

The Missing Manual for Swift
Development

Bart Jacobs

This book is for sale at
http://leanpub.com/the-missing-manual-for-swift-development

This version was published on 2017-09-30

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2017 Code Foundry BVBA

http://leanpub.com/the-missing-manual-for-swift-development
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Welcome . 1

5 Security . 3
Make It Hard . 3
Plain Text . 3
Obfuscating Information . 4
Fetching Sensitive Information . 5
Encryption . 5
Privacy . 5
Logging and Debugging . 6
Educating Your Client . 6

1 Learn Swift With an Open Mind 8
Reference Types and Value Types 8
Protocol-Oriented Programming 9
Type Safety . 10
Best Practices . 11
Forget What You Know . 11

5 Exclamation Marks and Fatal Errors 12
Clarity Over Subtleness . 13
Choosing for Clarity . 13

9 Speed, Quality, and Technical Debt 16
Speed and Quality . 16
Technical Debt . 17
Focus . 17

CONTENTS

How to Get Rid of Technical Debt 18
Taking Shortcuts . 19

1 Choose Your Teacher Wisely . 20
Information Overload . 20
Who to Trust . 22
Focus, Focus, Focus . 23
Never Stop Learning . 24

Welcome
The title of my book, The Missing Manual for Swift Development,
accurately describes what I have in store for you. It’s the guide I wish
I had when I started out as a software developer years and years ago.

The Missing Manual for Swift Development is a summary of what I’ve
learned over the years building software for Apple’s ecosystem. Many
of the lessons in my book I learned from experts in their field and,
unfortunately, just as many I learned the hard way. I hope that some of
the topics in this book can help you on your way to become remarkable
in what you do. That’s your goal. Is it not?

Writing a few lines of Swift is surprisingly easy. Once you start to dig
deeper, though, you discover that building an application for Apple’s
ecosystem is more challenging than it seems. The Missing Manual for
Swift Development outlines the challenges you face along your journey
and how to overcome them.

Some of the more obvious topics I cover include dependency manage-
ment, source control, code reviews, continuous integration, style guides,
working in a team, tooling, project organization and documentation, and
release strategies.

The topics I found most interesting to write about, however, are more
meta, such as when to break the rules, freelancing and subcontracting,
staying productive as a developer, shipping projects, leaving your com-
fort zone, and dealing with challenging problems.

My book doesn’t include many code snippets or sample projects. The
goal of this book is to provide insights and answers to questions that
are often overlooked or ignored.

The Missing Manual for Swift Development is for every type of de-
veloper, but it primarily focuses on Swift and Cocoa development. If

Welcome 2

you’re developing for Apple’s ecosystem, then you’ll find a lot of useful
information, regardless of your experience.

There are very few shortcuts in software development. You pay a price
for most of the shortcuts you read about, one way or another. But there
are a handful of shortcuts that can speed up your learning and your
career. A proper education is one of them.

I hope that my book helps you in some way, big or small. If it does, then
let me know. I’d love to hear from you.

Enjoy,

Bart

5 Security
Security is a fundamental aspect of software development and it’s impor-
tant to know about best practices and common patterns that can help
strengthen the security of the projects you work on. I want to emphasize
that I’m not a security expert. The recommendations I provide in this
chapter are based on my experience and what I’ve learned from fellow
developers.

Make It Hard

I once read that, if someone wants to access your data, then they will
succeed. How badly they want to access your data determines whether
they’ll succeed. I don’t know whether this is true, but I tend to err on the
side of safety.

Why is this important? It changed my perspective on security. It’s naive
to think that you can outsmart people that are trained to find and
extract the information they need. That doesn’t mean you need to be
complacent or ignore the advice you read. It simply means that your
actions and motivation change slightly.

An effective approach to security is to have the mindset to make it hard
for the other party to access the data you’re trying to protect. In other
words, you add several layers of security to protect the data of the user.
Let’s start with the basics.

