

Thinking with Types

SandyMaguire

Copyright ©2018, SandyMaguire

All rights reserved.

First Edition

When people say
“but most business logic bugs

aren’t type errors,”
I just want to show them
how to make bugs
into type errors.

MATT PARSONS

Contents

Introduction 1

I Fundamentals 7

1 The Algebra Behind Types 9
1.1 Isomorphisms and Cardinalities 9
1.2 Sum, Product and Exponential Types 12
1.3 Example: Tic-Tac-Toe 16
1.4 The Curry–Howard Isomorphism 18
1.5 Canonical Representations 19

3 Variance 23

II Lifting Restrictions 31

4 Working with Types 33
4.1 Type Scoping . 33
4.2 Type Applications 36
4.3 Ambiguous Types 38

5 Constraints and GADTs 43
5.1 Introduction . 43
5.2 GADTs . 44
5.3 Heterogeneous Lists 48

v

vi CONTENTS

Introduction

Type-level programming is an uncommon calling. While
most programmers are concerned with getting more of
their code to compile, we type-level programmers are
trying our best to prevent code from compiling.

Strictly speaking, the job of types is twinfold—they
prevent (wrong) things from compiling, and in doing so,
they help guide us towards more elegant solutions. For
example, if there are ten solutions to a problem, and nine
of them be poorly-typed, then we need not look very
hard for the right answer.

But make no mistake—this book is primarily about
reducing the circumstances under which a program
compiles. If you’re a beginner Haskell programmer who
feels like GHC argues with you too often, who often finds
type errors inscrutable, then this book is probably not for
you. Not yet.

So whom is this book for? The target audience I’ve
been trying to write for are intermediate-to-proficient
with the language. They’re capable of solving real
problems in Haskell, and doing it without too much
hassle. They need not have strong opinions on ExceptT vs
throwing exceptions in IO, nor do they need to know
how to inspect generated Core to find performance
bottlenecks.

But the target reader should have a healthy sense of
unease about the programs they write. They should look
at their comments saying “don’t call this function with

1

2 CONTENTS

n = 5 because it will crash,” and wonder if there’s some
way to teach the compiler about that. The reader should
nervously eyeball their calls to error that they’re
convinced can’t possibly happen, but are required to
make the type-checker happy.

In short, the reader should be looking for
opportunities to make less code compile. This is not out
of a sense of masochism, anarchy, or any such thing.
Rather, this desire comes from a place of benevolence—a
little frustration with the type-checker now is preferable
to a hard-to-find bugmaking its way into production.

Type-level programming, like anything, is best in
moderation. It comes with its own costs in terms of
complexity, and as such should be wielded with care.
While it’s pretty crucial that your financial application
handling billions of dollars a day runs smoothly, it’s a
little less critical if your hobbyist video game draws a
single frame of gameplay incorrectly. In the first case,
it’s probably worthwhile to use whatever tools you have
in order to prevent things from going wrong. In the
second, these techniques are likely too heavy-handed.

Style is a notoriously difficult thing to teach—in a
very real sense, style seems to be what’s left after we’ve
extracted from a subject all of the things we know how
to teach. Unfortunately, when to use type-level
programming is largely a matter of style. It’s easy to
take the ball and run with it, but discretion is divine.

When in doubt, err on the side of not doing it at the
type-level. Save these techniques for the cases where it’d
be catastrophic to get things wrong, for the cases where
a little type-level stuff goes a long way, and for the cases
where it will drastically improve the API. If your use-case
isn’t obviously one of these, it’s a good bet that there is a
cleaner and easier means of doing it with values.

But let’s talk more about types themselves.
As a group, I think it’s fair to say that Haskellers are

contrarians. Most of us, I’d suspect, have spent at least

CONTENTS 3

one evening trying to extol the virtues of a strong type
system to a dynamically typed colleague. They’ll say
things along the lines of “I like Ruby because the types
don’t get in my way.” Though our first instinct, as
proponents of strongly typed systems, might be to
forcibly connect our head to the table, I think this is a
criticism worth keeping in mind.

As Haskellers, we certainly have strong opinions
about the value of types. They are useful, and they do
carry their weight in gold when coding, debugging and
refactoring. While we can dismiss our colleague’s
complaints with a wave of the hand and the justification
that they’ve never seen a “real” type system before, we
are doing them and ourselves a disservice both. Such
a flippant response is to ignore the spirit of their
unhappiness—types often do get in the way. We’ve just
learned to blind ourselves to these shortcomings, rather
than to bite the bullet and entertain that maybe types
aren’t always the solution to every problem.

Simon Peyton Jones, one of the primary authors of
Haskell, is quick to acknowledge the fact that there are
plenty of error-free programs ruled out by a type system.
Consider, for example, the following program which has
a type-error, but never actually evaluates it:

fst ("no problems", True <> 17)

Because the type error gets ignored lazily by fst,
evaluation of such an expression will happily produce "no
problems" at runtime. Despite the fact that we consider it
to be ill-typed, it is in fact, well-behaved. The usefulness
of such an example is admittedly low, but the point
stands; types often do get in the way of perfectly
reasonable programs.

Sometimes such an obstruction comes under the guise
of “it’s not clear what type this thing should have.” One
particularly poignant case of this is C’s printf function:

4 CONTENTS

int printf (const char *format, ...)

If you’ve never before had the pleasure of using printf,
it works like this: it parses the format parameter, and uses
its structure to pop additional arguments off of the call-
stack. You see, it’s the shape of format that decides what
parameters should fill in the ... above.

For example, the format string "hello %s" takes an
additional string and interpolates it in place of the %s.
Likewise, the specifier %d describes interpolation of a
signed decimal integer.

The following calls to printf are all valid:

• printf("hello %s", "world"), producing “hello
world”,

• printf("%d + %d = %s", 1, 2, "three"), producing “1
+ 2 = three”,

• printf("no specifiers"), producing “no specifiers”.

Notice that, as written, it seems impossible to assign
a Haskell-esque type signature to printf. The additional
parameters denoted by its ellipsis are given types by the
value of its first parameter—a string. Such a pattern is
common in dynamically typed languages, and in the case
of printf, it’s inarguably useful.

