

The Ruby Closures Book
Everything You Need to Master Blocks, Procs and Lambdas

Benjamin Tan Wei Hao

This book is for sale at http://leanpub.com/therubyclosuresbook

This version was published on 2016-08-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Benjamin Tan Wei Hao

http://leanpub.com/therubyclosuresbook
http://leanpub.com/
http://leanpub.com/manifesto

To Hui Ling, the love of my life.

Contents

Welcome! . 1
Why this book? . 1
Who is this book for? . 1
How to use this book . 1
Structure of the book . 2
About Ruby versions . 2
Let’s do this! . 2

Proctology . 3
How does Symbol#to_proc work? . 3
Exercises . 7
Solutions . 8

Welcome!
Welcome to the Ruby Closures book! You have taken a very important step into become a better
Ruby developer.

Why this book?

I have been a Ruby programmer for quite a number of years, but until recently, I have been blissfully
ignorant of one of Ruby’s most powerful features. That is, until one day, I saw a co-worker casually
write a method that took in a block. I realized immediately that I had a major gap in my Ruby
knowledge.

That incident left me unsure of my Ruby skills and knowledge. I decided to learn as much as I could
about Ruby’s blocks. That pursuit also led me to procs and lambdas.

It didn’t take long to discover that blocks, procs, and lambdas are Ruby’s implementation of closures
– hence the title of this book. The word “closure” sounds scary concept, and indeed, for most parts
of my career, I avoided learning about it. Not this time. I got my hands on every book, conference
video, screencast, and blog post that barely mentioned “closure” and dove in.

This book is the essence of everything I have learned.

Who is this book for?

This book is written for the Ruby (duh!) developer in mind. You are already comfortable with
programming in Ruby but are by no means an expert.

This book will not go through the basics of Ruby, except when it comes it relates to the subject
matter. There are many excellent books and resources that will do a much better job.

How to use this book

The overarching goal is to make you a better Ruby developer. To be a better developer, you have to
learn how to read and write good code. This book is designed specifically to help you read and write
good code that uses Ruby’s closures.

I have strived to make this book as understandable as possible. I have used numerous diagrams to
make the explanations more concrete. You will find that I repeat concepts, although slightly different
each time. I find that I learn much better this way, and I hope that works for you too.

1

Welcome! 2

Obviously, I shouldn’t be doing all the hard work. You will learn better when you try out the code
samples on irb. More importantly, you will find exercises at the back of every chapter –DO THEM.
Simply reading about code will not magically transform you into a better developer. Suggested
solutions to all the exercises are included at the back of the book, so you will not be left in the dark
if you are stuck.

One thing that have helped me improve as a developer is, as Gregory Brown from Practicing Ruby¹
puts it, build cheap counterfeits. That is, we will implement our own versions of built-in features
and scaled down versions of popular libraries, purely for educational purposes.

Structure of the book

This book is broken into four parts.

The first part covers the basics of closures and sets the groundwork for the rest of the book.

The second part dives into blocks, where we start with the basics and build our very own Enumerable
and Enumerator in Ruby. You will learn about the patterns that involve blocks, and how they are
used in real-world code.

The third part is dedicated to procs and lambdas. You will learn how to create and use them. You
will also appreciate the special relationship that blocks, procs and lambdas have with each other.
Doing the exercises will change how you write Ruby code.

Finally, the fourth part is when we put what we have learned into good use. We begin with building
our own test framework à la RSpec. This will be our first taste in building a domain specific language,
or DSL for short. We then extend our enumerables example and attempt to build lazy enumerables.
We then tackle something slightly more complex by building a minimal Promises library in Ruby.
If all that has left you scratching your head, no worries. All will be explained in due course.

About Ruby versions

I used Ruby 2.2.X to develop the examples. Ruby 1.9.X and 2.X should have no problems. If you have
Ruby 1.8, you are on your own. Earlier versions of Ruby have confusing behavior (with regard to
procs) that was fixed in later versions. Also, I’m too lazy (and you are too smart) to show you how
to install Ruby.

Let’s do this!

