment,
absolutely defined - otherwise service-delivery doesn’t happen.

On the far side of ‘the travelling-NOW’ - as we move to the
world of row-6** ‘Action-Records’** - different subsidiary-services
come into play, looking back at that moment that’s now in the
past, and passing those records on to the guidance-services, the
investor-beneficiaries, and the wider shared-enterprise, for review
and to guide future service-delivery. Once we’ve moved to the past,
nothing from that ‘the NOW’ can be changed - in a very literal
sense, that moment has passed. But from the past, we loop back to
the future - a point we can perhaps illustrate with one of the earlier

Services and Enterprise Canvas review - 5: Service-content 16

SCAN²⁸ crossmaps:

In practice, the role of architecture is to explore possibilities for the
future, playing with the level of uncertainty - the ‘incompleteness’
- about elements of the architecture, in order to identify the most
appropriate trade-offs and configurations both within each service
and across the whole. That’s why we need those varying levels
of abstraction about detail, ranging from almost-nothing to the
Zachman-interrogatives to the ‘Asset / Function / Location / …’
set, to even deeper explorations using the asset-dimensions and
decision/skills-dimensions, here in rows 3, 4 and 5. It’s this extra
‘dimension of dimensions’ that, yes, I’ll admit, makes that service-
content checklist-graphic seem a bit overwhelming at first: but it
actually is necessary, and once we get the head around it, actually
is quite easy to use.

As indicated in the checklist-graphic, the asset-dimensions apply
to:

• asset
• function
• location
• capability::agent
• capability::action-on (that which is acted on by the capability)
• event

The key point here is that an asset - and, by reference, anything
else that uses or relates to assets, as in the rest of that list just above

²⁸http://weblog.tetradian.com/tag/scan/

http://weblog.tetradian.com/tag/scan/
http://weblog.tetradian.com/tag/scan/

Services and Enterprise Canvas review - 5: Service-content 17

- is composed of (how best to phrase this?) four distinct clusterings,
of sets of attributes or something like that, that are fundamentally-
different and often mutually-exclusive. Other variations on much
the same kinds of clusterings exist in other domains, such as the
classic ‘four states ofmatter’ - solid, liquid, gas, plasma - or the even-
more-classic Western-culture ‘four elements’ - physical, mental,
emotional, spiritual. It’s from the latter, and their implied mutual-
exclusivity, that I’ve adapted the label-set we use in Enterprise
Canvas:

• physical: physical object, machine, geographic-location etc
• virtual: data, software-application, IP-address etc
• relational: link between people and/or other tangible ‘things’
• aspirational: person-to-virtual or virtual-to-virtual link
(brand etc)

Which we could separate-out from the checklist-graphic as a single
column, as follows:

Or, in visual form as four mutually-exclusive dimensions:

Services and Enterprise Canvas review - 5: Service-content 18

(This layout is what I’ve called a ‘tetradian’ because the mutual-
exclusivity of the dimensions allows us to pack all four of them into
a three-dimensional space, as the internal-axes of a tetrahedron.)

Some of the distinguishing-attributes that make up those asset-
dimensions include:

• intrinsic (physical, virtual) vs ‘between’ (relational, aspira-
tional)

• tangible (physical, relational [both end-points], aspirational
[one end-point, usually]) vs non-tangible (virtual, aspira-
tional [other or both end-points])

• transferrable (physical, virtual [via copy]) vs non-
transferrable (relational, aspirational)

• alienable [if I give it to you, I no longer have it] (physical) vs
non-alienable [if I give it to you, I still have (a copy of) it]
(virtual) (not-applicable to: relational, aspirational)

The reason why these dimensions and the distinguishing-attributes
are so important is that they determine what we can and must
(or must not) do with the respective asset. A purely-physical asset
has to be handled and stored and managed in a physical way: it’s
unique, it’s transferrable, it has mass, it occupies physical space. A
purely-virtual asset has to be handled in a virtual way: it’s sort-of
transferrable, by copying, and it has no mass and occupies no space

Services and Enterprise Canvas review - 5: Service-content 19

- but we can get at it, or even store it, without giving it some form of
non-virtual existence. (There’s more on this in the posts ‘Assets and
services²⁹’ and ‘Fractals, naming and enterprise-architecture³⁰’.)

