The Clean Way to
Use RX

Manual de guia y consejos
para implementar con
extensiones RX

/ :
Code snippets en RxSwift,
RxJava, y RxJS incluidos.

Yair Carreno

The Clean Way to Use Rx

Manual de guia y consejos para implementar con
extensiones Rx.

Yair Carreno

Este libro est4 a la venta en http://leanpub.com/the-clean-way-to-use-rx-spanish

Esta version se publico en 2020-07-15

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicacién. Lean Publishing es el acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener retroalimentacion del lector hasta conseguir el libro
adecuado.

© 2020 Yair Carreno

http://leanpub.com/the-clean-way-to-use-rx-spanish
http://leanpub.com/
http://leanpub.com/manifesto

Indice general

Prefacio 1
Acercadel libro L 1
Acercadel codigo fuente 1
Desarrollo del contenido L 2
Glosario 3
Audiencia 3
Consultasy/ocontacto 3
Versiones de IDEs y tecnologiasusadas 4
Changelog 4

Resumendereglas 5

Foundation 7
ftem 1: De Imperativoa Reactive 7

BeClean. 16
ftem 5: Mantenga limpia la cadena de operadores 16

Errorhandling 18
[tem 28: Gestionando los errores. 18

RxJS code snippet 22

RxJava code snippet L 29

Prefacio

Acerca del libro

El presente trabajo agrupa las diferentes practicas usadas en la implementacion de componentes de
software a través de extensiones Rx. Dichas practicas son organizadas en 35 items de aplicacion y
por cada item se analiza cuales son practicas de c6digo recomendadas y cuales son aquellas practicas
que se deben evitar.

También podria decirse que el presente documento es la recopilacion de buenas practicas aprendidas
a través de la experiencia propia adquirida en proyectos empresariales, recomendaciones recibidas
de foros, blogs, workshops y en general de analisis dados por expertos en el area, incluyendo las
recomendaciones dadas en los sitios oficiales de cada extension®.

Este libro también pretende ser un manual de referencia practico a la hora de implementar cédigo Rx,
es por ello que gran parte del material del libro lo compone ejemplos de code snippet escrito en los
principales lenguajes de programacion para clientes tanto Frontend (moéviles, web) como Backend,
es decir, JavaScript, Swift, Java. Para la edicion siguiente se tiene planeado incluir Kotlin.

Los conceptos estudiados en cada uno de los items son agnosticos al lenguaje de programacion, son
pocos los casos en donde cierta capacidad no se encuentra disponible en una extensiéon y en cuyo
caso se hace la respectiva anotacion en el item.

Se pretende que una vez estudiados los conceptos de cada item, el lector se beneficie con el mayor
entendimiento sobre como opera Rx y dote al lector de herramientas para aplicar buenas practicas
que al final se vean reflejadas en las soluciones en el &mbito de:

« Cddigo limpio (Clean Code).

« Mejor performance:
« Mitigar escenarios de bugs.

Acerca del codigo fuente

En el libro, los ejemplos de code snippet se presentan en Swift. El lector también podra encontrar el
codigo equivalente en JavaScript y Java en los capitulos:

« RxJS code snippet
« RxJava code snippet

'ReactiveX

http://reactivex.io/

Prefacio 2
El lector también podra acceder a los repositorios publicos escritos para cada tecnologia en:

« Clean Way Rx in JavaScript®
+ Clean Way Rx in Swift®
+ Clean Way Rx in Java*

Desarrollo del contenido

El desarrollo del contenido inicia desde el analisis de los conceptos fundamentales tanto de Reactive
programming como de Functional programming. La seccién Foundation, presenta la forma en que
dichos conceptos son usados en Rx de forma practica. Los items descritos en esta seccion son la base
para los posteriores items.

En la seccion siguiente nombrada Be Clean, se hace énfasis en el codigo limpio, bien escrito y de
facil lectura. Rx simplifica sustancialmente el codigo escrito necesario para cumplir con una tarea,
sin embargo se puede facilmente perder la ventaja de la simplicidad y pasar al otro extremo en donde
se hace complejo el entendimiento del cddigo por estar escrito de forma no limpia.

Uno de los actores principales en Rx es el flujo de datos (data streams). Dicho flujo de datos también
se puede relacionar con otras fuentes generadoras de flujos y por ende establecer dependencias
entre ellos. La seccion Flow dependencies analiza las consideraciones a tener en cuenta cuando se
establecen dichas dependencias entre flujos.

Los operadores son otro de los actores claves en Rx, aprender a distinguirlos y saber cuando usar
uno u otro es una de las habilidades claves que se adquieren durante el desarrollo y disefio con Rx.
En la seccion Operators, se involucran los items con las recomendaciones del uso de los operadores.

El tiempo entra a ser una variable a tener en cuenta cuando se orquesta flujos de datos, esto es
analizado en la secciéon Timing. Una buena administraciéon de los momentos y tiempos de ejecucion
generan los resultados esperados.

La siguiente seccion trata un tema relevante para cualquier aplicacion y tiene que ver con la gestion
y administracién de los escenarios de error. Rx cuenta con un conjunto importante de operadores y
funciones que permiten disefiar un control efectivo de los errores. En la seccion Error Handling se
analiza dichas opciones.

Las dos secciones siguiente Multicasting y Multi-threading podrian lucir parecidas pero en realidad
son muy distintas. En Multicasting se analiza las practicas a la hora de vincular multiples fuentes
emisoras de datos y multiples receptores de dichos datos. En cambio, en la seccion Multi-threading se
analiza la aplicacion de concurrencia y paralelizacién de tareas en multiples contextos de ejecucién
en el ambito de procesamiento.