The documentation for printf is quick to mention
that the format string must not be provided by the
user—doing so opens up vulnerabilities in which an
attacker can corrupt memory and gain access to the
system. Indeed, this is hugely widespread problem—and
crafting such a string is often the first homework in any
university lecture on software security.

Tobe clear, thevulnerabilities in printfoccurwhen the
format string’s specifiers do not align with the additional
argumentsgiven. The following, innocuous-lookingcalls
to printf are both malicious.

CONTENTS 5

• printf("%d"), which will probably corrupt the stack,

• printf("%s", 1), whichwill read an arbitrary amount
of memory.

C’s type system is insufficiently expressive to describe
printf. But because printf is such a useful function, this
is not a persuasive-enough reason to exclude it from the
language. Thus, type-checking is effectively turned off
for calls to printf so as to have ones cake and eat it too.
However, this opens a hole throughwhich type errors can
make it all the way to runtime—in the form of undefined
behavior and security issues.

My opinion is that preventing security holes is a
much more important aspect of the types, over “null
is the billion dollar mistake” or whichever other
arguments are in vogue today. We will return to the
problem of printf in chapter 9.

With very few exceptions, the prevalent attitude of
Haskellers has been to dismiss the usefulness of
ill-typed programs. The alternative is an uncomfortable
truth: that our favorite language can’t do something
useful that other languages can.

But all is not lost. Indeed, Haskell is capable of
expressing things as oddly-typed as printf, for those of
us willing to put in the effort to learn how. This book
aims to be the comprehensive manual for getting
you from here to there, from a competent Haskell
programmer to one who convinces the compiler to do
their work for them.

6 CONTENTS

Part I

Fundamentals

7

Chapter 1

The Algebra Behind
Types

1.1 Isomorphisms and Cardinalities

One of functional programming’s killer features is
pattern matching, as made possible by algebraic data
types. But this term isn’t just a catchy title for things that
we can pattern match on. As their name suggests, there
is in fact an algebra behind algebraic data types.

Being comfortable understanding and manipulating
this algebra is a mighty superpower—it allows us to
analyze types, findmore convenient forms for them, and
determine which operations (eg. typeclasses) are
possible to implement.

To start, we can associate each finite type with its
cardinality—the number of inhabitants it has, ignoring
bottoms. Consider the following simple type definitions:

data Void

data () = ()

9

10 CHAPTER 1. THE ALGEBRA BEHIND TYPES

data Bool = False | True

Void has zero inhabitants, and so it is assigned
cardinality 0. The unit type () has one inhabitant—thus
its cardinality is 1. Not to belabor the point, but Bool has
cardinality 2, corresponding to its constructors True and
False.

We can write these statements about cardinality more
formally:

|Void| = 0

|()| = 1

|Bool| = 2

Any two finite types that have the same cardinality
will always be isomorphic to one another. An
isomorphism between types s and t is defined as a pair of
functions to and from:

to :: s -> t
from :: t -> s

such that composing either after the other gets you
back where you started. In other words, such that:

to . from = id
from . to = id

We sometimes write an isomorphism between types s
and t as s ∼= t.

If two types have the same cardinality, any
one-to-one mapping between their elements is exactly
these to and from functions. But where does such a
mapping come from? Anywhere—it doesn’t really
matter! Just pick an arbitrary ordering on each type—not

1.1. ISOMORPHISMS AND CARDINALITIES 11

necessarily corresponding to an Ord instance—and then
map the first element under one ordering to the first
element under the other. Rinse and repeat.

For example, we can define a new type that also has
cardinality 2.

data Spin = Up | Down

By the argument above, we should expect Spin to be
isomorphic to Bool. Indeed it is:

boolToSpin1 :: Bool -> Spin
boolToSpin1 False = Up
boolToSpin1 True = Down

spinToBool1 :: Spin -> Bool
spinToBool1 Up = False
spinToBool1 Down = True

However, note that there is another isomorphism
between Spin and Bool:

boolToSpin2 :: Bool -> Spin
boolToSpin2 False = Down
boolToSpin2 True = Up

spinToBool2 :: Spin -> Bool
spinToBool2 Up = True
spinToBool2 Down = False

Which of the two isomorphisms should we prefer?

12 CHAPTER 1. THE ALGEBRA BEHIND TYPES

Does it matter?
In general, for any two types with cardinality n, there

are n! unique isomorphisms between them. As far as the
math goes, any of these is just as good as any other—and
formost purposes, knowing that an isomorphism exists is
enough.

An isomorphism between types s and t is a proof that
for all intents and purposes, s and t are the same thing. They
might have different instances available, but this is more
a statement about Haskell’s typeclass machinery than it
is about the equivalence of s and t.

Isomorphisms are a particularly powerful concept in
the algebra of types. Throughout this book we shall
reason via isomorphism, so it’s best to get comfortable
with the idea now.

1.2 Sum, Product and Exponential Types

In the language of cardinalities, sum types correspond to
addition. The canonical example of these is Either a b,
which is either an a or a b. As a result, the cardinality
(remember, the number of inhabitants) of Either a b is
the cardinality of a plus the cardinality of b.

|Either a b| = |a|+ |b|

As youmight expect, this is why such things are called
sum types. The intuition behind adding generalizes
to any datatype with multiple constructors—the
cardinality of a type is always the sum of the cardinalities
of its constructors.

data Deal a b
= This a
| That b
| TheOther Bool

1.2. SUM, PRODUCT AND EXPONENTIAL TYPES 13

We can analyze Deal’s cardinality;

|Deal a b| = |a|+ |b|+ |Bool|
= |a|+ |b|+ 2

We can also look at the cardinality of Maybe a.
Because nullary data constructors are uninteresting to
construct—there is only one Nothing—the cardinality of
Maybe a can be expressed as follows;

|Maybe a| = 1 + |a|

Dual to sum types are the so-called product types.
Again, we will look at the canonical example first—the
pair type (a, b). Analogously, the cardinality of a
product type is the product of their cardinalities.