Every type of asset also has its own variant of CRUD³¹ - Create,
Read, Update, Delete. Which also illustrates, yet again, why the
relationship is the asset, and not the person-as-asset - because
whilst it should be possible to create, read, update and delete
a relationship between people, we should not be able to do the
same with people themselves! (Not in any normal business-process,
anyway…)

In practice, most of the asset-dimension entities that we deal with in
enterprise-architecture and elsewhere - assets, functions, locations,
capabilities, events - actually represent some kind of combination
of those dimensions. For example, consider a printed library-book:

• it’s a physical ‘thing’ - so we have to manage it as a physical-
asset, with storage, location-tracking, physical-maintenance
and so on

• it contains virtual information - so we have to manage it
as a virtual-asset, with possible concerns about copying and
suchlike

• there are ownership-relationships with various people, some-
times temporary (as a library-loan), nominally also ‘perma-
nent (owned by the library) - so we need to track those
relationships

• there are value-relationships or meaning-relationships with
or for various people - so we might need to track what people
feel about the book in general, or even this specific copy

Or, to give another example, the location of someone’s office:

²⁹http://weblog.tetradian.com/assets-and-services/
³⁰http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
³¹http://weblog.tetradian.com/crud-crude-action-acronyms/

http://weblog.tetradian.com/assets-and-services/
http://weblog.tetradian.com/assets-and-services/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
http://weblog.tetradian.com/crud-crude-action-acronyms/
http://weblog.tetradian.com/assets-and-services/
http://weblog.tetradian.com/fractals-naming-and-enterprise-architecture/
http://weblog.tetradian.com/crud-crude-action-acronyms/

Services and Enterprise Canvas review - 5: Service-content 20

• it has a physical location - so we’d need to note the physical
schemas that apply, such as geographic location, building-
floor, corridor-position and so on

• it may have a virtual-location - so we’d need to note any
virtual schemas that might apply, such as room-ID, role-ID
and suchlike

• it will imply various relational-locations - we’d need to note
who uses this office at this time, or in the past, or is listed to do
so in the future; and/or where each of those people sit within
the organisational-architecture, or reporting-relationships, or
other relational schemas

• it may implymeaning-locations - for example, this was where
a famous scientist worked, this is where the first transistor
was created, this is where the treaty was signed

And yes, all of this could easily go on to infinity… So remember
always that core principle of Just Enough Detail³²: start with the
business-need in mind, and do just enough assessment to satisfy
that need - no more, but also no less.

On now to the decisions/skills dimensions, which, as the check-
list-graphic indicates, applies to:

• capability::skill-level
• decision/reason

Which we can summarise as:

• Rule-based (roughly equivalent to trainee skill-level): simple,
linear, true/false or limited-quantitative

• Algorithmic (or apprentice): complicated, still linear but can
include delays and/or feedback-loops

³²http://weblog.tetradian.com/just-enough-detail/

http://weblog.tetradian.com/just-enough-detail/
http://weblog.tetradian.com/just-enough-detail/

Services and Enterprise Canvas review - 5: Service-content 21

• Guidelines/patterns (or journeyman): complex, ambiguous,
non-linear, ‘wild-problems³³’

• Principle-based (or master): uniqueness, extreme-
uncertainty, extreme non-linearity, ‘chaotic’

Which, as with the asset-dimensions, we could separate out from
the checklist-graphic as a single column, as follows:

Which we can then link to a SCAN crossmap on skill-levels, as
follows:

All of which we can also loosely align with the asset-dimensions
as follows (though we do need to take care to avoid inappropriate
conflation here):

³³http://weblog.tetradian.com/not-so-wicked/

http://weblog.tetradian.com/not-so-wicked/
http://weblog.tetradian.com/not-so-wicked/

Services and Enterprise Canvas review - 5: Service-content 22

• rule-based/trainee to physical-world; capabilities of physical
machines as agent; can work well (though only with minimal
uncertainty) at real-time speeds

• algorithmic/apprentice to virtual-world; capabilities of soft-
ware-application or software-guided machine as agent; may
struggle to keep up with real-time speeds

• guidelines/journeyman to relational (human) world; capabil-
ities of human as agent, possibly with IT as decision-support
and/or pattern-matching; may well struggle to keep up with
real-time speeds

• principle-based/master to intentional/aspirational (high-
skilled/purposive human) world; capabilities of human as
agent; can work well with high-uncertainty at real-time
speeds

Which in turn brings us to some serious warnings about some
serious architectural booby-traps, such as summarised in the post
‘Learning and the limits of automation³⁴’. Of these, probably the
most important are:

– Don’t try to do everything with automation. This is such a
common mistake - especially by the IT-obsessed - that this point
may need to be hammered home at every possible opportunity.
Yes, we can almost certainly do part of anything with some form
of automation - sometimes quite a large part of that ‘anything’.
The catch is that, on its own, automation can only handle the
parts of that ‘anything’ that work well with linear cause-and-
effect logic - the ‘trainee’ and ‘apprentice’ levels of skill, the ‘tame-
problem³⁵’ parts that are to the left-hand side of that SCAN skills-
diagram above. Yet Reality Department always - always - includes
uncertainties and ambiguities that will break a linear logic: and
if linear-logic is all we have, then the whole architecture will fall
apart at that point, too. A whole-of-enterprise architecture cannot

³⁴http://weblog.tetradian.com/learning-and-the-limits-of-automation/
³⁵http://weblog.tetradian.com/not-so-wicked/

http://weblog.tetradian.com/learning-and-the-limits-of-automation/
http://weblog.tetradian.com/not-so-wicked/
http://weblog.tetradian.com/not-so-wicked/
http://weblog.tetradian.com/learning-and-the-limits-of-automation/
http://weblog.tetradian.com/not-so-wicked/

Services and Enterprise Canvas review - 5: Service-content 23

be built successfully from automation alone: we will always need
to fully include human elements within that overall picture. Which
means that we need to include those elements from the start - not
just as an afterthought, as happens too often in architectures at
present.

