

The Clean Way to Use Rx
Manual de guía y consejos para implementar con
extensiones Rx.

Yair Carreno

Este libro está a la venta en http://leanpub.com/the-clean-way-to-use-rx-spanish

Esta versión se publicó en 2020-07-15

Éste es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicación. Lean Publishing es el acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener retroalimentación del lector hasta conseguir el libro
adecuado.

© 2020 Yair Carreno

http://leanpub.com/the-clean-way-to-use-rx-spanish
http://leanpub.com/
http://leanpub.com/manifesto

Índice general

Prefacio . 1
Acerca del libro . 1
Acerca del código fuente . 1
Desarrollo del contenido . 2
Glosario . 3
Audiencia . 3
Consultas y/o contacto . 3
Versiones de IDEs y tecnologías usadas . 4
Change log . 4

Resumen de reglas . 5

Foundation . 7
Ítem 1: De Imperativo a Reactive . 7

Be Clean . 16
Ítem 5: Mantenga limpia la cadena de operadores . 16

Error handling . 18
Ítem 28: Gestionando los errores . 18

RxJS code snippet . 22

RxJava code snippet . 29

Prefacio
Acerca del libro

El presente trabajo agrupa las diferentes prácticas usadas en la implementación de componentes de
software a través de extensiones Rx. Dichas prácticas son organizadas en 35 ítems de aplicación y
por cada ítem se analiza cuales son prácticas de código recomendadas y cuales son aquellas prácticas
que se deben evitar.

También podría decirse que el presente documento es la recopilación de buenas prácticas aprendidas
a través de la experiencia propia adquirida en proyectos empresariales, recomendaciones recibidas
de foros, blogs, workshops y en general de análisis dados por expertos en el área, incluyendo las
recomendaciones dadas en los sitios oficiales de cada extensión¹.

Este libro también pretende ser unmanual de referencia práctico a la hora de implementar códigoRx,
es por ello que gran parte del material del libro lo compone ejemplos de code snippet escrito en los
principales lenguajes de programación para clientes tanto Frontend (móviles, web) como Backend,
es decir, JavaScript, Swift, Java. Para la edición siguiente se tiene planeado incluir Kotlin.

Los conceptos estudiados en cada uno de los ítems son agnósticos al lenguaje de programación, son
pocos los casos en donde cierta capacidad no se encuentra disponible en una extensión y en cuyo
caso se hace la respectiva anotación en el ítem.

Se pretende que una vez estudiados los conceptos de cada ítem, el lector se beneficie con el mayor
entendimiento sobre como opera Rx y dote al lector de herramientas para aplicar buenas prácticas
que al final se vean reflejadas en las soluciones en el ámbito de:

• Código limpio (Clean Code).
• Mejor performance:
• Mitigar escenarios de bugs.

Acerca del código fuente

En el libro, los ejemplos de code snippet se presentan en Swift. El lector también podrá encontrar el
código equivalente en JavaScript y Java en los capítulos:

• RxJS code snippet
• RxJava code snippet

¹ReactiveX

http://reactivex.io/

Prefacio 2

El lector también podrá acceder a los repositorios públicos escritos para cada tecnología en:

• Clean Way Rx in JavaScript²
• Clean Way Rx in Swift³
• Clean Way Rx in Java⁴

Desarrollo del contenido

El desarrollo del contenido inicia desde el análisis de los conceptos fundamentales tanto de Reactive
programming como de Functional programming. La sección Foundation, presenta la forma en que
dichos conceptos son usados en Rx de forma práctica. Los ítems descritos en esta sección son la base
para los posteriores ítems.

En la sección siguiente nombrada Be Clean, se hace énfasis en el código limpio, bien escrito y de
fácil lectura. Rx simplifica sustancialmente el código escrito necesario para cumplir con una tarea,
sin embargo se puede fácilmente perder la ventaja de la simplicidad y pasar al otro extremo en donde
se hace complejo el entendimiento del código por estar escrito de forma no limpia.

Uno de los actores principales en Rx es el flujo de datos (data streams). Dicho flujo de datos también
se puede relacionar con otras fuentes generadoras de flujos y por ende establecer dependencias
entre ellos. La sección Flow dependencies analiza las consideraciones a tener en cuenta cuando se
establecen dichas dependencias entre flujos.

Los operadores son otro de los actores claves en Rx, aprender a distinguirlos y saber cuando usar
uno u otro es una de las habilidades claves que se adquieren durante el desarrollo y diseño con Rx.
En la sección Operators, se involucran los ítems con las recomendaciones del uso de los operadores.

El tiempo entra a ser una variable a tener en cuenta cuando se orquesta flujos de datos, esto es
analizado en la sección Timing. Una buena administración de los momentos y tiempos de ejecución
generan los resultados esperados.

La siguiente sección trata un tema relevante para cualquier aplicación y tiene que ver con la gestión
y administración de los escenarios de error. Rx cuenta con un conjunto importante de operadores y
funciones que permiten diseñar un control efectivo de los errores. En la sección Error Handling se
analiza dichas opciones.

Las dos secciones siguienteMulticasting yMulti-threading podrían lucir parecidas pero en realidad
son muy distintas. En Multicasting se analiza las prácticas a la hora de vincular múltiples fuentes
emisoras de datos ymúltiples receptores de dichos datos. En cambio, en la secciónMulti-threading se
analiza la aplicación de concurrencia y paralelización de tareas en múltiples contextos de ejecución
en el ámbito de procesamiento.

²https://github.com/yaircarreno/Clean-Way-Rx-JavaScript
³https://github.com/yaircarreno/Clean-Way-Rx-Swift
⁴https://github.com/yaircarreno/Clean-Way-Rx-Java

https://github.com/yaircarreno/Clean-Way-Rx-JavaScript
https://github.com/yaircarreno/Clean-Way-Rx-Swift
https://github.com/yaircarreno/Clean-Way-Rx-Java
https://github.com/yaircarreno/Clean-Way-Rx-JavaScript
https://github.com/yaircarreno/Clean-Way-Rx-Swift
https://github.com/yaircarreno/Clean-Way-Rx-Java

Prefacio 3

Y finalizando, se tiene la sección Optimizing, la cuál contiene un par de ítems referentes a buenas
prácticas que evitan generación de fugas de memoria y buen uso de los recursos de memoria usados
por los componentes diseñados con Rx.