Plain Text

If you have some experience developing software, you most likely know
that you shouldn’t store sensitive information in plain text. Ever. Don’t

5 Security 4

store the user’s username and password in the user defaults database,
for example. Use the keychain to protect this type of sensitive informa-
tion.

The same applies to networking. Apple and Google are actively forcing
developers to move away from HTTP and use SSL by default. Apple’s
App Transport Security encourages developers to be aware of the
security risks of their applications. Make sure that your application
communicates with remote services over a secure connection. This isn’t
always possible if you aren’t in control of the remote service. In such a
scenario, it’s up to you to decide what the next best option is.

But SSL may not always be sufficient. Your application is still susceptible
to, for example, man-in-the-middle attacks1. You can remedy this by
adopting certificate pinning, adding an extra layer of security.

Obfuscating Information

A common question I receive is how to best hide or obfuscate sensitive
information that’s bundledwith your application. That’s a good question.
The answer may disappoint you, though. As I mentioned earlier in this
chapter, there’s always away for people with bad intentions to get a hold
of the information they need. You need to consider the sensitivity of the
information you’re trying to protect.

The same advice applies, though. Make it as hard as possible. But, at the
same time, consider the sensitivity of the information you’re protecting.
Don’t store sensitive information, such as API keys, in your application’s
Info.plist. It’s easy to dissect an application you downloaded from the
App Store and inspect the contents of the Info.plist.

I usually store sensitive information as private constants in a config-
uration file, which means it’s compiled alongside the application. This
doesn’t make it impossible to extract the sensitive information, but it
makes it less trivial.

1https://en.wikipedia.org/wiki/Man-in-the-middle_attack

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

5 Security 5

Fetching Sensitive Information

You can go one step further and avoid storing keys or credentials in
the application itself. Instead, your application contacts a remote service
and asks for credentials every time it needs to communicate with that
service. This requires a dedicated infrastructure and a lot more work up
front, but it adds a powerful layer of security.

Encryption

Encryption is an effective solution to protect the user’s data. Realm,
for example, has built-in support for encrypting the data stored in its
database. For Core Data, however, this is less trivial. I hope Apple will
make this less cumbersome in a future release of the framework.

The data the user stores on their device is automatically encrypted if
the device is protected with a password or Touch ID. Only you, the user,
can unlock the data stored on your device because you hold the key to
decrypt it, not Apple. It’s great to see that Apple continues to invest in the
privacy and security of its customers. Apple’s motivation2 is a bit more
nuanced, though.

Privacy

A lot has been written about privacy and protecting the user’s pri-
vacy. Unfortunately, many developers don’t realize that this also means
protecting the user’s privacy from companies that offer services they
use day in day out. If your application uses analytics or displays ads,
then you’re exposing the user’s personal information to the companies
behind these services.

I used to use Fabric for crash reporting and analytics, but I no longer
do for personal projects. As a developer, it’s my responsibility to protect

2https://www.apple.com/privacy/approach-to-privacy/

https://www.apple.com/privacy/approach-to-privacy/
https://www.apple.com/privacy/approach-to-privacy/

5 Security 6

the user’s privacy and they expect that fromme. I understand that many
developers don’t have this luxury, but I still believe that you should, at
a minimum, consider the option and be aware of the information you
may be exposing to third parties.

If you include a third party SDK in your application and you don’t have
access to the source, then how do you know what information you’re
sharingwith this third party? You don’t. That’s important to keep inmind.

Logging and Debugging

Logging information to the console is my favorite technique to debug
issues because it’s simple and to the point. It’s a technique many of
us use, but it’s also a potential security problem. Many developers
forget that print or log statements also log information to the console
in production. This can be useful and intentional, but it can also be a
security issue.

I hope you’re not logging credentials or other sensitive information. Even
fragments of the user’s data shouldn’t be logged in production. If you
need to generate logs, then I recommend looking into remote logging
in combination with data encryption. Avoid that a third party, any third
party, can access the logs you generate.