*https://github.com/yaircarreno/Clean- Way-Rx- JavaScript
*https://github.com/yaircarreno/Clean- Way- Rx- Swift
*https://github.com/yaircarreno/Clean- Way-Rx-Java

https://github.com/yaircarreno/Clean-Way-Rx-JavaScript
https://github.com/yaircarreno/Clean-Way-Rx-Swift
https://github.com/yaircarreno/Clean-Way-Rx-Java
https://github.com/yaircarreno/Clean-Way-Rx-JavaScript
https://github.com/yaircarreno/Clean-Way-Rx-Swift
https://github.com/yaircarreno/Clean-Way-Rx-Java

Prefacio 3

Y finalizando, se tiene la seccion Optimizing, la cuél contiene un par de items referentes a buenas
practicas que evitan generacion de fugas de memoria y buen uso de los recursos de memoria usados
por los componentes disefiados con Rx.

Como el lector podra apreciar, el contenido no se desarrolla siguiendo una linea de temas basicos,
medios y avanzados, sino que al contrario todo se encuentra relacionado, a tal punto que existen
items que se encuentran relacionados con otros y por tanto se complementan.

Glosario

Durante el desarrollo de los temas en el libro, el lector podra encontrar algunos términos los cuales
son descritos a continuacion para dar mayor claridad.

Contrato: Hace referencia a los eventos que podrian presentarse en una emision y los cuales
corresponden a onNext, onComplete o onError.

Imperativo: Se refiere a la forma tradicional de programacion basada en la ejecucion de tareas de
forma secuencial.

Reactivo: Hace referencia al estilo de programaciéon basado en la ejecucion de tareas de forma
sincronica o asincroénicas y para cuyos propositos se emplea las extensiones Rx.

Rx: Este término sera usado para hacer referencia a Reactive programming.

Audiencia

Recomiendo esta lectura para todo actor que participa en procesos de disefio, implementacion y va-
lidacion de componentes de software a través de Reactive programming y Functional programming,
apoyados en el uso de extensiones Rx.

Ya sea que se trate de un componente en Frontend o Backend, el lector podra aplicar los conocimien-
tos de este libro al momento de implementar codigo con extensiones Rx. Por ejemplo, permite aplicar
disefios de patrones tales como Uniderectional State Flow, MVVM, Optimistic Ul y otros patrones
que podria requerir la arquitectura de la solucion’.

Consultas y/o contacto

Este trabajo pretender guiar al lector en la busqueda de buenas practicas de disefio en soluciones,
ha sido desarrollado desde mi punto de vista y teniendo en cuenta las recomendaciones de fuentes
expertas citadas en la bibliografia, muy seguramente el lector podria encontrar alternativas a las
técnicas expuestas que pueden variar un poco a las que aqui se encuentren consignadas y esa es
precisamente la idea del presente trabajo.

*Clean Architecture in i0S

https://leanpub.com/clean-architecture-in-ios

Prefacio 4

Si el lector encuentra en el libro algun aspecto que merezca ser revisado son bienvenidos los
comentarios y la retroalimentacion que se dé al respecto. Para ello y cualquier duda o inquietud
se encuentra disponible los siguientes canales:

+ Email: yaircarreno@gmail.com

« Twitter: @yaircarreno®
« Blog: yaircarreno.com’

Idioma de textos en las imagenes

Por estandar, las imagenes presentadas a lo largo del presente libro contienen textos en inglés.

Idioma en Code Snippets

Por estandar, los ejemplos de codigo que acompanan el presente libro se encuentran en inglés.
También algunos textos principales se encuentran en Inglés para mantener consistencia con la
documentacion oficial.

Versiones de IDEs y tecnologias usadas

« Xcode 11.5 - Swift 5
+ Android Studio 4.0 - Java 1.8.0
« Visual Studio Code 1.47.1 - TypeScript 3.8.3 - Angular 9.1.0

Change log

Para mantener al lector informado sobre las actualizaciones y cambios en el presente libro, se
proporciona el capitulo Changelog.

“https://twitter.com/yaircarreno
"https://www.yaircarreno.com/

https://twitter.com/yaircarreno
https://www.yaircarreno.com/
https://twitter.com/yaircarreno
https://www.yaircarreno.com/

Resumen de reglas

Foundation

Item 1: De Imperativo a Reactive
ftem 2: Focus en funciones puras
ftem 3: Verifique la naturaleza de los streams cuando sean vinculados

ftem 4: Decida cuando utilizar un Observable tipo empty o never

Be Clean

ftem 5: Mantenga limpia la cadena de operadores

ftem 6: Defina cadenas funcionales de operadores

ftem 7: No anide las suscripciones, utilice la cadena de operadores
ftem 8: Utilice Rx cuando existan eventos involucrados

ftem 9: No orqueste operaciones Rx con programacién imperativa
ftem 10: No incluya cédigo Rx en operadores Do

ftem 11: Propague envolventes (wrappers), no unidades

ftem 12: Evite propagar valores nulos, recurra a Optionals

Item 13: Recuerde que puede usar filter, en lugar de if

Item 14: Es posible dividir la emisién cuando se presente if-else
item 15: Compartir codigo no es lo mismo que compartir emisiones
Item 16: No todo se delega al Observer

Item 17: Retrase lo que mas pueda la definicién del Schedule

Flow dependencies

Item 18: Verifique eventos de finalizacién o error cuando utilice los filtros
Item 19: Cuidado con los operadores de reduccién en streams infinitos

Item 20: Mantenga consistencia en la naturaleza de la emisién

Resumen de reglas

ftem 21: Sea cuidadoso cuando dependa de onComplete
ftem 22: Un paso adicional en la cadena de operadores

ftem 23: Orquestando y/o combinando de forma efectiva

Operators

ftem 24: Seleccione adecuadamente los operadores

ftem 25: Utilice el operador map sélo para transformaciones
Timing

Item 26: Asegtirese ejecutar las tareas en el momento adecuado

ftem 27: Controle los tiempos de ejecucién en tareas dependientes

Error handling

Item 28: Gestionando los errores

Multicasting

Item 29: Compartir Observables, compartir Observers o ambos

Multi-threading

Item 30: Rx es single-threaded por defecto
Item 31: ;Importa el orden de los operadores subscribeOn and observeOn?
Item 32: Algunos operadores traen un Scheduler predefinido

Item 33: Negociando con la UI
Optimizing

Item 34: Cancelando adecuadamente la subscripcién

Item 35: ;Cuando usar Subjects o Traits?