– Provision for skills-learning is an essential part of the archi-
tecture. This is another really common mistake - not just treating
the skills needed to support the capabilities of the architecture as
an afterthought, but treating the means of learning those skills as
an afterthought as well. Compare that SCAN skills-diagram above
with this SCAN crossmap of the effective limits of linear ‘tame-
problem’ tactics:

And perhaps also this SCAN crossmap with ISO9000 levels, and the
effective applicability and boundaries of each level:

Services and Enterprise Canvas review - 5: Service-content 24

The crucial point to note here is that, at the moment of action -
the ‘NOW!’ - all we have immediately available to us are simple
work-instructions, or the actionable principles that devolve from
the shared-enterprise’s vision. In other words, the trainee, and the
master. And the trainee - or the automation - can only handle
the work-instruction-friendly tame-problem parts of the context:
as soon as they hit anything more uncertain than that, they’ll get
thrown over ‘the edge of panic’ into the Not-known domain, where
they’ll need a master’s skills to sort out the mess.

But where do those master-level skills come from? The answer is:
the long way round, from trainee up to apprentice to journeyman
and back down again to master, through many, many hours of
analysis and experiment, much of it necessarily away from the real-
time ‘NOW!’. And while those people are doing that apprentice-
level and journeyman-level skills-development, they cannot be on
‘the front line’ - often because at those stages they still only know
enough to get into real trouble, but not enough to get out of it again.
The reality is that most people learn bymakingmistakes³⁶, and then
learning from those mistakes: and that means that we’ll often need
to place them in a safely-circumscribed ‘safe-fail’ version of the

³⁶http://weblog.tetradian.com/fail-to-learn/

http://weblog.tetradian.com/fail-to-learn/
http://weblog.tetradian.com/fail-to-learn/

Services and Enterprise Canvas review - 5: Service-content 25

real-world context - because real-world practice usually needs to
be as ‘fail-safe’ as we can make it.

So if our architecture - and our organisation - demands and expects
that people will and must always be ‘at maximum efficiency’, ‘fully
productive, 100% of the time’, we would in effect block off the
path via which people can develop their skills beyond trainee-
level. What we’d have then is an architecture that looks amazingly
productive and efficient in the short-term, but is guaranteed to fail
in the medium- to longer-term, as those people with the master-
level skills retire or move on, and there’s no-one with the right
kind of context-specific skills available to replace them. In short,
a full architecture must include explicit provision for development
of the skills needed to maintain the capabilities of that architecture
- and that includes the provision of the necessary ‘time off’ and
‘safe-space’ within which to develop those skills.

Anyway, time to bring all of the above together, and wrap-up this
part of the series.

Let’s look, for example, at the row-3 ZapaMex business-model,
from the previous part of this series:

The organisation as a whole represents a service which - as we can
see above - is itself made up of other services.

Each of those nine cells within the business-model represents a
service, each of which we’d probably describe in terms of a set of
subsidiary-services.

Services and Enterprise Canvas review - 5: Service-content 26

From ZapaMex’s perspective, everyone (or everything) in a ‘sup-
plier’ or ‘customer’ role relative to ZapaMex and its services also
represents a cluster of services with which it interacts.

Each of the flows on the business-model diagram above - explicit,
as shown as an arrow, or implicit, at the borders between each of
the services - itself implies a service at each end of that respective
flow, to manage the interactions and exchanges required for that
flow to happen.

So, for each of those services indicated or implied above:

• What Assets does that service need, in order to do its task?
• What Function-interfaces does that service need, using what
protocols, with what service-level agreements, and passing
which Assets (as Exchanges between the respective services)?

• At what Locations does the activity for that service take
place?

• What Capabilities are needed to make the required actions
happen for that service, with which agents, acting on what
types of Asset, with what skill-levels?

• What Events occur, or need to occur, for that service, in order
to signal the requisite transitions of state or action?

• What Decisions/Reasons - business-rules and more - should
apply for that service?

Assess each of those in terms of the respective combinations of
asset-dimensions and/or decision/skills dimensions.

If it sounds like a lot of work to do, well, yes, it is - but it’s no more
work than you’d do anyway, to do the architecture properly.

