

[image: Tips for manual testers working in an agile environment]

 Tips for manual testers working in an agile environment

 Matt Archer

 This book is for sale at http://leanpub.com/tipsformanualtestersworkinginanagileenvironment

 This version was published on 2014-07-23

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 - 2014 Matt Archer

Table of Contents

 	
 Introduction

 	
 Welcome to the review edition

 	
 Acknowledgements

 	
 Why a book of tips?

 	
 Why have you focused on manual testing? What about automation?

 	
 Why all the pictures and graphics?

 	
 Tips

 	
 Tip 1: Appreciate that an agile tester never blindly follows a tip or practice

 	
 Tip 2: Tailor your agile testing practices to meet your specific needs

 	
 Tip 4: When testing or preparing, don’t allow yourself to be blocked

 	
 Tip 16: Share common information with other members of the team

 	
 Tip 17: Use traditional testing tools in a way that makes you agile

 	
 Tip 21: Use self-generated maps to help organise your testing

 	
 Tip 24: Resist overlaying traditional testing processes onto a sprint

 	
 Tip 27: Learn how to spot risky automation: an upside-down pyramid

 	
 Tip 32: However you document your manual tests, don’t repeat yourself

 	
 Tip 41: Test multiple stories together to uncover different perspectives

 	
 Tip 42: When you describe your tests, don’t just copy existing documents

Introduction

Welcome to the review edition

 [image:]

If you are reading this page it means you have decided to invest some of your time and potentially your money in a book that is still a work-in-progress. Thank you for showing an early interest. After reading the pages that follow, if you would like to share your thoughts I can be contacted using the details below.

Email: matt@expresssoftware.co.uk

Twitter: @MattArcherUK

Hastag: #AgileManualTesters

As you read each tip, you will notice that there is a corresponding illustration. If you feel the urge to doodle on any of the graphics or create contrasting versions of your own then feel free to share these too. Feedback doesn’t have to be limited to the written word.

The more observant amongst you may also notice that tip 49 does not have a title and I am truly unsure what it should be. Some time ago I arbitrarily decided that the book should contain 50 tips. If you have any thoughts about what the 50th and final tip should be, I would be more than happy to hear your suggestions.

Acknowledgements

Section T.B.C.

Notes:

Personal support, including friends and family.

Professional inspiration (currently sorted alphabetically) including Gojko Adzic, James Bach, Michael Bolton, Lisa Crispin, Paul Gerrard, Dorothy Graham, Janet Gregory, Julian Harty, Elisabeth Hendrickson, Cem Kaner, James Lyndsay, Alan Richardson.

Other people who I have embarrassingly forgotten in this draft!

Why a book of tips?

Whenever I join an agile team I ask myself the following question. How can I provide meaningful, quality-related feedback in a way that is compatible with the values and pace of agile software delivery, whilst maintaining independence, diligence and predictability?

You would be forgiven for thinking that after many years of asking myself this question I would have converged on a common answer. Nothing could be further from the truth. The reality is that every agile team is different and must continually be the subject of various experiments and trials to help each team evolve a blend of testing practices that will aid them in achieving their particular testing goals.

It is for this reason that you are reading a book of tips rather than step by step tutorials for specific testing practices. It is through these snippets of information that I hope to seed new ideas in your mind that will inspire you to alter the way you work by trying something new.

Maybe that new thing will work for you; maybe it won’t. Either way, you will have expanded your experience of testing in an agile team through your own successes or woes. This, in my opinion, is a great way to study the craft of testing and continue to improve as a tester. I wish you the best of luck in all your agile testing endeavours and I hope you enjoy the tips. You can read them in any order you like.

Why have you focused on manual testing? What about automation?

Section T.B.C.

Note:

There already exists countless resources that do a good job of explaining automation and more specifically automation in an agile context. I did not want to repeat them here.

Conversely, there are few resources that look at testing in an agile environment from the perspective of a manual tester.

The book does include three tips on the topic of automation. Their purpose is to help manual testers spot risky automation so they can identify points in time when manual testing may need to form part of the mitigation for failed automation.

Whilst there is no plan to address the topic directly, by focusing solely on manual testing, I would like to think that this book can also help dispel some myths about manual testing in an agile environment, including manual testing doesn’t have a place in agile teams and every tester need to learn how to write code to be of value to an agile team.

Why all the pictures and graphics?

 [image:]

Section T.B.C.

Notes:

I didn’t want to have page after page of text.

I believe visual anchors help people remember.