|(a, b)| = |a| × |b|

To give an illustration, considermixed fractions of the
form 51

2 . We can represent these in Haskell via a product
type;

data MixedFraction a = Fraction
{ mixedBit :: Word8
, numerator :: a
, denominator :: a
}

And perform its cardinality analysis as follows:

|MixedFraction a| = |Word8| × |a| × |a| = 256× |a| × |a|

An interesting consequence of all of this cardinality
stuff is that we find ourselves able to express
mathematical truths in terms of types. For example, we can

14 CHAPTER 1. THE ALGEBRA BEHIND TYPES

prove that a× 1 = a by showing an isomorphism between
(a, ()) and a.

prodUnitTo :: a -> (a, ())
prodUnitTo a = (a, ())

prodUnitFrom :: (a, ()) -> a
prodUnitFrom (a, ()) = a

Here, we can think of the unit type as being amonoidal
identity for product types—in the sense that “sticking it
in doesn’t change anything.” Because a × 1 = a, we can
pair with as many unit types as we want.

Likewise, Void acts as a monoidal unit for sum types.
To convince ourselves of this, the trivial statement a+0 =
a can be witnessed as an isomorphism between Either a
Void and a.

sumUnitTo :: Either a Void -> a
sumUnitTo (Left a) = a
sumUnitTo (Right v) = absurd v · · · · · · · · · 1

sumUnitFrom :: a -> Either a Void
sumUnitFrom = Left

The function absurd at 1 has the type Void -> a. It’s
a sort of bluff saying “if you give me a Void I can give you
anything you want.” This is a promise that can never be
fulfilled, but because there are no Voids to be had in the
first place, we can’t disprove such a claim.

Function types also have an encoding as
statements about cardinality—they correspond to

1.2. SUM, PRODUCT AND EXPONENTIAL TYPES 15

exponentialization. To give an example, there are
exactly four (22) inhabitants of the type Bool -> Bool.
These functions are id, not, const True and const False.
Try as hard as you can, but you won’t find any other pure
functions between Bools!

More generally, the type a -> b has cardinality |b||a|.
While this might be surprising at first—it always seems
backwards to me—the argument is straightforward. For
every value of a in the domain, we need to give back a b.
But we can chose any value of b for every value of
a—resulting in the following equality.

|a -> b| = |b| × |b| × · · · × |b|︸ ︷︷ ︸
|a|times

= |b||a|

Determine the cardinality of Either Bool (Bool,
Maybe Bool) -> Bool.

Exercise 1.2-i

The inquisitive reader might wonder whether
subtraction, division and other mathematical operations
have meaning when applied to types. Indeed they do, but
such things are hard, if not impossible, to express
in Haskell. Subtraction corresponds to types with
particular values removed, while division of a type
makes some of its values equal (in the sense of being
defined equally—rather than having an Eq instance
which equates them.)

In fact, even the notion of differentiation in calculus
has meaning in the domain of types. Though we will not
discuss it further, the interested reader is encouraged to
refer to Conor McBride’s paper “The Derivative of a
Regular Type is its Type of One-Hole Contexts.”[?].

16 CHAPTER 1. THE ALGEBRA BEHIND TYPES

1.3 Example: Tic-Tac-Toe

I said earlier that being able to manipulate the algebra
behind types is a mighty superpower. Let’s prove it.

Imagine we wanted to write a game of tic-tac-toe.
The standard tic-tac-toe board has nine spaces, which
we could naively implement like this:

data TicTacToe a = TicTacToe
{ topLeft :: a
, topCenter :: a
, topRight :: a
, midLeft :: a
, midCenter :: a
, midRight :: a
, botLeft :: a
, botCenter :: a
, botRight :: a
}

While such a thing works, it’s rather unwieldy to
program against. If we wanted to construct an empty
board for example, there’s quite a lot to fill in.

emptyBoard :: TicTacToe (Maybe Bool)
emptyBoard =

TicTacToe
Nothing Nothing Nothing
Nothing Nothing Nothing
Nothing Nothing Nothing

Writing functions like checkWinner turn out to be even
more involved.

Rather than going through all of this trouble, we can

1.3. EXAMPLE: TIC-TAC-TOE 17

useourknowledgeof thealgebraof types tohelp. Thefirst
step is to perform a cardinality analysis on TicTacToe;

|TicTacToe a| = |a| × |a| × · · · × |a|︸ ︷︷ ︸
9 times

= |a|9

= |a|3×3

When written like this, we see that TicTacToe is
isomorphic to a function (Three, Three) -> a, or in its
curried form: Three -> Three -> a. Of course, Three is any
type with three inhabitants; perhaps it looks like this:

data Three = One | Two | Three
deriving (Eq, Ord, Enum, Bounded)

Due to this isomorphism, we can instead represent
TicTacToe in this form:

data TicTacToe2 a = TicTacToe2
{ board :: Three -> Three -> a
}

And thus simplify our implementation of emptyBoard:

emptyBoard2 :: TicTacToe2 (Maybe Bool)
emptyBoard2 =
TicTacToe2 $ const $ const Nothing

Such a transformation doesn’t let us do anything we
couldn’t have done otherwise, but it does drastically
improve the ergonomics. By making this change, we are
rewarded with the entire toolbox of combinators for

18 CHAPTER 1. THE ALGEBRA BEHIND TYPES

working with functions; we gain better compositionality
and have to pay less of a cognitive burden.

Let us not forget that programming is primarily
a human endeavor, and ergonomics are indeed a
worthwhile pursuit. Your colleagues and collaborators
will thank you later!

1.4 The Curry–Howard Isomorphism

Our previous discussion of the algebraic relationships
between types and their cardinalities can be summarized
in the following table.

Algebra Logic Types
a+ b a ∨ b Either a b
a× b a ∧ b (a, b)
ba a =⇒ b a -> b

a = b a ⇐⇒ b isomorphism
0 ⊥ Void
1 ⊤ ()

This table itself forms a more-general isomorphism
between mathematics and types. It’s known as the
Curry–Howard isomorphism—loosely stating that every
statement in logic is equivalent to some computer
program, and vice versa.

