

Tips for manual testers working in an agile
environment

Matt Archer

This book is for sale at http://leanpub.com/tipsformanualtestersworkinginanagileenvironment

This version was published on 2014-07-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 Matt Archer

http://leanpub.com/tipsformanualtestersworkinginanagileenvironment
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Matt Archer by spreading the word about this book on Twitter!

The suggested hashtag for this book is #AgileManualTesters.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#AgileManualTesters

http://twitter.com
https://twitter.com/search?q=%23AgileManualTesters
https://twitter.com/search?q=%23AgileManualTesters

Contents

Introduction . 1
Welcome to the review edition . 1
Acknowledgements . 2
Why a book of tips? . 3
Why have you focused on manual testing? What about automation? 4
Why all the pictures and graphics? . 5

Tips . 6
Tip 1: Appreciate that an agile tester never blindly follows a tip or practice 6
Tip 2: Tailor your agile testing practices to meet your specific needs 7
Tip 4: When testing or preparing, don’t allow yourself to be blocked 8
Tip 16: Share common information with other members of the team 9
Tip 17: Use traditional testing tools in a way that makes you agile 10
Tip 21: Use self-generated maps to help organise your testing 11
Tip 24: Resist overlaying traditional testing processes onto a sprint 12
Tip 27: Learn how to spot risky automation: an upside-down pyramid 13
Tip 32: However you document your manual tests, don’t repeat yourself 14
Tip 41: Test multiple stories together to uncover different perspectives 15
Tip 42: When you describe your tests, don’t just copy existing documents 16

Introduction
Welcome to the review edition

If you are reading this page it means you have decided to invest some of your time and potentially
your money in a book that is still a work-in-progress. Thank you for showing an early interest.
After reading the pages that follow, if you would like to share your thoughts I can be contacted
using the details below.

Email: matt@expresssoftware.co.uk

Twitter: @MattArcherUK

Hastag: #AgileManualTesters

As you read each tip, you will notice that there is a corresponding illustration. If you feel the
urge to doodle on any of the graphics or create contrasting versions of your own then feel free
to share these too. Feedback doesn’t have to be limited to the written word.

The more observant amongst you may also notice that tip 49 does not have a title and I am truly
unsure what it should be. Some time ago I arbitrarily decided that the book should contain 50
tips. If you have any thoughts about what the 50th and final tip should be, I would be more than
happy to hear your suggestions.

Introduction 2

Acknowledgements

Section T.B.C.

Notes:

Personal support, including friends and family.

Professional inspiration (currently sorted alphabetically) including Gojko Adzic, James Bach,
Michael Bolton, Lisa Crispin, Paul Gerrard, Dorothy Graham, Janet Gregory, Julian Harty,
Elisabeth Hendrickson, Cem Kaner, James Lyndsay, Alan Richardson.

Other people who I have embarrassingly forgotten in this draft!

Introduction 3

Why a book of tips?

Whenever I join an agile team I askmyself the following question. How can I providemeaningful,
quality-related feedback in a way that is compatible with the values and pace of agile software
delivery, whilst maintaining independence, diligence and predictability?

You would be forgiven for thinking that after many years of asking myself this question I would
have converged on a common answer. Nothing could be further from the truth. The reality is
that every agile team is different and must continually be the subject of various experiments and
trials to help each team evolve a blend of testing practices that will aid them in achieving their
particular testing goals.

It is for this reason that you are reading a book of tips rather than step by step tutorials for specific
testing practices. It is through these snippets of information that I hope to seed new ideas in your
mind that will inspire you to alter the way you work by trying something new.

Maybe that new thing will work for you; maybe it won’t. Either way, you will have expanded
your experience of testing in an agile team through your own successes or woes. This, in my
opinion, is a great way to study the craft of testing and continue to improve as a tester. I wish
you the best of luck in all your agile testing endeavours and I hope you enjoy the tips. You can
read them in any order you like.

Introduction 4

Why have you focused on manual testing? What
about automation?

Section T.B.C.

Note:

There already exists countless resources that do a good job of explaining automation and more
specifically automation in an agile context. I did not want to repeat them here.

Conversely, there are few resources that look at testing in an agile environment from the
perspective of a manual tester.