Foundation

item 1: De Imperativo a Reactive

Relacionar cddigo imperativo con cédigo reactive es posible siempre y cuando se tengan en cuenta
las capacidades de cada uno de estos estilos.

Es normal que la solucion contenga bloques de cédigo tanto imperativo como reactive. En realidad
el origen de codigo reactive es cddigo imperativo al cual se le agrega capacidades heredadas de
programacion funcional y capacidades multithreaded.

Las reglas basicas para relacionar cédigo imperativo y cddigo reactive podrian resumirse en los
siguientes puntos:

1. La orquestacion debe ocurrir solo entre codigo Rx, es decir, no se deberia orquestar tareas Rx

usando codigo imperativo.
2. Codigo imperativo puede ser orquestado con tareas Rx siempre y cuando el codigo imperativo
sea envuelto en cédigo Rx.

El lector encontrara en item 8, item 9 y item 10, los efectos de no cumplir las dos recomendaciones

anteriores.
Ahora, ;Como se envuelve codigo imperativo en codigo Rx?

Mediante dos mecanismos disponibles:

« A través de operadores de creacion.
A través de las funciones de creacion.

Pero antes de disefiar la envolvente tenga en cuenta el siguiente analisis planteado en la figura 1.1.

Foundation 8

You'll need to
wrap the task

'

The task is
Is the task No asynchronous,
synchronous? > maybe a listener
or callback
create
Yes
defer
of, just, from,
range I
Proceed to
L

orchestra the task

l

Figure 1.1 Wrapping tasks to Rx

« Valide primero si la tarea ya cuenta con una envolvente. Las librerias de terceros, por ejemplo,
proporcionan estas implementaciones cuando se trata de integrar SDK de terceros. Incluso en
el propio proyecto podria ya existir una utilidad con dicha envolvente.

0 N O O B W N

=
= o ©

Foundation 9

« En caso de requerir la envolvente, tenga en cuenta si la tarea realiza la operacion de forma
sincrénica o asincronica. Identifique esto verificando si la tarea la ejecuta un listener, callback
o cualquier componente de naturaleza asincronica.

A veces se cree por error que toda operacion realizada con Rx es multithreaded por defecto. La
verdad es que Rx es single-threaded por defecto["8].

A menos que se indique lo contrario, toda operacion correra sobre el mismo hilo asignado por
defecto. En el Item 30: Rx es single-threaded por defecto se analiza esta caracteristica.

« Si la tarea es sincronica, podria crearse a través de los operadores de creacion un Observable
que envuelva la tarea.

« Si la tarea es asincrénica, podria ser envuelta a través de las funciones de creacion y crear
Traits, es decir, Observables de tipo Single, Complete o Maybe de acuerdo al requerimiento y
teniendo pleno conocimiento de los contratos a cumplir por parte del Observer.

A continuacion se presenta algunas de las opciones para envolver tareas a través de operadores.

o Nombre de operadores

Tenga en cuenta que algunos operadores se nombran de forma distinta o no se encuentran
disponibles en todos los lenguajes.

Operadores de creacion

Rx cuenta con los siguientes mecanismos para envolver tareas a través de operadores:

Code Snippet: RxJS - RxJava

Example 1.1: of operator - CleanWayRx/Items/Item1.swift

Observable.of(["h", "e"], ["1", "1", "o"])
.subscribe(onNext: { element in
print(element)
9]
.disposed(by: disposeBag)

Console output:

[Hhu’ ueu]
["1”/ nln, nou]

N O O & W N =

(00}

[

BN I I NI

o

10
11
12

0w N O O B W N

10
11
12
13
14

Foundation

Example 1.2: just operator - CleanWayRx/Items/Item1.swift

10

Observable.just(["h“, ", "1M, 1", uou])
.subscribe(onNext: { element in
print(element)

D)
.disposed(by: disposeBag)

Console output:

[Hhu’ uen, ulnl Hlu’ uou]

Example 1.3: from operator - CleanWayRx/Items/Item1.swift

Observable.from(["h", Hen, ||1n/ ulul non])
.subscribe(onNext: { element in
print(element)

9]
.disposed(by: disposeBag)

Console output:

Example 1.4: range operator - CleanWayRx/Items/Item1.swift

Observable.range(start: 1, count: 5)
.subscribe(onNext: { element in
print(element)
9]
.disposed(by: disposeBag)

Console output:

[

W I O O B W

10

N
L O © 00 9 O O & W N -

I =N
g o W N

[

w0 N O O » W

11

Foundation

Example 1.5: defer operator - CleanWayRx/Items/Item1.swift

11

Observable.deferred {

return Observable.just(["h", "e", "1", "1", "o"])
}
.subscribe(onNext: { element in print(element) })
.disposed(by: disposeBag)

Console output:

[Hhu’ uenl uln, Hlu, nou]

Operadores de apoyo

Estos son también operadores de creacion no destinados a envolver sino a apoyar procesos testing,

depuracion y del manejo de errores:

Code Snippet: RxJS - RxJava

Example 1.6: interval operator - CleanWayRx/Items/Item1.swift

let subscription = Observable<Int>
.interval(.seconds(1), scheduler: scheduler)
.subscribe { event in print(event) }

Thread.sleep(forTimelnterval: 5.0)
subscription.dispose()

Console output:
next(0)
next(1)
next(2)
next(3)
next(4)

Example 1.7: timer operator - CleanWayRx/Items/Item1.swift

let subscription = Observable<Int>.timer(.seconds(2), scheduler: scheduler)

.subscribe { event in print(event) }

Thread.sleep(forTimelnterval: 5)

subscription.dispose()

Console output:

next(0)
completed

o O B W N =

W N -

(&)

[

w

O O

Foundation

Example 1.8: empty operator - CleanWayRx/Items/Item1.swift

12

Observable<String>.empty()
.subscribe { event in print(event) }
.disposed(by: disposeBag)

Console output:

completed

Example 1.9: never operator - CleanWayRx/Items/Item1.swift

Observable<String>.never()
.subscribe { event in print(event) }
.disposed(by: disposeBag)

Console output:

Example 1.10: error operator - CleanWayRx/Items/Item1.swift

Observable<String> .error(SampleError())
.subscribe { event in print(event) }
.disposed(by: disposeBag)

Console output:

error(SampleError())

Funciones de creacion

Cuando se trata de envolver una tarea asincronica que forma parte de una API externo y en cuyo
caso no es suficiente con un operador de creacion, se recurre a la creacion del Observable a través

de las funciones de creacion.