The Curry–Howard isomorphism is a profound
insight about our universe. It allows us to analyze
mathematical theorems through the lens of functional
programming. What’s better is that often even “boring”
mathematical theorems are interesting when expressed
as types.

To illustrate, consider the theorem a1 = a. When
viewed through Curry–Howard, it describes an

1.5. CANONICAL REPRESENTATIONS 19

isomorphism between () -> a and a. Said another way,
this theorem shows that there is no essential distinction
between having a value and having a (pure) program that
computes that value. This insight is the core principle
behind why writing Haskell is such a joy compared with
other programming languages.

Use Curry–Howard to prove that (ab)c = ab×c. That is,
provide a function of type (b -> c -> a) -> (b, c) ->
a, andoneof ((b, c) -> a) -> b -> c -> a. Make sure
they satisfy the equalities to . from = id and from .
to = id. Do these functions remind you of anything
from Prelude?

Exercise 1.4-i

Give a proof of the exponent law that ab × ac = ab+c.
Exercise 1.4-ii

Prove (a× b)c = ac × bc.
Exercise 1.4-iii

1.5 Canonical Representations

A direct corollary that any two types with the same
cardinality are isomorphic, is that there are multiple
ways to represent any given type. Although you

20 CHAPTER 1. THE ALGEBRA BEHIND TYPES

shouldn’t necessarily let it change the way you model
types, it’s good to keep in mind that you have a choice.

Due to the isomorphism, all of these representations
of a typeare“just asgood”asanyother. However, aswe’ll
see on page ??, it’s often useful to have a conventional
formwhenworkingwith types generically. This canonical
representation is known as a sum of products, and refers to
any type t of the form,

t =
∑
m

∏
n

tm,n

The big Σ means addition, and the Π means
multiplication—so we can read this as “addition on the
outside and multiplication on the inside.” We also make
the stipulation that all additions must be represented via
Either, and that multiplications via (,). Don’t worry,
writing out the rules like this makes it seem much more
complicated than it really is.

All of this is to say that each of following types is in its
canonical representation:

• ()

• Either a b

• Either (a, b) (c, d)

• Either a (Either b (c, d))

• a -> b

• (a, b)

• (a, Int)—we make an exception to the rule for
numeric types, as it would be too much work to
express them as sums.

Butneitherof the following typesare in their canonical
representation;

1.5. CANONICAL REPRESENTATIONS 21

• (a, Bool)

• (a, Either b c)

As an example, the canonical representation of Maybe a
is Either a (). To reiterate, this doesn’t mean you should
prefer using Either a () over Maybe a. For now it’s enough
to know that the two types are equivalent. We shall return
to canonical forms in chapter 13.

22 CHAPTER 1. THE ALGEBRA BEHIND TYPES

Chapter 3

Variance

Consider the following type declarations. Which of them
have viable Functor instances?

newtype T1 a = T1 (Int -> a)

newtype T2 a = T2 (a -> Int)

newtype T3 a = T3 (a -> a)

newtype T4 a = T4 ((Int -> a) -> Int)

newtype T5 a = T5 ((a -> Int) -> Int)

Which of these types are Functors? Give instances for
the ones that are.

Exercise 3-i

23

24 CHAPTER 3. VARIANCE

Despite all of their similarities, only T1 and T5 are
Functors. The reason behind this is one of variance: if we
can transform an a into a b, does that mean we can
necessarily transform a T a into a T b?

As it happens, we can sometimes do this, but it has a
great deal to do with what T looks like. Depending on the
shape of T (of kind TYPE→TYPE) there are three possibilities
for T’s variance:¹

1. Covariant: Any function a -> b can be lifted into a
function T a -> T b.

2. Contravariant: Any function a -> b can be lifted into
a function T b -> T a.

3. Invariant: In general, functions a -> b cannot be
lifted into a function over T a.

Covariance is the sort we’re most familiar with—it
corresponds directly to Functors. And in fact, the type of
fmap is exactly witness to this “lifting” motion (a -> b)
-> T a -> T b. A type T is a Functor if and only if it is
covariant.

Before we get to when is a type covariant, let’s first
look at contravariance and invariance.

The contravariant[?] and invariant[?] packages, both
by Ed Kmett, give us access to the Contravariant and
Invariant classes. These classes are to their sorts of
variance as Functor is to covariance.

A contravariant type allows you to map a function
backwards across its type constructor.

¹Precisely speaking, variance is a property of a type in relation
to one of its type-constructors. Because we have the convention
that map-like functions transform the last type parameter, we can
unambiguously say “T is contravariant” as a short-hand for “T a is
contravariant with respect to a.”

25

class Contravariant f where
contramap :: (a -> b) -> f b -> f a

On the other hand, an invariant type T allows you to
map from a to b if and only if a and b are isomorphic. In
a very real sense, this isn’t an interesting property—an
isomorphism between a and b means they’re already the
same thing to begin with.

class Invariant f where
invmap :: (a -> b) -> (b -> a) -> f a -> f b

The variance of a type T a with respect to its type
variable a is fully specified by whether a appears solely in
positive position, solely in negative position or in a mix of
both.

Type variables which appear exclusively in positive
position are covariant. Those exclusively in negative
position are contravariant. And type variables which find
themselves in both become invariant.

But what is a positive or negative position? Recall that
all types have a canonical representation expressed as
some combination of (,), Either and (->). We can
therefore define positive and negative positions in terms
of these fundamental building blocks, and develop our
intuition afterwards.

Type Position of
a b

Either a b + +

(a, b) + +

a -> b − +

26 CHAPTER 3. VARIANCE

The conclusion is clear—our only means of
introducing type variables in negative position is to
put them on the left-side of an arrow. This should
correspond to your intuition that the type of a function
goes “backwards” when pre-composed with another
function.

In the following example, pre-composingwith show ::
Bool -> String transforms a type String -> [String] into
Bool -> [String].