Educating Your Client

The role of a developer is often reduced to writing code and solving
a problem. Not only is this incorrect, I strongly believe any developer,
regardless of their experience, should also provide a technical service
to the parties they work with. What does that mean? If you’re told to
implement a solution, then it’s your responsibility to inform your client
or project manager about any security risks or problems.

I believe it’s the task of the developer to educate the client. The client
still decides what happens and what needs to be implemented, but they

5 Security 7

should at a minimum be aware of the risks involved. I’ve implemented
several solutions I didn’t agreewith, but I tried to educate the client about
alternative solutions that were safer.

At one point I inherited a project in which the user’s credentials were
stored in the user defaults database. Even though there was no room
to refactor this glaring security hole, I informed the client about the
problem. For a developer, it can be frustrating not having final say in
such arguments, but that’s how it is. This is very different if you build a
product business in which you make the calls.

1 Learn Swift With an Open
Mind
Developersmaking the switch fromObjective-C to Swift tend to translate
Objective-C into Swift. They take what they know about Cocoa develop-
ment and apply it to Swift. Unfortunately, this often results in frustration
and sometimes even an aversion towards the Swift language.
It’s easy enough to understand why developers take this approach.
People learning a new spoken language tend to look for the patterns and
constructs they’re already familiar with. While this is a common phase in
the learning process, it emphasizes the importance of a carefully chosen
learning trajectory. The same applies to picking up a new programming
language.

Developers new to Swift often take these commonalities to
think that Swift and Objective-C are very similar while they’re
not.

Because Swift is so different from Objective-C, you need to take a step
backward. You need to unlearn what you know about Objective-C and
start with a clean slate and an open mind. Swift and Objective-C differ
more than they’re alike. It’s true that a Swift application runs in the
Objective-C runtime and that the languages are interoperable, they
understand one another. But developers new to Swift often take these
commonalities to think that Swift and Objective-C are very similar while
they’re not.

Reference Types and Value Types

While there’s nothing inherently wrong with classes and inheritance,
Swift implicitly encourages the use of value types (tuples, structures, and

1 Learn Swift With an Open Mind 9

enumerations) instead of reference types (classes). Several months ago,
I came across a talk from Andy Matuschak3 about this topic. It’s a great
introduction to the advantages value types have over reference types.

The Swift Standard Library4 also embraces value types. Strings, arrays,
dictionaries, and sets, for example, are value types in Swift. This is
very different from their Foundation counterparts, NSString, NSArray,
NSDictionary, and NSSet.

Protocol-Oriented Programming

Even though structures and enumerations in Swift are more powerful
than their Objective-C counterparts, they don’t support inheritance. This
is often seen as a missing feature and scares many developers away
from value types. Developers new to Swift and accustomed to object-
oriented programming look for inheritance and find it in classes, that is,
reference types.

Earlier in the book, I emphasize that the lack of inheritance isn’t a
problem. Protocols and value types are a potent combination, maybe
even more so than reference types and inheritance.

Apple emphasizes that protocol-oriented programming is a pattern
developers should embrace in Swift. I encourage you to watch Protocol-
Oriented Programming in Swift5 to understand what it is and how you
can apply it in Swift. Dave Abrahams6 does a tremendous job explaining
why protocol-oriented programming is a natural fit for Swift.

Classes and inheritance remain important in Swift. They’re not the en-
emy. The Cocoa frameworks are for themost part powered byObjective-
C and that means classes and inheritance are here to stay, at least for
the foreseeable future.

3https://realm.io/news/andy-matuschak-controlling-complexity/
4https://developer.apple.com/library/ios/documentation/General/Reference/

SwiftStandardLibraryReference/
5https://developer.apple.com/videos/play/wwdc2015/408/
6https://twitter.com/daveabrahams

https://realm.io/news/andy-matuschak-controlling-complexity/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/videos/play/wwdc2015/408/
https://developer.apple.com/videos/play/wwdc2015/408/
https://twitter.com/daveabrahams
https://realm.io/news/andy-matuschak-controlling-complexity/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/videos/play/wwdc2015/408/
https://twitter.com/daveabrahams

1 Learn Swift With an Open Mind 10

As a Cocoa developer, you continue to use classes and create subclasses.
But it’s equally important to understand the ideas that power Swift
and how you can use them in your projects. In his presentation, Dave
repeatedly draws attention to Swift being a protocol-oriented language.

