
The little book of
Kubernetes Operators
Oz Tiram

1

Table of Contents

Introduction
Setting minikube up

Starting a kubernetes cluster
Your first operator

Running the Operator inside the cluster
Namespaces, ServiceAccounts, and RBAC
Granting Grafzahl permissions
State management with CustomResourceDefinitions and labels
Events for Operators
Farewell BASH

Frameworks for building Operators
No framework or a minimal framework?

Deep diving into building an operator
Basic Structure
Get a kubernetes client
Watching Kubernetes resources
Adding the operator business logic
Working with CustomResourceDefinitions
Generating code for working with CRDs
Rewriting Grafzahl with generated client code
Listening to Events directly
Emitting Events
Deploying the go based operator to a Kubernetes cluster

Debugging your operator
Debugging with devspace

And Now for Something Completely Different
Rewrite with Python
Listening to Events with PyKube-ng
Kopf - A flask like framework for operators

Summary
Appendix A - Setup kubectl alias

•
•

◦
•

◦
◦
◦
◦
◦
◦

•
◦

•
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

•
◦

•
◦
◦
◦

•
•

Preface 3

file:///srv/oznt/Software/little-book-of-operators/docs/_build/singlehtml/index.html

Introduction
Kubernetes is an open source platform, originally developed by
Google, to schedule workloads on a cluster of computers. The most
basic unit of work that kubernetes understands is a Pod, which is
originally, one or more docker containers with dedicated amount of
compute resources. These originally include CPU, RAM, network and
disks. This unit of work is the source of viewing Kubernetes as a
Container Scheduler. However, since the inception and birth of
Kubernetes, work units have become more than just docker
containers. In the meanwhile Kubernetes, can schedule a lot of
things. For example LXC containers, Full blown virtual machines,
lightweight virtual machines, and even FreeBSD Jails.

As such, we should view Kubernetes as a Workload Scheduler or as
a distributed kernel, where we ask the system for compute resources
to execute different tasks. Kubernetes then tries to fulfill our request
by allocating compute resources and running our tasks.

This distributed kernel is composed of many controllers whose
responsibility is fulfill a desired state and react to changes in the
actual state of what ever resources they control. If you already work
with Kubernetes, you are probably familiar with the built-in controllers
Deployment and StatefulSet

The developers of kubernetes recognised the need for adding
custom user controllers already in early versions of Kubernetes.
Version 1.7 added the ability to define ThirdPartyResource , which
allowed extending Kubernetes. These were later named
CustomResourceDefinition in version 1.8 and onward.

Adding new resources to the kubernetes API opened the way for
users writing their own controllers which watch these resources and
perform actions based on changes in a
CustomResourceDefinition .

4 Introduction

https://github.com/automaticserver/lxe
https://kubevirt.io/
https://katacontainers.io/
https://github.com/samuelkarp/runj

Your first operator
We begin our journey for working with operators with a simple
operator written in BASH. It does only one thing: Count the

Deployments and Pods in the cluster. The operator Grafzahl [1] would
output:

$ bash v1/main.sh
Deployments now 1, previously 0
Pods now 10, previously 0

Pods number increased! 🧛 is 😄!

Deployments number increased! 🧛 is 😄!
...

Note that the operator counts deployment and pods cluster in all
namespaces. Hence, it starts the counting with numbers larger than
0.

In a different terminal we start a Pod:

$ kubectl run nginx --image docker.io/nginx
pod/nginx created

Now Grafzahl says:

Deployments now 1, previously 1
Pods now 11, previously 10

Pods number increased! 🧛 is 😄!

When we delete the Pod:

$ kubectl delete pod nginx
pod "nginx" deleted

[1]
Graf Zahl is the German name for the Sesame Street character
Count von Count.

Grafzahl should be sad:

8 Your first operator

Deep diving into building an
operator
We begin with re-creating grafzahl using the pure go-client.

Basic Structure

To begin with a modern go project we create a layout for our CLI and
package which is imported. We use go module to manage the
dependencies:

$ cd grafzahl
$ mkdir -pv {cmd,pkg/operator}
$ go mod init gitlab.com/oz123/grafzahl

In cmd/main.go :

package main

import (
"fmt"
operator "gitlab.com/oz123/grafzahl/pkg/operator"

)

func main() {
fmt.Println("Hello, Modules!")
operator.PrintHello()

}

And in pkg/operator/operator.go :

34 Deep diving into building an operator

package operator
import "fmt"

var VERSION = "0.0.0.dev"

func PrintHello() {
fmt.Printf("Hello, Modules! This is Operator v%s speaking!\n", VERSION)

}

We also add a Makefile to help us manage the project:

DATE = $(shell date +%Y%m%d%H%M)
VERSION = v$(DATE)
GOOS ?= $(shell go env | grep GOOS | cut -d'"' -f2)
BINARY := grafzahl