La anatomia para envolver una tarea es la siguiente:

W N O O B W N =

W N =

= O O

Foundation 13

Example 1.11: CleanWayRx/Items/Item1.swift

private func taskWrapped() -> Observable<Any> {

return Observable.create { observer in

// Here the imperative code is embedded
return Disposables.create()

Code Snippet: RxJs - RxJava

Los puntos importantes para disefiar el Observable a partir de Observable.create y cdigo imperativo
son:

1. Tener en cuenta los contratos que podria necesitar el Observer, es decir, onNext, onComplete y
onError.

2. De acuerdo a lo definido en el punto 1, analizar si se usa un Observable general o uno de los
tipos: Single, Complete o Maybe.

3. Manejar los posibles escenarios que generan error y emitir a través del contrato onError.

4. Asegurarse de liberar las respectivas referencias fuertes y cualquier listener vinculado por el
codigo imperativo.

5. Considerar si es necesario manejar escenarios de Backpressure["9].

Considere el siguiente ejemplo de implementacion de un envolvente:

Example 1.12: CleanWayRx/Items/Item1.swift

private func imperativeTask() -> Any? {

let data = "any data"

print("Do any imperative task or process")

return data

La tarea imperativa llamada imperativeTask podria generar un resultado a partir de un calculo o
simplemente realizar una tarea que no genera un resultado pero si una accién finalizada.

Cualquiera que sea el caso, se crea un Observable con el resultado con datos o si ellos. Se definen

las condiciones para emitir un evento de error, un evento de completado o un evento de emision del
item:

W N -

© 0w 3 o O

10
11
12
13
14

N O O & W N =

[00]

10
11

© 00 I O O B W N =

L
W N o

Foundation 14

Example 1.13: CleanWayRx/Items/Item1.swift

private func taskWrapped(task: Any?) -> Observable<Any> {

return Observable.create { observer in

guard let data = task else {
observer .onError(SampleError())
return Disposables.create {}

observer .onNext(data)
observer.onCompleted()
return Disposables.create()

Code Snippet: RxJs - RxJava
A través de la envolvente, la tarea queda disponible para ser orquestada y controlada de forma Rx:

Example 1.14: CleanWayRx/Items/Item1.swift

taskWrapped(task: self.imperativeTask())

.subscribe(onNext: { data in print("next:", data) },
onError: { error in print("error:", error) },
onCompleted: { print("completed") })

.disposed(by: disposeBag)

Console output:

Do any imperative task or process
next: any data

completed

Ahora se muestra un ejemplo de una envolvente disefiada para una API bastante conocida, Firebase
Database Realtime:

Example 1.15: Wrapping Firebase login task

public func rx_loginUser(user: User) -> Single<Bool> {

return Single<Bool>.create { single in
self.authReference.signIn(withEmail: user.email, password: user.password in
if error == nil {
single(.success(true))
}
elsef{
single(.success(false))

}

return Disposables.create()

N

, 0 O 0 9N 0O O & W

=

Foundation

Otra posible envolvente para consultas:

Example 1.16: Wrapping Firebase single event task

func rx_observeSingleEvent(of event: DataEventType) -> Observable<DataSnapshot> {
return Observable.create({ (observer) -> Disposable in
self.observeSingleEvent(of: event, with: { (snhapshot) in
observer .onNext (snapshot)
observer .onCompleted()
}, withCancel: { (error) in
observer .onError(error)
b

return Disposables.create()

9

a s W N

o

g W N

Be Clean

item 5: Mantenga limpia la cadena de operadores

La cadena de operadores es una herramienta poderosa para orquestar tareas. Mantener la definicion
de la cadena de operadores de forma clara y limpia permite el mejor entendimiento de las tareas
orquestadas.

Considere el siguiente ejemplo:

Example 5.1: CleanWayRx/Items/Item5.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeToken(token)
.concatMap { saved in self.network.getUser(username) }
}
.subscribe(onNext: { user in print(user) })
.disposed(by: disposeBag)

El objetivo del code snippet anterior es orquestar una tarea que obtiene un token, luego lo almacena
en caché y posteriormente procede a realizar la consulta del usuario.

Ese codigo es valido, sin embargo podria ser mejorado de la siguiente forma:

Example 5.2: CleanWayRx/Items/Item5.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeToken(token) }
.concatMap { saved in self.network.getUser(username) }
.subscribe(onNext: { user in print(user) })
.disposed(by: disposeBag)

Code Snippet: RxJS - RxJava

¢Cual es la diferencia entre el ejemplo de cédigo 5.1y el ejemplo de cédigo 5.2?

El codigo del ejemplo 5.1 se suele utilizar para orquestar tareas con dependencias de resultados,
es decir cuando la siguiente tarea (downstream) requiere de los resultados de la tarea anterior
(upstream).

En el ejemplo 5.1, la operacion getUser no necesita de los resultados de las operaciones anteriores,
es decir los resultados de getToken o storeToken. Por esa razoén el codigo del ejemplo 5.1 puede ser
reemplazado por el codigo del ejemplo 5.2 y hacer mas claro el codigo.