I hope you are excited and ready to go! Warm up your brain and fire up your console, because we
are diving straight into the fascinating world of closures.

¹https://practicingruby.com/articles/patterns-for-building-excellent-examples

https://practicingruby.com/articles/patterns-for-building-excellent-examples
https://practicingruby.com/articles/patterns-for-building-excellent-examples

Proctology
In this chapter, we look at procs and lambdas, both of which come from the Proc class. We look at
the Procs class first and explore multiple ways of calling Procs.

Ever wondered how ["o","h","a","i"].map(&:upcase) expands to ["o","h","a","i"].map {

|c| c.upcase) }? We will learn how this is implemented in this chapter!

Next, we examine the difference between a proc and a lambda. If you were ever confused between
these two, this section is for you.

We then look at currying, a functional programming concept. Although its practical uses (with
respect to Ruby programming) are pretty limited, it is still a fun topic to explore.

Procs and blocks are closely related. In fact, be prepared to see some un-Ruby-like code! Procs and
lambdas are ubiquitous in Ruby code. Here, we will see some real-world code that makes good use
of procs and lambdas.

Hopefully by then procs and lambdas do not seem mysterious anymore, and a tool that you can
readily use at your disposal.

How does Symbol#to_proc work?

Symbol#to_proc is one of the finest examples of the flexibility and beauty of Ruby. This syntax sugar
allows us to take a statement such as:

words.map { |s| s.length }

and turn it into:

words.map &:length

Let’s unravel this syntactical sleight of hand, by figuring out how this works.

What does the &:symbol do?

How does Ruby even know that it has to call a to_procmethod, and why is this only specific to the
Symbol class?

When Ruby sees an & and an object – any object – it will try to turn it into a block. This is simply
a form of type coercion.

Take to_s for example. We can do 2.to_s, which returns the string representation of the integer 2.
Similarly, to_proc will attempt to turn an object – again, any object – into a proc.

3

Proctology 4

Reimplementing Symbol#to_proc

Let’s see what this means. Let’s create an object, and plop it into each:

obj = Object.new => #<Object:0x007ff4218761b8>

[1,2,3].map &obj

TypeError: wrong argument type Object (expected Proc)

That’s awesome! Our error message is telling us exactly what we need to know: it’s saying that obj
is well, an Object and not a Proc. The fix is simple: the Object class must have a to_proc method
that returns a proc. Let’s do the simplest thing possible:

class Object

def to_proc

proc {}

end

end

obj = Object.new

[1, 2, 3].map &obj #=> [nil, nil, nil]

Nowwhen we run this again, we get no errors. Almost there! How can we then access each element,
and say, print it? We need to let out proc accept a parameter:

class Object

def to_proc

proc { |x| "Here's #{x}!" }

end

end

obj = Object.new

[1,2,3].map &obj #=> ["Here's 1!", "Here's 2!", "Here's 3!"]

This hints at a possible implementation of Symbol#to_proc. Let’s start with what we know, and
redefine to_proc:

Proctology 5

class Symbol

def to_proc

proc { |obj| obj }

end

end

We know that in an expression such as

words.map &:length

is equivalent to

words.map { |w| w.length }

Here, the symbol instance is :length. This value of the symbol corresponds to the name of the
method. We have previously found out how to access each yielded object – by making the proc
return value in to_proc take in an argument.

We want to achieve this effect:

class Symbol

def to_proc

proc { |obj| obj.length }

end

end

How can we use the name of the symbol to call a method on obj? send to the rescue! I hereby present
you our own implementation of Symbol#to_proc:

class Symbol

def to_proc

proc { |obj| obj.send(self) }

end

end

Here, self is the symbol object (:length in our example), which is exactly what #send expects.

Improving on our Symbol#to_proc

Our initial implementation of Symbol#to_proc is naïve. The reason is that we only consider the obj
in the body of the proc, and totally ignore its arguments.

Recall that unlike lambdas, procs are more relaxed when it comes to the number of arguments it is
given. We can therefore easily expose this limitation.