Type Safety

Type safety is a cornerstone of the Swift programming language. As a
developer, Swift expects you to be clear about the types of the variables
and constants you use. The advantage is that common mistakes, such
as passing a value of the wrong type to a method, can be caught by the
compiler.

Developers coming from Objective-C often struggle with Swift’s strict
type safety rules. This ties in with another concept of Swift, optionals.
Optionals are seen as an obstacle, an unavoidable side effect of Swift’s
type safety. What happened to sending messages to nil in Objective-C?
What’s wrong with that?

Optionals may indeed feel as obstacles when you first start experiment-
ing with Swift. As time passes and you become more familiar with the
language in its entirety, the pieces of the puzzle start to come together
and you come to appreciate optionals for what they represent and the
problem they solve. In combination with optional binding and optional
chaining, optionals start to fit into that proverbial puzzle.

I agree that optionals can feel clunky if you’re interactingwith anObjective-
C API that wasn’t built with Swift or optionals in mind. But I wouldn’t
want to use Swift without them. Optionals are such a nice feature of
Swift and I’ve come to appreciate them. In fact, every time I take a trip
down memory lane when I need to fix a bug in Objective-C, I miss them.
Optionals clearly express what’s happening.

If you’re still not sure about optionals, then I suggest you read the
chapter about optionals in this book. Give them the benefit of the doubt
for now. Use them for a few weeks, avoid the exclamationmark, and see
how you feel about them in a month.

1 Learn Swift With an Open Mind 11

Best Practices

The more you read about Swift and the longer you spend time in the
Swift community, the more you realize that Swift is still a very young
language, especially if you compare the language with C and Objective-
C. A common problem developers face is the lack of best practices. They
look for strategies to solve common problems and struggle to find them.
Best practices are slowly taking form as more people use the language
in real-world scenarios.

This isn’t surprising. The Swift community is still exploring the language,
finding out what’s possible and how things can or should be done. The
language is still developing at a rapid pace and the open sourcing of the
language is another component that drives this swift evolution.

Several best practices are slowly taking shape, such as the adoption of
protocol-oriented programming, the value of immutability, and the use
of value types over reference types.

Forget What You Know

My advice is to approach Swift with an open mind. Try to forget what
you know. What you know has value, but it may slow you down or it
may lead to frustration. Explore the language, become familiar with the
foundations it’s built on, and learn from others.

5 Exclamation Marks and Fatal
Errors
Fatal errors have a negative connotation and with reason. You should
use them sparingly if you want to avoid having your application crash
and burn at the slightest hiccup. Despite their negative undertone, fatal
errors are an integral part of my workflow as I write elsewhere in this
book.

Whenever I write or speak about my use of fatal errors, I usually see
two types of responses. Developers unfamiliar with fatal errors and how
they can be used safely are surprised and excited. They spot the benefits
fatal errors can bring to a project. Can you guess what the second type
of response sounds like?

Why don’t you use an exclamation mark instead?

The suggestion to use an exclamation mark instead of throwing a fatal
error is understandable. Fromauser’s perspective, the result is identical.
But I’m not using fatal errors with the user in mind. I don’t throw a
fatal error to crash the application when the user is using it. In an ideal
scenario, a fatal error should only be thrown in development or when
the application is being tested.

I agree that the user won’t appreciate my use of fatal errors if the
application crashes themoment they’re about to best their previous high
score. The thing is that I’m a developer and I look at code most of my
working hours. And that’s exactly the reason I choose for fatal errors
more frequently than I choose for the exclamation mark. Let me explain
what I mean by that.