It’s a cliché, but sometimes a picture is worth a thousand words.

Tips

Tip 1: Appreciate that an agile tester never blindly follows a tip or practice

Tip T.B.C.

Notes:

No piece of advice, including the tips in this book, should ever be followed blindly or without intelligently adapting that advice to something sensible that meets your own team’s objectives.

Be careful that you are not introducing new ideas to the detriment of other practices in your team, both old and new. If you are replacing an existing practice, is the net result positive?

Sometimes you may feel that a particular tip or piece of advice doesn’t apply to you or your team. That’s fine, don’t force it.

Trying to incorporate every tip in this book into your project is unlikely to end well. Take what is useful. Leave the rest.

Tip 2: Tailor your agile testing practices to meet your specific needs

 [image:]

Some agile testing techniques appear so popular it can be difficult to keep them in perspective, alter them to meet our needs or choose to ignore them entirely. But this is what successful agile teams do daily.

It can be great fun debating the theoretical pros and cons of one approach against another, however, arguments both for and against a given approach are often invalided as soon as it is used in practice.

With this in mind, never be scared to try something new. Testers can waste days discussing whether a given approach is a good idea. This can be avoided by agreeing to perform a small trial. And by small, I mean as small as possible. Forget trying something for the whole of the next sprint, try it solely for the next story you build. At the very least it will give you a real example to discuss rather than the theory.

You may think that you don’t want to compromise and instead stick to the agile ideal, but being adaptable is at the heart of agile. What follows is an extract from the extremeprogramming.org website. Many consider it to be the most important XP Rule. “Fix the process when it breaks. I don’t say if because I already know you will need to make some changes for your specific project. Follow the XP Rules to start with, but do not hesitate to change what doesn’t work.”

Tip 4: When testing or preparing, don’t allow yourself to be blocked

 [image:]

If your project aims to release their software ten months from now, losing a day because your work is blocked can often be dismissed as inconsequential. Contrast that to an agile team that aims to release every ten days. Spending a day idle becomes much more significant.

Traditionally, testers have placed strict entry criteria before their activities, but if we took this approach to agile testing we would spend the majority of our time underutilised, supposedly blocked. One way to improve your productivity is to discard the notion of needing a “complete specification”. Instead, ask yourself what is the bare minimum I need to begin testing. The rest can come later.

Even when we begin to test early, it is easy to block or significantly delay ourselves by spending too much time pondering the gaps in our knowledge. When you encounter such a gap, resist the temptation to speculate for too long, especially in isolation.

If you believe the information is known within the team, now is a good time to remember the three ‘C’s that describe the journey of a user story; card, conversation, confirmation. If a conversation isn’t available or doesn’t leave you satisfied, leave yourself a note to revisit the gap at a later time and move on. Above all, don’t allow yourself to become blocked, either by other people or yourself.

Tip 16: Share common information with other members of the team

 [image:]

When testers work in isolation it is easy to forget that some of the information that we gather and store for future use is the same, or very similar, to the information that other team members document.

In agile development teams, testers typically work much closer with other team members which helps highlight this kind of repetition. That said, even when the overlap becomes obvious, the practice of “my documentation” is one of the hardest habits to break.

I attribute much of this resistance to the practice of using documents to represent key milestones and the rate of document production as an indicator of progress. Based on this mentality, reusing another team member’s documentation can feel like you are not providing measurable value. In reality, this type of reuse will give you more time to focus on the things that make you valuable, like finding bugs.

This emphasis on documents is something that agile teams replace with a focus on working, business impacting software. Testers can help support this ethos by looking for opportunities to reuse existing documentation that have already been produced and either updating or amending it directly, or referencing existing documents from their tests or new (typically much shorter) test-centric documentation that only contains information that cannot be found elsewhere.

Tip 17: Use traditional testing tools in a way that makes you agile

 [image:]

Some agile teams have the luxury of being able to choose the tools they use, but others are tied to particular tools or venders which may not necessarily be their first choice due to a lack of agile credentials.

If you find yourself in this situation, it is worth remembering that just because a vender had a particular usage pattern in mind when they created their tool, doesn’t mean that you have to follow it. As an example, you could combine what the tool vender may consider different tests into a single record to reduce your test preparation and maintenance effort, whilst also placing related tests in context.

When you use a traditional tool in an agile way, it is not uncommon for people to worry about skewed metrics. In the example above, where we used to have 20 “test” records we may now only have five.

