

[image: On enterprise-architecture practice]

 On enterprise-architecture practice

 Concepts and guidance to underpin practice

 Tom Graves

 This book is for sale at http://leanpub.com/tp-eapractice

 This version was published on 2022-08-15

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2022 Tom Graves

 Table of Contents

 	
 PRACTICE: SAMPLE

 	
 There’s no short-cut to experience

 	
 CRUD, CRUDE and other action-acronyms

 	
 An enterprise-architects’ mantra

 	
 Why the ‘why’ matters

 	
 Practical implications

 Guide

 	
 Begin Reading

PRACTICE: SAMPLE

This is a sample of the content from the Tetradian On Enterprise Architecture Practice anthology.

This anthology from the Tetradian weblog explores core principles and guidance for real-world practice for enterprise-architecture and its related disciplines.

This sample contains around one-tenth of the content from the full anthology. The complete book includes about 40 posts and 50 images from the weblog. These posts are split into two groups:

 	
Practice: Essential Principles - outlines some essential guiding-principles for working on enterprise-architectures and more.

 	
Practice: Guidance - presents practical guidelines and guidance for use in change-projects of all kinds.

For further information on enterprise-architectures and more, visit the Tetradian weblog at weblog.tetradian.com. The weblog currently includes some 1400 posts and more than a thousand images, and is at present the world’s primary source on whole-enterprise architecture - methods, principles and practices for architectures that extend beyond IT to the whole enterprise.

For more ebooks and anthologies on enterprise-architecture and more, visit the Tetradian website on Leanpub at leanpub.com/u/tetradian. (Each anthology contains around 30-40 posts from the weblog.)

Some books are also available in print format, from all regular book-retailers. For more details, see the ‘Books’ section on the main Tetradian website at tetradian.com/books/.

 Unless otherwise stated, all text, images and other materials in this anthology are Copyright © Tom Graves / Tetradian 2006-2022.

There’s no short-cut to experience

At least he was open about it, I guess. “Tell you what I’ll do”, he says to my colleague here in Guatemala, “I’ll find you a client, then I’ll sit in, learn everything you do, and then I’ll apply it in my own business. How does that sound to you?”

Uh, no. Not a good idea. Not just because it’s a really bad deal from our perspective, but much more that Reality Department really doesn’t work that way: there’s no short-cut to experience.

Yes, it all looks simple enough on the surface – in fact that’s the whole point. A lot of simple visual summaries, and surprisingly simple-seeming methods, too. Yet it only looks simple because we’ve been through a heck of lot of hard work to make it that way. Hard-won experience, won the hard way through years and years of practice in many, many different contexts, getting it ‘wrong’ time and time again, in many, many different ways in order to get it right.

The real trap is that these simple-seeming ideas and methods aren’t simple rules, prepackaged sense-making and decision-making that will always work in every context. These are simple principles, simple guidelines, the kind of easy-to-memorise information that helps decision-making in real-time, in circumstances that are subtly different every time. (See my SCAN posts for more on these distinctions.) If you try to use them as ‘rules’ for inherently-uncertain contexts, without understanding why those principles apply, or how they need to be tweaked every time to match each different context, you’re going to be in real trouble – along with everyone else around you. Not a good idea…

The same often applies even to things that really are ‘rules’. Take that example of perhaps the greatest simplification ever made: e=mc^2. All the core information you need to build a nuclear power-station is right there in that equation: but there’s a heck of a long way – a heck of a lot of engineering-experience – to go from that one equation to building a nuclear-power station that actually works.

Same with everything else, really: simplification is essential, but can also be deceptive – especially when people mistake ‘simple’ for ‘easy’…

Which is also why I get a bit hot-under-the-collar about the current proliferation of ‘certification-schemes’ in enterprise-architecture and elsewhere. Some of them are genuinely valuable, but others – to be blunt – are little better than money-spinning scams, in terms of the actual value that they (don’t) deliver. And the crucial distinction revolves around the role and recognition of experience.

For example, the TOGAF Foundation and Archimate Foundation certifications have real value. They verify that the respective person has a credible command of the terminology and language – a requirement that matters a lot for communication across a dispersed and disparate team.

Likewise the ATAC certifications should have real value, because each explicitly tests practical experience in the respective area.