5 Exclamation Marks and Fatal Errors 13

Clarity Over Subtleness

My biggest complaint with the exclamation mark is its subtleness. Iron-
ically, plenty of developers use the exclamation mark for exactly that
reason. It’s so easy to append an exclamation mark to a variable or
a constant. It’s almost too easy. I understand why the Swift team has
chosen to support forced unwrapping and forced conversion using the
as! operator, but I wouldn’t shed a tear if both were removed from the
Swift language tomorrow.

I agree that it can be frustrating to interact with an ancient Objective-C
API that doesn’t care about nil and optionals. Interacting with the file
system, for example, can often lead you down a rabbit hole of optionals,
indentation, and conditionals. But that’s what it takes if you decide to
write software in Swift.

Don’t be lazy by appending an exclamation mark to a variable or a
constant you’re pretty sure will always contain a value. It will contain
a value … most of the time … almost always. As the documentation
explains, you should only force unwrap an optional if you’re certain that
it contains a value. I turn it around when I use fatal errors. A fatal error
should be thrown if the application enters a state it didn’t anticipate.

Choosing for Clarity

A common trait among developers is an obsession with simplicity and
minimalism. Clean code is but one manifestation of this trait. By using
fatal errors I choose for clarity. If the application throws a fatal error, I
want to know about it. It’s true that the exclamation mark will also do
that for me. But I also want to know about it when I’m simply reading
through my code.

An exclamation mark doesn’t jump out, but a guard statement with a
fatalError() call does. It immediately shows you that you know that a
certain scenario should never happen and you guard against that.

5 Exclamation Marks and Fatal Errors 14

Take a look at the following implementation of the prepare(for:sender:)

method. This is a commonpattern I use. If the user triggers the Segue.SelectProfile

segue, the application expects the destination view controller to be of
type SelectProfileViewController. It simply doesn’t know how to respond
if that isn’t true hence the fatal error in the else clause of the guard

statement. While it may look a bit verbose, it’s clear and explicit.

1 // MARK: - Navigation

2

3 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

4 guard let identifier = segue.identifier else { return }

5

6 switch identifier {

7 case Segue.SelectProfile:

8 guard let destination = segue.destination as? SelectProfileV\

9 iewController else {

10 fatalError("Unexpected Destination View Controller for S\

11 egue")

12 }

13

14 ...

15 default: break

16 }

17 }

The alternative is to use the as! operator to forcefully convert the
destination view controller to the type the application expects.

5 Exclamation Marks and Fatal Errors 15

1 // MARK: - Navigation

2

3 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

4 guard let identifier = segue.identifier else { return }

5

6 switch identifier {

7 case Segue.SelectProfile:

8 let destination = segue.destination as! SelectProfileViewCon\

9 troller

10

11 ...

12 default: break

13 }

14 }

I understand that this practice is a bit controversial, but I’ve seen its
effectiveness. It’s why I’m a big fan of this pattern. As I mentioned earlier
in this chapter, the issue I have with the exclamation mark is that it isn’t
explicit enough, it’s too subtle. It’s easy to overlook it while browsing a
codebase.

The difference between the use of fatal errors and the use of the
exclamationmark is subtle. You could also say that the difference is easy
to miss, which is exactly why I bring it up. Give it a try and let me know
what you think.

9 Speed, Quality, and Technical
Debt
The first version of a product can never be released soon enough. That
makes sense. As long as designers and developers are working on a
product that isn’t making money, it’s costing money.

But speed can comeat a cost. To gain speed, youneed tomake sacrifices.
And very often speed is traded for quality, resulting in technical debt7.

Speed and Quality

In product development, speed and quality are almost always irreconcil-
able. Increasing the velocity of a projectmeans compromising on quality.
From a development perspective, this usually results in the creation or
accumulation of technical debt.

Assume for a moment that you’re the product owner of a software
project. The first version of the product needs to include five major
features. Each of these features takes a week to develop. The problem
is that the client wants to ship the first version of the product in three
weeks. What do you do?