> :t words
words :: String -> [String]

> :t show :: Bool -> String
show :: Bool -> String :: Bool -> String

> :t words . (show :: Bool -> String)
words . (show :: Bool -> String) :: Bool

↪→ -> [String]

GHCi

Mathematically, things are often called “positive”
and “negative” if their signs follow the usual laws of
multiplication. That is to say, a positive multiplied by a
positive remains positive, a negative multiplied with a
positive is a negative, and so on.

Variances are no different. To illustrate, consider the
type (a, Bool) -> Int. The a in the subtype (a, Bool) is in
positive position, but (a, Bool) is in negative position
relative to (a, Bool) -> Int. As we remember from early
arithmetic in school, a positive times a negative is

27

negative, and so (a, Bool) -> Int is contravariant with
respect to a.

This relationship can be expressed with a simple
table—but again, note that the mnemonic suggested by
the name of positive and negative positions should be
enough to commit this table to memory.

a b a ◦ b
+ + +

+ − −
− + −
− − +

We can use this knowledge to convince ourselves why
Functor instances exist only for the T1 and T5 types defined
above.

28 CHAPTER 3. VARIANCE

T1 ∼= Int ->
+︷︸︸︷
a + = +

T2 ∼=
−︷︸︸︷
a -> Int − = −

T3 ∼=
−︷︸︸︷
a ->

+︷︸︸︷
a ± = ±

T4 ∼=

−︷ ︸︸ ︷
(Int ->

+︷︸︸︷
a) -> Int − ◦ + = −

T5 ∼=

−︷ ︸︸ ︷
(

−︷︸︸︷
a -> Int) -> Int − ◦ − = +

This analysis also shows us that T2 and T4 have
Contravariant instances, and T3 has an Invariant one.

A type’s variance also has a more concrete
interpretation: variables in positive position are
produced or owned, while those in negative position are
consumed. Products, sums and the right-side of an arrow
are all pieces of data that already exist or are produced,
but the type on the left-side of an arrow is indeed
consumed.

There are some special names for types with multiple
type variables. A type that is covariant in two arguments
(like Either and (,)) is called a bifunctor. A type that is
contravariant in its first argument, but covariant in its
second (like (->)) is known as a profunctor. As you might
imagine, Ed Kmett has packages which provide both of
these typeclasses—although Bifunctor now exists in base.

29

Positional analysis like this is a powerful tool—it’s
quick to eyeball, and lets you know at a glance which
class instances you need to provide. Better yet, it’s
impressive as hell to anyone who doesn’t know the trick.

30 CHAPTER 3. VARIANCE

Part II

Lifting Restrictions

31

Chapter 4

Working with Types

4.1 Type Scoping

Haskell uses (a generalization of) the Hindley–Milner
type system. One of Hindley–Milner’s greatest
contributions is its ability to infer the types of
programs—without needing any explicit annotations.
The result is that term-level Haskell programmers rarely
need to pay much attention to types. It’s often enough to
just annotate the top-level declarations. And even then,
this is done more for our benefit than the compiler’s.

This state of affairs is ubiquitous and the message it
sends is loud and clear: “types are something we need
not think much about”. Unfortunately, such an attitude
on the language’s part is not particularly helpful for the
type-level programmer. It often goes wrong—consider
the following function, which doesn’t compile because of
its type annotation:

broken :: (a -> b) -> a -> b
broken f a = apply
where

apply :: b

33

34 CHAPTER 4. WORKING WITH TYPES

apply = f a

The problem with broken is that, despite all
appearances, the type b in apply is not the same b in
broken. Haskell thinks it knows better than us here, and
introduces a new type variable for apply. The result of
this is effectively as though we had instead written the
following:

broken :: (a -> b) -> a -> b
broken f a = apply

where
apply :: c
apply = f a

Hindley–Milner seems to take the view that types
should be “neither seen nor heard,” and an egregious
consequence of this is that type variables have no notion
of scope. This is why the example fails to compile—in
essence we’ve tried to reference an undefined variable,
and Haskell has “helpfully” created a new one for us.
The Haskell Report provides us with no means of
referencing type variables outside of the contexts in
which they’re declared.

There are several language extensions which can
assuage this pain, the most important one being
-XScopedTypeVariables. When enabled, it allows us to bind
type variables and refer to them later. However, this
behavior is only turned on for types that begin with
an explicit forall quantifier. For example, with
-XScopedTypeVariables, broken is still broken, but the
following works:

working :: forall a b. (a -> b) -> a -> b

4.1. TYPE SCOPING 35

working f a = apply
where

apply :: b
apply = f a

The forall a b. quantifier introduces a type scope,
and exposes the type variables a and b to the remainder
of the function’s definition. This allows us to reuse b
when adding the type signature to apply, rather than
introducing a new type variable as it did before.

-XScopedTypeVariables lets us talk about types, but we
are still left without a good way of instantiating types. If
we wanted to specialize fmap to Maybe, for example, the
only solution sanctioned by the Haskell Report is to add
an inline type signature.

If we wanted to implement a function that provides a
String corresponding to a type’s name, it’s unclear how
we could do such a thing. By default, we have no way to
explicitly pass type information, and so even calling such
a function would be difficult.

Some older libraries often use a Proxy parameter in
order to help with these problems. Its definition is this:

data Proxy a = Proxy

In terms of value-level information content, Proxy is
exactly equivalent to the unit type (). But it also has a
phantom type parameter a, whose only purpose is to
allow users to keep track of a type, and pass it around
like a value.

For example, the module Data.Typeable provides a
mechanism for getting information about types at
runtime. This is the function typeRep, whose type is
Typeable a => Proxy a -> TypeRep. Again, the Proxy’s only

36 CHAPTER 4. WORKING WITH TYPES

purpose is to let typeRep know which type representation
we’re looking for. As such, typeRep has to be called as
typeRep (Proxy :: Proxy Bool).

4.2 Type Applications

Clearly, Haskell’s inability to directly specify types
has ugly user-facing ramifications. The extension
-XTypeApplications patches this glaring issue in the
language.

