

[image: Enterprise architecture frameworks: IT-oriented]

 Enterprise architecture frameworks: IT-oriented

 Concerns and questions about IT-frameworks

 Tom Graves

 This book is for sale at http://leanpub.com/tp-eaframeworks-it

 This version was published on 2023-01-02

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2022 - 2023 Tom Graves

 Table of Contents

 	
 FRAMEWORKS: SAMPLE

 	
 TOGAF 9 – first impressions

 	
 On modelling ‘self-service’ with Archimate

 	
 Dump the BDAT-stack!

 	
 Rethinking Zachman – the ‘How’ column

 	
 Rethinking Zachman – a summary

 Guide

 	
 Begin Reading

FRAMEWORKS: SAMPLE

This is a sample of the content from the Tetradian Frameworks: IT-Oriented anthology.

This anthology from the Tetradian weblog focuses on tools and frameworks used in IT-oriented enterprise-architecture.

This sample contains around one-tenth of the content from the full anthology. The complete book includes about 40 posts and 35 images from the weblog. These posts are split into two groups:

 	
Frameworks: IT-oriented - assesses key frameworks for IT-oriented architectures, and issues arising from usages of those frameworks.

 	
Frameworks: Zachman - reassesses the various elements of the row-and-column Zachman framework, in particular via the series of posts on ‘Rethinking Zachman’.

For further information on enterprise-architectures and more, visit the Tetradian weblog at weblog.tetradian.com. The weblog currently includes some 1400 posts and more than a thousand images, and is at present the world’s primary source on whole-enterprise architecture - methods, principles and practices for architectures that extend beyond IT to the whole enterprise.

For more ebooks and anthologies on enterprise-architecture and more, visit the Tetradian website on Leanpub at leanpub.com/u/tetradian. (Each anthology contains around 30-40 posts from the weblog.)

Some books are also available in print format, from all regular book-retailers. For more details, see the ‘Books’ section on the main Tetradian website at tetradian.com/books/.

 Unless otherwise stated, all text, images and other materials in this anthology are Copyright © Tom Graves / Tetradian 2006-2022.

TOGAF 9 – first impressions

Okay, so I’m at the TOGAF San Diego conference, where the launch for TOGAF Version 9 is plodding its rather rambling way through. Some very good conversations, but first, a quick first-impressions on the new version – the supposed ‘best practice on enterprise architecture’.

Summary: it’s a point-update, not a true new version. A good clean-up, but nothing much that’s actually new.

The good news: they’ve had the sense to keep the bits that really do work in TOGAF 8 – in particular, the overall principle of the ADM (Architecture Development Method). Given the dominance of CapGemini in running this new ‘version’, I’d been very worried that they would ditch the ADM in favour of CapGemini’s own proprietary Integrated Architecture Framework (IAF): I’m very glad to see that they haven’t gone that route.

The bad news: it’s still hopelessly IT-centric – no improvements there at all. Still the same uselessly IT-focussed, bottom-up “three architectures: Business Architecture, Information Systems Architecture, Technology Architecture”, which is a huge constraint on real whole-of-enterprise architecture; still the same inane “business architecture is everything not-IT”.

In short, yes, it is improved, it is easier to use. But it’s also a huge missed opportunity. Oh well.

Source (Tetradian weblog)

 	
Date: 2009/02/02

 	
URL: togaf9-first

 	
Comments: 2

 	
Categories: Enterprise architecture

 	
Tags: business architecture, Enterprise architecture, togaf

On modelling ‘self-service’ with Archimate

In enterprise-architecture, how should you describe or model ‘self-service’ - in which the customer, rather than the organisation’s employee, uses the organisation’s systems to place an order, or search for information?

The classic way of looking at this is from an ‘inside-out’ view - or, more usually, ‘inside-in’, where company staff are considered to be the only users. But that doesn’t work in this case: the customer is not only an ‘outsider’ relative to the organisation and its systems, but is literally outside of the organisation’s control.