The book does include three tips on the topic of automation. Their purpose is to help manual
testers spot risky automation so they can identify points in time when manual testing may need
to form part of the mitigation for failed automation.

Whilst there is no plan to address the topic directly, by focusing solely on manual testing, I
would like to think that this book can also help dispel some myths about manual testing in an
agile environment, including manual testing doesn’t have a place in agile teams and every tester
need to learn how to write code to be of value to an agile team.

Introduction 5

Why all the pictures and graphics?

Section T.B.C.

Notes:

I didn’t want to have page after page of text.

I believe visual anchors help people remember.

It’s a cliché, but sometimes a picture is worth a thousand words.

Tips
Tip 1: Appreciate that an agile tester never blindly

follows a tip or practice

Tip T.B.C.

Notes:

No piece of advice, including the tips in this book, should ever be followed blindly or without
intelligently adapting that advice to something sensible that meets your own team’s objectives.

Be careful that you are not introducing new ideas to the detriment of other practices in your
team, both old and new. If you are replacing an existing practice, is the net result positive?

Sometimes you may feel that a particular tip or piece of advice doesn’t apply to you or your
team. That’s fine, don’t force it.

Trying to incorporate every tip in this book into your project is unlikely to end well. Take what
is useful. Leave the rest.

Tips 7

Tip 2: Tailor your agile testing practices to meet your
specific needs

Some agile testing techniques appear so popular it can be difficult to keep them in perspective,
alter them to meet our needs or choose to ignore them entirely. But this is what successful agile
teams do daily.

It can be great fun debating the theoretical pros and cons of one approach against another,
however, arguments both for and against a given approach are often invalided as soon as it
is used in practice.

With this in mind, never be scared to try something new. Testers can waste days discussing
whether a given approach is a good idea. This can be avoided by agreeing to perform a small
trial. And by small, I mean as small as possible. Forget trying something for the whole of the next
sprint, try it solely for the next story you build. At the very least it will give you a real example
to discuss rather than the theory.

You may think that you don’t want to compromise and instead stick to the agile ideal, but being
adaptable is at the heart of agile. What follows is an extract from the extremeprogramming.org
website. Many consider it to be the most important XP Rule. “Fix the process when it breaks. I
don’t say if because I already know you will need to make some changes for your specific project.
Follow the XP Rules to start with, but do not hesitate to change what doesn’t work.”

Tips 8

Tip 4: When testing or preparing, don’t allow
yourself to be blocked

If your project aims to release their software ten months from now, losing a day because your
work is blocked can often be dismissed as inconsequential. Contrast that to an agile team that
aims to release every ten days. Spending a day idle becomes much more significant.

Traditionally, testers have placed strict entry criteria before their activities, but if we took this
approach to agile testing we would spend the majority of our time underutilised, supposedly
blocked. One way to improve your productivity is to discard the notion of needing a “complete
specification”. Instead, ask yourself what is the bare minimum I need to begin testing. The rest
can come later.

Even when we begin to test early, it is easy to block or significantly delay ourselves by spending
too much time pondering the gaps in our knowledge. When you encounter such a gap, resist the
temptation to speculate for too long, especially in isolation.

If you believe the information is known within the team, now is a good time to remember
the three ‘C’s that describe the journey of a user story; card, conversation, confirmation. If a
conversation isn’t available or doesn’t leave you satisfied, leave yourself a note to revisit the gap
at a later time and move on. Above all, don’t allow yourself to become blocked, either by other
people or yourself.

Tips 9

Tip 16: Share common information with other
members of the team

When testers work in isolation it is easy to forget that some of the information that we gather
and store for future use is the same, or very similar, to the information that other team members
document.

In agile development teams, testers typically work much closer with other team members which
helps highlight this kind of repetition. That said, even when the overlap becomes obvious, the
practice of “my documentation” is one of the hardest habits to break.

I attribute much of this resistance to the practice of using documents to represent key milestones
and the rate of document production as an indicator of progress. Based on this mentality, reusing
another team member’s documentation can feel like you are not providing measurable value. In
reality, this type of reuse will give you more time to focus on the things that make you valuable,
like finding bugs.