You have several options. The most obvious one is dropping two fea-
tures. Unfortunately, that’s rarely something the client agrees to. An-
other option is cutting down development time of each feature by one
or two days. This usually translates to removing anything that doesn’t
involve the implementation of the feature, such as code reviews, quality
assurance, and testing.

7https://en.wikipedia.org/wiki/Technical_debt

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt

9 Speed, Quality, and Technical Debt 17

Technical Debt

Technical debt can creep into a project without the product owner
knowing about it. The development team usually knows, though. If the
team is led by a senior developer and code reviews are baked into the
company’s culture, technical debt is easy to spot.
A fast approaching deadline can cause even the best to ignore technical
debt. The symptoms start to appear when new features take longer to
build than expected and regressions make their way into the product.
These are the early symptoms of technical debt.
In advanced stages, technical debt takes a project hostage. Nobody
wants to touch the project anymore. Features take ages to complete
and are often compromised by technical limitations caused by technical
debt. Days, weeks, or months of bug fixing are needed to stabilize the
project. I’m not exaggerating.
In the meantime, the product itself evolves at a snail’s pace. The speedy
start that was once so important for the project’s success has long been
forgotten and, looking back, wasn’t that important after all. It rarely is.

Focus

If the client wants to ship in three weeks, the correct answer is removing
features. For projects with a long shelf life, you want to avoid technical
debt at any cost. Technical debt is very much like a virus. It’s hard to
eradicate and, if it isn’t treated in its early stages, it spreads out rapidly
across the project’s codebase.
Focus is essential to avoid technical debt. Instead of rushing out a
feature, you take the time to craft something that stands out. This
doesn’t only relate to the final product; it also involves the development
aspect of the feature.
You don’t need to overengineer the solution, but you need to make sure
the feature can grow beyond its current scope. You plan and anticipate
how it can or could evolve.

9 Speed, Quality, and Technical Debt 18

How to Get Rid of Technical Debt

There’s no miracle cure to rid a project of technical debt. You need to
take action, though, if you want to avoid worse.

Refactoring

The least radical approach is refactoring the project, focusing on one
problem at a time. If you’re in luck, one round of refactoring is sufficient.
However, most projects suffering from technical debt have many prob-
lems that need fixing.

As Imentioned earlier, technical debt spreads like a virus and thatmeans
many areas of the codebase are infected. I strongly advise against a
single round of refactoring. Map the problems you plan to attack and
spread the refactoring over several releases. This ensures the release
cycle isn’t blocked as long as the refactoring is ongoing.

In themeantime, make sure you don’t introduce new problems. Hold off
on new features if possible. Don’t make the same mistake twice.

If you’re working on a large project with years of history, be prepared
to spend weeks or months refactoring. That’s the price you pay for
technical debt.

Clean Slate

The most radical approach is starting anew. This means you don’t need
to spendmonths refactoring. This isn’t an option for every project. If you
have the opportunity to start with a clean slate, though, you’re in luck.

While it means that you need to implement every feature from scratch,
it’s an opportunity many developers would grab with both hands. Learn
from your mistakes, or those of your colleagues, and create an amazing
product.

I’ve worked on several projects that would have cost less if the project
was rebooted. But that’s often a very hard sell. The client doesn’t see

9 Speed, Quality, and Technical Debt 19

the problems the developer sees. They only start to see the symptoms
of technical debt when deadlines are missed or features become very
expensive.

Taking Shortcuts

Taking shortcuts rarely pays off in software development and most
developers know this. But deadlines are often more important and
developers rarely have the authority tomakedecisions about the feature
set of the product.

1 Choose Your Teacher Wisely
The vast number of tutorials and courses about software development
is a blessing for anyone interested in building software. And this is no
less true8 for anyone interested in Swift development. Getting started
with Swift development is easy and it doesn’t need to cost you a fortune.
But, as you’ve probably discovered, there’s a downside to this wealth of
information. In this chapter, I’d like to highlight three problems that I
frequently face and hear about from my students and readers.