Gerben Wierda - grand-master of modelling with Archimate, and author of ‘Mastering Archimate’ and ‘Chess and the Art of Enterprise Architecture’ - picked up on this point via a LinkedIn post by Samuel Holcman, ‘Inside Out vs Outside In Enterprise Architecture’. Gerben’s first response was a post on his Enterprise Chess website, ‘“I Robot” - There Is No Such Thing As ‘Customer Self-Service’’:

 The issue [that Samuel Holcman] raises is that the clients of organisations more and more seem to become the ones that perform the organisation’s processes (e.g. self-service), and that they thus should be taken into account as parts of the architecture of your organisation. Some even speak about the ‘extended enterprise’ in that context. I have been disagreeing with that view for a while, and this is a nice occasion to put that in writing.

(I suspect that the “some [who] even speak about the ‘extended enterprise’” would include me, but that’s not a point I need to go into here!)

Within that post, Gerben laid out a handful of intentionally over-simplified Archimate models to illustrate that a simple substitution of internal order-clerk to external customer doesn’t seem to make sense in formal Archimate terms. Instead, he proposes that it makes more sense to say that the order is still actually placed by an internal ‘employee’ - but a robotic employee in this case, as represented by the respective functionality of the website:

 It’s not the customer that is acting in our landscape at all, he is just interfacing with us.

He then adds a few notes about the ‘big-picture’ implications of such robotic-employees, which personally I’m very happy to see, but again don’t relate much to the point that I want to explore here. The point that I do want to explore relates to the admittedly quick-and-dirty Archimate model with which Gerben ends up in that post:

 [image: Archimate: Robot Service (c) Gerben Wierda]
 Archimate: Robot Service (c) Gerben Wierda

What we have here, in effect, is a computer-based application - an Application Component, in Archimate terms - as a direct substitute for the human Business Role of Order Entry Clerk.

Stop and think about that for a moment, in terms of the classic ‘BDAT-stack’ (‘Business’, ‘Data’ plus ‘Applications’, and [IT-specific] ‘Technology’), as used in Archimate, TOGAF, and darn near every one of the mainstream ‘enterprise’-architecture frameworks:

 [image:]

What I’d hope you’d notice from that cross-comparison is that everything in Gerben’s diagram above is, in classic terms, part of the Business Architecture layer: Gerben’s ‘Robot’ is a direct substitute for a Business Role. But yet the BDAT-stack says that it can’t do that, because applications can only be in the Data/Applications layer. So the Robot is kind-of in both layers, but also in neither, both at the same time…

Gerben being Gerben, he spots that problem straight away - hence the follow-on post on his Mastering Archimate website, ‘Modelling Self-Service In Archimate’. And quietly demonstrates, through a series of descriptive diagrams, that the current version of Archimate simply will not allow us to model this now very common business-pattern. Not in any Archimate-‘legal’ way, anyway.

Oops.

Again, Gerben being Gerben, he shows that once we do allow certain adjustments and adaptations to the Archimate syntax, we can sort-of just-about make it work - though all of it is somewhat of a kludge, and even then perhaps only works as long as we stick to an strict IT-centric and organisation-centric view of the context. Yet as he also shows, and highlights, there really is no way to get round the fact that in that scenario, one of the Business Role entities is actually what he calls a Robotic Role - but in a place which, according to the Archimate layering, can only be done by a human. Hence, as he says in the Conclusion section to that post:

 The common layered approach of enterprise architecture, also part of ArchiMate, is creaking at the seams. Applications are used as robots at the business level. And the infrastructure layer is currently transforming to software-defined anything. We might need a wildly different approach for this brave new world.

To which I would strongly agree…

Yet I’d actually say that we need take it even further than that - a lot further. That’s because, in reality, “the common layered approach of enterprise architecture” is a truly horrible mess of arbitrary assumptions and arbitrary conflations:

 	‘Business’ = anything-human + anything-relational + principle-based (‘vision/values’) decisions + higher-order abstraction + intent

 	‘Applications/Data’ = anything-computational + anything-informational + ‘truth-based’ (algorithmic) decisions + virtual (lower-order ‘logical’ abstraction)

 	‘Technology’ = anything-mechanical + anything-physical + physical-law (‘rule-based’) decisions + concrete (‘physical’/tangible abstraction)

(It’s even worse than that, because in most variants of ‘the common layered approach’, we can’t even describe any technologies other than electronic computer-type IT.)