This emphasis on documents is something that agile teams replace with a focus on working,
business impacting software. Testers can help support this ethos by looking for opportunities to
reuse existing documentation that have already been produced and either updating or amending
it directly, or referencing existing documents from their tests or new (typically much shorter)
test-centric documentation that only contains information that cannot be found elsewhere.

Tips 10

Tip 17: Use traditional testing tools in a way that
makes you agile

Some agile teams have the luxury of being able to choose the tools they use, but others are tied
to particular tools or venders which may not necessarily be their first choice due to a lack of
agile credentials.

If you find yourself in this situation, it is worth remembering that just because a vender had a
particular usage pattern in mind when they created their tool, doesn’t mean that you have to
follow it. As an example, you could combine what the tool vender may consider different tests
into a single record to reduce your test preparation and maintenance effort, whilst also placing
related tests in context.

When you use a traditional tool in an agile way, it is not uncommon for people to worry about
skewed metrics. In the example above, where we used to have 20 “test” records we may now
only have five.

If you encounter this feedback, it can be useful to ask how the metric is being used. Are people
assuming that an area with less “tests” can be tested in less time? I hope not. Or maybe that an
area with more “tests” will be tested more thoroughly? An equally risky assumption. You can
help your team by explaining how some of your tool’s metrics have debatable value regardless
of how it is used. It will also serve as a good opportunity to discuss what information your team
would like and how you can accurately provide it.

Tips 11

Tip 21: Use self-generated maps to help organise
your testing

To help organise our testing, we frequently divide software into parts. These individual parts can
then become the focus for different activities, including test planning, designing, executing and
reporting.

Traditional processes tend to dictate that testers should rely on artefacts created by other people
to provide a map of the software and its different parts. A common example is to use a functional
specification as a guide to partitioning the software’s capabilities.

Whilst this type of information is useful, relying solely on models and specifications created
by other people to guide our testing carries the risk of limiting our work to what others have
committed to file. A risk that becomes even more prevalent when you consider that agile teams
value working software over comprehensive documentation.

In the absence of a provided structure, there is the temptation to wander chaotically through the
system looking for bugs. To do this is to overlook our ability to create our own abstractions of
the system.

You can create your ownmaps using any tool or format. My only tip is not to be afraid of creating
multiple maps or even temporary ones. Their goal is to help you consciously decide where to
focus your testing next based upon everything you have learnt so far. Whichever maps help you
with this task, are the maps for you.

Tips 12

Tip 24: Resist overlaying traditional testing
processes onto a sprint

Agile projects rarely complete something in a single sitting, instead opting to progressively
elaborate their understanding of the software and the software itself over time. It is useful to
remember this aspect of agile when deciding how to perform our testing tasks.

It is not uncommon for testing to be organised around a planning-specifying-executing-
reporting-maintaining pipeline, but this carries the risk of achieving failure in any project, agile
included. In addition, testers who overlay this approach to testing onto a sprint carry the risk of
feeling at odds with the rest of the team, to the point that even the most test-sympathetic teams
can feel like a challenge.

One way to overcome this problem is to progressively elaborate our testing in the same way that
the team evolves the software. This doesn’t preclude an element of upfront test planning within
a sprint or early test ideas, but be mindful that some aspects of the solution are yet to be decided
and those aspects already decided may change.

This turns questioning into an finely-balanced art. Early questions are to be encouraged, but
demanding a complete specification is unlikely to allow your team to work in the agile way it
desires. Similarly, providing early feedback is rarely a bad thing, but raising a mountain of bugs
against an early prototype as if it were a release candidate is unlikely to get you an invite to view
future early work.

Tips 13

Tip 27: Learn how to spot risky automation: an
upside-down pyramid

The next three tips are about automation. Not because I think every tester should learn how
to code, but because it is useful to be able to recognise automated tests that may fail to meet
expectations.

The majority of agile teams create different types of automated test. Some focus on a few lines of
code, others encompass chains of integrated systems. Some run in milliseconds, others minutes.
Some interact via the user interface (UI), others probe underlying services.

When relying on automated tests, the most risky and unreliable tend to be those that cover the
largest area, take the longest to run and interact with volatile aspects of our software, like the
UI. We cannot always avoid these tests, but a team can aim to use them sparingly.