Como el lector podrá apreciar, el contenido no se desarrolla siguiendo una línea de temas básicos,
medios y avanzados, sino que al contrario todo se encuentra relacionado, a tal punto que existen
ítems que se encuentran relacionados con otros y por tanto se complementan.

Glosario

Durante el desarrollo de los temas en el libro, el lector podrá encontrar algunos términos los cuales
son descritos a continuación para dar mayor claridad.

Contrato: Hace referencia a los eventos que podrían presentarse en una emisión y los cuales
corresponden a onNext, onComplete o onError.

Imperativo: Se refiere a la forma tradicional de programación basada en la ejecución de tareas de
forma secuencial.

Reactivo: Hace referencia al estilo de programación basado en la ejecución de tareas de forma
sincrónica o asincrónicas y para cuyos propósitos se emplea las extensiones Rx.

Rx: Este término será usado para hacer referencia a Reactive programming.

Audiencia

Recomiendo esta lectura para todo actor que participa en procesos de diseño, implementación y va-
lidación de componentes de software a través de Reactive programming y Functional programming,
apoyados en el uso de extensiones Rx.

Ya sea que se trate de un componente en Frontend o Backend, el lector podrá aplicar los conocimien-
tos de este libro al momento de implementar código con extensiones Rx. Por ejemplo, permite aplicar
diseños de patrones tales como Uniderectional State Flow, MVVM, Optimistic UI y otros patrones
que podría requerir la arquitectura de la solución⁵.

Consultas y/o contacto

Este trabajo pretender guiar al lector en la búsqueda de buenas prácticas de diseño en soluciones,
ha sido desarrollado desde mi punto de vista y teniendo en cuenta las recomendaciones de fuentes
expertas citadas en la bibliografía, muy seguramente el lector podría encontrar alternativas a las
técnicas expuestas que pueden variar un poco a las que aquí se encuentren consignadas y esa es
precisamente la idea del presente trabajo.

⁵Clean Architecture in iOS

https://leanpub.com/clean-architecture-in-ios

Prefacio 4

Si el lector encuentra en el libro algún aspecto que merezca ser revisado son bienvenidos los
comentarios y la retroalimentación que se dé al respecto. Para ello y cualquier duda o inquietud
se encuentra disponible los siguientes canales:

• Email: yaircarreno@gmail.com
• Twitter: @yaircarreno⁶
• Blog: yaircarreno.com⁷

Idioma de textos en las imágenes

Por estándar, las imágenes presentadas a lo largo del presente libro contienen textos en inglés.

Idioma en Code Snippets

Por estándar, los ejemplos de código que acompañan el presente libro se encuentran en inglés.
También algunos textos principales se encuentran en Inglés para mantener consistencia con la
documentación oficial.

Versiones de IDEs y tecnologías usadas

• Xcode 11.5 - Swift 5
• Android Studio 4.0 - Java 1.8.0
• Visual Studio Code 1.47.1 - TypeScript 3.8.3 - Angular 9.1.0

Change log

Para mantener al lector informado sobre las actualizaciones y cambios en el presente libro, se
proporciona el capítulo Changelog.

⁶https://twitter.com/yaircarreno
⁷https://www.yaircarreno.com/

https://twitter.com/yaircarreno
https://www.yaircarreno.com/
https://twitter.com/yaircarreno
https://www.yaircarreno.com/

Resumen de reglas
Foundation

Ítem 1: De Imperativo a Reactive

Ítem 2: Focus en funciones puras

Ítem 3: Verifique la naturaleza de los streams cuando sean vinculados

Ítem 4: Decida cuando utilizar un Observable tipo empty o never

Be Clean

Ítem 5: Mantenga limpia la cadena de operadores

Ítem 6: Defina cadenas funcionales de operadores

Ítem 7: No anide las suscripciones, utilice la cadena de operadores

Ítem 8: Utilice Rx cuando existan eventos involucrados

Ítem 9: No orqueste operaciones Rx con programación imperativa

Ítem 10: No incluya código Rx en operadores Do

Ítem 11: Propague envolventes (wrappers), no unidades

Ítem 12: Evite propagar valores nulos, recurra a Optionals

Ítem 13: Recuerde que puede usar filter, en lugar de if

Ítem 14: Es posible dividir la emisión cuando se presente if-else

Ítem 15: Compartir código no es lo mismo que compartir emisiones

Ítem 16: No todo se delega al Observer

Ítem 17: Retrase lo que más pueda la definición del Schedule

Flow dependencies

Ítem 18: Verifique eventos de finalización o error cuando utilice los filtros

Ítem 19: Cuidado con los operadores de reducción en streams infinitos

Ítem 20: Mantenga consistencia en la naturaleza de la emisión

Resumen de reglas 6

Ítem 21: Sea cuidadoso cuando dependa de onComplete

Ítem 22: Un paso adicional en la cadena de operadores

Ítem 23: Orquestando y/o combinando de forma efectiva

Operators

Ítem 24: Seleccione adecuadamente los operadores

Ítem 25: Utilice el operador map sólo para transformaciones

Timing

Ítem 26: Asegúrese ejecutar las tareas en el momento adecuado

Ítem 27: Controle los tiempos de ejecución en tareas dependientes

Error handling

Ítem 28: Gestionando los errores

Multicasting

Ítem 29: Compartir Observables, compartir Observers o ambos

Multi-threading

Ítem 30: Rx es single-threaded por defecto

Ítem 31: ¿Importa el orden de los operadores subscribeOn and observeOn?

Ítem 32: Algunos operadores traen un Scheduler predefinido

Ítem 33: Negociando con la UI

Optimizing

Ítem 34: Cancelando adecuadamente la subscripción

Ítem 35: ¿Cuándo usar Subjects o Traits?