The result, as I’ve described elsewhere, is that it’s always been all-but-impossible to use ‘the common layered approach’ to describe even quite routine enterprise-architecture concerns such as business-continuity/disaster-recovery or data-centre design - let alone the kind of concerns I regularly deal with in my own work that address physical-technologies and multi-channel transmedia business-models and the like, or upcoming technologies such as programmable hardware and smart-materials. Yet as Gerben shows, ‘the common layered approach’ is so limited and constrained that it can’t even handle current IT-based business-models such as an e-commerce website, where an Application inherently also acts as a Business Role.

Hence it’s not that ‘the common layered approach’ is “creaking at the seams”, as Gerben puts it: instead, it’s more that ‘the common layered approach’ is completely broken, at a fundamental level, right down to its deepest roots - and always has been. Yes, at one time it might well have seemed convenient, from an IT-centric perspective: but even back then, it was an IT-centrism that merely reflected certain arbitrary unquestioned assumptions about the nature of the IT of that time, which were all but guaranteed to fall apart at some future point in time - which is exactly what’s happening now. For any architecture that’s needed to centre around anything other than that classic ‘big-IT’ - an “anything other” that happens to be perhaps 95% of any real ‘architecture of the enterprise’ - that ‘layered approach’ was always the wrong way to do it: a fact that we, as a discipline and profession, we really do need to face right now.

Yes, I’d agree that the BDAT-stack, and ‘the common layered approach’ in general, has been useful in the past, and is still possibly-useful for certain decreasingly-common specialist purposes. For anything else, though it’s a chimera, a booby-trap riddled with potentially-dangerous delusions. Reality is that the BDAT-stack has long since passed its ‘use-by’ date: it’s time to drop it - and instead reframe our architecture-frameworks around the ways that all other architectures actually work. Please?

Source (Tetradian weblog)

 	
Date: 2015/02/10

 	
URL: on-modelling-selfservice-w-archimate

 	
Comments: 11

 	
Categories: Business, Enterprise architecture

 	
Tags: archimate, business-IT divide, Enterprise architecture, gerben wierda, IT-centrism, modelling, paradigm

Dump the BDAT-stack!

For a viable enterprise-architecture [EA], now and into the future, we need frameworks, methods and tools that can support the EA discipline’s needs.

Yet there’s one element common to most of the current mainstream EA-frameworks and notations - such as TOGAF and Archimate - that actively blocks our way forward: the predefined, hardwired ‘stack’ of architecture-views that the respective framework acknowledges and supports.

There are a few variants, but the most common form is the ‘BDAT-stack’ of Business-Architecture, Data-Architecture, Applications-Architecture, IT-Infrastructure (‘Technology’) Architecture:

 [image:]

It looks good, it’s clear, it’s simple, it’s easy to understand - and yet for most purposes it’s just plain wrong. The blunt fact is that any framework or notation that relies on the BDAT-stack is fundamentally unfit for almost any purpose in present-day enterprise-architecture.

What it was originally designed to do, and for which it was fit-for-purpose, was the architectures of large-scale IT-infrastructures. If all that you’re working on is technology-infrastructures for classic in-house ‘big-IT’ in industries such as finance, insurance, banking and tax, the BDAT-stack will do that job just fine. Yet that decreasingly-common need is all it’s fit for - and despite many claims to the contrary, it’s never actually been fit-for-purpose for anything else.

If we do try to use the BDAT-stack as if it’s fit-for-purpose for anything more than IT-infrastructure, it will always lead us astray - risking serious damage to the architecture, and worse.

But why? Where’s the problem? Doesn’t the BDAT-stack cover everything we need - Business, Data, Applications, Technology?

No, it doesn’t - though it’s true that many people in the EA field would still misinterpret it that way. But the blunt reality is that the BDAT-stack only makes sense as a descriptor for the context for IT-infrastructure - and should not be used for anything else.

The catch that most people still seem to miss is that the BDAT-type of frame is only a base-relative descriptor of scope - not of overall scope. In other words, it’s a context-descriptor frame that’s valid only for the domain at the base of the stack - which, in the case of the BDAT-stack, is that subset of technology that specific to IT-infrastructure:

 	‘IT-infrastructure architecture’ is the actual focus for all architecture-effort

 	‘Data-architecture’ is the architecture of the subset of data maintained on that IT-infrastructure

 	‘Applications-architecture’ is the architecture of applications that are run on that IT-infrastructure

 	‘Business-architecture’ is ‘anything not-IT that might affect anything-IT’ relative to that IT-infrastructure

The stack-structure only makes sense that way round - everything base-relative, looking ‘upward’ from the base.