But unless they’ve changed it in the past year or so, the full TOGAF certification is delivered through the absurdly-inappropriate mechanism of a multiple-choice test. And to my mind, that’s not merely useless, it’s actually worse than useless, because it’s exactly how not to test for the kind of experience that that type of competence requires. (When I did the TOGAF 8 exam some years back, I almost failed because I answered several key questions correctly in terms of real-world experience, rather than the theory-based wrong-assumptions that the test thought were ‘right’.) The result of that kind of pseudo-test is a bevy of people who can wave a certificate around, but have no idea how to do the work in any real-world context.

A good training-course can make all the difference, and the better training-providers do take up some of the slack here. (I’ll wave a flag at this point for John Polgreen at Architecting The Enterprise, who’s been doing sterling work for years on adapting TOGAF for the US-government context.) Yet none of that competence carries through anywhere into the actual test: so unless we know each of the training-providers, we have no way to tell whether a candidate does actually know what they’re doing, or merely that they have a piece of paper to prove that they know just enough to get into real trouble, but not enough to get out of it again.

In effect, right now, the full TOGAF certification is of less real-world value than the Foundation certification – which is both bizarre and sadly pointless. And I’ll hasten to add that I’m using TOGAF here merely as one example amongst many: it may well be that most of the so-called ‘certifications’ in this field are even more meaningless than that. And the results can be seen everywhere in the trade…

In short, it’s a mess.

What we need to be testing for is genuine understanding of a context, and the ability to adapt for uniqueness. And that calls for much, much more than can be covered in a crude multiple-choice test delivered through a mindless machine. Sure, that kind of test is cheap, and relatively easy to administer: but it’s also all but meaningless for anything than foundation-level rote-knowledge. It really does take years of painful practice to develop the experience needed to do this work well: and if this trade is to gain the credibility that it needs, we need to stop pretending that we don’t need to test for that experience.

Time to re-think how we do this, and how we respect this, too: there’s no short-cut to experience.

Source (Tetradian weblog)

 	
Date: 2012/04/30

 	
URL: no-shortcut-to-experience

 	
Comments: 3

 	
Categories: Business, Enterprise architecture, Knowledge

 	
Tags: Business, business architecture, certification, complexity, effectiveness, enterprise, Enterprise architecture, Knowledge, methodology, SCAN, sense-making, skills, uniqueness

CRUD, CRUDE and other action-acronyms

Anyone working with data would be familiar with the CRUD acronym - Create, Read, Update, Delete - that describe ‘atomic’-level actions on data. But how well does it work with other asset-types - not just data and other virtual items, but physical things, relationships between people, and relationships to vision, brands and other ‘aspirational assets’? Seems a theme worth exploring - especially for enterprise-architecture, as it more and more breaks out of its old IT-centric box.

First suggestion is that it may be helpful here to use the asset-categories from Enterprise Canvas:

 	
physical – objects, material ‘things’

 	
virtual – data, information, ideas, so-called ‘intellectual property’

 	
relational – linkage between two tangible entities, usually but not necessarily real-people

 	
aspirational – linkage between a tangible entity (usually a real-person) and a virtual entity (such as a belief, an idea, a brand etc)

Which we could show visually as dimensions in a tetradian layout:

 [image:]

It’s perhaps important to emphasise that most real-world assets are actually composites that incorporate various (and often dynamic) combinations of these asset-dimensions. For example, a printed book is a physical ‘thing’ that also carries information (virtual dimension), that for some person probably carries some of personal meaning (aspirational dimension), and, if the book has been borrowed from someone else, also represents a link between those two people (relational dimension). When working with assets, we need to keep aware of all of the respective dimensions - not solely the most obvious one that’s in focus for the current operations on that asset.

Anyway, let’s start with CRUD. That set of Create, Read, Update, Delete does, at first glance, seem to apply reasonably well to all of the asset-types, as descriptions of actions that we’d typically do with those assets: for example, we create a relationship, we sort-of read it, we’d certainly update it from time to time, and we can sort-of delete. It all sort-of fits: sort-of. But only sort-of. Could we do better than that?