Foundation
Ítem 1: De Imperativo a Reactive

Relacionar código imperativo con código reactive es posible siempre y cuando se tengan en cuenta
las capacidades de cada uno de estos estilos.

Es normal que la solución contenga bloques de código tanto imperativo como reactive. En realidad
el origen de código reactive es código imperativo al cual se le agrega capacidades heredadas de
programación funcional y capacidades multithreaded.

Las reglas básicas para relacionar código imperativo y código reactive podrían resumirse en los
siguientes puntos:

1. La orquestación debe ocurrir solo entre código Rx, es decir, no se debería orquestar tareas Rx
usando código imperativo.

2. Código imperativo puede ser orquestado con tareas Rx siempre y cuando el código imperativo
sea envuelto en código Rx.

El lector encontrará en ítem 8, ítem 9 y ítem 10, los efectos de no cumplir las dos recomendaciones
anteriores.

Ahora, ¿Cómo se envuelve código imperativo en código Rx?

Mediante dos mecanismos disponibles:

• A través de operadores de creación.
• A través de las funciones de creación.

Pero antes de diseñar la envolvente tenga en cuenta el siguiente análisis planteado en la figura 1.1.

Foundation 8

Figure 1.1 Wrapping tasks to Rx

• Valide primero si la tarea ya cuenta con una envolvente. Las librerías de terceros, por ejemplo,
proporcionan estas implementaciones cuando se trata de integrar SDK de terceros. Incluso en
el propio proyecto podría ya existir una utilidad con dicha envolvente.

Foundation 9

• En caso de requerir la envolvente, tenga en cuenta si la tarea realiza la operación de forma
sincrónica o asincrónica. Identifique esto verificando si la tarea la ejecuta un listener, callback
o cualquier componente de naturaleza asincrónica.

A veces se cree por error que toda operación realizada con Rx esmultithreaded por defecto. La
verdad es que Rx es single-threaded por defecto[^8].

A menos que se indique lo contrario, toda operación correrá sobre el mismo hilo asignado por
defecto. En el Ítem 30: Rx es single-threaded por defecto se analiza esta característica.

• Si la tarea es sincrónica, podría crearse a través de los operadores de creación un Observable
que envuelva la tarea.

• Si la tarea es asincrónica, podría ser envuelta a través de las funciones de creación y crear
Traits, es decir, Observables de tipo Single, Complete o Maybe de acuerdo al requerimiento y
teniendo pleno conocimiento de los contratos a cumplir por parte del Observer.

A continuación se presenta algunas de las opciones para envolver tareas a través de operadores.

Nombre de operadores
Tenga en cuenta que algunos operadores se nombran de forma distinta o no se encuentran
disponibles en todos los lenguajes.

Operadores de creación

Rx cuenta con los siguientes mecanismos para envolver tareas a través de operadores:

Code Snippet: RxJS - RxJava

Example 1.1: of operator - CleanWayRx/Items/Item1.swift

1 Observable.of(["h", "e"], ["l", "l", "o"])

2 .subscribe(onNext: { element in

3 print(element)

4 })

5 .disposed(by: disposeBag)

6

7

8 Console output:

9 ---------------

10 ["h", "e"]

11 ["l", "l", "o"]

Foundation 10

Example 1.2: just operator - CleanWayRx/Items/Item1.swift

1 Observable.just(["h", "e", "l", "l", "o"])

2 .subscribe(onNext: { element in

3 print(element)

4 })

5 .disposed(by: disposeBag)

6

7 Console output:

8 ---------------

9 ["h", "e", "l", "l", "o"]

Example 1.3: from operator - CleanWayRx/Items/Item1.swift

1 Observable.from(["h", "e", "l", "l", "o"])

2 .subscribe(onNext: { element in

3 print(element)

4 })

5 .disposed(by: disposeBag)

6

7 Console output:

8 ---------------

9 h

10 e

11 l

12 l

13 o

Example 1.4: range operator - CleanWayRx/Items/Item1.swift

1 Observable.range(start: 1, count: 5)

2 .subscribe(onNext: { element in

3 print(element)

4 })

5 .disposed(by: disposeBag)

6

7

8 Console output:

9 ---------------

10 1

11 2

12 3

13 4

14 5

Foundation 11

Example 1.5: defer operator - CleanWayRx/Items/Item1.swift

1 Observable.deferred {

2 return Observable.just(["h", "e", "l", "l", "o"])

3 }

4 .subscribe(onNext: { element in print(element) })

5 .disposed(by: disposeBag)

6

7

8 Console output:

9 ---------------

10 ["h", "e", "l", "l", "o"]

Operadores de apoyo

Estos son también operadores de creación no destinados a envolver sino a apoyar procesos testing,
depuración y del manejo de errores:

Code Snippet: RxJS - RxJava

Example 1.6: interval operator - CleanWayRx/Items/Item1.swift

1 let subscription = Observable<Int>

2 .interval(.seconds(1), scheduler: scheduler)

3 .subscribe { event in print(event) }

4

5 Thread.sleep(forTimeInterval: 5.0)

6 subscription.dispose()

7

8

9 Console output:

10 ---------------

11 next(0)

12 next(1)

13 next(2)

14 next(3)

15 next(4)

Example 1.7: timer operator - CleanWayRx/Items/Item1.swift

1 let subscription = Observable<Int>.timer(.seconds(2), scheduler: scheduler)

2 .subscribe { event in print(event) }

3

4 Thread.sleep(forTimeInterval: 5)

5 subscription.dispose()

6

7

8 Console output:

9 ---------------

10 next(0)

11 completed

Foundation 12

Example 1.8: empty operator - CleanWayRx/Items/Item1.swift

1 Observable<String>.empty()

2 .subscribe { event in print(event) }

3 .disposed(by: disposeBag)

4

5 Console output:

6 ---------------

7 completed

Example 1.9: never operator - CleanWayRx/Items/Item1.swift

1 Observable<String>.never()

2 .subscribe { event in print(event) }

3 .disposed(by: disposeBag)

4

5 Console output:

6 ---------------

Example 1.10: error operator - CleanWayRx/Items/Item1.swift

1 Observable<String>.error(SampleError())

2 .subscribe { event in print(event) }

3 .disposed(by: disposeBag)

4

5

6 Console output:

7 ---------------

8 error(SampleError())

Funciones de creación

Cuando se trata de envolver una tarea asincrónica que forma parte de una API externo y en cuyo
caso no es suficiente con un operador de creación, se recurre a la creación del Observable a través
de las funciones de creación.