-XTypeApplications, as its name suggests, allows us to
directly apply types to expressions. By prefixing a type
with an @, we can explicitly fill in type variables. This can
be demonstrated in GHCi:

> :set -XTypeApplications

> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f

↪→ b

> :t fmap @Maybe
fmap @Maybe :: (a -> b) -> Maybe a ->

↪→ Maybe b

GHCi

While fmap lifts a function over any functor f, fmap
@Maybe lifts a function over Maybe. We’ve applied the type
Maybe to the polymorphic function fmap in the same way
we can apply value arguments to functions.

4.2. TYPE APPLICATIONS 37

There are two rules to keep in mind when thinking
about type applications. The first is that types are
applied in the same order they appear in a type
signature—including its context and forall quantifiers.
This means that applying a type Int to a -> b -> a results
in Int -> b -> Int. But type applying it to forall b a. a
-> b -> a is in fact a -> Int -> a.

Recall that typeclassmethods have their context at the
beginning of their type signature. fmap, for example, has
type Functor f => (a -> b) -> f a -> f b. This is why we
were able tofill in the functor parameter of fmap—because
it comes first!

The second rule of type applications is that you can
avoid applying a type with an underscore: @_. This means
we can also specialize type variables which are not the
first in line. Looking again at GHCi, we can type apply
fmap’s a and b parameters while leaving f polymorphic:

> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f

↪→ b

> :t fmap @_ @Int @Bool
fmap @_ @Int @Bool :: Functor w => (Int

↪→ -> Bool) -> w Int -> w Bool

GHCi

Because types are applied in the order they’re
defined, in the presence of -XTypeApplications types
become part of a public signature. Changing the order of
type variables can break downstream code, so be careful
when performing refactors of this nature.

38 CHAPTER 4. WORKING WITH TYPES

Pay attention to type order whenever you write a
function that might be type applied. As a guiding
principle, the hardest types to infer must come first.
This will often require using -XScopedTypeVariables and
an explicitly scoped forall.

-XTypeApplications and -XScopedTypeVariables
are the two most fundamental extensions in a
type-programmer’s toolbox. They go together hand in
hand.

4.3 Ambiguous Types

Returning again to the example of Data.Typeable’s typeRep
function, we can use it to implement a function that will
give us the name of a type. And we can do so without
requiring the Proxy parameter.

typeName :: forall a. Typeable a => String · · · 1
typeName = show . typeRep $ Proxy @a · · · · · · 2

There are two interesting things to note in typeName.
At 2 , Proxy @a is written as shorthand for Proxy :: Proxy
a—this is because the Proxy data constructor has type
Proxy t. The type variable t here is the first one in its type
signature, so we’re capable of type applying it. Type
applications aren’t reserved for functions, they can be
used anywhere types are present.

At 1 we see that the type a doesn’t actually appear
to the right of the fat context arrow (=>). Because
Hindley–Milner’s type inference only works to the right
of the context arrow, it means the type parameter a in
typeName can never be correctly inferred. Haskell refers to
such a type as being ambiguous.

By default, Haskell will refuse to compile any

4.3. AMBIGUOUS TYPES 39

programs with ambiguous types. We can bypass
this behavior by enabling the aptly-named
-XAllowAmbiguousTypes extension anywhere we’d like to
define one. Actually using code that has ambiguous
types, will require -XTypeApplications.

The two extensions are thus either side of the
same coin. -XAllowAmbiguousTypes allows us to define
ambiguously typed functions, and -XTypeApplications
enables us to call them.

We can see this for ourselves. By enabling
-XAllowAmbiguousTypes, we can compile typeName and play
with it.

> :set -XTypeApplications

> typeName @Bool
"Bool"

> typeName @String
"[Char]"

> typeName @(Maybe [Int])
"Maybe [Int]"

GHCi

Though this is a silly example, ambiguous types are
very useful when doing type-level programming.
Often we’ll want to get our hands on a term-level
representation of types—think about drawing a picture
of a type, or about a program that will dump a schema of
a type. Such a function is almost always going to be
ambiguously typed, as we’ll see soon.

40 CHAPTER 4. WORKING WITH TYPES

However, ambiguous types aren’t always this obvious
to spot. To compare, let’s look at a surprising example.
Consider the following type family:

type family AlwaysUnit a where
AlwaysUnit a = ()

Given this definition, are all of the following type
signatures non-ambiguous? Take a second to think
through each example.

1. AlwaysUnit a -> a

2. b -> AlwaysUnit a -> b

3. Show a => AlwaysUnit a -> String

The third example here is, in fact, ambiguous. But
why? The problem is that it’s not clear which Show a
instance we’re asking for! Even though there is an a in
Show a => AlwaysUnit a -> String, we’re unable to access
it—AlwaysUnit a is equal to () for all as!

More specifically, the issue is that AlwaysUnit doesn’t
have an inverse; there’s no Inverse type family such that
Inverse (AlwaysUnit a) equals a. Inmathematics, this lack
of an inverse is known as non-injectivity.

Because AlwaysUnit is non-injective, we’re unable to
learn what a is, given AlwaysUnit a.

Consider an analogous example from cryptography;
just because you know the hash of someone’s password
is 1234567890abcdef doesn’t mean you know what the
password is; any good hashing function, like AlwaysUnit,
is one way. Just because we can go forwards doesn’t
mean we can also come back again.

The solution to non-injectivity is to give GHC some
other way of determining the otherwise ambiguous type.

4.3. AMBIGUOUS TYPES 41

This can be done like in our examples by adding a Proxy a
parameter whose only purpose is to drive inference, or it
can be accomplished by enabling -XAllowAmbiguousTypes at
the definition site, and using -XTypeApplications at the
call-site to fill in the ambiguous parameter manually.

42 CHAPTER 4. WORKING WITH TYPES

Chapter 5

Constraints and GADTs

5.1 Introduction

CONSTRAINTs are odd. They don’t behave like TYPEs nor like
promoted data kinds. They are a fundamentally different
thing altogether, and thus worth studying.