If it sounds ‘complicated’ (as someone complained about the ‘layers’
post in this series), well, yes, it probably is, at first - but no more
so than for anything else that’s somewhat new to you when you
first work with it. In practice, it’s actually a lot less complicated
than trying to sort out the mess created from trying to link together

Services and Enterprise Canvas review - 5: Service-content 27

the largely-incompatible muddle of single-function, single-domain
frameworks that currently litter so much of the enterprise-architec-
ture space.

And remember, again, that so-essential guideline of Just Enough
Detail. Don’t try to ‘boil the ocean’: do only that amount of service-
modelling that you must do to satisfy the business-need - no more,
but also no less.

(I did promise, in response to a comment³⁷ from Anders Danielsson
in the ‘Investors³⁸’ post in this series, that I’d put in a real-world
example here, about people and the role of relational-assets in
a hairdresser’s business. But this post really is too long already,
and it’s probably best left anyway until after the exploration of
Exchanges in the next part of this series. I will use it as a worked-
example in the ‘summary and wrap-up’ post, after the series ends -
that’s acceptable for now, I trust?)

Anyway, just one part left in this series - about Exchanges, the
content of flows between services. Let’s move on to that now,
before wrapping up the series as a whole.

Source (Tetradian weblog)

• Date: 2014/10/27
• URL: services-and-ecanvas-review-5-service-content³⁹
• Comments: (none)
• Categories: Business, Complexity / Structure, Enterprise ar-
chitecture

• Tags: complexity, enterprise, Enterprise architecture, enter-
prise canvas, service-oriented architecture, service-oriented
enterprise, services

³⁷http://weblog.tetradian.com/services-and-ecanvas-3d-investors/#comment-7232
³⁸http://weblog.tetradian.com/services-and-ecanvas-3d-investors/
³⁹http://weblog.tetradian.com/services-and-ecanvas-review-5-service-content

http://weblog.tetradian.com/services-and-ecanvas-3d-investors/#comment-7232
http://weblog.tetradian.com/services-and-ecanvas-3d-investors/
http://weblog.tetradian.com/services-and-ecanvas-review-5-service-content
http://weblog.tetradian.com/services-and-ecanvas-3d-investors/#comment-7232
http://weblog.tetradian.com/services-and-ecanvas-3d-investors/
http://weblog.tetradian.com/services-and-ecanvas-review-5-service-content

Service, product, service -
a novel concept?

Service and product as different views into the same space - is
that a novel concept? If so, what does that imply for enterprise-
architecture and the like?

The next post in this series on the relationship between product
and service⁴⁰ was going to be about transfers of responsibility in a
service/product chain - and I promise that I will get back to that as
soon as I can! But the previous post in the series, ‘Service, product,
service - implications for architectures⁴¹’, triggered off such a storm
on LinkedIn⁴² - well over 6000 views so far, and more than a
hundred comments. Some of the conversations there - particularly
those with Nick Malik, Jan van Bon, Kevin Smith and Jordan Julien
- are definitely worth preserving in more permanent form, because
they do help to clarify and resolve some of the confusions that can
arise. So I’ll do a brief side-series here, focussing on each of those
four comment-threads, before going on with that exploration on
responsibility. I’ll edit some of my replies from there for brevity
and/or clarity, but essentially the questions and responses in each
case are the same as in the original LinkedIn post linked above.

We’ll start with two important points from Nick Malik⁴³, the first
which was laid out as a kind of book-end at each end of his
comment:

“I found the idea intriguing that a product is a bridge

⁴⁰http://weblog.tetradian.com/2020/09/27/service-product-service-simplified/
⁴¹http://weblog.tetradian.com/2020/10/02/service-product-service-implications-for-

architectures/
⁴²https://www.linkedin.com/feed/update/urn:li:activity:6717873004052905984/
⁴³https://www.linkedin.com/in/nickmalik/

http://weblog.tetradian.com/2020/09/27/service-product-service-simplified/
http://weblog.tetradian.com/2020/09/27/service-product-service-simplified/
http://weblog.tetradian.com/2020/10/02/service-product-service-implications-for-architectures/
http://weblog.tetradian.com/2020/10/02/service-product-service-implications-for-architectures/
https://www.linkedin.com/feed/update/urn:li:activity:6717873004052905984/
https://www.linkedin.com/in/nickmalik/
http://weblog.tetradian.com/2020/09/27/service-product-service-simplified/
http://weblog.tetradian.com/2020/10/02/service-product-service-implications-for-architectures/
http://weblog.tetradian.com/2020/10/02/service-product-service-implications-for-architectures/
https://www.linkedin.com/feed/update/urn:li:activity:6717873004052905984/
https://www.linkedin.com/in/nickmalik/

Service, product, service - a novel concept? 29

from one service to another. … Your recognition of the
product as a connector of one service to another is
novel.”