Ahora se muestra un caso en donde la dependencia de resultados es necesaria:

o O B W N

W N =

g

o O B W N =

Be Clean 17

Example 5.3: CleanWayRx/Items/Item5.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeToken(token)
.concatMap { saved in self.network.getUser(username, token) }
}
.subscribe(onNext: { user in print(user) })
.disposed(by: disposeBag)

En este caso, la tarea getUser necesita el resultado de una de las tareas anteriores, es decir, el token
en este caso. Por lo tanto se emplea una concatenacién interna para lograr acceder al valor, ya que
de lo contrario la variable token seria desconocida y generaria error.

Sin embargo en estos casos de dependencia de tareas también es posible aplanar las operaciones.
Esto es posible a través de Tuplas["11] asi:

Example 5.4: CleanWayRx/Items/Item5.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeToken(token).map{saved in (token, saved)} }
.concatMap { pair in self.network.getUser(username, pair.0) }
.subscribe(onNext: { user in print(user) })
.disposed(by: disposeBag)

Se recurre a una transformacién con el operador map para generar y propagar una tupla con los
valores necesarios a la siguiente tarea.

Cuando los resultados de una tarea no influye en la ejecucion de las siguientes tareas, se podria
ignorar el resultado. Por ejemplo en el siguiente codigo:

Example 5.5: CleanWayRx/Items/Item5.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeToken(token) }
.ignoreElements()
.andThen(self.network.getUser (username))
.subscribe(onNext: { user in print(user) })
.disposed(by: disposeBag)

La tarea getUser al no depender de los resultados de las tareas anteriores, podria ignorar los
elementos.

Error handling

item 28: Gestionando los errores

La clave de una efectiva gestion de errores consiste en identificar plenamente la estrategia a utilizar
para reaccionar ante dichos escenarios.

Cuando se presenta un error en el stream, se podria reaccionar de las siguientes formas:

Escenario 1: No hacer nada, no controlar el error y dejar que se propague la excepcién hasta el
Observer con la finalizacién inmediata de la ejecucién de la cadena de operadores y apagado del
stream. Esta es la que nunca se deberia seguir.

Escenario 2: Capturar el error, controlarlo y emitir un valor personalizado sin apagar el stream,
aunque con la finalizacién inmediata de la ejecucion de la cadena de operadores.

Escenario 3: Capturar el error, registrarlo en log, e ignorarlo para suspender la ejecucion de la cadena
de operadores sin apagar el stream.

Escenario 4: Se presenta el error, se reintenta la ejecucion de la tarea un nimero limitado de veces
(n times). Si después de los reintentos persiste el error, se captura, controla y se suspende la ejecucién
de la cadena de operadores sin apagar el stream.

Escenario 5: Se presenta el error, se reintenta la ejecucion de la tarea un numero limitado de veces
(n times) cada cierta ventana de tiempo (period). Si después de los reintentos persiste el error, se
captura, controla y se suspende la ejecucion de la cadena de operadores sin apagar el stream.

Rx proporciona operadores que permiten disefiar diferentes estrategias para aplicar los escenarios
en mencion.

A continuacion se muestran los ejemplos con las estrategias recomendadas. Se hace énfasis en que
el escenario 1 se debe evitar.

Escenario 1

W

o o

=~

W N O O b W N

w

Error handling 19

Example 28.1: CleanWayRx/Items/Item28.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeTokenWithError(token) }
.concatMap { saved in self.network.getUser(username) }
.subscribe(onNext: { user in print("next:", user) },
onError: { error in print("error:", error) },
onCompleted: { print("completed") })
.disposed(by: disposeBag)

Console output:

error: SampleError()
En este caso, la tarea storeTokenWithError generara un error. El resultado es la suspension de la

emision y solo se ejecuta el contrato onError, ni siquiera onComplete. Recordar que onError y
onComplete son excluyentes, o se ejecuta uno, o se ejecuta el otro pero no ambos.

Escenario 2

Example 28.2: CleanWayRx/Items/Item28.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeTokenWithError(token) }
.concatMap { saved in self.network.getUser(username) }
.catchError({ error in Observable. just(User()) })
.subscribe(onNext: { user in print("next:", user) },
onError: { error in print("error:", error) },
onCompleted: { print("completed") })
.disposed(by: disposeBag)

Console output:

nn nn

next: User(name: , email: , posts: [])

completed

En este caso, el error es controlado y personalizado (se propaga User vacio o con valores por defecto).
Ademas los contratos onNext y onComplete son alcanzados.

También hay que anotar que la tarea getUser no alcanza a ser ejecutada, ya que una vez se genera
el error en storeToken WithError, se suspende la ejecucion de la cadena de operadores.

¢Importa la ubicacién del operador de error?

Si. La captura del error se hace en el punto en donde se defina el operador. En una cadena de
operadores, lo recomendable es ubicarlo justo antes de la subscripcion.

Escenario 3

BwWw N

w N =

IS

S © O N O O

BwWw N

Error handling 20

Example 28.3: CleanWayRx/Items/Item28.swift

network .getToken("api-key")
.concatMap { token in self.cache.storeTokenWithError(token) }
.concatMap { saved in self.network.getUser(username) }
.catchError({ error in Observable.empty()
.do(onCompleted: { print(error) 1}) })
.subscribe(onNext: { user in print("next:", user) },
onError: { error in print("error:", error) },
onCompleted: { print("completed") })
.disposed(by: disposeBag)

Console output:

SampleError()
completed

En este caso, cuando se presenta el error se procede a dejar el rastro en logs y se continda con la
emision ignorando el valor.

Escenario 4

Example 28.4: CleanWayRx/Items/Item28.swift

network .getToken("api-key")

.concatMap { token in self.cache.storeTokenWithError(token) }

.concatMap { saved in self.network.getUser(username) }

.retry(2)

.catchError({ error in Observable.empty()

.do(onCompleted: { print(error) 1}) })

.subscribe(onNext: { user in print("next:", user) },
onError: { error in print("error:", error) },
onCompleted: { print("completed") })

.disposed(by: disposeBag)

Console output:

SampleError()
completed

Similar al escenario anterior, s6lo que se adiciona el operador retry. Importante siempre especificar el
numero de intentos, ya que de no especificarse dicho parametro el reintento podria ser permanente
y contraproducente para el performance de la aplicacion.