La anatomía para envolver una tarea es la siguiente:

Foundation 13

Example 1.11: CleanWayRx/Items/Item1.swift

1 private func taskWrapped() -> Observable<Any> {

2

3 return Observable.create { observer in

4

5 // Here the imperative code is embedded

6 return Disposables.create()

7 }

8 }

Code Snippet: RxJs - RxJava

Los puntos importantes para diseñar elObservable a partir deObservable.create y código imperativo
son:

1. Tener en cuenta los contratos que podría necesitar el Observer, es decir, onNext, onComplete y
onError.

2. De acuerdo a lo definido en el punto 1, analizar si se usa un Observable general o uno de los
tipos: Single, Complete o Maybe.

3. Manejar los posibles escenarios que generan error y emitir a través del contrato onError.
4. Asegurarse de liberar las respectivas referencias fuertes y cualquier listener vinculado por el

código imperativo.
5. Considerar si es necesario manejar escenarios de Backpressure[^9].

Considere el siguiente ejemplo de implementación de un envolvente:

Example 1.12: CleanWayRx/Items/Item1.swift

1 private func imperativeTask() -> Any? {

2

3 let data = "any data"

4 print("Do any imperative task or process")

5

6 return data

7 }

La tarea imperativa llamada imperativeTask podría generar un resultado a partir de un cálculo o
simplemente realizar una tarea que no genera un resultado pero si una acción finalizada.

Cualquiera que sea el caso, se crea un Observable con el resultado con datos o si ellos. Se definen
las condiciones para emitir un evento de error, un evento de completado o un evento de emisión del
ítem:

Foundation 14

Example 1.13: CleanWayRx/Items/Item1.swift
1 private func taskWrapped(task: Any?) -> Observable<Any> {

2

3 return Observable.create { observer in

4

5 guard let data = task else {

6 observer.onError(SampleError())

7 return Disposables.create {}

8 }

9

10 observer.onNext(data)

11 observer.onCompleted()

12 return Disposables.create()

13 }

14 }

Code Snippet: RxJs - RxJava

A través de la envolvente, la tarea queda disponible para ser orquestada y controlada de forma Rx:

Example 1.14: CleanWayRx/Items/Item1.swift
1 taskWrapped(task: self.imperativeTask())

2 .subscribe(onNext: { data in print("next:", data) },

3 onError: { error in print("error:", error) },

4 onCompleted: { print("completed") })

5 .disposed(by: disposeBag)

6

7 Console output:

8 ---------------

9 Do any imperative task or process

10 next: any data

11 completed

Ahora se muestra un ejemplo de una envolvente diseñada para una API bastante conocida, Firebase
Database Realtime:

Example 1.15: Wrapping Firebase login task
1 public func rx_loginUser(user: User) -> Single<Bool> {

2

3 return Single<Bool>.create { single in

4 self.authReference.signIn(withEmail: user.email, password: user.password in

5 if error == nil {

6 single(.success(true))

7 }

8 else{

9 single(.success(false))

10 }

11 }

12 return Disposables.create()

13 }

14 }

Foundation 15

Otra posible envolvente para consultas:

Example 1.16: Wrapping Firebase single event task

1 func rx_observeSingleEvent(of event: DataEventType) -> Observable<DataSnapshot> {

2 return Observable.create({ (observer) -> Disposable in

3 self.observeSingleEvent(of: event, with: { (snapshot) in

4 observer.onNext(snapshot)

5 observer.onCompleted()

6 }, withCancel: { (error) in

7 observer.onError(error)

8 })

9 return Disposables.create()

10 })

11 }

Be Clean
Ítem 5: Mantenga limpia la cadena de operadores

La cadena de operadores es una herramienta poderosa para orquestar tareas. Mantener la definición
de la cadena de operadores de forma clara y limpia permite el mejor entendimiento de las tareas
orquestadas.

Considere el siguiente ejemplo:

Example 5.1: CleanWayRx/Items/Item5.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeToken(token)

3 .concatMap { saved in self.network.getUser(username) }

4 }

5 .subscribe(onNext: { user in print(user) })

6 .disposed(by: disposeBag)

El objetivo del code snippet anterior es orquestar una tarea que obtiene un token, luego lo almacena
en caché y posteriormente procede a realizar la consulta del usuario.

Ese código es válido, sin embargo podría ser mejorado de la siguiente forma:

Example 5.2: CleanWayRx/Items/Item5.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeToken(token) }

3 .concatMap { saved in self.network.getUser(username) }

4 .subscribe(onNext: { user in print(user) })

5 .disposed(by: disposeBag)

Code Snippet: RxJS - RxJava

¿Cuál es la diferencia entre el ejemplo de código 5.1 y el ejemplo de código 5.2?

El código del ejemplo 5.1 se suele utilizar para orquestar tareas con dependencias de resultados,
es decir cuando la siguiente tarea (downstream) requiere de los resultados de la tarea anterior
(upstream).

En el ejemplo 5.1, la operación getUser no necesita de los resultados de las operaciones anteriores,
es decir los resultados de getToken o storeToken. Por esa razón el código del ejemplo 5.1 puede ser
reemplazado por el código del ejemplo 5.2 y hacer más claro el código.

Ahora se muestra un caso en donde la dependencia de resultados es necesaria:

Be Clean 17

Example 5.3: CleanWayRx/Items/Item5.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeToken(token)

3 .concatMap { saved in self.network.getUser(username, token) }

4 }

5 .subscribe(onNext: { user in print(user) })

6 .disposed(by: disposeBag)

En este caso, la tarea getUser necesita el resultado de una de las tareas anteriores, es decir, el token
en este caso. Por lo tanto se emplea una concatenación interna para lograr acceder al valor, ya que
de lo contrario la variable token sería desconocida y generaría error.