I’ll admit that his description of that as ‘novel’ was a bit of a shock
for me, because it implies there’s a crucially important point that
I’d missed. I’d always thought of “product as a connector of one
service to another” as obvious and self-evident - as in this nearly-
decade-old diagram of mine that I’d referenced in my post:

But if Nick is right - and a lot of the comments on LinkedIn and
elsewhere now do seem to suggest that he is - then my failure to
realise that it wasn’t obvious was a huge mistake for me to make.
From what Nick was saying there, I need to go back and do a full
step-by-step reasoning on that part first - otherwise much of what
I’ve been describing about the implications of the linkage would
perhaps never make sense to others. Oops… If anyone has any
suggestions as to a best way to do that step-by-step, please let me
know?

Nick’s other point - or rather, my response to it - may take a bit
more explaining. This part of his comment (which I’ve shortened a
bit here) was:

The iPod changed all that [mess of MP3 players and
loader-apps] with iTunes. Because the iPod had a ser-
vice at one end. Now we have iTunes and the iPhone
and we can put a service at the other end as well, with
our apps. We no longer think of the iPhone as a product.
It’s part of the service of connected voice/video/inter-
net/community.

Service, product, service - a novel concept? 30

In terms of what I was saying in the post, this isn’t quite correct
- or rather, it depends where we choose to draw the boundaries. If
we draw the boundary as “the service of connected voice/video/in-
ternet/community”, then yes, the iPod or iPhone would be seen
as part of that service. But if we look at the iPhone itself, it’s a
product: a static container for services. And the apps on that iPhone
are products too - and sold as such, as well. It’s only when the
app is in use that it becomes an active container for services. The
services run through the product that is the app and, as a container,
the iPhone. Even the data that pass into and out of the app and
action the services are themselves products - literally, ‘that which
is produced’, and then consumed, in a service. But whenever we
draw a service-boundary, we render invisible any products within
it - they would be seen merely as ‘part of the service’. Which is
why an iPhone seems to be just part of “the service of connected
voice/video/internet/community” - but to make sense of what’s
really going on, we also need to understand it as a product in its
own right.

Product is service is product is service… It’s tricky…

That’s why I’d argue that the only way we can make sense of this is
understand that product isn’t something separate and distinct from
service: the whole notion of ‘product’ is an artefact of how we
choose to draw service-boundaries.

And likewise, ‘service’ is an artefact of how we choose to draw
boundaries across the overall flow of value undergoing change
- with those boundaries most often arising from how we perceive
apparent gaps in time or place, or apparent change in responsibility.

To be blunt, we need to be a bit more honest about those boundaries,
and how we choose to draw them… But that’s the topic for the
next post in the main part of this series: for now, back to those
comments on that previous post, with a sub-thread on the structure
of a service.

Service, product, service - a novel concept? 31

Source (Tetradian weblog)

• Date: 2020/10/18
• URL: service-product-service-a-novel-concept⁴⁴
• Comments: 6
• Categories: Business, Complexity / Structure, Enterprise ar-
chitecture

• Tags: boundary, complexity, Enterprise architecture, product,
sense-making, service, service-oriented enterprise

⁴⁴http://weblog.tetradian.com/service-product-service-a-novel-concept

http://weblog.tetradian.com/service-product-service-a-novel-concept
http://weblog.tetradian.com/service-product-service-a-novel-concept

Service-design: How long
is a service?

It wasmy grandmother’s 80th birthday.My parentswanted tomake
it a special occasion for her and for the family, so they booked us in
for a meal at a place called Le Talbooth⁴⁵ - then, as now, a decidedly
upmarket restaurant beside the River Stour, on the border between
Essex and Suffolk counties in south-east England.

Back in those days, Le Talbooth only did a fixed menu, with the
only choice between meat or fish, and with everything booked in
advance. But one of our extended-family was vegetarian - at that
time still regarded as a bit unusual, even a bit eccentric - so we had
to warn the restaurant that we needed a different dish in her case.

So come the day, there we all were, in the grand private room of the
restaurant. After the starters, out came the main course - meat or
fish, as per the pre-agreed plan. And out came one of the serving-

⁴⁵http://www.milsomhotels.com/le-talbooth/

http://www.milsomhotels.com/le-talbooth/
http://www.milsomhotels.com/le-talbooth/

Service-design: How long is a service? 33

staff, who asked, somewhat diffidently, “I understand one of your
party is vegetarian?” She duly raised a hand, awaiting the usual
tired omelette or baked-potato that was often all that a vegetarian
could expect back then. Oh well.

But that wasn’t what came up in this case. Instead, the kitchen had
gone wild. They’d gone crazy. They’d obviously had a lot of fun.
Because what was wheeled out, with some pride and ceremony,
was an entire trolley-load of vegetarian treats - much of it food
that most of us had never seen or heard of before, let alone tasted.
Wow! I think every one of us turned vegetarian on the spot! - for
the day, at least!