Escenario 5

©O© 00 1 O U b W N =

Error handling

Example 28.5: CleanWayRx/Items/Item28.swift

21

network .getToken("api-key")
.concatMap { token in self.cache.storeTokenWithError(token) }
.concatMap { saved in self.network.getUser(username) }
.retryWhen{ errors in errors
.do(onNext: { ignored in print("retrying...") })
.delay(.seconds(2), scheduler: MainScheduler.instance)
.take(4)
.concat(Observable.error(SampleError()))}
.catchError({ error in Observable.empty()
.do(onCompleted: { print(error) 1}) })
.subscribe(onNext: { user in print("next:", user) },
onError: { error in print("error:", error) },
onCompleted: { print("completed") })
.disposed(by: disposeBag)

Console output:
retrying. ..
retrying. ..
retrying. ..
retrying. ..
retrying. ..
SampleError()
completed

Code Snippet: RxJS - RxJava

O O s W N

w

O O B W N =

w

O U o W N

S
N »~ O O 0 3

RxJS code snippet

item 1: De Imperativo a Reactive

Code Snippet: RxSwift - RxJava

Example 1.1: of operator - clean-way-rx/src/app/items/item1.ts

of([“h”, "e“], [Hlu, Hln, HOH])
.subscribe(
next => console.log('next:', next));

Console output:

next: (2) ["h", "e"]
next: (3) ["1", "1", "o"]

Example 1.2: just (of with single emision) operator - clean-way-rx/src/app/items/item1.ts

Of([”h”, "e“, vvln, ||1|v/ HOH])
.subscribe(
next => console.log('next:', next));

Console output:

Example 1.3: from operator - clean-way-rx/src/app/items/item1.ts

from([uhnl HeH’ ”1“, "ln, HOH])
.subscribe(

next => console.log('next:', next));

Console output:

o O B W N

o

10
11
12

o O B W N =

Bw N -

o N o O

10
11
12
13

14

RxJS code snippet

Example 1.4: range operator - clean-way-rx/src/app/items/item1.ts

23

range(1, 5)
.subscribe(
next => console.log('next:', next));

Console output:

Example 1.5: defer operator - clean-way-rx/src/app/items/item1.ts

defer(() =>
of(["h", "e", "1", "1", "o"]))
.subscribe(
next => console.log('next:', next));

Console output:

next - (5) [”h”/ Hevv’ |11H, ”1“/ uou]

Operadores de apoyo

Example 1.6: interval operator - clean-way-rx/src/app/items/item1.ts

const subscribe = interval(1000)
.subscribe(
next => console.log('next:', next));

setTimeout(() => {
subscribe.unsubscribe();
1, 5000);

Console output:

next: @
next: 1
next: 2
next: 3
next: 4

I
B W N O O 0N 0w N

16

IS

w

© O 0 N O O »

w N =

g

RxJS code snippet

Example 1.7: timer operator - clean-way-rx/src/app/items/item1.ts

24

const subscribe = timer(1000, 1000)
.subscribe(
next => console.log('next:', next));

setTimeout(() => {
subscribe.unsubscribe();
}, 5000);

Console output:

next: @
next: 1
next: 2
next: 3
next: 4

Example 1.8: empty operator - clean-way-rx/src/app/items/item1.ts

empty ()
.subscribe({
next: () => console.log('Next'),
complete: () => console.log('Complete!")

1)

Console output:

Complete!

Example 1.9: never operator - clean-way-rx/src/app/items/item1.ts

never ()
.subscribe({
next: () => console.log('Next'),
complete: () => console.log('Complete!")

1)

N

w

© 00 I O O »

10
11

[

w

O O

w N =

al

W N -

© 0w 3 o O

10
11
12
13

Rx]JS code snippet 25

Example 1.10: error operator - clean-way-rx/src/app/items/item1.ts

throwError('SampleError! ")
.subscribe({
next: val => console.log(val),
complete: () => console.log('Complete!"),
error: val => console.log(Error: ${val}")

)

Console output:

Error: SampleError!

Example 1.11: clean-way-rx/src/app/items/item1.ts

taskWrapped(): Observable<any> {

return Observable.create(function (observer: any) {

// Here the imperative code is embedded

1)

Code Snippet: RxSwift - RxJava

Example 1.12: clean-way-rx/src/app/items/item1.ts

imperativeTask() {
const data = "any data";
console.log("Do any imperative task or process");
return data;

Example 1.13: clean-way-rx/src/app/items/item1.ts

taskWrapped(task: any): Observable<any> {

return Observable.create(function (observer: any) {

let data = task;

if (data) {
observer .next(data);
observer.complete();

} else {
observer .error("SampleError");

1)

Code Snippet: RxSwift - RxJava

W N O O B W N =

=
N O O

o O B W N

N =

w

O O

N

w

[¢)]

RxJS code snippet

Example 1.14: clean-way-rx/src/app/items/item1.ts

26

this.taskWrapped(this.imperativeTask())
.subscribe({
next: val => console.log(val),
complete: () => console.log('Complete!"),
error: val => console.log(Error: ${val}")

1)

Console output:

Do any imperative task or process
any data

Complete!

item 5: Mantenga limpia la cadena de operadores

Code Snippet: RxSwift - RxJava

Example 5.1: clean-way-rx/src/app/items/item5.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeToken(token)
.pipe(saved => this.network.getUser(username)))
)

.subscribe(user => console.log(user));

Example 5.2: clean-way-rx/src/app/items/item5.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeToken(token)),
concatMap(saved => this.network.getUser(username))

)

.subscribe(user => console.log(user));

Example 5.3: clean-way-rx/src/app/items/item5.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeToken(token)
.pipe(saved => this.network.getUserWithToken(username, token)))
)