Sin embargo en estos casos de dependencia de tareas también es posible aplanar las operaciones.
Esto es posible a través de Tuplas[^11] así:

Example 5.4: CleanWayRx/Items/Item5.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeToken(token).map{saved in (token, saved)} }

3 .concatMap { pair in self.network.getUser(username, pair.0) }

4 .subscribe(onNext: { user in print(user) })

5 .disposed(by: disposeBag)

Se recurre a una transformación con el operador map para generar y propagar una tupla con los
valores necesarios a la siguiente tarea.

Cuando los resultados de una tarea no influye en la ejecución de las siguientes tareas, se podría
ignorar el resultado. Por ejemplo en el siguiente código:

Example 5.5: CleanWayRx/Items/Item5.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeToken(token) }

3 .ignoreElements()

4 .andThen(self.network.getUser(username))

5 .subscribe(onNext: { user in print(user) })

6 .disposed(by: disposeBag)

La tarea getUser al no depender de los resultados de las tareas anteriores, podría ignorar los
elementos.

Error handling
Ítem 28: Gestionando los errores

La clave de una efectiva gestión de errores consiste en identificar plenamente la estrategia a utilizar
para reaccionar ante dichos escenarios.

Cuando se presenta un error en el stream, se podría reaccionar de las siguientes formas:

Escenario 1: No hacer nada, no controlar el error y dejar que se propague la excepción hasta el
Observer con la finalización inmediata de la ejecución de la cadena de operadores y apagado del
stream. Esta es la que nunca se debería seguir.

Escenario 2: Capturar el error, controlarlo y emitir un valor personalizado sin apagar el stream,
aunque con la finalización inmediata de la ejecución de la cadena de operadores.

Escenario 3: Capturar el error, registrarlo en log, e ignorarlo para suspender la ejecución de la cadena
de operadores sin apagar el stream.

Escenario 4: Se presenta el error, se reintenta la ejecución de la tarea un número limitado de veces
(n times). Si después de los reintentos persiste el error, se captura, controla y se suspende la ejecución
de la cadena de operadores sin apagar el stream.

Escenario 5: Se presenta el error, se reintenta la ejecución de la tarea un número limitado de veces
(n times) cada cierta ventana de tiempo (period). Si después de los reintentos persiste el error, se
captura, controla y se suspende la ejecución de la cadena de operadores sin apagar el stream.

Rx proporciona operadores que permiten diseñar diferentes estrategias para aplicar los escenarios
en mención.

A continuación se muestran los ejemplos con las estrategias recomendadas. Se hace énfasis en que
el escenario 1 se debe evitar.

Escenario 1

Error handling 19

Example 28.1: CleanWayRx/Items/Item28.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeTokenWithError(token) }

3 .concatMap { saved in self.network.getUser(username) }

4 .subscribe(onNext: { user in print("next:", user) },

5 onError: { error in print("error:", error) },

6 onCompleted: { print("completed") })

7 .disposed(by: disposeBag)

1 Console output:

2 ---------------

3 error: SampleError()

En este caso, la tarea storeTokenWithError generará un error. El resultado es la suspensión de la
emisión y sólo se ejecuta el contrato onError, ni siquiera onComplete. Recordar que onError y
onComplete son excluyentes, o se ejecuta uno, o se ejecuta el otro pero no ambos.

Escenario 2

Example 28.2: CleanWayRx/Items/Item28.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeTokenWithError(token) }

3 .concatMap { saved in self.network.getUser(username) }

4 .catchError({ error in Observable.just(User()) })

5 .subscribe(onNext: { user in print("next:", user) },

6 onError: { error in print("error:", error) },

7 onCompleted: { print("completed") })

8 .disposed(by: disposeBag)

1 Console output:

2 ---------------

3 next: User(name: "", email: "", posts: [])

4 completed

En este caso, el error es controlado y personalizado (se propagaUser vacío o con valores por defecto).
Además los contratos onNext y onComplete son alcanzados.

También hay que anotar que la tarea getUser no alcanza a ser ejecutada, ya que una vez se genera
el error en storeTokenWithError, se suspende la ejecución de la cadena de operadores.

¿Importa la ubicación del operador de error?

Sí. La captura del error se hace en el punto en donde se defina el operador. En una cadena de
operadores, lo recomendable es ubicarlo justo antes de la subscripción.

Escenario 3

Error handling 20

Example 28.3: CleanWayRx/Items/Item28.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeTokenWithError(token) }

3 .concatMap { saved in self.network.getUser(username) }

4 .catchError({ error in Observable.empty()

5 .do(onCompleted: { print(error) }) })

6 .subscribe(onNext: { user in print("next:", user) },

7 onError: { error in print("error:", error) },

8 onCompleted: { print("completed") })

9 .disposed(by: disposeBag)

1 Console output:

2 ---------------

3 SampleError()

4 completed

En este caso, cuando se presenta el error se procede a dejar el rastro en logs y se continúa con la
emisión ignorando el valor.

Escenario 4

Example 28.4: CleanWayRx/Items/Item28.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeTokenWithError(token) }

3 .concatMap { saved in self.network.getUser(username) }

4 .retry(2)

5 .catchError({ error in Observable.empty()

6 .do(onCompleted: { print(error) }) })

7 .subscribe(onNext: { user in print("next:", user) },

8 onError: { error in print("error:", error) },

9 onCompleted: { print("completed") })

10 .disposed(by: disposeBag)

1 Console output:

2 ---------------

3 SampleError()

4 completed

Similar al escenario anterior, sólo que se adiciona el operador retry. Importante siempre especificar el
número de intentos, ya que de no especificarse dicho parámetro el reintento podría ser permanente
y contraproducente para el performance de la aplicación.