That was quite a long time ago - more than four decades ago now,
in fact. But the memory of superb service from that restaurant still
lives on, even that far back into the past.

Which, by a roundabout route, brings us to a key question for
service-designers: how long does a service-instance last?What’s
its actual duration?

The usual view of service-instances is organisation-centric:

• the service-instance beginswhen the customer comes into the
organisation’s space, with the initial service-request

• the service-instance ends when the customer leaves the or-
ganisation’s space

But as with all business-centrism⁴⁶ in business-architecture and
enterprise-architecture, that view risks missing the point here - and
often dangerously so. An organisation’s value-proposition⁴⁷ isn’t
solely about its products or services: far more, it’s about how those
products or services can help customers, providers, employees and
everyone else to reach towards a shared-story⁴⁸ - ‘the enterprise’
not as an organisation, but as a literal ‘bold endeavour’⁴⁹, shared

⁴⁶http://weblog.tetradian.com/2012/02/03/it-centrism-business-centrism-bizarch/
⁴⁷http://weblog.tetradian.com/2013/01/23/what-is-a-value-proposition/
⁴⁸http://weblog.tetradian.com/2010/01/26/the-enterprise-is-the-story/
⁴⁹http://weblog.tetradian.com/2014/09/18/organisation-and-enterprise/

http://weblog.tetradian.com/2012/02/03/it-centrism-business-centrism-bizarch/
http://weblog.tetradian.com/2013/01/23/what-is-a-value-proposition/
http://weblog.tetradian.com/2010/01/26/the-enterprise-is-the-story/
http://weblog.tetradian.com/2014/09/18/organisation-and-enterprise/
http://weblog.tetradian.com/2012/02/03/it-centrism-business-centrism-bizarch/
http://weblog.tetradian.com/2013/01/23/what-is-a-value-proposition/
http://weblog.tetradian.com/2010/01/26/the-enterprise-is-the-story/
http://weblog.tetradian.com/2014/09/18/organisation-and-enterprise/

Service-design: How long is a service? 34

with all others in that story’s space. Services are thus a means to
reach towards satisfying the drivers for the story:

On the surface, and for the organisation, yes, service-deliverymight
appear only as the ‘horizontal’ supply-chain path on that diagram
above, with the service-instance starting and ending as it transits
the boundaries and timelines of the organisation itself. In effect,
that’s service viewed solely as ‘how’ and ‘with-what’.

Yet the drivers for the service - the ‘why’ for service - are actually
in the shared ‘vertical’ links between each party and the same
overarching story, as on that diagram above. That’s how the
connection is made: that’s where marketing and branding sit, for
example, and why branding is so strongly oriented towards story
- towards creating a meaningful story about a means to satisfy a
perceived or actual need.

And it’s in that ‘why’ that we also find the criteria for success in
service-delivery. We see it especially in experiences such as in our
family’s story above, where the expectations of service were not
only met, but far exceeded, in ways that - as in our case - may
literally ring on down through the generations.

Service-design: How long is a service? 35

We could probably say much the same, if in less happy ways, about
disservices⁵⁰ - supposed ‘services’ that fail to deliver to the actual
need. For example, consider this (mildly-redacted) item that came
up from a US colleague in my Twitter-feed this morning:

Anybody else get [restaurant-chain’s] sticker shock
yet? Monster price hike for take out. 2 dishes and
appetizer $42. Seriously? It’s not that good.

Again, the key here is that certain expectations were set, by the
organisation’s engagement in that story - and those expectations
were not met. Definitely not met. Okay, the disgruntlement there
may not sit for decades, as did our contrasting enjoyment of that
family-occasion. Yet it still represents a real kurtosis-risk⁵¹, and one
that could well destroy the organisation’s business⁵² if left to repeat
too often or fester too long - especially in these days of social-media,
where a single anticlient⁵³-Tweet can easily echo halfway round the
world…

So to make sense of the true life-cycle of service-instances, we
need to shift our view of services themselves, from an organisation-
centric perspective, to the perspective of the service-customer.

(Technically the correct term is ‘service-consumer’, of course - but
I strongly object to that term ever being applied to real people!)

In which case, if we use this example above, of my grandmother’s
birthday-dinner at Le Talbooth, then:

• The service-instance begins when the customer first en-
gages in the story. In this case, that occurred when my par-
ents first decided that they’d like to celebrate that anniversary
- which would have been quite some while before they even
thought of contacting Le Talbooth to enquire about a booking.