.subscribe(user => console.log(user));

o O B W N

[

w

=~ O O

N =

w

o O

o O B W N =

9

RxJS code snippet

Example 5.4: clean-way-rx/src/app/items/item5.ts

27

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeToken(token).pipe(map(saved => [token, saved]))),
concatMap(pair => this.network.getUserWithToken(username, pair[@] as Token))
)

.subscribe(user => console.log(user));

Example 5.5: clean-way-rx/src/app/items/item5.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeToken(token)),
ignoreElements(),
concat(this.network.getUser (username))
)

.subscribe(user => console.log(user));

item 28: Gestionando los errores

Code Snippet: RxSwift - RxJava

Example 28.1: clean-way-rx/src/app/items/item28.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeTokenWithError(token)),
concatMap(saved => this.network.getUser(username))
)

.subscribe(user => console.log(user));

Example 28.2: clean-way-rx/src/app/items/item28.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeTokenWithError(token)),
concatMap(saved => this.network.getUser(username)),
catchError(error => of(new User())))
.subscribe(
user => console.log('next:', user),

error => console.log('error:', error),

() => console.log('completed'));

0w N O O B W N =

(S
N O ©

0 N O O b W N

11
12
13

[

w

© G 0o O

11
12
13
14
15
16
17
18

RxJS code snippet

Example 28.3: clean-way-rx/src/app/items/item28.ts

28

this.network.getToken("api-key")

.pipe(
concatMap(token => this.cache.storeTokenWithError(token)),
concatMap(saved => this.network.getUser(username)),
catchError(error =>

empty()
.pipe(tap({ complete: () => console.log(error) }))

))

.subscribe(
user => console.log('next:', user),
err => console.log('error:', err),

() => console.log('completed'));

Example 28.4: clean-way-rx/src/app/items/item28.ts

this.network.getToken("api-key")

.pipe(
concatMap(token => this.cache.storeTokenWithError(token)),
concatMap(saved => this.network.getUser(username)),
retry(2),
catchError(error =»

empty()
.pipe(tap({ complete: () => console.log(error) }))

))

.subscribe(
user => console.log('next:', user),
err => console.log('error:', err),

() => console.log('completed'));

Example 28.5: clean-way-rx/src/app/items/item28.ts

this.network.getToken("api-key")
.pipe(
concatMap(token => this.cache.storeTokenWithError(token)),
concatMap(saved => this.network.getUser(username)),
retryWhen(errors => errors.pipe(
tap(() => console.log('retrying...")),
delay(2000),
take(4),
concat(throwError('SampleError!"'))
),
catchError(error =>
empty()
.pipe(tap({ complete: () => console.log(error) }))
))
.subscribe(
user => console.log('next:', user),

err => console.log('error:', err),

() => console.log('completed'));

~ O O B W N

o O B W N =

S

w

o0

10
11
12

RxJava code snippet

item 1: De Imperativo a Reactive

Code Snippet: RxSwift - RxJS

Example 1.1: of (fromArray) operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable. fromArray(Arrays.asList("h", "e"), Arrays.asList("1", "1", "o"))
.subscribe(element -> Log.d(TAG, "" + element)));

Console output:

D/Itemi: [h, e]
D/Itemi: [1, 1, o]

Example 1.2: just operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable. just(Arrays.asList("h", "e", "1", "1", "0"))
.subscribe(element -> Log.d(TAG, "" + element)));

Console output:

Example 1.3: from (fromlterable) operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable. fromlterable(Arrays.asList("h", "e", "1", "1", "0o"))
.subscribe(element -> Log.d(TAG, "" + element)));

Console output:
D/Iteml: h
D/Iteml: e
D/Iteml: 1
D/Iteml: 1
D/Iteml: o

o O B W N

o

10
11
12

O O s W N

=

<~ O O & W N -

o0

10
11
12
13

RxJava code snippet

Example 1.4: range operator - CleanWayRx/app/src/main/java/../items/Item1.java

30

compositeDisposable.add(
Observable.range(1, 5)
.subscribe(element -> Log.d(TAG, "" + element)));

Console output:

D/Iteml: 1
D/Iteml: 2
D/Iteml: 3
D/Iteml: 4
D/Iteml: 5

Example 1.5: defer operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable.defer(() ->
Observable. just(Arrays.asList("h", "e", "1", "1", "0o")))
.subscribe(element -> Log.d(TAG, "" + element)));

Console output:

Operadores de apoyo

Example 1.6: interval operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable.interval (1, TimeUnit.SECONDS)
.subscribe(element -> Log.d(TAG, "" + element)));

sleep(5000);

Console output:

D/Iteml: ©
D/Iteml: 1
D/Iteml: 2
D/Iteml: 3
D/Iteml: 4

© 00 1 O U b W N =

[S Y
W N~

W N O O B W N =

10

BwWw N

o N o O

RxJava code snippet 31

Example 1.7: timer operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable.timer(1, TimeUnit.SECONDS)
.subscribe(element -> Log.d(TAG, "" + element),
throwable -> Log.e(TAG, "error:" + throwable),
() -> Log.d(TAG, "completed")));

sleep(5000);

Console output:

D/Iteml: ©
D/Iteml: completed

Example 1.8: empty operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable.empty()
.subscribe(element -> Log.d(TAG, "" + element),
throwable -> Log.e(TAG, "error:" + throwable),
() -> Log.d(TAG, "completed")));

Console output:

D/Iteml: completed

Example 1.9: never operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable.never ()

.subscribe(element -> Log.d(TAG, + element),
throwable -> Log.e(TAG, "error:" + throwable),

() -> Log.d(TAG, "completed")));

Console output:

©O© 00 N O U b W N =

=
N B, O

O U o W N o O B W N

O 0 N O O b wWw N =

(SN
N B, e

RxJava code snippet

Example 1.10: error operator - CleanWayRx/app/src/main/java/../items/Item1.java

compositeDisposable.add(
Observable.error(() -> {
throw new Exception("SampleError!");
b

.subscribe(element -> Log.d(TAG, "" + element),

throwable -> Log.e(TAG, "error:" + throwable),

() -> Log.d(TAG, "completed")));

Console output:

E/Iteml: error: java.lang.Exception: SampleError!