Escenario 5

Error handling 21

Example 28.5: CleanWayRx/Items/Item28.swift

1 network.getToken("api-key")

2 .concatMap { token in self.cache.storeTokenWithError(token) }

3 .concatMap { saved in self.network.getUser(username) }

4 .retryWhen{ errors in errors

5 .do(onNext: { ignored in print("retrying...") })

6 .delay(.seconds(2), scheduler: MainScheduler.instance)

7 .take(4)

8 .concat(Observable.error(SampleError()))}

9 .catchError({ error in Observable.empty()

10 .do(onCompleted: { print(error) }) })

11 .subscribe(onNext: { user in print("next:", user) },

12 onError: { error in print("error:", error) },

13 onCompleted: { print("completed") })

14 .disposed(by: disposeBag)

1 Console output:

2 ---------------

3 retrying...

4 retrying...

5 retrying...

6 retrying...

7 retrying...

8 SampleError()

9 completed

Code Snippet: RxJS - RxJava

RxJS code snippet
Ítem 1: De Imperativo a Reactive

Code Snippet: RxSwift - RxJava

Example 1.1: of operator - clean-way-rx/src/app/items/item1.ts

1 of(["h", "e"], ["l", "l", "o"])

2 .subscribe(

3 next => console.log('next:', next));

4

5

6 Console output:

7 ---------------

8 next: (2) ["h", "e"]

9 next: (3) ["l", "l", "o"]

Example 1.2: just (of with single emision) operator - clean-way-rx/src/app/items/item1.ts

1 of(["h", "e", "l", "l", "o"])

2 .subscribe(

3 next => console.log('next:', next));

4

5

6 Console output:

7 ---------------

8 next: (5) ["h", "e", "l", "l", "o"]

Example 1.3: from operator - clean-way-rx/src/app/items/item1.ts

1 from(["h", "e", "l", "l", "o"])

2 .subscribe(

3 next => console.log('next:', next));

4

5

6 Console output:

7 ---------------

8 next: h

9 next: e

10 next: l

11 next: l

12 next: o

RxJS code snippet 23

Example 1.4: range operator - clean-way-rx/src/app/items/item1.ts

1 range(1, 5)

2 .subscribe(

3 next => console.log('next:', next));

4

5

6 Console output:

7 ---------------

8 next: 1

9 next: 2

10 next: 3

11 next: 4

12 next: 5

Example 1.5: defer operator - clean-way-rx/src/app/items/item1.ts

1 defer(() =>

2 of(["h", "e", "l", "l", "o"]))

3 .subscribe(

4 next => console.log('next:', next));

5

6 Console output:

7 ---------------

8 next: (5) ["h", "e", "l", "l", "o"]

Operadores de apoyo

Example 1.6: interval operator - clean-way-rx/src/app/items/item1.ts

1 const subscribe = interval(1000)

2 .subscribe(

3 next => console.log('next:', next));

4

5 setTimeout(() => {

6 subscribe.unsubscribe();

7 }, 5000);

8

9 Console output:

10 ---------------

11 next: 0

12 next: 1

13 next: 2

14 next: 3

15 next: 4

RxJS code snippet 24

Example 1.7: timer operator - clean-way-rx/src/app/items/item1.ts

1 const subscribe = timer(1000, 1000)

2 .subscribe(

3 next => console.log('next:', next));

4

5 setTimeout(() => {

6 subscribe.unsubscribe();

7 }, 5000);

8

9

10 Console output:

11 ---------------

12 next: 0

13 next: 1

14 next: 2

15 next: 3

16 next: 4

Example 1.8: empty operator - clean-way-rx/src/app/items/item1.ts

1 empty()

2 .subscribe({

3 next: () => console.log('Next'),

4 complete: () => console.log('Complete!')

5 });

6

7

8 Console output:

9 ---------------

10 Complete!

Example 1.9: never operator - clean-way-rx/src/app/items/item1.ts

1 never()

2 .subscribe({

3 next: () => console.log('Next'),

4 complete: () => console.log('Complete!')

5 });

RxJS code snippet 25

Example 1.10: error operator - clean-way-rx/src/app/items/item1.ts

1 throwError('SampleError!')

2 .subscribe({

3 next: val => console.log(val),

4 complete: () => console.log('Complete!'),

5 error: val => console.log(`Error: ${val}`)

6 });

7

8

9 Console output:

10 ---------------

11 Error: SampleError!

Example 1.11: clean-way-rx/src/app/items/item1.ts

1 taskWrapped(): Observable<any> {

2

3 return Observable.create(function (observer: any) {

4 // Here the imperative code is embedded

5 });

6 }

Code Snippet: RxSwift - RxJava

Example 1.12: clean-way-rx/src/app/items/item1.ts

1 imperativeTask() {

2 const data = "any data";

3 console.log("Do any imperative task or process");

4 return data;

5 }

Example 1.13: clean-way-rx/src/app/items/item1.ts

1 taskWrapped(task: any): Observable<any> {

2

3 return Observable.create(function (observer: any) {

4

5 let data = task;

6 if (data) {

7 observer.next(data);

8 observer.complete();

9 } else {

10 observer.error("SampleError");

11 }

12 });

13 }

Code Snippet: RxSwift - RxJava

RxJS code snippet 26

Example 1.14: clean-way-rx/src/app/items/item1.ts

1 this.taskWrapped(this.imperativeTask())

2 .subscribe({

3 next: val => console.log(val),

4 complete: () => console.log('Complete!'),

5 error: val => console.log(`Error: ${val}`)

6 });

7

8 Console output:

9 ---------------

10 Do any imperative task or process

11 any data

12 Complete!

Ítem 5: Mantenga limpia la cadena de operadores

Code Snippet: RxSwift - RxJava

Example 5.1: clean-way-rx/src/app/items/item5.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeToken(token)

4 .pipe(saved => this.network.getUser(username)))

5)

6 .subscribe(user => console.log(user));

Example 5.2: clean-way-rx/src/app/items/item5.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeToken(token)),

4 concatMap(saved => this.network.getUser(username))

5)

6 .subscribe(user => console.log(user));

Example 5.3: clean-way-rx/src/app/items/item5.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeToken(token)

4 .pipe(saved => this.network.getUserWithToken(username, token)))

5)