Let’s add the idea of an Exchange action - where we transfer an asset from one person or place to another. This would give us an acronym of CRUDE:

 	
Create: make a new one of whatever-it-is (or W)

 	
Read: enquire about the state of W

 	
Update: make some kind of change to W

 	
Delete: destroy W

 	
Exchange:

 	physical (alienable): remove W completely from one place or ownership, into another place or ownership

 	virtual (non-alienable): create a copy of W in the new location and optionally delete (Erase) the original item in the original location

 	relational (person-to-person) and aspirational (person-to-abstract): provide conditions under which an equivalent of W can be created in the new ‘between’-location

Which, again, sort-of works, but only sort-of. It does illustrate that CRUD on its own (without Exchange) probably does make more sense with virtual data, because the exchange operations are non-atomic - in other words, that an exchange is made up of smaller Create, Read and Delete operations. For the other types, though, Exchange is atomic - sort-of. So let’s keep going with this for a while.

When we look at physical things, they’re never actually deleted as such (other than in nuclear operations, which is somewhat of an extreme case…). Instead, they get transformed, often literally from one form to another. Which suggests that for operations on physical things, we might be better to replace CRUD with CRUET:

 	
Create: make a new instance of something physical

 	
Read: enquire about the status or condition of something physical, or use it (largely unchanged) in some physical process

 	
Update: change the condition of the physical object, without changing its fundamental nature or form (for example, reshape, or change some subsidiary-component)

 	
Exchange: relocate the object or its ownership

 	
Transform: change the fundamental nature of the physical item (for example, melt it, make an alloy out of it, laminate or bond it with something else, bind it into a larger-scale entity)

And even CRUD itself is becoming a bit misleading for some types of data, or data-operations - especially in big-data and the like. For example, one of the key points in history-log files is that data should not be deleted. Also, increasingly, we also need to treat the relationship between data and its accompanying metadata as part of the overall operation, sometimes with data and metadata as a single unit, sometimes as separated-but-related entities - in other words, the ‘atomic unit’ of data can itself be variable. Which suggests yet another acronym, CRAFT:

 	
Create: create a new data-item, optionally with associated metadata

 	
Read: read the data-content, optionally as a unit with its associated metadata

 	_A _(several variants):

 	
Amend: change the data-item (equivalent to Update, but at the respective ‘atomic’ level)

 	
Attach: link to another data-item

 	
Append: incorporate into a larger (usually read-only) data-item

 	
Aggregate: merge the data-item into a larger compound data-item, using the respective transforms of that larger item (aggregates-of, trends-of, etc) as part of an ‘atomic-unit’ action

 	
Anonymise: detach the data-item from its accompanying metadata prior to or as part of another action

 	
F (several variants):

 	
Find: identify a data-item (with or without its associated metadata) (special case of Read)

 	
Fetch: return a data-item (with or without its associated metadata) (special case of Read)

 	
T (several variants):

 	
Transfer: move a data-item (with or without its associated metadata) (atomic-level combination of Read/Fetch, Create and optional Delete)

 	
Transform: change the data-item as a single unit (such as a matrix-inversion or coordinate-system transform)

 	
Trash: destroy the data-item (with or without its associated metadata) (equivalent to Delete, at the respective ‘atomic’ level)

With relational and aspirational-type assets, there’s really no such thing as a mere Read: any action of any kind on these assets-types inherently changes the asset itself. (We can Read information about a relational-asset, for example, but that’s not the same as a ‘Read’ of the relationship itself.) Which, for those asset-types, suggests yet another action-acronym, CURDLE:

 	
Create: create a new relationship with a person (relational) and/or abstract (aspirational)

 	
Update: read and/or maintain the relationship (often just as routine background - equivalent of a ‘ping’ in data-network relationships)

 	
Refine: take explicit action to change the nature of the relationship (data equivalent - change role or access-rights)

 	
Drop: take explicit action to end the relationship (equivalent of Delete)

 	
Lapse: a failure to take action maintain the relationship (i.e. that lack of Update causes an effective Delete)

 	
Extend: create conditions under which an equivalent relationship can be created for another party (relational equivalent of Exchange)

No particular point I’m aiming to make here, by the way: just thought it might be useful to some folks, is all.