We can’t run the stack ‘backwards’, or ‘downwards’: doing so puts artificial constraints on the scope - which is why TOGAF and its ilk so inherently and so automatically force us towards IT-centrism in every aspect of the architecture.

We can’t use the BDAT-stack to describe contexts for data-architecture, applications-architecture or business-architecture in their own right - to do it properly, each would need their own equivalent ‘stack’, placing that respective focus-area as the base of the ‘stack’.

The crucial point here, perhaps, is that the BDAT-stack is nothing special - it’s merely one instance of a generic architecture pattern, looking ‘upwards’ or ‘outwards’ from a chosen focus-area:

 [image:]

Hence for the business-architecture of an organisation, for example, we should not use the BDAT-stack, but another stack in which the organisation is the base of the stack:

 [image:]

When we look ‘downward’ from the service-in-focus, we need to be able to drill down into any or all of the services that support that service:

 [image:]

And a service may be implemented by any appropriate combination of people, machines and IT: for example, IT-infrastructure is supported by a vast swathe of other detail-layer services - such as described in ITIL, the IT service-management library - which explicitly include services provided by only by people, not other IT. Our architecture would be inherently incomplete if we were to constrain the description to IT alone.

For example, to describe a business-architecture, we’re likely to need to be able to see and describe any or all of the underlying services - whether or not they’re supported on in-house IT-infrastructure:

 [image:]

…whereas if we try to use the BDAT approach, it would only allow us to see or describe the subset of services that are built upon the respective IT-infrastructure:

 [image:]

The latter probably wouldn’t even be able to include cloud-based services or customer-maintained IT - let alone human support-services or non-IT technologies. For a data-centre, for example, we can use BDAT to describe the computers, but not the building they’re in, or why the building is where it is; we could describe the network cabling, but not the power-cabling or the cooling-systems. What kind of architecture is that?

A stack-type description is useful - no question. But we need to start with an understanding of how stack-type frames actually work: they’re always base-relative. What we need is not the single BDAT-stack, but a strong understanding of the pattern of which the BDAT-stack is merely one instance. The classic BDAT stack describes only the ‘upward’ view from its selected focus-domain, whereas what we need is the generic ‘Jellyfish pattern’ that gives us the ability to describe properly both the context ‘upward’ and the supporting-services ‘below’:

 [image:]

Hence, for business-architecture, what we need as a context-descriptor that is not merely the top layer of the BDAT-stack, but something that looks more like this:

 [image:]

The key takeaway here is that the BDAT-stack will not suffice for any form of enterprise-architecture other than for the single very narrow, very specific domain of in-house IT-infrastructure - and we need to stop pretending otherwise.

In short, for almost all enterprise-architecture, we need to dump the BDAT-stack, and use the Jellyfish-pattern properly instead.

Which leads us to another perhaps-worrying point. The BDAT-stack is hardwired into every aspect of the TOGAF framework, and many parallel structures such as the Archimate architecture-notation. Yet as we’ve seen above, the BDAT-stack doesn’t work as a context-descriptor for anything other than IT-infrastructure.

So we perhaps do need to hammer this point home: the BDAT-stack hardwires TOGAF and Archimate to be usable only for IT-infrastructure architecture. They cannot be safely used for anything else at all.

What’s even more worrying is that everything in the current TOGAF and Archimate is built around the BDAT-stack. Yet once again, the BDAT-stack doesn’t work: it’s completely misleading for almost all present-day enterprise-architecture. Worse, it also tends to give us some truly horrible conflations, all of which are again deeply embedded in both TOGAF and Archimate:

 [image:]

But if we take the BDAT-stack out of TOGAF or Archimate, nothing makes sense any more. Without the BDAT-stack, the framework, the method, the notation and just about everything else there kinda collapses into a pile of inchoate, incoherent rubble - a bunch of disparate entities and ‘best-practices’ without anything meaningful to hold them together. Oops…

Which in turn kinda suggests that it’s not just the BDAT-stack that we need to dump: we probably need to dump TOGAF and Archimate too. (But that, perhaps, is another story for another time?)

Over to you for comment, anyway.