6 .subscribe(user => console.log(user));

RxJS code snippet 27

Example 5.4: clean-way-rx/src/app/items/item5.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeToken(token).pipe(map(saved => [token, saved]))),

4 concatMap(pair => this.network.getUserWithToken(username, pair[0] as Token))

5)

6 .subscribe(user => console.log(user));

Example 5.5: clean-way-rx/src/app/items/item5.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeToken(token)),

4 ignoreElements(),

5 concat(this.network.getUser(username))

6)

7 .subscribe(user => console.log(user));

Ítem 28: Gestionando los errores

Code Snippet: RxSwift - RxJava

Example 28.1: clean-way-rx/src/app/items/item28.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeTokenWithError(token)),

4 concatMap(saved => this.network.getUser(username))

5)

6 .subscribe(user => console.log(user));

Example 28.2: clean-way-rx/src/app/items/item28.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeTokenWithError(token)),

4 concatMap(saved => this.network.getUser(username)),

5 catchError(error => of(new User())))

6 .subscribe(

7 user => console.log('next:', user),

8 error => console.log('error:', error),

9 () => console.log('completed'));

RxJS code snippet 28

Example 28.3: clean-way-rx/src/app/items/item28.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeTokenWithError(token)),

4 concatMap(saved => this.network.getUser(username)),

5 catchError(error =>

6 empty()

7 .pipe(tap({ complete: () => console.log(error) }))

8))

9 .subscribe(

10 user => console.log('next:', user),

11 err => console.log('error:', err),

12 () => console.log('completed'));

Example 28.4: clean-way-rx/src/app/items/item28.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeTokenWithError(token)),

4 concatMap(saved => this.network.getUser(username)),

5 retry(2),

6 catchError(error =>

7 empty()

8 .pipe(tap({ complete: () => console.log(error) }))

9))

10 .subscribe(

11 user => console.log('next:', user),

12 err => console.log('error:', err),

13 () => console.log('completed'));

Example 28.5: clean-way-rx/src/app/items/item28.ts

1 this.network.getToken("api-key")

2 .pipe(

3 concatMap(token => this.cache.storeTokenWithError(token)),

4 concatMap(saved => this.network.getUser(username)),

5 retryWhen(errors => errors.pipe(

6 tap(() => console.log('retrying...')),

7 delay(2000),

8 take(4),

9 concat(throwError('SampleError!'))

10)),

11 catchError(error =>

12 empty()

13 .pipe(tap({ complete: () => console.log(error) }))

14))

15 .subscribe(

16 user => console.log('next:', user),

17 err => console.log('error:', err),

18 () => console.log('completed'));

RxJava code snippet
Ítem 1: De Imperativo a Reactive

Code Snippet: RxSwift - RxJS

Example 1.1: of (fromArray) operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.fromArray(Arrays.asList("h", "e"), Arrays.asList("l", "l", "o"))

3 .subscribe(element -> Log.d(TAG, "" + element)));

4

5 Console output:

6 ---------------

7 D/Item1: [h, e]

8 D/Item1: [l, l, o]

Example 1.2: just operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.just(Arrays.asList("h", "e", "l", "l", "o"))

3 .subscribe(element -> Log.d(TAG, "" + element)));

4

5

6 Console output:

7 ---------------

8 D/Item1: [h, e, l, l, o]

Example 1.3: from (fromIterable) operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.fromIterable(Arrays.asList("h", "e", "l", "l", "o"))

3 .subscribe(element -> Log.d(TAG, "" + element)));

4

5

6 Console output:

7 ---------------

8 D/Item1: h

9 D/Item1: e

10 D/Item1: l

11 D/Item1: l

12 D/Item1: o

RxJava code snippet 30

Example 1.4: range operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.range(1, 5)

3 .subscribe(element -> Log.d(TAG, "" + element)));

4

5

6 Console output:

7 ---------------

8 D/Item1: 1

9 D/Item1: 2

10 D/Item1: 3

11 D/Item1: 4

12 D/Item1: 5

Example 1.5: defer operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.defer(() ->

3 Observable.just(Arrays.asList("h", "e", "l", "l", "o")))

4 .subscribe(element -> Log.d(TAG, "" + element)));

5

6 Console output:

7 ---------------

8 D/Item1: [h, e, l, l, o]

Operadores de apoyo

Example 1.6: interval operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.interval(1, TimeUnit.SECONDS)

3 .subscribe(element -> Log.d(TAG, "" + element)));

4

5 sleep(5000);

6

7 Console output:

8 ---------------

9 D/Item1: 0

10 D/Item1: 1

11 D/Item1: 2

12 D/Item1: 3

13 D/Item1: 4

RxJava code snippet 31

Example 1.7: timer operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.timer(1, TimeUnit.SECONDS)

3 .subscribe(element -> Log.d(TAG, "" + element),

4 throwable -> Log.e(TAG, "error:" + throwable),

5 () -> Log.d(TAG, "completed")));

6

7 sleep(5000);

8

9

10 Console output:

11 ---------------

12 D/Item1: 0

13 D/Item1: completed

Example 1.8: empty operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.empty()

3 .subscribe(element -> Log.d(TAG, "" + element),

4 throwable -> Log.e(TAG, "error:" + throwable),

5 () -> Log.d(TAG, "completed")));

6

7

8 Console output:

9 ---------------

10 D/Item1: completed

Example 1.9: never operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.never()

3 .subscribe(element -> Log.d(TAG, "" + element),

4 throwable -> Log.e(TAG, "error:" + throwable),

5 () -> Log.d(TAG, "completed")));

6

7

8 Console output:

9 ---------------

RxJava code snippet 32

Example 1.10: error operator - CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 Observable.error(() -> {

3 throw new Exception("SampleError!");

4 })

5 .subscribe(element -> Log.d(TAG, "" + element),

6 throwable -> Log.e(TAG, "error:" + throwable),

7 () -> Log.d(TAG, "completed")));