Source (Tetradian weblog)

 	
Date: 2013/12/31

 	
URL: crud-crude-action-acronyms

 	
Comments: (none)

 	
Categories: Business, Enterprise architecture

 	
Tags: asset, assets, Enterprise architecture, enterprise canvas

An enterprise-architects’ mantra

Quick, brief and practical - three phrases that every enterprise-architecture should know by heart, and act on, too:

 	“I don’t know… (but I know how to find out, or find someone who does)”

 	“It depends… (and I know how to find out what it depends on)”

 	“Just enough… (and I know how to find out what that ‘just enough’ is)”

The indefatigable Len Fehskens once said that his colleagues (at HP, I think?) had presented him with a rubber-stamp with ‘It depends’ on it, because he’d used the phrase so much. In that spirit, here’s a meme-graphic to stick on your desk or wall or whatever - or even use as a business-card, perhaps? :-)

 [image:]

(Many thanks to Stuart Boardman, who spotted this in my recent ‘“Which EA school?”’ post, and who first described it as an ‘EA mantra’.)

Source (Tetradian weblog)

 	
Date: 2014/04/18

 	
URL: an-ea-mantra

 	
Comments: 17

 	
Categories: Complexity / Structure, Enterprise architecture

 	
Tags: checklist, complexity, Enterprise architecture

Why the ‘why’ matters

In any real-world practice, why do we need to explain the ‘why’ as much as the ‘how’ and ‘with-what’?

Here’s a first-hand answer to that question…

Way back when (almost half a century ago: yikes…), I took a school-vacation job as a farm-labourer. Okay, I was a gawky, bookish kid, but we lived in a country district, and it was about the only short-term paid-work available there for a 16year-old. Fun, too, after a fashion: and hey, I got to drive a tractor! For real! Wow!

Came the day, though, when the farmer told me to clean up the newly-mown hay in the hay-field.

He told me the what: rake all of the hay into wider-spaced rows, ready for the baler.

He told me the how: go up and down the field with the tractor, towing a big self-powered hay-rake.

Overall, we’d say that he gave me a full set of work-instructions - but not the principles, the deeper ‘why’ behind those work-instructions. Oops…

Anyway, off he went, back whatever one of the thousand-and-one other things that need doing on a farm at harvest-time he needed to do next, and left me to it. So there I was, sitting on my tractor, going up and down the field, doing what I’d been told, making nice neat rows of hay, much like this guy:

 [image:]

I felt pretty smug and pretty proud of myself: hey, not bad for a gawky, bookish 16year-old, right?

Not long after I’d started, though, it came on to rain. Not much, at first, but I didn’t have my jacket, so I was going to get a bit wet. Oh well. But I had a job to do, didn’t I? - so getting wet was just part of that job, wasn’t it? Dedicated, committed, a Good Worker - I was going to prove all of that to the farmer, I was sure of it.

Then it came on to really rain. Heavy. Not just wet, really wet. Yuk. But I kept on going: I’d been told to do this job, and I was going to see it through right to the end.

An hour later, I’d finally finished the whole field, and I drove the tractor back to the farm, a mile or so away. I was soaked right through, sodden, dripping, but I was pretty pleased with myself, to be honest.

The farmer was furious.

And with good reason, too - because without quite a bit of extra work, and at least a couple of very sunny, very dry days, my misguided dedication to doing the job to the end could well have ruined the whole crop.

Idiot…

But actually, not all that surprising, under the circumstances - and not just because I was a gawky, bookish 16year-old. He’d told me the what, and the how, and the with-what. But he hadn’t told me me the why for that task - the reasons behind it. Without those reasons, I could keep going all right, but I couldn’t know when and why to stop - and, especially, not when and why to stop early, with the job seemingly incomplete.

One of those reasons was, yes, to rake the hay up into rows that would be easier for the baler: that part I’d understood on my own, not least because I’d often seen a baler in action before, in the fields next to our home. But what I hadn’t known - and the ‘why’ that he hadn’t bothered to tell me - was that the hay needed to be dry before being raked into baler-ready rows. If it wasn’t dry, it would likely rot in the bales - not only rendering the hay unusable as stock-feed, but getting so hot in the process that it could well catch fire. Haystack-fires are one of the more devastating disasters that can befall a farm - and they can be triggered off by just one bad bale. Hence why raking soaking-wet hay into dense rows that couldn’t dry out on their own was not a good idea…

Okay, he could have sort-of helped me do it better, by applying another business-rule: “don’t rake in the rain”. That’s the way we’d do it with most automation, after all. But business-rules alone don’t help with unknown uncertainties, the ‘It depends’ and ‘Just enough’ that pervade right through every real-world context. In this case, there was real pressure to get the job done; a little bit of rain wouldn’t matter much on an otherwise dry day, but heavy rain on unraked hay would matter a lot; and already-raked rows could shrug off the rain better than unraked hay. It depends… it depends… and what it depends on is often trade-offs that are too-subtle for over-simplistic sets of business-rules. Kinda tricky, all round… and without knowing the ‘why’, there’s no way to work out those trade-offs into an appropriate answer for each specific context.