Source (Tetradian weblog)

 	
Date: 2016/04/11

 	
URL: dump-the-bdat-stack

 	
Comments: 21

 	
Categories: Business, Complexity / Structure, Enterprise architecture

 	
Tags: archimate, bdat-stack, Business, business architecture, complexity, effectiveness, enterprise, Enterprise architecture, fractal, framework, methodology, togaf

Rethinking Zachman – the ‘How’ column

Moving onward across the amended Zachman framework, the next column is ‘How’.

Zachman describes this as ‘process / input-output’, but again this is somewhat misleading. The true primitive here is function, in the mathematical sense. In other words something is changed between input and output: a=func(x,y) and suchlike. A process is a sequence of such transforms, a path through a set of functions threaded together in a meaningful way with events, data, objects and do on – and is thus a composite, not a primitive.

The list of inputs consist of two distinct types: the item(s) to be transformed; and the catalyst(s) which trigger or guide the transformation without themselves being changed.

The activity proper marshals the inputs, changes the state or condition of the items to be transformed, puts the changed items and the catalysts back into their proper places, and signals that the function is complete. For examples, think of a low-level software function, which retrieves its attributes from the stack, carries out the required transforms and other activities, then places its results on the stack for the next function; or in the physical world, a technician selects a casting to machine, configures up a lathe with a set of tools and settings, carries out the required transforms, puts away the machine-tools, and places the machined casting into the output tray for the next operator to carry out the next stage. In each case there’s also an internal decision to identify that the transform is complete.

Since functions act on things – How acts on What – the segments should be much the same as for the What column:

 	
physical: transform physical objects

 	
virtual: transform data

 	
relational: transform business-relationships – for example, to close a sale

 	
abstract: transform financials – for example, financial derivatives

(In principle there are also functions that operate on aspirational entities such as morale and values, but they’re so little understood – especially in large organisations – that it’s simplest to ignore them for now. Aspirational entities are important, though, as catalyst-inputs to relational functions.)

As with the What column, these are distinct segments: on its own, a software function will not change a physical object or a business relationship. But we can transform across segments with composites: software can change physical objects through an NC machine-tool, data supports changes in customer-relationships in a call-centre business-function.

Typical model-types are the classic functional-decompositions: a high-level function decomposes to low-level sub-processes which include subsidiary functions. The only complication here is that it’s not a straightforward primitive-to-primitive decomposition, as it is with a parts-breakdown, for example: a function (primitive) decomposes to a process (composite) which contains functions (primitives).

For architectural purposes it’s important to separate out the primitive function (How) not just from its surrounding inputs and outputs (What) and events (When), but also from the capabilities and responsibilities (Who) that enable the function. If we don’t do this, we end up with a blurred composite masquerading as a primitive – in other words, a future roadblock to change or improved effectiveness. This blurring is reflected in the history of software engineering:

 	
procedural programming: centred on function (How), but merged with capability (Who), data (What) and business-rules (Why)

 	
object-oriented programming: centred on data (What), with attached function, and again often with merged capability and business-rules

 	
service-oriented architecture: centred on function, usually without merged data and business-rules, but often with merged capability – i.e. implied or assumed

The ideal for service-oriented architecture is to show the linkages to capability, data and business-rules, but still keep everything separate and distinct. More on that when we get to the Who column.

Source (Tetradian weblog)

 	
Date: 2007/08/13

 	
URL: zachman-how-column

 	
Comments: (none)

 	
Categories: Business, Enterprise architecture

 	
Tags: Enterprise architecture, Zachman

Rethinking Zachman – a summary

To summarise this overall review of the Zachman framework over the past few posts:

The rows or perspectives:

 	
Row 0: ‘Universals’ (Zachman: not present) – core constants to which everything should align

 	
Row 1: ‘Scope’ (Zachman: ‘Planner’) – core entities in each category – the key ‘items of interest’ for the enterprise

 	
Row 2: ‘Business’ (Zachman: ‘Owner’) – core entities described in more detail, including relationships

 	
Row 3: ‘System’ (Zachman: ‘Designer’) – entities as implementation-_in_dependent designs – includes attributes

 	
Row 4: ‘Develop’ (Zachman: ‘Builder’) – entities and attributes as implementation-dependent designs