8

9

10 Console output:

11 ---------------

12 E/Item1: error:java.lang.Exception: SampleError!

Example 1.11: CleanWayRx/app/src/main/java/../items/Item1.java

1 private Observable<String> taskWrapped() {

2

3 return Observable.create(emitter -> {

4 // Here the imperative code is embedded

5 });

6 }

Code Snippet: RxSwift - RxJS

Example 1.12: CleanWayRx/app/src/main/java/../items/Item1.java

1 private String imperativeTask() {

2

3 String data = "Any data";

4 Log.d(TAG, "Do any imperative task or process");

5 return data;

6 }

Example 1.13: CleanWayRx/app/src/main/java/../items/Item1.java

1 private Observable<String> taskWrapped(final Object task) {

2

3 return Observable.create(emitter -> {

4 try {

5 String data = (String) task;

6 emitter.onNext(data);

7 emitter.onComplete();

8 } catch (Throwable e) {

9 emitter.onError(e);

10 }

11 });

12 }

Code Snippet: RxSwift - RxJS

RxJava code snippet 33

Example 1.14: CleanWayRx/app/src/main/java/../items/Item1.java

1 compositeDisposable.add(

2 taskWrapped(this.imperativeTask())

3 .subscribe(data -> Log.d(TAG, "next: " + data),

4 throwable -> Log.e(TAG, "error: " + throwable),

5 () -> Log.d(TAG, "completed")));

6

7 Console output:

8 ---------------

9 D/Item1: Do any imperative task or process

10 D/Item1: next: Any data

11 D/Item1: completed

Ítem 5: Mantenga limpia la cadena de operadores

Code Snippet: RxSwift - RxJS

Example 5.1: CleanWayRx/app/src/main/java/../items/Item5.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeToken(token)

4 .concatMap(saved -> network.getUser(username)))

5 .subscribe(user -> Log.d(TAG, "User: " + user)));

Example 5.2: CleanWayRx/app/src/main/java/../items/Item5.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeToken(token))

4 .concatMap(saved -> network.getUser(username))

5 .subscribe(user -> Log.d(TAG, "User: " + user)));

Example 5.3: CleanWayRx/app/src/main/java/../items/Item5.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeToken(token)

4 .concatMap(saved -> network.getUser(username, token)))

5 .subscribe(user -> Log.d(TAG, "User: " + user)));

RxJava code snippet 34

Example 5.4: CleanWayRx/app/src/main/java/../items/Item5.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeToken(token)

4 .map(saved -> new Pair<>(token, saved)))

5 .concatMap(pair -> network.getUser(username, pair.first))

6 .subscribe(user -> Log.d(TAG, "User: " + user)));

Example 5.5: CleanWayRx/app/src/main/java/../items/Item5.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeToken(token))

4 .ignoreElements()

5 .andThen(network.getUser(username))

6 .subscribe(user -> Log.d(TAG, "User: " + user)));

Ítem 28: Gestionando los errores

Code Snippet: RxSwift - RxJS

Example 28.1: CleanWayRx/app/src/main/java/../items/Item28.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeTokenWithError(token))

4 .concatMap(saved -> network.getUser(username))

5 .subscribe(element -> Log.d(TAG, "" + element),

6 throwable -> Log.e(TAG, "error:" + throwable),

7 () -> Log.d(TAG, "completed")));

Example 28.2: CleanWayRx/app/src/main/java/../items/Item28.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeTokenWithError(token))

4 .concatMap(saved -> network.getUser(username))

5 .onErrorResumeNext(throwable -> Observable.just(new User()))

6 .subscribe(user -> Log.d(TAG, "next: " + user),

7 throwable -> Log.e(TAG, "error: " + throwable),

8 () -> Log.d(TAG, "completed")));

RxJava code snippet 35

Example 28.3: CleanWayRx/app/src/main/java/../items/Item28.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeTokenWithError(token))

4 .concatMap(saved -> network.getUser(username))

5 .onErrorResumeNext(throwable -> {

6 Log.d(TAG, Objects.requireNonNull(throwable.getMessage()));

7 return Observable.empty();

8 })

9 .subscribe(user -> Log.d(TAG, "next: " + user),

10 throwable -> Log.e(TAG, "error: " + throwable),

11 () -> Log.d(TAG, "completed")));

Example 28.4: CleanWayRx/app/src/main/java/../items/Item28.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeTokenWithError(token))

4 .concatMap(saved -> network.getUser(username))

5 .retry(2)

6 .onErrorResumeNext(throwable -> {

7 Log.d(TAG, Objects.requireNonNull(throwable.getMessage()));

8 return Observable.empty();

9 })

10 .subscribe(user -> Log.d(TAG, "next: " + user),

11 throwable -> Log.e(TAG, "error: " + throwable),

12 () -> Log.d(TAG, "completed")));

Example 28.5: CleanWayRx/app/src/main/java/../items/Item28.java

1 compositeDisposable.add(

2 this.network.getToken("api-key")

3 .concatMap(token -> cache.storeTokenWithError(token))

4 .concatMap(saved -> network.getUser(username))

5 .retryWhen(errors -> errors

6 .doOnNext(ignored -> Log.d(TAG, "retrying..."))

7 .delay(2, TimeUnit.SECONDS)

8 .take(4)

9 .concatWith(Observable.error(new Throwable())))

10 .onErrorResumeNext(throwable -> {

11 Log.d(TAG, Objects.requireNonNull(throwable.getMessage()));

12 return Observable.empty();

13 })

14 .subscribe(user -> Log.d(TAG, "next: " + user),

15 throwable -> Log.e(TAG, "error: " + throwable),

16 () -> Log.d(TAG, "completed")));

	Tabla de contenidos
	Prefacio
	Acerca del libro
	Acerca del código fuente
	Desarrollo del contenido
	Glosario
	Audiencia
	Consultas y/o contacto
	Versiones de IDEs y tecnologías usadas
	Change log

	Resumen de reglas
	Foundation
	Ítem 1: De Imperativo a Reactive

	Be Clean
	Ítem 5: Mantenga limpia la cadena de operadores

	Error handling
	Ítem 28: Gestionando los errores

	RxJS code snippet
	RxJava code snippet