⁵⁰http://weblog.tetradian.com/2015/06/28/services-and-disservices-1-introduction/
⁵¹http://weblog.tetradian.com/2015/06/15/hidden-risks-in-business-model-design/
⁵²http://weblog.tetradian.com/2014/04/07/playing-pass-the-grenade/
⁵³http://weblog.tetradian.com/2013/05/05/anticlients-are-antibodies/

http://weblog.tetradian.com/2015/06/28/services-and-disservices-1-introduction/
http://weblog.tetradian.com/2015/06/15/hidden-risks-in-business-model-design/
http://weblog.tetradian.com/2014/04/07/playing-pass-the-grenade/
http://weblog.tetradian.com/2013/05/05/anticlients-are-antibodies/
http://weblog.tetradian.com/2015/06/28/services-and-disservices-1-introduction/
http://weblog.tetradian.com/2015/06/15/hidden-risks-in-business-model-design/
http://weblog.tetradian.com/2014/04/07/playing-pass-the-grenade/
http://weblog.tetradian.com/2013/05/05/anticlients-are-antibodies/

Service-design: How long is a service? 36

• The service-instance ends only when no-one remembers
it any more. In this case, that service-instance is still contin-
uing today - more than forty years later - because we still
remember it.

In effect, the quality of service-delivery continues to be re-assessed,
indefinitely, until it is finally forgotten. It’s that factor that drives
anticlient-impacts and the like - or, on the positive side, that
likewise underlies more directly-measurable impacts such as Net
Promoter Score⁵⁴.

Try it: what difference does it make for service-design if you shift
the perspective from organisation-centric to customer-centric? Let
me know in the comments, perhaps?

Source (Tetradian weblog)

• Date: 2016/03/14
• URL: service-design-how-long-is-a-service⁵⁵
• Comments: (none)
• Categories: Business, Enterprise architecture
• Tags: Business, business architecture, disservice, enterprise,
Enterprise architecture, Le Talbooth, service, service-delivery,
service-design

⁵⁴https://en.wikipedia.org/wiki/Net_Promoter
⁵⁵http://weblog.tetradian.com/service-design-how-long-is-a-service

https://en.wikipedia.org/wiki/Net_Promoter
https://en.wikipedia.org/wiki/Net_Promoter
http://weblog.tetradian.com/service-design-how-long-is-a-service
https://en.wikipedia.org/wiki/Net_Promoter
http://weblog.tetradian.com/service-design-how-long-is-a-service

Product, service and
trust

Sirens blaring, blue lights flashing, the large white truck howls
across the junction just ahead of us. Unusual markings, too: ‘Bomb
Disposal’.

In these troubled times it could be anything, of course; but out here,
in the quiet backwaters of eastern England, it’s most likely that it’s
that workers on a building-site have come across yet another all-
too-live product from the Second World War. Yet another incom-
pleted service-delivery, we might say…

Almost seventy years after that war ended, those incidents are
still all too common here. The same applies to the incompleted
service-deliveries of every other modern war: there was a lethal
example in Belgium⁵⁶ the other day - a left-over from an even earlier
Europeanwar - whilst abandoned landmines and cluster-bombs are
an ever-present danger for children and others⁵⁷ on battlefields and
farmlands alike across all too many parts of the world.

Bombs and shells and mines are the products of war, or for war.
Yet the point of any product - even this kind of product - is not the
product itself: it’s the service that matters, the active delivery of the
desired outcome.

And whatever we might think of modern weaponry, its purpose or
promise as a product is that it will deliver on its service of damage
and destruction at the required time. Yet the literally-painful fact
now is that much of it failed to deliver on its promise at the required
time: for example, some 30% of munitions from the First WorldWar

⁵⁶http://www.bbc.co.uk/news/world-europe-26654314
⁵⁷http://www.maginternational.org/

http://www.bbc.co.uk/news/world-europe-26654314
http://www.maginternational.org/
http://www.bbc.co.uk/news/world-europe-26654314
http://www.maginternational.org/

Product, service and trust 38

failed to explode, and the reliability-record in the Second World
War wasn’t much better. And the reason why it’s a literally-painful
fact is that much of that remainder is still capable of delivering on
its designed-promise now. And does - even though it’s very much
no longer ‘the required time’: that’s the problem…Hence the bomb-
disposal truck, speeding on its way through the town, delivering on
its service of preventing that service-delivery from happening…

All of which is perhaps a rather roundabout way of introducing
a theme that I think of as fundamental to business-models, oper-
ational-models, business-architecture and enterprise-architecture:
the relationships between product, service and trust.

In more general terms (and, we would hope, preferably non-lethal
too), we could summarise the above as:

A product represents the promise of future delivery of (self)-
service, via use of that product

Hence, for example, if we buy a lawnmower, what we’re actually
buying it for is the future service-delivery of a mown lawn - the
service itself delivered, via that product, by us, by some other
family-member, by some neighbourhood teenager or whoever.
Alternatively, we could buy just the service of the delivery of a
mown lawns, from a lawn-mowing service: in principle, there’s
no difference. In practice, of course, there usually is a relevant
difference - such as that there’s no lawn-mowing service available,
or we regard doing it ourselves as cheaper or more satisfying
or convenient⁵⁸, or we just like the status-feeling of ‘owning’
the lawnmower or suchlike. Or, in other words, a difference of
perceived-effectiveness⁵⁹ of service-delivery.