LDFLAGS := -X gitlab.com/oz123/grafzahl/pkg/operator.VERSION=$(VERSION)
GOFLAGS := -ldflags "$(LDFLAGS)"
PACKAGES := $(shell find $(SRCDIRS) -type d)
GOFILES := $(addsuffix /*.go,$(PACKAGES))
GOFILES := $(wildcard $(GOFILES))

.PHONY: all clean

all: bin/$(GOOS)/$(BINARY)

bin/%/$(BINARY): $(GOFILES) Makefile
GOARCH=amd64 go build $(GOFLAGS) -v -o $(BINARY) cmd/main.go

Compile and run the program:

$ make
GOARCH=amd64 go build -ldflags "-X gitlab.com/oz123/grafzahl/pkg/operator.VERSION=6d31605 "
-v -o grafzahl cmd/main.go
command-line-arguments

$./grafzahl
Hello, Modules!
Hello, Modules! This is Operator v6d31605 speaking!

 Note

The previously shown code is found in the v0.1 tag in the code
repository.

Basic Structure 35

Debugging your operator
After deploying the operator, you will, for sure, find some issues with
it, which will require fixing. No software is born perfect.

Modifying the code, building a docker image, pushing it to a registry,
and then deploying it to the cluster to watching the logs, only to
repeat again a few moments later, is time consuming and frustrating.

You can run your code locally with a correct KUBECONFIG
environment variable set. To do this, on Kubernetes versions 1.24
and later, you will have to create it explicitly, by create an explicit
service account token, and then creating a KUBECONFIG file:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: grafzahl-sa-token
 namespace: grafzahl
 annotations:
 kubernetes.io/service-account.name: default
type: kubernetes.io/service-account-token
EOF
secret/grafzahl-sa-token created

74 Debugging your operator

Now, you can create a KUBECONFIG file:

NAMESPACE="grafzahl"
SECRET_NAME="grafzahl-sa-token"
KUBECONFIG_OUT="sa-kubeconfig.yaml"

APISERVER=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.server}')

TOKEN=$(kubectl get secret "${SECRET_NAME}" -n "${NAMESPACE}" -o jsonpath='{.data.token}' |
base64 -d)
kubectl get secret "${SECRET_NAME}" -n "${NAMESPACE}" -o jsonpath='{.data.ca\.crt}' |
base64 -d > ca.crt

CA_B64=$(base64 -w0 ca.crt 2>/dev/null || base64 ca.crt | tr -d '\n')

cat <<EOF > "${KUBECONFIG_OUT}"
apiVersion: v1
kind: Config
clusters:
- name: ${NAMESPACE}-cluster
 cluster:
 certificate-authority-data: ${CA_B64}
 server: ${APISERVER}
contexts:
- name: ${NAMESPACE}-context
 context:
 cluster: ${NAMESPACE}-cluster
 namespace: ${NAMESPACE}
 user: ${SECRET_NAME}-user
users:
- name: ${SECRET_NAME}-user
 user:
 token: ${TOKEN}
current-context: ${NAMESPACE}-context
EOF

Set the environment variable KUBECONFIG to point to this file, before
running the operator:

export KUBECONFIG=$(pwd)/sa-kubeconfig.yaml
make all
./grafzahl
2025/07/17 10:07:28 Starting Grafzahl Operator v0.6.2-8-g0523ff9
2025/07/17 10:07:28 Starting Pod Watcher
...

This works, but there is a better alternative.

Debugging your operator 75

Debugging with devspace

devspace is like magic, and this section only scratches the surface.
It allows you to create a container which syncs your local directory
with a container running inside the cluster, where you can run your
operator code directly or even run a debugger to which you can
connect remotely.

To start with devspace first download the binary from the release
page:

$ curl -L -o devspace "https://github.com/loft-sh/devspace/releases/latest/download/
devspace-linux-amd64" \

&& sudo install -c -m 0755 devspace /usr/local/bin && rm devspace-linux-amd64

Now, run the devspace command and configure it:

devspace init

 %########%
 %###########% ____ _____
 %#########% | _ \ ___ __ __ / ___/ ____ ____ ____ ___
 %#########% | | | | / _ \\ \ / / ___ \ | _ \ / _ | / __// _ \
 %#############% | |_| |(__/ \ V / ____))| |_))((_| |((__(__/
 %#############% |____/ ___| _/ ____/ | __/ __,_| ______|
 %###############% |_|
 %###########%

info Detecting programming language...

? Select the programming language of this project [Use arrows to move, type to filter]
 c# (dotnet)
> go
 java-gradle
 java-maven
 javascript
 php
 python

76 Debugging with devspace

The wizard is straight forward and in the end you should see:

$ devspace init

... snipped ...

info Detecting programming language...