Which, overall, we could summarise as follows:

 	To do the job, we need to know the what, the how, the with-what, the where, the when.

 	To do the job properly, in the face of real-world uncertainties, we also need to know the why.

Straightforward enough, in principle. But not necessarily straightforward in practice. That’s the problem.

Practical implications

On the surface, this story is about one mistake made just one teenager, half a century ago, in a business-domain that’s a long way different from most of what happens now.

In reality, all of this happens a lot, for exactly the same reasons, in just about every business-domain, right here, right now. That should be clear enough for any business-analyst or enterprise-architect or whatever who knows how to jump up to generic-abstracts and bring it back down to the real-world again.

To illustrate this, let’s look at it in terms of the SCAN sensemaking/decision-making framework:

 [image:]

In most practical cases - and, in particular, in most automation - we start off with a Simple set of work-instructions, with any real-time decision-making handled by predefined business-rules. As per classic Taylorism and the like, all of this is typically prepared and planned out in the Complicated domain, away from distractions and confusions of real-time work.

To handle special-cases and other complications at real-time, we add more business-rules, and more business-rules, and yet more business-rules, each of which enables us to extend order and control over the context just that little bit further. Eventually, however, we hit up against a boundary of effective-certainty, beyond which either we transition over into diminishing-returns - where the effort of selecting and executing against yet another business-rule costs more than can be achieved by doing so - or else there simply isn’t time any more to execute all of those business-rules. That boundary of effective-certainty is also as far as almost any automation can currently go. Beyond that boundary, we’re into unknown-territory: either the existing business-rules won’t help us, or - as in that example above - the lack of any available form of guidance means that we’re increasingly likely to get a bad end-result. To make it work, we need something that can guide in the midst of often-unknowable uncertainty.

That’s where principles come into the picture. The crucial distinction is this:

 	
rules work against uncertainty

 	
principles work with uncertainty

Both are valid and useful, but they’re fundamentally different in nature and purpose: don’t mix them up!

As with business-rules for Simple work-instructions, principles are typically developed away from real-time - in this case in the Ambiguous domain, feeding down into the Not-known, as a kind of unorder-oriented complement to classic order-oriented Taylorism, and as a counterpoint to mitigate against the latter’s constraints.

We need those principles, in order to work with the unorder of the real-world - and we need appropriate means to execute with those principles, too. That’s part of the dangers of excessive over-emphasis on automation: a gawky 16year-old may not be much good as yet in working with those unorder-oriented principles, but most current automation has no grasp of them at all (hence the cry of yet another agonised programmer at our office, yelling his computer “don’t do what I say, do what I mean!” :-)). And if the respective system can’t cope with real-world unorder, it will fail at some point, probably ‘without warning’. Not a good idea… You Have Been Warned?

The overall moral of this little tale? To do anything in the real-world, we need to know the what, the with-what, the how; but to make it work well, even in the midst of the unknown, we need to know the why.

That’s why the ‘why’ matters.

Source (Tetradian weblog)

 	
Date: 2014/09/17

 	
URL: why-the-why-matters

 	
Comments: 1

 	
Categories: Business, Complexity / Structure, Enterprise architecture

 	
Tags: Business, chaos, complexity, decision-making, Enterprise architecture, operations, SCAN, sense-making

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/scan-side-axes.png
(boundary of

effective-certainty)
(indefinite
future) omplicated Ambiguous
but Controliable but Actionable
(ORDER)
(transition
~ from plan
to action)
Simple
NOw! —Jend Straighttorward

. (increasingly
Certain uncertain)

OEBPS/images/tetra_pvra1.png
Aspirational

Relational

Physical Virtual

OEBPS/images/ea-mantra.png
I DON’T KNOW...

(but I know how to find out, or find someone who does)

IT DEPENDS...

(and I know how to find out what it depends on)

JUST ENOUGH...

(and I know how to find out what that ‘just enough’ is)

OEBPS/images/BY-ND_samdogs_raking-hay.jpg

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
the Tetradian weblogs

On enterprise
architecture practice

Concepts and guidance to underpin practice