First, we return a lambda instead of a proc in to_proc. Recall that a lambda is a proc, so everything
should work as per normal:

Proctology 6

class Symbol

def to_proc

lambda { |obj| obj.send(self) }

end

end

words = %w(underwear should be worn on the inside)

words.map &:length # => [9, 6, 2, 4, 2, 3, 6]

Since we know lambdas are picky when it comes to the number of arguments, is there a method
that requires two arguments? Of course: inject/reduce. The usual way of writing reduce is:

[1, 2, 3].inject(0) { |result, element| result + element } # => 6

As you can see, the block in inject takes two arguments. Let’s see how our implementation does,
by using the &:symbol notation:

[1, 2, 3].inject(&:+)

Here’s the error we get:

ArgumentError: wrong number of arguments (2 for 1)

from (irb):10:in `block in to_proc'

from (irb):14:in `each'

from (irb):14:in `inject'

...

We can now clearly see that we are missing an argument. The lambda currently accepts only 1
argument, but what it received was 2 arguments. We need to allow the lambda to take in arguments:

class Symbol

def to_proc

lambda { |obj, args| obj.send(self, *args) }

end

end

[1, 2, 3].inject(&:+) # => 6

Now it works as expected! We use the splat operator (that’s the * in *args) to support a variable
number of arguments. We have one problem though. This doesn’t work anymore:

Proctology 7

words = %w(underwear should be worn on the inside)

words.map &:length # => [9, 6, 2, 4, 2, 3, 6]

ArgumentError: wrong number of arguments (1 for 2)

from (irb):3:in `block in to_proc'

from (irb):8:in `map'

...

There are two ways to fix this. First, we can give args a default value:

class Symbol

def to_proc

lambda { |obj, args=nil| obj.send(self, *args) }

end

end

words = %w(underwear should be worn on the inside)

words.map &:length # => [9, 6, 2, 4, 2, 3, 6]

[1, 2, 3].inject(&:+) # => 6

Or, we can just make it a Proc again:

class Symbol

def to_proc

proc { |obj, args| obj.send(self, *args) }

end

end

words = %w(underwear should be worn on the inside)

words.map &:length # => [9, 6, 2, 4, 2, 3, 6]

[1, 2, 3].inject(&:+) # => 6

This is one of the rare cases when being less picky about arity helps. Now that you know how
Symbol#to_proc works, it’s time to work on the exercises!

Exercises

1. Reimplement Symbol#to_proc: Now that you have seen how Symbol#to_proc is implemented,
you should have a go at it yourself.

2. Class initialisation with #to_proc:

Consider this behavior:

Proctology 8

class SpiceGirl

def initialize(name, nick)

@name = name

@nick = nick

end

def inspect

"#{@name} (#{@nick} Spice)"

end

end

spice_girls = [["Mel B", "Scary"], ["Mel C", "Sporty"],

["Emma B", "Baby"], ["Geri H", "Ginger",], ["Vic B", "Posh"]]

p spice_girls.map(&SpiceGirl)

returns:

[Mel B (Scary Spice), Mel C (Sporty Spice),

Emma B (Baby Spice), Geri H (Ginger Spice), Vic B (Posh Spice)]

This example demonstrates how to_proc can be used to initialize a class. Implement this!

Solutions

1. The answer is exactly the one in the chapter:

class Symbol

def to_proc

proc { |obj, args| obj.send(self, *args) }

end

end

1. Since we are interested in adding behavior to object initialization , it therefore makes sense to
implement to_proc within the Class class. Here’s a possible implementation:

Proctology 9

class Class

def to_proc

proc { |args| new(*args) }

end

end

Since we are creating objects with arrays, each array element is treated as a single object, therefore
the proc takes a single argument.

Next, we use the splat operator to convert the array into method arguments, and pass it into new,
which then calls the initializer.

	Table of Contents
	Welcome!
	Why this book?
	Who is this book for?
	How to use this book
	Structure of the book
	About Ruby versions
	Let's do this!

	Proctology
	How does Symbol#to_proc work?
	Exercises
	Solutions