? Select the programming language of this project go

? How do you want to deploy this project? kubectl

? Please enter the paths to your Kubernetes manifests (comma separated, glob patterns are
allowed, e.g. 'manifests/**' or 'kube/pod.yaml') [Enter to abort] k8s

? Do you want to develop this project with DevSpace or just deploy it? [Use arrows to move,
type to filter] I want to develop this project and my current working dir contains the
source code

? Which image do you want to develop with DevSpace? docker.io/oz123/grafzahl:v0.6.2

? How should DevSpace build the container image for this project? Use this existing
Dockerfile: ./Dockerfile

? Which port is your application listening on? (Enter to skip)

done Project successfully initialized
info Configuration saved in devspace.yaml - you can make adjustments as needed

You can now run:
1. devspace use namespace - to pick which Kubernetes namespace to work in
2. devspace dev - to start developing your project in Kubernetes

Run `devspace -h` or `devspace [command] -h` to see a list of available commands and flags

Now, you can run the commands shown above. If your manifests
have the namespace hardcoded in them, then you should choose the
namespace hardcoded in them, in our case grafzahl . However,
you might want to create a new namespace, and deploy your debug
version inside this namespace, e.g. grafzahl-dev :

$ devspace use namespace grafzahl
info The default namespace of your current kube-context 'kvm2' has been updated to
'grafzahl'
...
done Successfully set default namespace to 'grafzahl'

Debugging with devspace 77

Start the debugging session with:

$ devspace dev
info Using namespace 'grafzahl'
info Using kube context 'kvm2'
deploy:app Applying manifests with kubectl...
deploy:app clusterrole.rbac.authorization.k8s.io/grafzahl-rc configured
deploy:app clusterrolebinding.rbac.authorization.k8s.io/grafzahl unchanged
deploy:app customresourcedefinition.apiextensions.k8s.io/numbers.grafzahl.io unchanged
deploy:app deployment.apps/grafzahl-operator unchanged
deploy:app Warning: resource numbers/total is missing the kubectl.kubernetes.io/last-
applied-configuration annotation which is required by kubectl apply. kubectl apply should
only be used on resources created declaratively by either kubectl create --save-config or
kubectl apply. The missing annotation will be patched automatically.
deploy:app number.grafzahl.io/total configured
deploy:app clusterrole.rbac.authorization.k8s.io/grafzahl-rc configured
deploy:app clusterrolebinding.rbac.authorization.k8s.io/grafzahl unchanged
deploy:app Successfully deployed app with kubectl
dev:app Waiting for pod to become ready...
dev:app Selected pod grafzahl-operator-devspace-5b8d9d95cf-mml8h
dev:app ports Port forwarding started on: 2345 -> 2345
dev:app sync Sync started on: ./ <-> ./
dev:app sync Waiting for initial sync to complete
dev:app sync Initial sync completed
dev:app ssh Port forwarding started on: 11888 -> 8022
dev:app proxy Port forwarding started on: 11473 <- 10567
dev:app ssh Use 'ssh app.grafzahl.devspace' to connect via SSH
dev:app term Opening shell to main:grafzahl-operator-devspace-5b8d9d95cf-mml8h
(pod:container)

 %########%
 %###########% ____ _____
 %#########% | _ \ ___ __ __ / ___/ ____ ____ ____ ___
 %#########% | | | | / _ \\ \ / / ___ \ | _ \ / _ | / __// _ \
 %#############% | |_| |(__/ \ V / ____))| |_))((_| |((__(__/
 %#############% |____/ ___| _/ ____/ | __/ __,_| ______|
 %###############% |_|
 %###########%

Welcome to your development container!

This is how you can work with it:
- Files will be synchronized between your local machine and this container
- Some ports will be forwarded, so you can access this container via localhost
- Run `go run main.go` to start the application

78 Debugging with devspace

Run your code inside the devspace Pod:

devspace ./app # go run cmd/main.go
go: downloading k8s.io/api v0.23.1
go: downloading k8s.io/apimachinery v0.23.1
go: downloading k8s.io/client-go v0.23.1
go: downloading github.com/gogo/protobuf v1.3.2
go: downloading github.com/google/gofuzz v1.1.0
...
2025/07/16 13:55:07 Starting Pod Watcher
2025/07/16 13:55:07 Successfully add handlers to Pod Watcher
2025/07/16 13:55:07 Starting Deployment Watcher
2025/07/16 13:55:07 Added all handlers to Deployment Watcher
2025/07/16 13:55:07 Starting Events Watcher
2025/07/16 13:55:07 Added all handlers to Events Watcher
2025/07/16 13:55:07 Grafzahl 0.0.0.dev is ready to count
There are 12 pods in the cluster
There are 4 deployments in the cluster
2025/07/16 13:55:07 Initialized total deployments: 4, pods: 12
2025/07/16 13:55:07 Deployments: 4, Pods: 12

In a different window you can edit the code, and the changes in your
code, will immediately sync to the devspace container where you
can run the code without having to run:

$ make build
$ make push
$ kubectl set image -n grafzahl main=docker.io/oz123:v<newversion>
$ k logs -n grafzahl -l app=grafzahl

Debugging with devspace 79