The CONSTRAINT kind is reserved for things that can
appear on the left side of the fat context arrow (=>). This
includes fully-saturated typeclasses (like Show a), tuples
of other CONSTRAINTs, and type equalities (Int ∼ a.) We
will discuss type equalities in a moment.

Typeclass constraints are certainly the most familiar.
We use them all the time, even when we are not writing
type-level Haskell. Consider the equality function (==)
:: Eq a => a -> a -> Bool. Tuples of CONSTRAINTs are
similarly well-known: sequenceA :: (Applicative f,
Traversable t) => t (f a) -> f (t a).

Type equalities are more interesting, and are enabled
via -XGADTs. Compare the following two programs:

five :: Int
five = 5

43

44 CHAPTER 5. CONSTRAINTS AND GADTS

five_ :: (a ∼ Int) => a
five_ = 5

Both five and five_ are identical as far as Haskell is
concerned. While five has type Int, five_ has type a,
along with a constraint saying that a equals Int. Of
course, nobody would actually write five_, but it’s a neat
feature of the type system regardless.

Type equalities forman equivalence relation,meaning
that they have the following properties:

• reflexivity—a type is always equal to itself: a ∼ a

• symmetry—a ∼ b holds if and only if b ∼ a

• transitivity—if we know both a ∼ b and b ∼ c, we
(and GHC) can infer that a ∼ c.

5.2 GADTs

Generalized algebraic datatypes (GADTs; pronounced
“gad-its”) are an extension to Haskell’s type system
that allow explicit type signatures to be written for data
constructors. They, like type equality constraints, are
also enabled via -XGADTs.

The canonical example of a GADT is a type safe syntax
tree. For example, we can declare a small language with
integers, booleans, addition, logical negation, and if
statements.

data Expr a where · · · · · · · · · · · · · · · · · 1
LitInt :: Int -> Expr Int · · · · · · · · · · 2
LitBool :: Bool -> Expr Bool
Add :: Expr Int -> Expr Int -> Expr Int

5.2. GADTS 45

Not :: Expr Bool -> Expr Bool
If :: Expr Bool -> Expr a -> Expr a -> Expr a ·

3↪→

The where at 1 is what turns on GADT syntax for the
rest of the declaration. Each of LitInt, LitBool, Add, etc.
corresponds to a data constructor of Expr. These
constructors all take some number of arguments before
resulting in an Expr.

For example, LitInt at 2 takes an Int before
returning a Expr Int. On the other hand, the data
constructor If at 3 takes three arguments (one Expr
Bool and two Expr as) and returns an Expr a.

It is this ability to specify the return type that is of
particular interest.

You might be pleased that Expr is correct by
construction. We are incapable of building a poorly-typed
Expr. While this might not sound immediately
remarkable, it is—we’ve reflected the typing rules of Expr
in the type system of Haskell. For example, we’re unable
to build an AST which attempts to add an Expr Int to a
Expr Bool.

To convince ourselves that the type signatures written
in GADT syntax are indeed respected by the compiler, we
can look in GHCi:

> :t LitInt
LitInt :: Int -> Expr Int

> :t If
If :: Expr Bool -> Expr a -> Expr a ->

↪→ Expr a

GHCi

46 CHAPTER 5. CONSTRAINTS AND GADTS

Because GADTs allow us to specify a data
constructor’s type, we can use them to constrain a type
variable in certain circumstances. Such a thing is not
possible otherwise.¹

The value of GADTs is that Haskell can use the
knowledge of these constrained types. In fact, we can use
this to write a typesafe evaluator over Expr:

evalExpr :: Expr a -> a
evalExpr (LitInt i) = i · · · · · · · · · · · · · 1
evalExpr (LitBool b) = b · · · · · · · · · · · · · 2
evalExpr (Add x y) = evalExpr x + evalExpr y
evalExpr (Not x) = not $ evalExpr x
evalExpr (If b x y) =

if evalExpr b
then evalExpr x
else evalExpr y

In just this amount of code,wehave a fully functioning
little language and interpreter. Consider:

> evalExpr . If (LitBool False) (LitInt
↪→ 1) . Add (LitInt 5) $ LitInt 13

18

> evalExpr . Not $ LitBool True

GHCi

¹Or equivalently—as we will see—without type equalities.

5.2. GADTS 47

False

Pay careful attention here! At 1 , evalExpr returns an
Int, but at 2 it returns a Bool! This is possible because
Haskell can reason about GADTs. In the LitInt case, the
only way such a pattern could have matched is if a ∼ Int,
in which case it’s certainly okay to return a Int. The
reasoning for the other patterns is similar; Haskell can
use information from inside a pattern match to drive
type inference.

GADT syntax is indeed provided by -XGADTs, but it is
not the syntax that is fundamentally interesting. The
extension is poorly named—a more appropriate name
might be “-XTypeEqualities”. In fact, GADTs are merely
syntactic sugar over type equalities. We can also declare
Expr as a traditional Haskell datatype as follows:

data Expr_ a
= (a ∼ Int) => LitInt_ Int
| (a ∼ Bool) => LitBool_ Bool
| (a ∼ Int) => Add_ (Expr_ Int) (Expr_ Int)
| (a ∼ Bool) => Not_ (Expr_ Bool)
| If_ (Expr_ Bool) (Expr_ a) (Expr_ a)

When viewed like this, it’s a little easier to see what’s
happening behind the scenes. Each data constructor of
Expr_ carries along with it a type equality constraint. Like
any constraint inside a data constructor, Haskell will
require the constraint to be proven when the data
constructor is called.

As such, when we patternmatch on a data constructor
which contains a constraint, this satisfied constraint
comes back into scope. That is, a function of type Expr a ->

48 CHAPTER 5. CONSTRAINTS AND GADTS

a can return an Int when pattern matching on LitInt, but
return a Bool when matching on LitBool. The type
equality constraining a only comes back into scope after
pattern matching on the data constructor that contains
it.

We will explore the technique of packing constraints
inside data constructors in much greater generality later.

ThoughGADT syntax doesn’t offer anything novel, we
will often use it when defining complicated types. This is
purely a matter of style as I find it more readable.