If you encounter this feedback, it can be useful to ask how the metric is being used. Are people assuming that an area with less “tests” can be tested in less time? I hope not. Or maybe that an area with more “tests” will be tested more thoroughly? An equally risky assumption. You can help your team by explaining how some of your tool’s metrics have debatable value regardless of how it is used. It will also serve as a good opportunity to discuss what information your team would like and how you can accurately provide it.

Tip 21: Use self-generated maps to help organise your testing

 [image:]

To help organise our testing, we frequently divide software into parts. These individual parts can then become the focus for different activities, including test planning, designing, executing and reporting.

Traditional processes tend to dictate that testers should rely on artefacts created by other people to provide a map of the software and its different parts. A common example is to use a functional specification as a guide to partitioning the software’s capabilities.

Whilst this type of information is useful, relying solely on models and specifications created by other people to guide our testing carries the risk of limiting our work to what others have committed to file. A risk that becomes even more prevalent when you consider that agile teams value working software over comprehensive documentation.

In the absence of a provided structure, there is the temptation to wander chaotically through the system looking for bugs. To do this is to overlook our ability to create our own abstractions of the system.

You can create your own maps using any tool or format. My only tip is not to be afraid of creating multiple maps or even temporary ones. Their goal is to help you consciously decide where to focus your testing next based upon everything you have learnt so far. Whichever maps help you with this task, are the maps for you.

Tip 24: Resist overlaying traditional testing processes onto a sprint

 [image:]

Agile projects rarely complete something in a single sitting, instead opting to progressively elaborate their understanding of the software and the software itself over time. It is useful to remember this aspect of agile when deciding how to perform our testing tasks.

It is not uncommon for testing to be organised around a planning-specifying-executing-reporting-maintaining pipeline, but this carries the risk of achieving failure in any project, agile included. In addition, testers who overlay this approach to testing onto a sprint carry the risk of feeling at odds with the rest of the team, to the point that even the most test-sympathetic teams can feel like a challenge.

One way to overcome this problem is to progressively elaborate our testing in the same way that the team evolves the software. This doesn’t preclude an element of upfront test planning within a sprint or early test ideas, but be mindful that some aspects of the solution are yet to be decided and those aspects already decided may change.

This turns questioning into an finely-balanced art. Early questions are to be encouraged, but demanding a complete specification is unlikely to allow your team to work in the agile way it desires. Similarly, providing early feedback is rarely a bad thing, but raising a mountain of bugs against an early prototype as if it were a release candidate is unlikely to get you an invite to view future early work.

Tip 27: Learn how to spot risky automation: an upside-down pyramid

 [image:]

The next three tips are about automation. Not because I think every tester should learn how to code, but because it is useful to be able to recognise automated tests that may fail to meet expectations.

The majority of agile teams create different types of automated test. Some focus on a few lines of code, others encompass chains of integrated systems. Some run in milliseconds, others minutes. Some interact via the user interface (UI), others probe underlying services.

When relying on automated tests, the most risky and unreliable tend to be those that cover the largest area, take the longest to run and interact with volatile aspects of our software, like the UI. We cannot always avoid these tests, but a team can aim to use them sparingly.

This is where the test automation pyramid can help identify risky strategies by suggesting a ratio between focused, quick, beneath-the-UI tests and broad, slow, against-the-UI tests. Predictably, the ratio is in favour of the focused, quick, beneath-the-UI tests.

If your team’s automated tests go against this ratio, I recommend taking a closer look. If what you discover is of questionable value, discuss with your team how manual testing can temporally help, including any extra support and resources required to fill the gap.

Tip 32: However you document your manual tests, don’t repeat yourself

 [image:]

For years, programmers (at least the good ones) have known that when one piece of code looks very similar to another piece of code then this typically isn’t a good sign. If something needs changing in the first piece of code, then the same change will almost certainly need to be made in the second piece of code too.

The more duplication that exists, the greater the chance that a mistake will be made during the update, the update will only be made in some places or changes will be rejected / ignored due to the daunting amount of effort that often comes with such duplication.

Unsurprisingly, when the description for one manual test looks very similar to the description for another then this typically isn’t a good sign either. It generally isn’t a good sign for any tester, but for a tester who is working in a agile team where ‘responding to change’ is valued over ‘following a plan’, duplication can quickly spell trouble.

So next time you find yourself reaching for the copy & paste icons, consider the duplication that you may be about to introduce into your manual tests. And more importantly, consider the future maintenance cost to you and the team.