Information Overload

When I started learning Cocoa development in 2006, there were only a
handful of books available. Aaron Hillegass9’ book Cocoa Programming
for (Mac) OS X10 was the unofficial golden standard.

8https://www.wired.com/2015/01/redmonk-swift/
9https://twitter.com/aaronhillegass

10https://www.amazon.com/Cocoa-Programming-OS-Ranch-Guides/dp/0134076958/

https://www.wired.com/2015/01/redmonk-swift/
https://www.wired.com/2015/01/redmonk-swift/
https://twitter.com/aaronhillegass
https://www.amazon.com/Cocoa-Programming-OS-Ranch-Guides/dp/0134076958/
https://www.amazon.com/Cocoa-Programming-OS-Ranch-Guides/dp/0134076958/
https://www.wired.com/2015/01/redmonk-swift/
https://twitter.com/aaronhillegass
https://www.amazon.com/Cocoa-Programming-OS-Ranch-Guides/dp/0134076958/

1 Choose Your Teacher Wisely 21

Cocoa Programming for (Mac) OS X

But, with the introduction of the iPhone in 2007 and the release of
the official SDK in 2008, that number increased substantially. There are
many books available from traditional publishers, such as Apress and
O’Reilly, but many developers, including yours truly, have chosen the
path of self-publishing, bypassing traditional publishers.

1 Choose Your Teacher Wisely 22

It has never been easier to publish a book or course. Books and courses
are available at any price point, including free. Unfortunately, this has
made it more challenging for developers to decide which path to choose
to learn the topic they’re interested in. Each day new tutorials, videos,
and courses are published. It’s challenging. That’s for sure.

The blessing of having so much free information at your fingertips is
more often than not a curse for developers that want to learn Cocoa and
Swift development. Not only is the amount of information overwhelm-
ing, there doesn’t seem to be a clear path to follow. It’s difficult to see
the forest for the trees. Don’t stop here, though. There’s hope.

Who to Trust

Every developer that writes about Cocoa and Swift development does
this with the best of intentions. They want to help people learn some-
thing new or solve a problem they’re having. It’s fantastic to see how
many of us take the time to write a tutorial or produce a video to help
others. It’s one of the key ingredients of the thriving Cocoa and Swift
communities.

Despite the author’s good intentions, though, what they’re teachingmay
be incorrect or ignore good practices. If you’re new to a subject, then you
may not be able to spot these mistakes. The title of this chapter is very
telling. It’s become more important than ever to choose your teacher
wisely. While I don’t believe that people are intentionally putting out bad
content or incorrect information, it’s up to you, the student, to filter the
good from the bad.

A few weeks ago, I was looking for a solution to customize the color
of the clear button of a UITextField instance. It turns out that the tint
color of a UITextField doesn’t affect the clear button. Bummer. I was
having an issue where the clear button was nearly invisible against a
dark background.

During my search for an answer, I stumbled on several Stack Overflow
entries that recommended digging into the view hierarchy of the text

1 Choose Your Teacher Wisely 23

field, looking for the clear button, and modifying its tint color. As I
mention elsewhere in this book, this is a bad practice. If the API doesn’t
allow for this type of customization, you file a bug with Apple and
implement a custom solution. That’s the only correct solution. Your
clever workaround will inevitably break when Apple makes changes to
the internals of the UITextField class. Respect the SDK. Always.

The answers that suggested digging into the view hierarchy of the text
field were upvoted because, at that time, it solved the problem. Unfor-
tunately, this creates a bigger problem. Every inexperienced developer
that reads one of these answers is made to believe that this is a viable
solution, that this is fine. Instead of spotting the risk of the solution, they
wrongly believe that they’ve picked up a good practice they can adopt in
other, similar situations.

If I need to pick up a new framework or API, I rely on the people I have
come to trust over time. These are very often people that have built
up authority in the community over several years or people like Aaron
Hillegass11, Marcus Zarra12, and Jeff LaMarche13 that have been around
since the very early days of the platform.