 	
Row 5: ‘Implement’ (Zachman: ‘Sub-contractor’ or ‘Out of Scope’) – actual implementations of designs

 	
Row 6: ‘Operations’ (Zachman: usually implied but not described) – individual instances in real-time operations

The columns or content-types and primitive-types:

 	
What: assets of any kind (Zachman: ‘Data’, ‘entity / relationship’) – physical objects, data, links to people, morale, finances, etc

 	
How: function (Zachman: ‘Function’, ‘process / input/output’): - activities or services, described independently from the agent (machine, software, person etc) that carries out that activity

 	
Where: locations (Zachman: ‘Network’, ‘node / link’) – in physical space (geography etc), virtual space (IP nodes, http addresses etc), relational space (social networks etc) and suchlike

 	
Who: capabilities clustered as roles (Zachman: ‘People’, ‘people / work’) – may be human, machine, software application, etc, and either individual or collective

 	
When: events (Zachman: ‘Time’, ‘time / cycle’) – may be in time, or physical, virtual, human or other event

 	
Why: decisions (Zachman: ‘Motivation’, ‘ends / means’) – as in strategy, policy, business-requirements, business-rules etc.

The segments or sub-categories within the columns: may be cut multiple ways, but typically:

 	
physical: tangible objects (What) , mechanical processes (How), physical locations (Where), physical events (When); also align to rule-based skills (Who) and decisions (Why)

 	
virtual: intangible objects such as data (What), software processes (How), logical locations (Where), data-driven events (When); also align to analytic skills (Who) and decisions (Why)

 	
relational: links to people (What), manual processes (How), social/relational locations (Where), human events (When); also align to heuristic skills (Who) and decisions (Why)

 	
aspirational: principles and values (What), value-webs and dependencies (Where), business-rules (When); also align with principle-based skills (Who) and decisions (Why)

 	
abstract: additional uncategorised segments such as financial (What, How), time (When) etc

More posts to follow on how these all link together as primitive and composite models; and how the heck to put it all to practical use. :-)

Source (Tetradian weblog)

 	
Date: 2007/08/15

 	
URL: zachman-summary

 	
Comments: (none)

 	
Categories: Business, Enterprise architecture

 	
Tags: Enterprise architecture, Zachman

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/mkt-org-it-down.png
organisation | - [1°
1= IT-based
m% E apps / data

IT hardware

OEBPS/images/mkt-ent-inv-down-generic.png
indirect-interaction

direct-interaction

transaction

partner

service-in-

< | ocus

<>

partner

OEBPS/images/mkt-ent-inv-down.png
shared-enterprise

includes community, government, non-clients, anti-clients, others

suppl
prospects

‘market

includes competiors, reguiators, others (Cusiomer
prospecis

supplier

@ﬁq-nl- tion | <—>

customer

OEBPS/images/ecanvas-svc-indirect.png
indirect context

transaction context

GN.O..M) -
focus

providers consumers

direct context

OEBPS/images/mkt-ent-inv-col.png
shared-enterprise
includes community, government, non-clients, anti-clients, others

market
includes competitors, regulators, others

Customer-
prospects

supplier-
prospects

supplier | < | organisation | < | customer

includes investors, beneficiaries

OEBPS/images/svc-in-focus-down.png
service-in-
focus

OEBPS/images/mkt-org-svc-down.png
organisation

" services implemented by any appropriate mix of people, machines, IT

BEMIBOXE T

OEBPS/images/gerben-wierda_robotservice.jpg
Show Inventory =)
(Business Process)

Create Order
(Business Process)

=)

Deliver Product
(Business Process)

D)

Sales Agent 7|
(Business Role)

Courier
(Business Role)

OEBPS/images/bdat-layers.png
Business Architecture

Data
Architecture
rerenen

Applications
Architecture

Technology
Architecture

OEBPS/images/bdat-stack.png
Business Architecture

Data Applications
Architecture Architecture

(information-Systems Architecture)

Technology
Architecture

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Concerns and questions about IT-frameworks

Tom Graves

OEBPS/images/soe-bdat-conflate.png
Business Architecture

Purpose + People
(anything not-IT that might affect IT)

Data
Architecture
(Informaion-Sys

Applications
Architecture
ms Arctecture

Virtual Information
(IT-only)

Technology
Architecture

Physical Things
(IT-only)