Tip 41: Test multiple stories together to uncover different perspectives

 [image:]

Efficient agile teams are often compared to a well-managed production line, with new stories flowing quickly from a concept, through development and testing, before being rapidly released so that users can immediately benefit from their introduction.

This type of efficiency gives the team and their clients a competitive advantage over slower agile teams and teams following traditional process models, but it also introduces some potential testing pitfalls.

When we test in a fast paced team, it is easy to become too focused on the individual units of work that progress through our production line (the features / stories), without considering the bigger picture.

To help mitigate this risk, I recommend thinking about each new story from a variety of different perspectives, including how it relates to stories already released. By combining multiple stories together you will typically unearth a more complicated assortment of inputs and interactions that can be the basis for wider-ranging tests.

That said, be careful not to lose focus entirely. It is important to supplement (not replace) our focused tests with tests that are based on a broader viewpoint. I say this because it is typically a variety of tests from different perspectives that help us minimise effects like inattentional blindness and find the greatest number of bugs.

Tip 42: When you describe your tests, don’t just copy existing documents

 [image:]

There is a an approach to describing tests that can be thought of as transformational. You won’t find it described explicitly in any book but it is alive and well in many projects. The approach is simple. Find something that describes how the software is expected to work and transform it into the description for one or more tests.

The approach often begins with a element of copying and pasting from other documents, typically followed by altering a few words and on occasions the addition of either inferred or specific test data.

Unfortunately, following this approach will saddle your project with unnecessary debt. This is because it now has at least two places that describe how the software is expected to work, in a very similar way. Any changes to that expected behaviour must now be maintained in multiple places. Using this approach will also limit your testing to other people’s thoughts and ideas rather than your own imagination.

To keep your debt to a minimum, avoid repeating information produced by other people. If your project already has a good explanation of how the software should work, reference this item to provide context for your test and instead of writing lengthy tests, opts for brief test ideas that make sense when presented alongside existing explanations of how the software should work.

OEBPS/images/chapter32.png
Test Planning

Test Specifying

Test Executio.

Test Re, ‘ing , l

Test
Maintenance

OEBPS/images/chapter35.png
Few
(10%)

User Interface Tests
(Large)

An upright pyramid is
often a good complement servie Tests
to manual testing. —>

Some
(20%)

Unit Tests
(Small)

Lots
(70%)

User Interface Tests Lots

(Large) (70%) Be careful of upside-
N €« down pyramids.
(Medium) o) They often fail to

Unit Tests meet expectations.

(Small) (10%)

OEBPS/images/chapter40.png
Don’t
Repeat
Yourself

(Good advice for programmers AND testers)

OEBPS/images/chapter12.png
| wonder what the other
systems could be?

OEBPS/images/chapter24.png
Import personnel record tests
(Checklist type: “data integrity”)

Test that when records are imported from the payroll system;

1. The visible fields* are copied correctly
2. The metadata values* are copied correctly
3. The created and last updated values are correct

(*See the system-to-system mapping doc for applicable fields)

OEBPS/images/chapter25.png
Test Details — Report Printing (Visual Anomalies)

Component | User Author Matt Type Manual
Priority High Req Link | AB-113 Estimate | 30 mins
Pre-conditions Steps
1. A report exists that can be printed. Test that when a report is printed in

different sizes and orientations that
there are no visual anomalies.

- Sizes: AS, A4, A3

- Orientations: Landscape, Portrait

OEBPS/images/chapter29.png
Page 7 P P
age ages age 9

Page 1 Page 3

|
—>

User Interface Integration Story
Map Map Map

Page 2
B P—

—

hl

'
1

T

Page 6 Page 4 Page 5

Page 10 Page 11 Page 12

OEBPS/images/chapter49.png

OEBPS/images/chapter2.png

OEBPS/images/chapter50.png
Login Specification Successful Login Test

1. To begin the login
routine, start the app.

1. The login routine will
begin when the app starts.

2. The system will present
the user with a login dialog.

2. Check that the system
displays a login dialog.

3. Enter a valid name and
password into the dialog.

3. The user will need to
enter a name and password.

4. If the name and password
are correct, access is granted

4. Check that you are
granted access to the app.

OEBPS/images/chapter8.png

OEBPS/images/chapter10.png
“Err... Any chance ™
we can deliver
some software
around here!

~ N Your guide must be \\
wrong, my agile guide
says we should do it

like that...

My agile guide
says we should
do it like this...

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
Tips for manual
testers working
in an agile
environment