Example 1.11: CleanWayRx/app/src/main/java/../items/Item1.java

private Observable<String> taskWrapped() {

return Observable.create(emitter -> {
// Here the imperative code is embedded

1

Code Snippet: RxSwift - RxJS

Example 1.12: CleanWayRx/app/src/main/java/../items/Item1.java

private String imperativeTask() {

String data = "Any data";
Log.d(TAG, "Do any imperative task or process");

return data;

Example 1.13: CleanWayRx/app/src/main/java/../items/Item1.java

private Observable<String> taskWrapped(final Object task) {

return Observable.create(emitter -> {
try {
String data = (String) task;
emitter.onNext(data);
emitter.onComplete();
} catch (Throwable e) {
emitter.onkrror(e);

1

Code Snippet: RxSwift - RxJS

N O O & W N =

(00}

10
11

a o W N g o W N

O b W N

RxJava code snippet

Example 1.14: CleanWayRx/app/src/main/java/../items/Item1.java

33

compositeDisposable.add(
taskWrapped(this.imperativeTask())
.subscribe(data -> Log.d(TAG, "next: " + data),
throwable -> Log.e(TAG, "error: " + throwable),
() -> Log.d(TAG, "completed")));

Console output:

D/Iteml: Do any imperative task or process
D/Iteml: next: Any data

D/Iteml: completed

item 5: Mantenga limpia la cadena de operadores

Code Snippet: RxSwift - RxJS

Example 5.1: CleanWayRx/app/src/main/java/../items/Item5.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeToken(token)
.concatMap(saved -> network.getUser(username)))
.subscribe(user -> Log.d(TAG, "User: " + user)));

Example 5.2: CleanWayRx/app/src/main/java/../items/Item5.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeToken(token))
.concatMap(saved -> network.getUser(username))
.subscribe(user -> Log.d(TAG, "User: " + user)));

Example 5.3: CleanWayRx/app/src/main/java/../items/Item5.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeToken(token)
.concatMap(saved -> network.getUser(username, token)))
.subscribe(user -> Log.d(TAG, "User: " + user)));

o O s W N

D O s W N

=~ O O s W

w 9 O O & W N -

RxJava code snippet

Example 5.4: CleanWayRx/app/src/main/java/../items/Item5.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeToken(token)
.map(saved -> new Pair<>(token, saved)))
.concatMap(pair -> network.getUser(username, pair.first))
.subscribe(user -> Log.d(TAG, "User: " + user)));

Example 5.5: CleanWayRx/app/src/main/java/../items/Item5.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeToken(token))
.ignoreElements()
.andThen(network .getUser (username))
.subscribe(user -> Log.d(TAG, "User: " + user)));

item 28: Gestionando los errores

Code Snippet: RxSwift - RxJS

Example 28.1: CleanWayRx/app/src/main/java/../items/Item28.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeTokenWithError (token))
.concatMap(saved -> network.getUser(username))
.subscribe(element -> Log.d(TAG, "" + element),
throwable -> Log.e(TAG, "error:" + throwable),
() -> Log.d(TAG, "completed")));

Example 28.2: CleanWayRx/app/src/main/java/../items/Item28.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeTokenWithError(token))
.concatMap(saved -> network.getUser (username))
.onErrorResumeNext (throwable -> Observable. just(new User()))

.subscribe(user -> Log.d(TAG, "next: + user),
throwable -> Log.e(TAG, "error: " + throwable),

() -> Log.d(TAG, "completed")));

, O O 0 N O O & W N =

e

0 N O U AW N e

11
12

0 N O O b W N =

e T S S
o O W N~ O ©

RxJava code snippet 35

Example 28.3: CleanWayRx/app/src/main/java/../items/Item28.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeTokenWithError(token))
.concatMap(saved -> network.getUser(username))
.onErrorResumeNext (throwable -> {
Log.d(TAG, Objects.requireNonNull(throwable.getMessage()));
return Observable.empty();
b
.subscribe(user -> Log.d(TAG, "next: " + user),
throwable -> Log.e(TAG, "error: " + throwable),
() -> Log.d(TAG, "completed")));

Example 28.4: CleanWayRx/app/src/main/java/../items/Item28.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeTokenWithError(token))
.concatMap(saved -> network.getUser(username))
.retry(2)
.onErrorResumeNext (throwable -> {
Log.d(TAG, Objects.requireNonNull(throwable.getMessage()));
return Observable.empty();
b
.subscribe(user -> Log.d(TAG, "next: " + user),
throwable -> Log.e(TAG, "error: " + throwable),
() -> Log.d(TAG, "completed")));

Example 28.5: CleanWayRx/app/src/main/java/../items/Item28.java

compositeDisposable.add(
this.network.getToken("api-key")
.concatMap(token -> cache.storeTokenWithError(token))
.concatMap(saved -> network.getUser(username))
.retryWhen(errors -> errors
.doOnNext(ignored -> Log.d(TAG, "retrying..."))
.delay(2, TimeUnit.SECONDS)
.take(4)
.concatWith(Observable.error(new Throwable())))
.onErrorResumeNext (throwable -> {
Log.d(TAG, Objects.requireNonNull(throwable.getMessage()));
return Observable.empty();
b
.subscribe(user -> Log.d(TAG, "next: " + user),
throwable -> Log.e(TAG, "error: " + throwable),
() -> Log.d(TAG, "completed")));

	Tabla de contenidos
	Prefacio
	Acerca del libro
	Acerca del código fuente
	Desarrollo del contenido
	Glosario
	Audiencia
	Consultas y/o contacto
	Versiones de IDEs y tecnologías usadas
	Change log

	Resumen de reglas
	Foundation
	Ítem 1: De Imperativo a Reactive

	Be Clean
	Ítem 5: Mantenga limpia la cadena de operadores

	Error handling
	Ítem 28: Gestionando los errores

	RxJS code snippet
	RxJava code snippet