5.3 Heterogeneous Lists

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

Necessary Extensions

import Data.Kind (Constraint, Type)
Necessary Imports

One of the primary motivations of GADTs is building
inductive type-level structures out of term-level data. As
a working example for this section, we can use GADTs to
define a heterogeneous list—a list which can store values
of different types inside it.

To get a feel for what we’ll build:

5.3. HETEROGENEOUS LISTS 49

> :t HNil
HNil :: HList '[]

> :t True :# HNil
True :# HNil :: HList '[Bool]

> let hlist = Just "hello" :# True :# HNil

> :t hlist
hlist :: HList '[Maybe [Char], Bool]

> hLength hlist
2

GHCi

The HNil constructor here is analogous to the regular
list constructor []. (:#) likewise corresponds to (:).
They’re defined as a GADT:

data HList (ts :: [Type]) where · · · · · · · · · 1
HNil :: HList '[] · · · · · · · · · · · · · · · · 2
(:#) :: t -> HList ts -> HList (t ': ts) · · 3

infixr 5 :#

At 1 , you’ll notice that we’ve given HList’s ts an
explicit kind signature. The type parameter ts is defined
to have kind [TYPE], because we’ll store the contained
types inside of it. Although this kind signature isn’t
strictly necessary—GHC will correctly infer it for
us—your future self will appreciate you having written
it. A good rule of thumb is to annotate every kind if any of
them isn’t TYPE.

50 CHAPTER 5. CONSTRAINTS AND GADTS

HList is analogous to the familiar [] type, and so it
needs to define an empty list at 2 called HNil, and a
cons operator at 3 called (:#).² These constructors
have carefully chosen types.

HNil represents an empty HList. We can see this by the
fact that it takes nothing and gives back ts ∼ '[]—an
empty list of types.

The other data constructor, (:#), takes two
parameters. Its first is of type t, and the second is a HList
ts. In response, it returns a HList (t ': ts)—the result is
this new type has been consed onto the other HList.

This HList can be pattern matched over, just like we
would with regular lists. For example, we can implement
a length function:

hLength :: HList ts -> Int
hLength HNil = 0
hLength (_ :# ts) = 1 + hLength ts

But, having this explicit list of types to work
with, allows us to implement much more interesting
things. To illustrate, we can write a total head
function—something impossible to do with traditional
lists.

hHead :: HList (t ': ts) -> t
hHead (t :# _) = t

The oddities don’t stop there. We can deconstruct any
length-3 HList whose second element is a Bool, show it,
andhave the compiler guarantee that this is an acceptable

²Symbolically-nameddata constructors inHaskellmust beginwith
a leading colon. Anything else is considered a syntax-error by the
parser.

5.3. HETEROGENEOUS LISTS 51

(if strange) thing to do.

showBool :: HList '[_1, Bool, _2] -> String
showBool (_ :# b :# _ :# HNil) = show b

Unfortunately, GHC’s stock deriving machinery
doesn’t play nicely with GADTs—it will refuse to write
Eq, Show or other instances. But we can write our own by
providing a base case (for HNil), and an inductive case.

The base case is that two empty HLists are always
equal.

instance Eq (HList '[]) where
HNil == HNil = True

And inductively, two consed HLists are equal only if
both their heads and tails are equal.

instance (Eq t, Eq (HList ts)) => Eq (HList (t ': ts))
where↪→

(a :# as) == (b :# bs) = a == b && as == bs

Implement Ord for HList.
Exercise 5.3-i

Implement Show for HList.
Exercise 5.3-ii

52 CHAPTER 5. CONSTRAINTS AND GADTS

The reason we had to write two instances for Eqwas to
assert that every element in the list also had an Eq
instance. While this works, it is rather unsatisfying.
Alternatively, we can write a closed type family which
will fold ts into a big CONSTRAINT stating each element has
an Eq.

type family AllEq (ts :: [Type]) :: Constraint where
AllEq '[] = () · · · · · · · · · · · · · · 1
AllEq (t ': ts) = (Eq t, AllEq ts) · · · · · · 2

As AllEq is our first example of a non-trivial closed
type family, we should spend some time analyzing it.
AllEq performs type-level pattern matching on a list of
types, determining whether or not it is empty.

If it is empty—line 1 —we simply return the unit
CONSTRAINT. Note that because of the kind signature on
AllEq, Haskell interprets this as CONSTRAINT rather than
the unit TYPE.

However, if ts is a promoted list cons, we instead
construct a CONSTRAINT-tuple at 2 . You’ll notice that
AllEq is defined inductively, so it will eventually find an
empty list and terminate. By using the :kind! command
in GHCi, we can see what this type family expands to.

> :kind! AllEq '[Int , Bool]
AllEq '[Int , Bool] :: Constraint
= (Eq Int , (Eq Bool , () :: Constraint))

GHCi

AllEq successfully folds [TYPE]s into a CONSTRAINT. But

5.3. HETEROGENEOUS LISTS 53

there is nothing specific to Eq about AllEq! Instead, it can
be generalized into a fold over any CONSTRAINT c. We
will need -XConstraintKinds in order to talk about
polymorphic constraints.

type family All (c :: Type -> Constraint)
(ts :: [Type]) :: Constraint where

All c '[] = () · · · · · · · · · · · · · · 1
All c (t ': ts) = (c t, All c ts) · · · · · · 2

With All, we can now write our Eq instance more
directly.

instance All Eq ts => Eq (HList ts) where
HNil == HNil = True
(a :# as) == (b :# bs) = a == b && as == bs

Rewrite the Ord and Show instances in terms of All.
Exercise 5.3-iii

	Dedication
	Introduction
	I Fundamentals
	The Algebra Behind Types
	Isomorphisms and Cardinalities
	Sum, Product and Exponential Types
	Example: Tic-Tac-Toe
	The Curry–Howard Isomorphism
	Canonical Representations

	Variance

	II Lifting Restrictions
	Working with Types
	Type Scoping
	Type Applications
	Ambiguous Types

	Constraints and GADTs
	Introduction
	GADTs
	Heterogeneous Lists