Focus, Focus, Focus

I used to follow a slew of developers on social media. I wanted to know
what they were learning, what they had to share, and which techniques
and lessons I could adopt inmyownprojects. About a year ago, I stopped
doing this because it was too overwhelming. There’s so much to learn.
The platforms and the Swift language evolve so quickly that it’s hard to
keep your focus if you don’t protect it ferociously.

There are countless talks about almost any topic you can imagine, but it
can leave you with more questions than you started with. I don’t know
about you, but focus has been the cure for me. Attention has become so

11https://twitter.com/aaronhillegass
12https://twitter.com/mzarra
13https://twitter.com/jeff_lamarche

https://twitter.com/aaronhillegass
https://twitter.com/aaronhillegass
https://twitter.com/mzarra
https://twitter.com/jeff_lamarche
https://twitter.com/aaronhillegass
https://twitter.com/mzarra
https://twitter.com/jeff_lamarche

1 Choose Your Teacher Wisely 24

important in today’s busy world that having the skill to focus obsessively
is a skill every developer should learn to master.

I don’t believe in the concept of a genius. It’s true that some people are
more gifted than others, but, in the end, developers that excel in what
they do are those who can focus and commit to something. You don’t
master Swift by reading a few chapters in Apple’s language guide. That’s
a good start, but it’s a process that continues and never stops. That’s the
beauty of it. No? Didn’t you become a developer because the sky’s the
limit?

That’s also why I often ask developers what goals they have for the
coming months or years. What I’m actually asking them is what their
focus is. What are they trying to accomplish? Ambitious people have a
clear focus, very often a singular one. Let me ask you then, “What is your
focus?”

Never Stop Learning

The mobile space is still very young, relatively speaking, and it evolves
at an incredible pace. With Apple and Google heavily investing in their
platforms, the speed with which mobile platforms evolve requires de-
velopers to focus and learn non-stop.

In 2015, Apple introduced no less than two new platforms, tvOS and
watchOS. While developers familiar with iOS won’t have a hard time
getting up to speed with Apple’s brand new SDKs, there are many, many
APIs and paradigms to become familiar with. It’s understandable if you
feel a little overwhelmed as a mobile developer. That’s fine and it’s fine
to admit that.

If you decide to become a developer, regardless of the platform you
write software for, you need to accept and become comfortable with
the fact that learning on a daily basis is part of the job.

For the past few years, Apple has released a new version of its operating
systems every year, introducing new technologies we need to become

1 Choose Your Teacher Wisely 25

familiar with. The Swift project continues to evolve at a fast pace. At the
time of writing, Swift 4 is just around the corner and with it come new
features, bug fixes, and numerous improvements.

Are you ready to dive in head first? If Apple announces a slew of new
APIs next year, will that scare you or will it excite you? Do you have the
motivation to not only continue learning but also push the envelope.
Using an API is one thing, pushing it to its boundaries and beyond is
where it’s at.

If you like programming, but prefer to stick with what you know, then
mobile development may not be the best choice. If learning is in your
blood and the mere thought of WWDC or Google I/O gives you goose-
bumps, then being a mobile developer is the best job in the world.

	Table of Contents
	Welcome
	5 Security
	Make It Hard
	Plain Text
	Obfuscating Information
	Fetching Sensitive Information
	Encryption
	Privacy
	Logging and Debugging
	Educating Your Client

	1 Learn Swift With an Open Mind
	Reference Types and Value Types
	Protocol-Oriented Programming
	Type Safety
	Best Practices
	Forget What You Know

	5 Exclamation Marks and Fatal Errors
	Clarity Over Subtleness
	Choosing for Clarity

	9 Speed, Quality, and Technical Debt
	Speed and Quality
	Technical Debt
	Focus
	How to Get Rid of Technical Debt
	Taking Shortcuts

	1 Choose Your Teacher Wisely
	Information Overload
	Who to Trust
	Focus, Focus, Focus
	Never Stop Learning