This is where the test automation pyramid can help identify risky strategies by suggesting a ratio
between focused, quick, beneath-the-UI tests and broad, slow, against-the-UI tests. Predictably,
the ratio is in favour of the focused, quick, beneath-the-UI tests.

If your team’s automated tests go against this ratio, I recommend taking a closer look. If what
you discover is of questionable value, discuss with your team howmanual testing can temporally
help, including any extra support and resources required to fill the gap.

Tips 14

Tip 32: However you document your manual tests,
don’t repeat yourself

For years, programmers (at least the good ones) have known that when one piece of code looks
very similar to another piece of code then this typically isn’t a good sign. If something needs
changing in the first piece of code, then the same change will almost certainly need to be made
in the second piece of code too.

The more duplication that exists, the greater the chance that a mistake will be made during the
update, the update will only be made in some places or changes will be rejected / ignored due to
the daunting amount of effort that often comes with such duplication.

Unsurprisingly, when the description for one manual test looks very similar to the description
for another then this typically isn’t a good sign either. It generally isn’t a good sign for any
tester, but for a tester who is working in a agile team where ‘responding to change’ is valued
over ‘following a plan’, duplication can quickly spell trouble.

So next time you find yourself reaching for the copy & paste icons, consider the duplication
that you may be about to introduce into your manual tests. And more importantly, consider the
future maintenance cost to you and the team.

Tips 15

Tip 41: Test multiple stories together to uncover
different perspectives

Efficient agile teams are often compared to a well-managed production line, with new stories
flowing quickly from a concept, through development and testing, before being rapidly released
so that users can immediately benefit from their introduction.

This type of efficiency gives the team and their clients a competitive advantage over slower
agile teams and teams following traditional process models, but it also introduces some potential
testing pitfalls.

When we test in a fast paced team, it is easy to become too focused on the individual units of
work that progress through our production line (the features / stories), without considering the
bigger picture.

To help mitigate this risk, I recommend thinking about each new story from a variety of different
perspectives, including how it relates to stories already released. By combining multiple stories
together you will typically unearth a more complicated assortment of inputs and interactions
that can be the basis for wider-ranging tests.

That said, be careful not to lose focus entirely. It is important to supplement (not replace) our
focused tests with tests that are based on a broader viewpoint. I say this because it is typically
a variety of tests from different perspectives that help us minimise effects like inattentional
blindness and find the greatest number of bugs.

Tips 16

Tip 42: When you describe your tests, don’t just copy
existing documents

There is a an approach to describing tests that can be thought of as transformational. You won’t
find it described explicitly in any book but it is alive and well in many projects. The approach
is simple. Find something that describes how the software is expected to work and transform it
into the description for one or more tests.

The approach often begins with a element of copying and pasting from other documents,
typically followed by altering a few words and on occasions the addition of either inferred or
specific test data.

Unfortunately, following this approach will saddle your project with unnecessary debt. This is
because it now has at least two places that describe how the software is expected to work, in a
very similar way. Any changes to that expected behaviour must now be maintained in multiple
places. Using this approach will also limit your testing to other people’s thoughts and ideas rather
than your own imagination.

To keep your debt to a minimum, avoid repeating information produced by other people. If your
project already has a good explanation of how the software should work, reference this item to
provide context for your test and instead of writing lengthy tests, opts for brief test ideas that
make sense when presented alongside existing explanations of how the software should work.

	Table of Contents
	Introduction
	Welcome to the review edition
	Acknowledgements
	Why a book of tips?
	Why have you focused on manual testing? What about automation?
	Why all the pictures and graphics?

	Tips
	Tip 1: Appreciate that an agile tester never blindly follows a tip or practice
	Tip 2: Tailor your agile testing practices to meet your specific needs
	Tip 4: When testing or preparing, don’t allow yourself to be blocked
	Tip 16: Share common information with other members of the team
	Tip 17: Use traditional testing tools in a way that makes you agile
	Tip 21: Use self-generated maps to help organise your testing
	Tip 24: Resist overlaying traditional testing processes onto a sprint
	Tip 27: Learn how to spot risky automation: an upside-down pyramid
	Tip 32: However you document your manual tests, don’t repeat yourself
	Tip 41: Test multiple stories together to uncover different perspectives
	Tip 42: When you describe your tests, don’t just copy existing documents