Importantly, though:

When we obtain a product, we trust that that product will
deliver on its promise of service-delivery at the required time

⁵⁸http://weblog.tetradian.com/efficient-effective-convenient/
⁵⁹http://weblog.tetradian.com/efficient-versus-effective/

http://weblog.tetradian.com/efficient-effective-convenient/
http://weblog.tetradian.com/efficient-versus-effective/
http://weblog.tetradian.com/efficient-effective-convenient/
http://weblog.tetradian.com/efficient-versus-effective/

Product, service and trust 39

For example, an insurance-product is a promise of future support or
recompense if some kind of ‘insurable loss’ were to eventuate. But
the key point there is the promise, and trust in the identifiable future
delivery upon that promise: because if the promised service isn’t
delivered - such as when the insurance-provider tries to back out
of their promise, or to ‘adjust’ the nominal loss in their favour - then
that purported promise feels more like a betrayal, a lie. And nothing
destroys trust quicker than perceived-betrayal. It’s also the fastest
way that an organisation can create anticlients⁶⁰ against itself: not
wise…

Trust is at the centre of everything in any enterprise - every product,
every service.Without trust - or at least in proxy form, as reputation
- nothing is going to start; and when it’s lost, everything stops.

It takes a lot of work to build trust - yet often only seconds, or less,
to lose it. And once lost, regaining trust is often harder - sometimes
much harder - than building it from scratch.

Hence, unsurprisingly, organisations really do need to monitor
trust, in every aspect of their operations and beyond, inside, outside,
above, below and all round. Which is a lot trickier than it might at
first seem, because ‘information about trust’ - such as we might
hold in an IT-system, or display on an ‘executive-dashboard’ - is
not the same as as trust itself : yet it’s the latter - not the former -
that we most need to track.

So, for example, in what ways do each and every one of our
activities and services reinforce trust, or place trust at risk? At a first
level, we could map this in terms of the Five Elements sequence-
like set that underpins much of my own work on enterprise-
architectures:

⁶⁰http://weblog.tetradian.com/how-anticlients-happen/

http://weblog.tetradian.com/how-anticlients-happen/
http://weblog.tetradian.com/how-anticlients-happen/

Product, service and trust 40

And we could map the overall flow of trust, and support of and
reaffirmation of trust, within the service-delivery cycles of each
service, using a model such as the Service Cycle:

From there, we can map that pair of interaction-sets across the
flows and sub-tasks of service-delivery, from ‘inside’ to ‘outside’
and back again, again supporting and reaffirming trust:

Product, service and trust 41

For enterprise-architects and business-architects, tracking these
threads and themes and interactions should be a key part of
enterprise-modelling and business-modelling. It worries me a lot
that I don’t see many EA-folks doing so as yet… Another related
theme is waste:

Waste is a product whose services are no longer required
and/or are no longer trusted

And/or:

Waste occurs when the inherent promise of products or future
services is lost

Both of those should be self-evident when we look at ‘waste’ in
terms of ‘lean manufacturing⁶¹’ and suchlike. Yet think of that latter
example also in a human sense: the waste and loss of hope implied
when a life is damaged or cut short before its time… When such
promise is lost, there’s also that sense of betrayal, of loss of trust -
even trust in life itself.

Some of the implications of this can go very deep indeed - yet the
core of it comes right back to these three themes:

⁶¹http://en.wikipedia.org/wiki/Muda_(Japanese_term)

http://en.wikipedia.org/wiki/Muda_(Japanese_term)
http://en.wikipedia.org/wiki/Muda_(Japanese_term)

Product, service and trust 42

• product as a promise of future service
• trust in those promises as a foundation for enterprise - espe-
cially ‘enterprise as service’

• waste as the loss of the promise or loss of trust

Howwould youmap these in your enterprise, and for your products
and services?

Nothing more that I’d add to that for now: it’s just a thread that’s
been weaving around for me over the past few days. Over to you
for comment, perhaps?

Source (Tetradian weblog)

• Date: 2014/03/25
• URL: product-service-and-trust⁶²
• Comments: 2
• Categories: Business, Enterprise architecture
• Tags: Business, effectiveness, enterprise, Enterprise architec-
ture, product, service, trust

⁶²http://weblog.tetradian.com/product-service-and-trust

http://weblog.tetradian.com/product-service-and-trust
http://weblog.tetradian.com/product-service-and-trust

	Table of Contents
	SERVICES: SAMPLE
	Services and Enterprise Canvas review - 5: Service-content
	Service, product, service - a novel concept?
	Service-design: How long is a service?
	Product, service and trust

